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ABSTRACT 

Advanced Quantitative Precipitation Information (AQPI)  is a synergistic project that 

combines observations and models to improve monitoring and forecasts of precipitation, 

streamflow, and coastal flooding in the San Francisco Bay area. As an experimental system, 

AQPI  leverages more than a decade of research, innovation, and implementation of a 

statewide, state-of-the-art network of observations, and development of the next generation of 

weather and coastal forecast models. AQPI was developed as a prototype in response to 

requests from the water management community for improved information on precipitation, 

riverine, and coastal conditions to inform their decision making processes. Observation of 

precipitation in the complex Bay Area landscape of California’s coastal mountain ranges is 

known to be a challenging problem. But, with new advanced radar network techniques, AQPI 

is helping fill an important observational gap for this highly populated and vulnerable 

metropolitan area. The prototype AQPI system consists of improved weather radar data for 

precipitation estimation; additional surface measurements of precipitation, streamflow and 

soil moisture; and a suite of integrated forecast modeling systems to improve situational 

awareness about current and future water conditions from sky to sea. Together these tools 

will help improve emergency preparedness and public response to prevent loss of life and 

destruction of property during extreme storms accompanied by heavy precipitation and high 

coastal water levels - especially high-moisture laden atmospheric rivers. The Bay Area AQPI 

system could potentially be replicated in other urban regions in California, the United States, 

and world-wide.  

CAPSULE (BAMS ONLY) 

Advanced Quantitative Precipitation Information provides improved situational 

awareness of extreme flooding events in the San Francisco Bay Area. 

Introduction 

Winter time precipitation is vital for replenishing snowpack and filling reservoirs in the 

western U.S. Along the U.S. west coast, much of the winter time precipitation comes from 

Atmospheric Rivers (ARs), which are narrow bands of concentrated water vapor transport 

often associated with land-falling extra tropical cyclones (Zhu and Newell 1998). Nearly half 

of California’s annual precipitation comes from a handful of AR events (Dettinger et al. 

2011). ARs and their accompanying heavy rains can be both good news and bad news for CA 
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residents:  they can bring relief for anxious water managers in a drought-prone region.  

However, that much water - arriving over a period of several days or less - can cause major  

flooding, endangering lives and property. ARs are responsible for more than 80% of the flood  

damages in the western U.S., including California, with over $1B in average annual costs  

(Corringham et al. 2019).   

The San Francisco Bay Area is particularly prone to significant flooding and the resulting  

damage from ARs (Corringham et al. 2019). Recent examples in the Bay Area include  

flooding impacts from a series of rain events in February 2017 which caused flood damage in  

the city of San Jose, as Coyote Creek overflowed its banks and inundated neighborhoods  

forcing 14,000 residents to evacuate. This series of rain events was also responsible for  

severe damage to the Oroville dam spillway and an evacuation of nearly 200,000 residents  

downstream of the dam (White et al. 2019). All told, the February 2017 storms were  

responsible for over $1.5B in damages (NCEI 2021). In 2019, another series of Bay area  

rainfall events resulted in over $150 million in flood damages and a presidential disaster  

declaration (FEMA 2019).  Landslides can also be a potential hazard.  Cordeira et al. (2019)  

showed that the vast majority of landslides in the San Francisco Bay area were associated  

with ARs.   

The complex terrain and the proximity of San Francisco Bay makes this region  

susceptible to flooding events.  Flash flooding along inland rivers and creeks that drain  

hundreds of small watersheds can combine with coastal flooding along the bay shoreline to  

exacerbate the overall magnitude of an event, producing compound flooding events.  

Urbanization is also a contributing factor. This area is home to more than 7 million people,  

encompassing 9 counties, 3 major cities (San Francisco, Oakland, and San Jose), and adjacent  

communities. According to a recent report from the California Department of Water  

Resources (CA-DWR, 2013), nearly 400,000 people in the Bay area are exposed in the 100- 

year floodplain. Impervious surfaces and stormwater runoff can exacerbate flooding  

conditions. The urban impacts from flooding range from degraded water quality in the Bay to  

flooded roadways and buildings during storms. Sea level rise and continued urbanization in  

the region is expected to amplify the problem.  

