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Evaluation of the removal of impassable barriers on anadromous juvenile salmon and 8 

steelhead in the Columbia River Basin 9 

 10 

ABSTRACT 11 

Despite the popularity of barrier removal as a habitat restoration technique, there are few studies 12 

that evaluate the biological effects of restored stream crossings. An extensive post-treatment 13 

study design was used to quantify fish populations (e.g. species, life stage, abundance) and 14 

habitat attributes (e.g. gradient, geomorphic channel units) at 32 culvert removal or replacement 15 

projects to determine their effectiveness in restoring habitat access for juvenile salmon, 16 

Oncorhynchus spp., and steelhead, O. mykiss (Walbaum), in the Columbia River Basin, USA. 17 

Anadromous fish [steelhead, Chinook salmon O. tshawytscha (Walbaum)] abundance, juvenile 18 

steelhead abundance, and habitat conditions were not significantly different between paired 19 

reaches (i.e. upstream and downstream of former barrier sites) suggesting these sites are no 20 

longer full barriers to movement. This suggests that barrier removal projects on small Columbia 21 

Basin streams provide adequate fish passage, increased habitat availability and increased juvenile 22 

anadromous fish abundance immediately upstream of former barriers. 23 

 24 

KEYWORDS: anadromous, culvert removal, fish passage, habitat restoration, restoration 25 

effectiveness monitoring, Columbia River basin. 26 

 27 

INTRODUCTION 28 

The demand for natural resources (e.g. timber and minerals) and increases in transportation and 29 

energy infrastructure have resulted in an expansion of road development (Forman, 2003; 30 

Laurance et al., 2009; Laurance and Balmford, 2013) that often leads to increased installation of 31 

stream-crossing structures (i.e. culverts, low head irrigation dams), with implications on aquatic 32 
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biota. Effects of culverts and dams at stream crossings on fish have long been reported 33 

(McClellan, 1970; Dryden and Jessop, 1974), and the negative impacts of these structures are 34 

becoming increasingly apparent (Warren and Pardew, 1998; see Hoffman and Dunham, 2007 for 35 

review; Burford et al., 2009; Mahlum et al., 2014). Poorly constructed or functioning culverts 36 

can impede movement and become barriers to migration for resident and anadromous fish 37 

species (Dynesius and Nilsson, 1994; Fullerton et al., 2010; Perkin and Gido, 2012). Barriers to 38 

movement can reduce habitat necessary for fish reproduction, foraging and rearing (Gibson et 39 

al., 2005; MacPherson et al., 2012). This loss of ecological connectivity can threaten biodiversity 40 

and reduce the overall capacity of a population to maintain trait diversity, which may lead to 41 

increased risk of local population extirpations (Wilcove et al., 1998). Movement and migration 42 

behaviours are key evolutionary traits that aid in the continued success of resident and 43 

anadromous fish populations. Restricting the expression of these traits can reduce survival and 44 

reproductive success, and undermine other local restoration actions (Morita and Yamamoto., 45 

2002; Zitek and Schmutz, 2004; Wofford et al., 2005; Bouska and Paukert, 2010). 46 

   Installation of culverts is the most common road-building practice for crossing streams. 47 

Culverts act as under-road stream pathways whose construction often ignores natural habitat 48 

features necessary for fish movements. The U.S. Forest Service and Bureau of Land 49 

Management estimate that over 10,000 culverts exist in fish-bearing streams throughout 50 

Washington and Oregon as of 2005 (Gibson et al., 2005). Similarly, the Washington Department 51 

of Fish and Wildlife (WDFW) estimated that over 7,700 river kilometres (rkm) of historical 52 

salmon habitat are blocked by approximately 2,400 impassible culverts (Conroy, 1997). 53 

Therefore, removal of human-constructed barriers to fish migration and passage is a primary 54 

means of restoring salmon and other anadromous fish populations, and is a commonly used, cost-55 

effective restoration technique (Bryant et al., 1999; Roni et al., 2002, 2008; Burdick and 56 

Hightower, 2006; Kiffney et al., 2009).   57 

Efforts to eliminate barriers to fish migration and restore longitudinal connectivity by 58 

replacing or removing culverts have been a focus of stream restoration actions over the last two 59 

decades, resulting in the reconnection of large amounts of stream habitat (NOAA 2016). Along 60 

the West Coast, nearly 15,000 km of fish habitat have been made accessible through removal of 61 

barriers since 2000 (NOAA 2016). Approximately 3,500 culverts that were barriers to fish 62 

passage were replaced in Washington State alone, resulting in 5,990 km of newly accessible 63 
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migratory fish habitat. In the Columbia River basin, the Northwest Power and Conservation 64 

Council (NWPCC) Fish and Wildlife (F&W) Program implemented by the Bonneville Power 65 

Administration (BPA) and its partners have opened nearly 4,000 km of habitat that was 66 

previously blocked to fish passage (Governor's Salmon Recovery Office, 2008). Surprisingly, a 67 

relatively small number of biological evaluations of culvert replacements (retrofits, removals, or 68 

replaced with other stream crossing structures) have been published despite decades of 69 

recommendations from scientists for improved monitoring and evaluation of barrier removal and 70 

other restoration activities (Tarzwell, 1937; Reeves and Roelofs, 1982; Roni et al., 2002, 2013; 71 

Rumps et al., 2007). For the purpose of this manuscript an impassable barrier culvert that is 72 

replaced with a passable culvert is considered removal of the fish migration barrier.  73 

Through the NWPCC F&W Program, more than 100 impassable (i.e. complete or full) 74 

barrier removal projects have been funded since 2000. To evaluate the success of these barrier 75 

removal projects, 32 interior Columbia Basin full barrier removal sites with a range of 1–14 76 

years post project completion were surveyed. The main objective was to determine the 77 

effectiveness of full barrier removal to restore habitat connectivity. It was hypothesised that (i) 78 

post-barrier-removal treatment and reference reaches would not differ in juvenile salmon or 79 

steelhead abundance, (ii ) a positive relationship exists between a) the abundance of juvenile 80 

salmon upstream of the barrier relative to downstream of the barrier, and b) time since barrier 81 

removal, and (iii) the abundance of juvenile salmon and steelhead trout upstream relative to 82 

downstream of the barrier is related to habitat quality upstream of the barrier. 83 

 84 

METHODS 85 

An extensive post-treatment (EPT) design comparing the reach immediately upstream 86 

(treatment) and downstream (reference) of the barrier were used to assess the effectiveness of 87 

full barrier removals (culvert replacement or removal) implemented prior to 2013 in providing 88 

passage to anadromous fish (Hicks et al., 1991). Assessment of full barriers to fish passage do 89 

not require collection of pre-project data, as anadromous fish were not found above full barriers 90 

prior to removal. The EPT design samples paired treatment and reference reaches after (> 1 year) 91 

the habitat improvement has occurred (post-treatment). Because the EPT design samples paired 92 

reaches, a site comprises a treatment and reference reach. Juvenile salmonids can rapidly 93 

recolonise areas upstream of former barriers in one or two years (Anderson and Quinn, 2007; 94 
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Pess et al., 2014; Anderson et al., 2015). Based on office screening and site visits of an initial list 95 

of more than 100 potential full-barrier projects completed since 2000, 43 potential sites were 96 

identified for sampling. To qualify for inclusion in the programme, suitable treatment and 97 

reference reaches immediately above and below the former impassable barrier were required. 98 

Thus, many sites were excluded because paired reaches did not have similar (within ~10%) 99 

channel gradient, channel width, valley confinement (valley width), flow regime, land use, or 100 

riparian cover or barrier removal coincided with other restorative actions (e.g. in-stream large 101 

wood placement). Of those 43 potential sites, two sites in 2014 and nine sites in 2015 were not 102 

sampled due to fire, landowners denying access, or lack of water (dry channel). For the 103 

remaining 32 sites, 18 were sampled in 2014 and 14 were sampled during 2015 (Figure 1). 104 

Treatment and reference reach lengths were ten times the bankfull width or a minimum length of 105 

50 m. Of the 32 sites, barriers were completely removed at 12 of the sites. The remaining 20 106 

culverts were constructed of corrugated steel (12 bottomless pipe arch and eight countersunk 107 

squash) (Table 1). 108 

To account for potential differences in abundance above and below barrier sites that may 109 

be related to habitat quality rather than movement restriction habitat data for both treatment and 110 

reference reaches were collected and quantified. A modified thalweg profile and habitat survey 111 

methods from Mossop and Bradford (2006) were used to classify habitat type (pool, riffle, glide), 112 

slope, substrate type (organics, silt, sand, gravel, cobble, or boulder), and residual pool depth 113 