The rugged terrain in the San Francisco Bay area makes it especially challenging to  

monitor and forecast extreme rain and subsequent flooding events. Existing weather  

monitoring infrastructure - satellites, off-shore observations, and the operational radar  
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network (NEXRAD; Crum and Alberty 1993) - have enabled forecasters to provide notice of  

rain events, and ascertain their severity, much of the time. The forecasts, though, have not  

always provided specificity sufficient enough to guide actions that could be taken to offset  

damaging impacts. The reason is that precipitation often forms or is enhanced in very low  

levels of the atmosphere, below the level that the existing NEXRAD network can see well,  

through orographic lifting and warm rain collision-coalescence processes (White et al. 2003).  

Additionally, the observations of some of the radars in the Bay Area are blocked by coastal  

mountains, leaving blind spots in the observation network.  

The CA-DWR and the US Department of Energy have invested in a "picket fence" of  

atmospheric river observatories (AROs) along the U.S. West Coast to monitor wind and  

temperature profiles, column-integrated water vapor, onshore moisture flux, and freezing  

elevation at seven coastal sites and two inland sites1 (White et al. 2015; Ray and White 2019).  

The AROs, built by the National Oceanic and Atmospheric Administration Physical Sciences  

Laboratory (NOAA/PSL), have been used routinely to initialize and evaluate forecasts made  

by the National Weather Service (NWS). The system also enables water resources managers  

to gauge the intensity of an AR event at the location of the ARO. They do not, however, scan  

like a typical weather radar. Rather, AROs view the atmosphere directly above them in fine  

detail. Scanning radar is needed to fill in the gaps between AROs to detect variations in  

storms across different watersheds. A NOAA-supported, pre-AQPI temporary deployment of  

a scanning radar system in Santa Clara, CA,  was able to demonstrate improved high- 

resolution rainfall estimates (Cifelli et al. 2018).  

The purpose of this article is to provide an overview of the Advanced Quantitative  

Precipitation Information (AQPI) Project. The AQPI Project was awarded by CA-DWR to  

NOAA and contributing partners in 2017 and is administered by the Sonoma Water Agency.  

                                                 

 

 

1 The inland ARO site within the AQPI domain at Twitchell Island, California, does not 

measure temperature profiles, but it has a precipitation profiling radar and surface-based 

disdrometer to provide microphysical measurements of the precipitation observed at that site. 
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AQPI was designed to obtain more precise measurements and forecasts of precipitation,  

streamflow, and coastal flooding in the San Francisco Bay area. The concept was developed  

in response to requests from the Bay Area water management community for higher  

temporal- and spatial-resolution information than was currently available to guide their  

decision making for water management and flood response operations. The origins of AQPI  

trace back over a decade, building on fundamental research to improve understanding of  

hydrometeorological processes conducted through NOAA’s Hydrometeorology Testbed  

(Neiman et al. 2002; White et al. 2003; Matrosov et al. 2005; Zhang et al. 2012; Sumargo et  

al. 2020) with support from CA-DWR and the Sonoma Water Agency. One of the strengths  

of AQPI is the collaborative approach between local, state, and federal agencies. Table 1 lists  

agencies involved in AQPI and their roles in the project.  

  

Agency Role 

NOAA Physical Sciences 

Laboratory 

Program technical lead; Quantitative Precipitation Estimation 

(QPE) development and evaluation; precipitation and 

streamflow forecast evaluation; surface meteorology and 

profiler sites; benefits evaluation 

NOAA Global Systems 

Laboratory 

AQPI system development; High Resolution Rapid Refresh 

(HRRR) model development and evaluation 

NOAA Cooperative Institute 

for Research in the 

Atmosphere 

Radar install, testing, operation; QPE and Nowcast 

development, testing, and evaluation 

NOAA Cooperative Institute 

for Research in 

Environmental Sciences 

HRRR simulations and evaluation; QPE uncertainty 

USGS Pacific Coastal and 

Marine Science Center 

Coastal Storm Modeling System (CoSMoS) development, 

testing, and operation 
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NOAA National Severe 

Storms Laboratory 

Integration of AQPI radar data into Multi Radar-Multi Srensor 

(MRMS) 

Colorado State University 

Department of Economics 

AQPI benefits analysis 

Scripps Institute of 

Oceanography 

Development of long-term Concept of Operations for AQPI 

CA-DWR Grant sponsor 

Sonoma Water Grant administrator, facilitate interaction with local partners, 

radar siting, product evaluation and feedback 

Valley Water  Hosting X-band; data provider; AQPI product evaluation and 

feedback 

San Francisco Public 

Utilities 

Hosting X-band; data provider; AQPI product evaluation and 

feedback  

Contra Costa County Co-hosting and infrastructure support for X-band; data 

provider; AQPI product evaluation and feedback  

East Bay Municipal Co-hosting X-band; data provider; AQPI product evaluation 

and feedback 

Alameda County Co-hosting X-band; data provider; AQPI product evaluation 

and feedback 

Napa County AQPI product evaluation and feedback 

Marin County AQPI product evaluation and feedback 

National Weather Service AQPI product evaluation and feedback 
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Table 1. Agencies involved in AQPI and their role.  

  

AQPI Components   

AQPI includes a combination of integrated observations and high-resolution model  

forecasts to track storm systems as well as to predict precipitation, streamflow, and coastal  

flooding across the Bay area (Fig. 1). As noted above, the foundation for AQPI observations  

builds on an existing network established by NOAA, CA-DWR, Scripps Institute of  

Oceanography, San Jose State, and Sonoma Water to monitor extreme precipitation in  

California.  The coastal modeling component also builds upon work done in and around San  

Francisco Bay by the USGS and collaborators (Nederhoff et al. 2021; Tehranirad et al. 2020;  

Martyr-Koller et al. 2017).  

  

  

Figure 1. Components of AQPI and the flow of information to and from the AQPI system  
User Interface and Bay Area users.  

  

The core foundation of AQPI observations are new radar systems: four X-band and one  

C-band as shown in Fig. 2 (also see sidebar).  These systems are designed to supplement the  

coverage from NEXRAD in and around the Bay area and increase the accuracy of  
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quantitative precipitation estimation (QPE). The use of smaller radar systems to fill gaps in 

the NEXRAD network supports recommendations for priorities in NOAA weather research 

(NOAA Science Advisory Board 2021). The QPE derived from AQPI radars has been shown 

to have better accuracy and improve streamflow simulations compared to NEXRAD (Cifelli 

et al. 2018; Ma et al. 2021).  

  

  

Figure 2. Location of the radar network for AQPI. X-band systems supported by CA-DWR  
are shown in green with the circles indicating a 40-km range of coverage. To date, the  
Sonoma and Santa Clara X-bands have been installed and are operational (indicated with  
shading). The proposed C-band location is shown in red with the circle indicating 100-km  
range for rainfall analysis.  The blue dashed lines indicate additional X-band systems that  
have been supported by other funding agencies and will be integrated into AQPI when they  
come online.  

  

Importantly, the AQPI radars can detect narrow cold frontal rainbands (NCFRs) in parts  

of the Bay Area that are not well observed by NEXRAD (Fig. 3). NCFRs are rainbands that  

often occur along the cold frontal boundary of extra tropical cyclones that can produce high  

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:03 PM UTC



9
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0121.1.

intensity rain rates (Hobbs 1978) and are often responsible for flash floods and geomorphic  

hazards such as debris flows (Collins et al. 2020; de Orla Barile et al. 2022).   