(Lisle, 1987). Wolman pebble counts were used to characterise median particle size in treatment 114 

and reference reaches (Wolman, 1954). From data collected in longitudinal profiles, the average 115 

stream channel gradient and the proportion of pools (area and length) in both the reference and 116 

treatment reaches were calculated (Table 2). The 16th, 50th, and 84th percentiles of the 117 

streambed particle size were identified from data collected in pebble counts . To determine 118 

whether a project met fish passage criteria, an assessment of the completed project was 119 

conducted, including both qualitative and quantitative measures (e.g. channel slope, crossing 120 

length, high water depth) following WDFW barrier survey protocols (Recreation and 121 

Conservation Office, 2013; Washington Department of Fish and Wildlife, 2009; Table 1). 122 

According to the WDFW barrier survey protocols, if the water surface drop is greater than or 123 

equal to 1 m, 0% passability is assumed at the culvert. If a culvert is less than 18.3 m long and 124 

the slope is greater than 4%, then 0% passability is assumed. If a culvert is greater than 18.3 m 125 
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long and the slope is greater than 2% then 0% passability is assumed (see WDFW 2009 for 126 

details). 127 

Three-pass backpack electric fishing was used to quantify the number of juvenile fish in 128 

each treatment and reference reach during the summer low flow period (July - September) at all 129 

but two sites where the flow was too deep and wide to use backpack electric fishing methods. 130 

Block nets were placed at the upstream and downstream ends of each reach to prevent fish from 131 

moving in or out of study reaches during electrofishing. Captured fish were anesthetised, 132 

identified to species, measured and placed in a recovery bucket in the stream (after all backpack 133 

electric fishing was completed) for at least 15 min before fish were released into the same reach 134 

where they were captured. Fish abundance in each reach was estimated for each species using a 135 

multiple removal estimator (Carle and Strub, 1978) (Table 3). Because they were too deep and 136 

wide to effectively electrofish and therefore accurately quantify juvenile salmonids with 137 

multiple-removal electrofishing, snorkel surveys were used to enumerate fish at two sites in 2015 138 

(Taneum and Reecer sites). Divers entered the downstream end of a reach and slowly moved 139 

upstream, stopping to occasionally report the numbers and sizes of all fish species (Roni and 140 

Fayram, 2000). Fish density was calculated by dividing multiple removal estimates or snorkel 141 

counts of fish abundance by total wetted area of a reach. 142 

The response and analysis for an EPT design is based on the difference in fish abundance 143 

or habitat metrics between paired treatment and reference reaches. Paired t-tests were used to 144 

compare the difference in means between the treatment and reference reaches on untransformed 145 

data, as the data were approximately normally distributed. Because Chinook and coho salmon 146 

were rarely encountered at most sites (four and one respectively), analysis was done on steelhead 147 

and all anadromous fish combined. Resident cutthroat and brook trout were common at sites and 148 

true resident fish were likely above and below the impassable barrier. Therefore, resident fish 149 

abundance was reported to demonstrate that other fish were present and to demonstrate the 150 

quality of habitat, although resident fish were not included in the analysis to determine success of 151 

the barrier removal to passing fish due to the likelihood that resident fish were present upstream 152 

of the impassable barrier before barrier removal. Pearson correlation analyses were used to 153 

determine whether there was a significant correlation between differences in fish numbers in 154 

treatment and reference reaches and project age, or differences between treatment and reference 155 

reaches in gradient and percent pool. A significance level of α = 0.05 was used for all statistical 156 
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tests.  157 

 158 

RESULTS 159 

All barrier removal sites that had culverts (20 of 32) appeared to be completely passable based 160 

on the slope and drop, and other fish passage design criteria (WDFW 2009) (Table 1). For the 161 

remaining 12 barrier removal sites the culvert or former barrier was completely removed and 162 

replaced with a natural stream channel. Steelhead, O. mykiss, cutthroat trout, O. clarki 163 

(Richardson), Chinook salmon, coho salmon, brook trout, Salvelinus fontinalis (Mitchill), bull 164 

trout, S. confluentus (Suckley), sculpin (Cottus spp.), suckers (Catostomus spp.) and dace 165 