  

  

Figure 3.  Comparison of radar reflectivity from (a) AQPI X-band and (b) KMUX NEXRAD 
during an AR event observed at 1846 UTC on 24 October, 2021. The narrow ribbon of high 
radar reflectivity near Santa Rosa in the center of each image represents a NCFR.  Areas 
outlined in red represent recent burn scars. 

 

To date, two X-bands have been installed and are operating as shown in Fig. 2.  The 

characteristics of these radar units are described in Cifelli et al. (2018). The pandemic, 

wildfires, and power outages have delayed the installation of two X-band radars and the C-

band radar which are expected to be installed by 2023. 

Additional observations include pre-existing station network data that are widely 

available (e.g., Hydrometeorological Automated Data System - HADS (Kim et al. 2009)), 

new surface meteorological and precipitation profiling radar stations installed by NOAA/PSL 

for AQPI and another statewide observing project supported by CA-DWR (White et al. 

2013), as well as station data from existing local networks that were previously only available 

to individual water agencies. All of the station data is brought in through the NOAA 

Meteorological Assimilation Data Ingest System (MADIS - https://madis.ncep.noaa.gov/ -  
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Miller et al. 2005), taking advantage of the MADIS integration and QC capabilities to  

provide data standards for all data sets.   

In addition to observations, forecast models are used to make predictions of precipitation,  

streamflow, and coastal flooding in the AQPI region. The domain of model coverage is  

shown in Fig. 4.   

  

  

Figure 4. Domain of coverage for modeling components of AQPI: HRRR/NWM, QPE and 
CoSMoS domains are shown in  red, blue, and orange respectively.   

 

Description of AQPI forecast modeling 
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AQPI utilizes and couples several modeling systems to provide forecasts of precipitation,  

streamflow, and water levels in and around the Bay coastline.  Here, we provide a brief  

description of each modeling component.  

  

a. High Resolution Rapid Refresh and Global Forecast System  

High Resolution Rapid Refresh (HRRR) is a numerical weather prediction model run  

operationally at the NOAA National Centers for Environmental Prediction (NCEP) and  

widely utilized by the NWS over the conterminous United States and Alaska. The HRRR is  

designed for optimal short-term forecasts, with an emphasis on capturing the evolution of  

precipitating systems. Its horizontal grid spacing is 3 km, and thus is a convection permitting  

modeling system. It is initialized hourly, assimilating a wide range of observations including  

Multi Radar-Multi Sensor (MRMS; Zhang et al. 2016) radar reflectivity, radiosonde and  

aircraft thermodynamic and wind profiles, surface Meteorological Terminal Air Report  

(METAR) observations, cloud information from ground-based ceilometers and satellite  

observations, and more. MADIS serves as the conduit for acquiring many of these  

observations. As a regional model, the HRRR gets its boundary conditions from the 13-km  

Rapid Refresh (RAP) model (Benjamin et al. 2016), which uses the same dynamic core and  

physical parameterizations as the HRRR (except that convection is parameterized in the  

RAP).  NOAA’s Global Systems Laboratory (GSL), working with other partners such as the  

NWS Environmental Modeling Center (EMC), are continually improving the model’s  

physical parameterizations and data assimilation system. The HRRR first became operational  

in 2014, with subsequent updates in 2016 (version 2), 2018 (version 3), and 2020 (version  

4).  Importantly, version 3 provided 36-h forecasts when initialized at 00, 06, 12, and 18  

UTC; version 4 now provides 48-h forecasts at those times (the forecast length for other  

initialization times is 18 h). A full description of the model setup, physical parameterizations,  

and changes between the model versions is provided by Dowell et al. (2021) and James et al.  

(2021).  As part of the AQPI project, the ability of the HRRR to forecast precipitation during  

AR events was assessed, which demonstrated that both version 3 and version 4 were able to  

capture these events well relative to observations, although the HRRR was somewhat dry  

biased in the Central Valley and moist biased in the Sierra Nevadas (English et al. 2021).    

The Global Forecast System (GFS) is the NWS’s operational medium-range global  

forecast model. It is initialized 4 times per day at 00, 06, 12, and 18 UTC, generating  
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forecasts out to 16 days. Its horizontal grid spacing is 13 km. It is initialized with a wide  

range of satellite, ground-based, and airborne observations using a 3-dimensional variational  

data assimilation system. In 2019, its dynamic core was upgraded from a global spectral  

model framework to the finite volume cubed-sphere (FV3) as part of the Unified Forecast  

System (UFS; Jacobs 2021) effort, and at the same time the number of vertical levels was  

increased from 64 to 127.  Like the HRRR, the physical parameterizations within the GFS are  

continually being updated by the NWS EMC and partners, with regular updates propagated to  

operational status in NWS.  Details on the model, including its evolution over time, can be  

found on the NWS GFS website  

(https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php)   

  

b. National Water Model (NWM)  

The National Water Model (NWM) is a relatively new hydrologic modeling system  

developed by NOAA’s Office of Water Prediction and the National Center for Atmospheric  

Research (NCAR).  The NWM is based on the open source WRF-Hydro modeling  

framework developed by NCAR (Gochis et al. 2018). Details of the model’s configuration  

are available from the Office of Water Prediction’s website  

(https://water.noaa.gov/about/nwm).  Briefly, the NWM simulates current and future  

streamflow at approximately 2.7 million stream reaches across the conterminous U.S as well  

as Hawaii, the Virgin Islands and Puerto Rico on a 1-km grid. This includes over 11,000  

stream reaches in the AQPI domain. The NWM uses the Noah-MP (Niu et al. 2011) land  

surface model to simulate surface processes. Surface water routing is performed on a 250-m  

grid using a diffusive wave scheme and Muskingum-Cunge channel routing. The NWM is  

run in different analysis and forecast configurations for short (18-h), medium (~ 10-d), and  

long range (30-d) hydrologic predictions.  For the purposes of AQPI, the standard analysis  

and assimilation (current conditions) and short-term forecast (18-h) configurations are most  

relevant since these use gauge and radar observations as well as HRRR model data to force  

the NWM. These configurations, as well as most of the others used by the NWM, benefit  

from the assimilation of USGS and U.S. Army Corps of Engineer hourly streamflow data as  

well as the inclusion of reservoirs and River Forecast Center forecasts of reservoir outflows at  

some locations. The analysis and short-term forecast configurations are cycled hourly.  
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Kim et al. (2021) evaluated the performance of the short-range configuration of the NWM  

(v1.2) during the 2018-2019 wet season. The analysis used 65 USGS stream gauges in the  

San Francisco Bay area and showed that, based on Nash Sutcliffe Efficiency (NSE), the  

NWM provided useful forecasts (i.e., NSE >0) out to about 10 hours of forecast lead time.  

However, significant variation in forecast skill was observed in high flow vs. low flow and  

natural vs. managed river systems. The best overall skill was found in high flow, natural  

watersheds.  

  

c. Coastal Storm Modeling System (CoSMoS)   

The USGS Hydrodynamic Coastal Storm Modeling System (Hydro-CoSMoS - hereafter  

referred to as CoSMoS, Tehranirad et al. 2020) applied in this system is based on the 1D-2D  

Still Water Level San Francisco Bay Community model (Home | M&B Remodeling (d3d- 

baydelta.org), Nederhoff et al. 2021). CoSMoS is an operational application of the  

Community model, the ocean boundary is forced with astronomical tides and forecast sea  

surface anomalies from the Global Water Level Forecast System (HYCOM, Chassignet et al.  

2007). The tributaries are forced with the discharges provided by the nearest stream segment  

in the NWM. The surface boundary of the model is forced by surface mean sea-level  

pressure, surface wind velocities, and precipitation fields forecast by the HRRR model.  

Additionally, a wave model (SWAN, Booij et al. 1997) is run with the same atmospheric  

inputs. The offshore swell forecasts at the oceanic boundary are provided by the global  

WAVEWATCH III forecasts from NCEP (https://polar.ncep.noaa.gov/waves/wavewatch/). It  

provides 19-hour forecasts of water level and/or depth and wave parameters from these two  

models, including significant wave height, direction, and period.  