(Rhinichthys spp.) were encountered. Steelhead were present in 20 of 32 sites sampled. No fish 166 

were detected at Parachute Creek (Lochsa River Basin) or Little Camas Creek (Wenatchee River 167 

Basin), and data from these creeks were excluded from the analysis (Table 3). The most common 168 

salmonid species captured were O. mykiss (N = 766), and cutthroat trout (N = 713). There was 169 

no significant difference in fish density between treatment and reference reaches for either O. 170 

mykiss (t-statistic: -0.79, df = 21, p = 0.44) or all anadromous salmonids combined (t-statistic: -171 

5.45, df = 21, p = 0.19; Table 3).   172 

Average wetted width (t-statistic: -0.98, df = 31, p = 0.34), proportion of pools (t-statistic: 173 

-0.03, df = 31, p = 0.98) and gradient (t-statistic: 1.04, df = 31, p = 0.30) did not differ between 174 

treatment and reference reaches (Table 2). The average slope within culverts was 3.33%, and the 175 

average gradient for reference and treatment reaches was 4.35% and 4.60%, respectively (Tables 176 

1 and 2). Substrate characteristics (D50) did not differ between reference and treatment sites (t-177 

statistic: -0.08, df = 31, p = 0.94; Table 2). Pearson correlation analysis yielded little evidence of 178 

a linear relationship between differences in density (O. mykiss, all anadromous fish combined) 179 

above and below former barriers and project age, difference in gradient, or percent pool habitat 180 

(p > 0.30).  181 

 182 

DISCUSSION  183 

Results suggest that removal of full barriers has allowed anadromous salmonids to access 184 

suitable habitat above former man-made barriers that were impassible to anadromous fish 185 

passage. Given that these sites were full barriers one would expect anadromous fish below the 186 

barrier but not above, thus abundance between reaches below and above the barrier would be 187 
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different. Little difference was found in fish numbers above and below former barriers indicating 188 

the removal of the barrier has resulted in conditions that do not block movement or migration of 189 

anadromous fish. The habitat and culvert surveys indicated similar habitat quality and quantity 190 

immediately above and below former barriers. This is consistent with previous studies, which 191 

found that salmonid fishes quickly recolonise habitat once a barrier to migration was removed 192 

(Roni et al., 2008; Anderson, 2011; Pess et al., 2014; Erkinaro et al., 2017). In addition, despite 193 

some barrier removal projects being more than 10 years old, the current fish and culvert surveys 194 

suggest that most sites are passable to anadromous fish based on regional fish passage criteria 195 

(WDFW, 2009) (Table 1 & 3). 196 

The absence of anadromous salmonids at some of the sites sampled suggests that some 197 

sites get intermittent or no use by these species. One of the key criteria in the site selection was 198 

that these sites were used by steelhead and Chinook salmon. However, juvenile Chinook salmon 199 

were encountered at only four sites. It is possible that Chinook salmon only intermittently use the 200 

sites or that escapement levels were low, although detailed escapement or redd survey data for 201 

most study streams was not available. Chinook salmon typically spawn and rear in larger streams 202 

and rivers (> 5 m bankfull width), although juveniles may move into tributaries to rear for one to 203 

two years before migrating to sea (Quinn, 2005). Given the small size of the streams sampled, it 204 

is more likely they are rarely used by Chinook salmon for spawning or rearing, or Chinook are 205 

only found well downstream of the sites. Moreover, seven sites exhibited zero anadromous fish 206 

and zero fish were observed at two sites (Little Camas and Parachute), suggesting that some of 207 

these sites might not be used or only intermittently used by Chinook salmon and steelhead. It is 208 

also possible that some of the steelhead captured during the surveys were resident rainbow trout. 209 

Tissue samples from O. mykiss collected above and below barriers from 19 of the sites suggested 210 

little hybridization with cutthroat trout. Moreover, sibship analysis indicated that juvenile 211 

steelhead which were members of the same families (siblings) were found above and below 212 

former impassible culverts at 15 of 19 sites (Roni et al., 2014). This suggests upstream and 213 

downstream movement of juvenile or adult steelhead or resident O. mykiss through formerly 214 

impassible culverts providing further evidence that these former barriers are now passable.  215 

There were little to no differences in physical habitat above and below former barriers at 216 

most sites (Table 2). This is not unexpected as one of the criteria for selecting a site was that 217 

there could not be dramatic differences (e.g. greater than ~10%) in gradient, flow and other 218 
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channel characteristics that might limit upstream fish movement.  The age or time since 219 

restoration was completed is a common factor believed to affect the success of the project 220 

(successful passage in this case) (Roni, 2002; Kail et al., 2015). This is particularly the case for 221 

road crossings such as culverts that have a fixed lifespan and can become impassable with time if 222 

the channel aggrades or degrades (Wilhere et al., 2016). Sites sampled ranged in age from 1 to 223 

14 years after project completion (Table 2), but no correlation was found between the difference 224 

in fish numbers above and below barriers and the age of the project. While 14 years is a 225 

considerable length of time, it is still early in the life of structures such as culverts and different 226 

results may have been found had older structures been sampled. Sites with culverts appeared to 227 

be meeting WDFW fish passage criteria. This is likely because all of these sites were bottomless 228 

culverts with natural stream bottom, which have been shown to have higher rate of compliance 229 

with WDFW fish passage criteria than other types of culverts (Price et al., 2010). 230 

With thousands of impassible culverts and other man-made barriers on streams in western 231 

North America (Conroy, 1997; Gibson et al., 2005; Price et al., 2010), prioritising projects that 232 

will have the biggest benefit is important for wise use of resources. In the Columbia Basin, 233 

barrier removal projects that will allow access to and increase habitat for threatened and 234 

endangered Chinook salmon and steelhead are given the highest priority for funding. The results 235 

from 32 barrier removal projects implemented to benefit Chinook salmon and steelhead suggest 236 

that many of these sites are infrequently used by Chinook salmon. This suggests that more 237 

detailed surveys of fish use prior to funding and implementation of projects are needed to help 238 

prioritise projects. That is not to say that only fish use should be considered when prioritizing 239 

culverts and other man-made barriers for removal or replacement. Culverts and other barriers can 240 

impede movement of aquatic invertebrates, sediment, large wood, organic material and nutrients 241 

(Ward and Stanford 1983, Essington and Carpenter, 2000, Mueller et al., 2011). These factors, 242 

coupled with information on fish use and the quality and quantity of newly available habitat, 243 

should be considered when prioritising culverts and other man-made barrier projects for removal. 244 

Despite the popularity of barrier removal as a habitat restoration technique, studies 245 

evaluating the biological effects of restored stream crossings are rare (Roni et al., 2008). While 246 

all barrier removal projects in the Columbia River Basin were not evaluated, the sites examined 247 

are representative of the few hundred barrier removal projects funded since 2000 in the 248 

Columbia Basin as part of the BPA’s Fish and Wildlife Program. Thus, the results indicate that 249 
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barrier removal projects in the Columbia Basin provide adequate fish passage and result in 250 

increased habitat availability and anadromous fish population abundance immediately upstream 251 

of former barriers. Moreover, this provides evidence that addressing impassable barriers to 252 

salmon and steelhead migration can result in range expansion and increased available habitat for 253 

anadromous fishes and resident fishes. Some sites exhibited greater abundances of fish below the 254 

barrier than above the barrier (e.g. Badger Site 1), which may be due to the stream crossing, but 255 

could also be due to upstream colonisation rates.  Kiffney et al. (2009) suggested that three 256 

factors influence rapid and successful natural colonisation after a barrier removal: 1) sufficient 257 

source population below the barrier; 2) high-quality habitat above the barrier; and 3) relatively 258 

low densities of resident fish upstream of the barrier. Taking these factors into account and 259 

understanding constraints on local biotic production can help prioritise barriers for removal and 260 

help determine whether they will be successful in the short and long term (Pess et al., 2014).  261 
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 447 

 448 

Table 1.  Culvert characteristics including shape, length, span (width of culvert), water depth 449 

within the culvert, slope through the culvert crossing, and road fill and width based on culvert 450 

surveys using WDFW culvert survey protocol. At sites that are not listed, the barrier or culvert 451 

was completely removed; thus, no culvert survey was possible.  SQSH = squash, ARCH = 452 

bottomless pipe arch. Span indicates length of culvert or stream crossing. Drop or culvert height 453 

from water surface to bottom of downstream end of culvert is also recorded but was zero at all 454 

sites.  455 

Site Shape Length (m) Span (m) Depth (m) Slope (%) Road fill (m) Road width (m) 