CoSMoS shows great skill in reproducing water levels in a hindcast mode using  

observations as inputs. Nederhoff et al. (2021) reported an average of 8 cm RMSE over a 70- 

year retrospective analysis. In most of the coastal areas of the bay, the highest water levels  

are driven primarily by the tides and offshore sea level anomalies. However, in the vicinity of  

rivers and other tributaries within the bay, the fluvial discharges can play an important role in  

driving high water levels. Tehranirad et al. (2020) showed that during February 2019,  

discharges contributed up to 5 to 10-cm surge in water levels in the North Bay, highlighting  

the role of accurate discharges in projecting how much area will be inundated. In a case study  

of water levels in San Mateo Creek (one of the smaller managed drainages into San Francisco  
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Bay), in the region where both discharges and tides are important to total water level, the 

forecast is more sensitive to the magnitudes of discharge than to predicting the timing 

correctly. When accounting for potential phasing issues by comparing daily forecast peaks to 

observed daily peaks, the error is approximately half that observed by the time matched 

errors (7-cm vs. 14cm RMSE). Overall, the bay-wide water levels are highly accurate. 

Although the exact timing of peak water levels is more likely to be shifted near fluvial 

discharges, the daily forecast peak will still be near the observation. 

 

AQPI System 

The AQPI team determined that a single data access system was needed to provide 'one 

stop shopping' that could serve the needs for all of the stakeholders in the Bay area region. 

The AQPI system integrates all the observation and model data and provides it in usable 

formats with customized threshold alerts for decision making purposes. From the beginning, 

the system was designed with significant input from local water management agencies to 

determine needs and requirements for precipitation, streamflow, and coastal flooding 

information. The AQPI research team conducted a number of in-person meetings with Bay 

area water agency representatives to identify specific geographic areas of concern and desired 

thresholds for rainfall, streamflow, and/or coastal water levels to take action in advance and 

during a flooding event. Because the water agencies can have somewhat different missions 

(flood protection, waste water, water supply, etc) and encompass regions with differing 

characteristics (land use, terrain, proximity to the Bay, etc) the needs and requirements vary 

with each agency. These meetings resulted in an extensive list of needs and requirements 

which were used to build the AQPI system. One example is the San Francisco Public Utilities 

(SFPUC) which is concerned with potential flooding impacts of water releases from Lower 

Crystal Springs Reservoir on San Mateo creek, especially near Highway 101 where the creek 

meets the Bay.  Forecasts of Bay water levels from CoSMoS will help inform SFPUC’s 

decision making concerning outflows from the reservoir (Alexis Dufour, SFPUC, personal 

communication, 2021).   

As noted above, one of the drivers for the AQPI system is to consolidate desired 

information on precipitation, streamflow, and coastal water levels in the Bay area.  To this 

end, MADIS is used to collect and distribute data in the AQPI domain. An additional  
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advantage of adding local data is that the precipitation information available in MADIS is  

used to bias correct MRMS QPE products and improve their overall skill. To date, 295 local  

network stations have been added through MADIS and the AQPI system is providing data  

and services (described below) to 13 water agencies in the Bay Area.   

  

Model forecast data from the HRRR, GFS, NWM, and CoSMoS are made available to  

users for their specific domains of interest.  This information can be used independently for  

situational awareness or used to drive other “local” models.  For example, in Santa Clara  

County, the radar data are used for real time storm monitoring to inform potential areas of  

flooding concern (Jack, Xu, Valley Water, personal communication, 2021). In Contra Costa  

County, NWM data is used as input to a Hydrologic Engineering Center River Analysis  

System (HEC-RAS) model to inform on flows in areas of concern . As another example, the  

SFPUC Wastewater enterprise is using the AQPI HRRR forecasts to predict 18-h rainfall  

accumulation across different quadrants of the City as well as to identify short duration  

periods (1 h) with predicted rainfall rates exceeding flood return period criteria. The goal is to  

eventually bring the information down to the neighborhood scale to better identify parts of  

the City that may be at flood risk during a rain event (Mira Chokshi, SFPUC, personal  

communication).  