Badger Lower SQSH 18.8 3.4 0.10  3.1 1.9 8.1 

Cabin ARCH 43.9 4.5 0.13 5.9 10.3 9.6 

Camp SQSH 14.5 4.2 0.12 3.6 1.0 7.6 

Corral SQSH 12.1 2.6 0.10 2.4 1.5 9.0 

Doe SQSH 20.1 3.4 0.20 4.5 1.9 8.3 

Granite SQSH 8.3 4.4 0.22 7.5 0.9 4.9 

Hepner ARCH 14.8 4.1 0.22 1.8 0.8 7.3 

Jack ARCH 23.6 6.3 0.09 1.4 1.6 11.6 

Mare ARCH 15.6 3.9 0.18 3.0 2.2 7.0 

Mertin ARCH 18.2 4.0 0.15 4.9 1.9 9.7 
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Mule ARCH 19.6 4.5 0.15 1.7 4.1 7.5 

Parachute SQSH 20.9 2.6 0.10 4.6 3.1 6.8 

Wendover Lower SQSH 17.2 3.0 0.11 1.3 1.5 9.0 

Wendover Upper SQSH 14.7 2.2 0.04 2.3 1.7 7.0 

Ireland Gulch ARCH 7.6 3.6 0.11 9.5 1.2 4.1 

Little Camas ARCH 9.7 3.6 0.05 0.8 0.9 4.6 

Orr Creek ARCH 12.3 4.1 0.26 6.7 1.1 4.9 

Sand 1 ARCH 9.4 3.9 0.10 2.6 1.3 4.5 

Sand 2 ARCH 10.2 3.3 0.10 2.4 0.9 4.8 

Tillicum ARCH 18.6 5.3 0.13 4.8 2.7 6.3 

 456 

 457 

Table 2. Habitat metrics for each site. Average wetted width, average slope, percent pool and 458 

substrate shown separately for reference (R) and treatment (T) reaches. cfs = cubic feet per 459 

second. 460 

Site 
Year barrier 

removed 

Flow 

(cfs) 

Wetted width 

(m) 
Slope (%) D50 (mm) Pools (%) 

R T R T R T R T 

Antoine 2013 0.58 1.72 1.90 8.92 10.68 57.5 56 8.63 3.6 

Badger Lower 2002 3.23 3.56 3.34 2.77 1.82 113 76.5 4.7 24.4 

Badger Upper 2005 3.66 2.37 2.62 3.34 2.65 68.5 47.5 0 14.86 

Cabin 2006 2.05 3.87 2.94 3.98 7.77 75 102.5 9.66 25.57 

Camp 2006 4.49 3.55 3.23 3.03 4.35 24 17 11.36 15.61 

Corral 2004 1.45 2.49 2.17 2.70 4.03 22.5 19 24.27 15.26 

Doe 2008 4.18 3.95 4.59 3.49 4.45 60.5 48 9.62 11.92 

Dead Cow 

Gulch 
2007 2.27 1.48 1.30 7.07 4.67 55.5 63 3.62 7.06 

Granite 2006 0.75 1.25 1.32 10.54 8.97 7 10 0 3.77 

Hepner 2008 2.62 4.04 3.70 0.71 2.36 11 48.5 20.72 0 

Indian N.F.T. 2009 2.25 2.13 2.31 2.98 2.33 31 22 27.69 49.53 

Jack 2009 0.72 3.16 2.36 3.87 4.36 51.5 50.5 40.69 19.14 

Mare 2007 0.69 2.32 2.50 2.05 1.47 22 15 5.01 10.61 

Mertin 2008 1.35 2.76 1.96 3.68 2.27 3.5 3 4.66 11.34 

Mule 2008 0.97 2.65 3.38 1.78 1.94 52 46.5 5.55 0 

Parachute 2005 0.78 2.51 1.80 7.39 8.23 60.5 91.5 9.61 5.44 

Wendover L. 2000 1.38 2.45 3.30 4.71 5.44 91.5 115.5 18.89 9.46 
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Wendover U. 2002 0.37 1.89 1.93 5.15 6.69 62 70 8.98 10.33 

Butler 2014 < 0.1 2.10 1.56 3.37 3.78 114 70.5 19 17 

Cahail 2010 < 0.1 1.76 2.25 2.69 3.35 19 39 61 53 

Indian W.S. 2012 0.17 1.76 2.59 6.51 3.87 69 68 25 10 

Ireland Gulch 2014 1.47 1.85 2.04 8.25 8.40 55 54 42 10 

Jenkins 2013 < 0.1 1.73 1.72 2.57 1.67 15 19 44 46 

Little Camas 2004 0.17 1.57 1.41 4.29 5.26 21.5 26 7 19 

North Road 2009 2.02 3.71 3.25 3.08 2.19 113 66 27 5 

Orr 2012 5.14 2.32 2.48 12.62 13.48 86 68.5 24 13 

Reecer 2009 28.9 6.88 6.56 2.02 1.57 3 14 0 0 

Sand 1 2004 0.54 2.27 2.37 3.80 4.70 107.5 40 0 13 

Sand 2 2004 0.54 2.43 2.11 1.61 1.99 32 154 28 26 

Taenum 2007 9.21 8.09 7.05 1.26 0.79 60.5 57 41 28 

Tillicum 2013 2.71 2.60 2.69 4.11 5.08 52 43 0 44 

Whitney 2011 2.75 2.76 2.55 4.99 6.57 64 73 22 46 

 461 

 462 

Table 3. Juvenile salmonid abundance by species for treatment (T) and reference (R) reaches 463 

estimated from three-pass electric fishing. The combined column is the total count of the 464 

anadromous salmonids. 465 

Site 

Steelhead Coho Chinook Combined Cutthroat Brook Trout 

R T R T R T R T R T R T 

Antoine 7 6 0 0 0 0 7 6 0 0 29 27 

Badger Lower 17 4 0 0 0 0 17 4 7 14 0 0 

Badger Upper 0 0 0 0 0 0 0 0 95 44 0 0 

Cabin 0 0 0 0 0 0 0 0 24 20 0 0 

Camp 1 0 0 0 0 0 1 0 13 26 0 0 

Corral 8 5 0 0 0 0 8 5 18 36 0 0 

Doe 0 0 0 0 0 0 0 0 29 22 0 0 

Dead Cow Gulch 21 23 0 0 17 18 38 41 0 0 0 0 

Granite 6 6 0 0 0 0 6 6 0 0 0 0 

Hepner 1 1 0 0 0 0 1 1 25 44 2 0 

Indian 14 22 0 0 0 0 14 22 1 1 3 3 

Jack 39 24 0 0 0 0 39 24 0 0 23 9 

Mare 0 0 0 0 0 0 0 0 19 60 0 0 

Mertin 0 0 0 0 0 0 0 0 14 22 0 0 
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Mule 0 0 0 0 0 0 0 0 53 42 0 0 

Parachute 0 0 0 0 0 0 0 0 0 0 0 0 

Wendover Lower 14 5 0 0 1 0 15 5 6 19 0 0 

Wendover Upper 0 0 0 0 0 0 0 0 25 34 0 0 

Butler 12 14 0 0 0 0 12 14 0 0 0 0 

Cahail 27 56 0 0 0 0 27 56 0 0 44 49 

Indian 2015 4 5 0 0 40 11 44 16 0 0 0 0 

Ireland Gulch 3 3 0 0 0 0 3 3 0 0 0 0 

Jenkins 7 3 0 0 0 0 7 3 0 0 0 0 

Little Camas 0 0 0 0 0 0 0 0 0 0 0 0 

North Road 68 46 209 157 17 15 294 218 0 0 1 0 

Orr 0 0 0 0 0 0 0 0 0 0 10 14 

Reecer 0 1 0 0 0 0 0 1 0 0 0 0 

Sand 1 17 22 0 0 0 0 17 22 0 0 0 0 

Sand 2 29 19 0 0 0 0 29 19 0 0 0 0 

Taenum 22 28 0 0 0 0 22 28 0 0 0 0 

Tillicum 42 22 0 0 0 0 42 22 0 0 0 0 

Whitney 44 48 0 0 0 0 44 48 0 0 0 0 

 466 

FIGURE LEGENDS 467 

Figure 1. Location of full-barrier removal projects sampled in 2014 and 2015.  468 
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