AQPI radar data is used to generate QPE and “nowcast” products and is also sent to the  

National Severe Storms Laboratory and integrated with NEXRAD data in the development  

version of the MRMS product.  Future efforts are aimed at transitioning the AQPI data into  

the operational version of MRMS so that it can be assimilated by the operational HRRR  

model.   

The AQPI graphical user interface is designed to display real-time model and  

observational data to users and is customized for each water agency. Users can select  

products of interest for their geographic regions of concern and preset thresholds for  

precipitation, streamflow, and coastal flooding.  Users can view and download  the AQPI  

observation and model data updated in real-time.  

  

AQPI Products  
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AQPI includes a number of products from both the observations and models as shown in  

Table 2. Some products are simply model forecasts of precipitation, streamflow, and coastal  

water levels from the modeling systems described above, customized for the water agency’s  

region of interest. Other products are derived from observations. This includes QPE and  

nowcast.  The QPE product includes a blend of AQPI radar data where the X-bands provide  

coverage and MRMS  data to cover the rest of the domain. The AQPI radar QPE builds on  

the specific differential phase approach described in Cifelli et al. (2018) and Biswas et al.  

(2020). The current version of the QPE is based on the application of optimum radar rainfall  

estimators (both reflectivity and specific differential phase based) which is guided by a  

orographic/stratiform rainfall type classification as discussed in Biswas et al. (2022). It also  

includes an algorithm to mitigate bright band contamination. The MRMS radar-only QPE is  

used to fill the QPE in the remainder of the AQPI domain outside the coverage of the AQPI  

radars as well as areas within the AQPI radar coverage domain that are blocked by terrain or  

other features. Both 15 minute and hourly QPE are provided with an update time of two  

minutes. An example of the QPE product is shown in Fig. 5.  

   

AQPI Product Inputs Description 

Precipitation and 

near surface 

temperature 

forecasts 

HRRR+GFS Hourly forecast out to 18-h updated each hour 

with HRRR; GFS forecast appended to end of 

each 18-h HRRR forecast out to 120-h at 3-h 

intervals to 90-h and 6-h intervals from 90-h to 

120-h; GFS updated every 6-h 

Streamflow 

forecasts 

NWM Hourly forecast out to 18-h updated each hour  

Coastal water level 

forecasts 

CoSMoS Hourly forecast out to 18-h using latest HRRR 

forecast and using latest NWM forecast 

QPE AQPI+MRMS-

radar only QPE 

15-min and 60-min rainfall accumulation 

updated every 2 min 
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Nowcast MRMS radar-

only QPE 

Precipitation nowcast out to 60-min updated 

every 2 min 

Table 2. Description of AQPI products.  

  

  

Figure 5. (a) 15 minute and (b) hourly QPE ending at 19:26 UTC on 24 October, 2021.  The  
QPE map is constructed using a combination of AQPI radar QPE within the small circles  
and MRMS radar-only QPE over the rest of the domain. Small circles show the 40-km range  
rings of AQPI X-band radars located near Santa Rosa (XSCW) and Santa Clara (XSCV) and  
the larger circles represent the 100-km range ring of the NEXRAD KMUX and KDAX radar  
systems. Note that the streaks in the XSCW circle represent terrain blockage.  

  

Note the “spike” appearance in QPE, especially in the northern part of the XSCW  

domain.  This pattern indicates blockage of the AQPI radar signal resulting from objects near  

the radar site.  MRMS data is currently used to fill gaps, which is less than ideal given the  

challenges with NEXRAD coverage in this area. There are long-term plans to raise the  

XSCW radar to help reduce the blockage or move it to an alternate location.    

The AQPI real-time nowcast system uses the dynamic and adaptive radar tracking of  

storms (DARTS; Ruzanski et al. 2011) nowcast tool to extrapolate radar observations of  

precipitation (QPE) for the next 60 minutes. DARTS is an area-based nowcast tool, and it  

solves the field flow equation in the frequency domain. A Fast Fourier Transform (FFT)  

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:03 PM UTC



19
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0121.1.

18
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-21-0121.1.

 

technique is used for fast computation. Currently, the AQPI real-time nowcast uses the  

MRMS radar-only QPE product to generate the nowcast. In the future, a blend of AQPI and  

NEXRAD data will be used.   

In addition to CoSMoS-derived water level forecasts in the Bay, AQPI includes displays  

of coastal flood inundation from CoSMoS. These outputs include the water level referenced  

to NAVD88, the water depth referenced to a recent DEM (Danielson et al 2016) and wave  

parameters. The wave fields include wave height, period and direction and can be used to  

assess the risk of wave driven overtopping of nearby levies or sea walls. Additionally, depth  

averaged currents can be obtained from the outputs, although those are not available as  

graphic displays. The CoSMoS information can be used to help assess risks for overtopping  

coastal defenses such as levees and sea walls and timing of freshwater releases that will not  

be blocked by high coastal waterlevels.  

  

AQPI Benefits  

AQPI was designed to support a number of water management activities across the Bay  

Area. While AQPI does not give a sufficiently long-range forecast for large reservoir  

operations, it could help managers of smaller reservoirs time appropriate discharges before  

and during heavy rain events in order to maintain water supplies and not exacerbate flood  

damage downstream. Wastewater treatment plant operators around the Bay would be able to  

take remedial actions when these events include a significant storm surge. As described  

below, another benefit is that flood protection agency managers would be able to better  

anticipate flooding events and thus more effectively deploy their assets to deal with them.  

Johnson et al. (2020) conducted a reconnaissance-level overview of potential benefits of  

the AQPI system, examining the impact to different economic sectors including: flood  

damage mitigation, increasing water supplies, and enhancement of ecological, recreational,  

and transportation services with the highest benefit (48%) associated with avoided flood  

damages. Benefit to costs were estimated to range of 2:1 to 10:1 with the most likely being  

5:1. The large range reflects the uncertainty in the percentage of water management agencies  

and citizens that take appropriate action, emphasizing the importance of outreach and training  

to maximize responses.    
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Current economic impact studies are underway with individual water management  

agencies to better quantify benefits of AQPI information across the bay area. In particular,  

members of the project team have integrated the AQPI system with hydrologic, civil  

engineering and economic impact models built specifically for Santa Clara County that allow  

estimating the potential economic benefits arising from better and more advanced flood  

predictions. The economic benefits focus on changes in employment, real household income  

and sector level gross domestic output. The basic intuition is that more timely, spatially  

defined warnings can allow local governments, businesses, and homeowners the additional  

time needed to implement short-term mitigation strategies that can help reduce direct  

financial and subsequent economic losses. We compare two simulations: 1) estimating the  

economic losses of a simulated flood due to the damage to commercial and residential  

buildings, and 2) estimating the impacts of the same flood when short-term mitigation  

strategies are implemented (e.g., sandbagging, installing short term pumps, moving contents  

to a second floor). The reduction in economic losses from the two simulations will represent  

the value of the AQPI system and will be the focus of a future journal publication.2   

  

Preliminary Results  

To demonstrate the value of the AQPI approach, we use an event from 27-28 January  

2021 to illustrate the system functionality and components.  An overview of the event is  

provided by the Monterey Forecast Office  

(https://www.weather.gov/mtr/AtmosphericRiver_1_26-29_2021). The event was the biggest  

storm of the 2020-2021 water year in the Bay Area with 2-4” precipitation accumulations in  

the urban regions and much higher accumulations farther south (10-15”) in the Santa Lucia  

                                                 

 

 

2 Previously, computable general equilibrium (CGE) models have been constructed to 

estimate the economic impact of evaluating improvements in NOAA’s High-Resolution 

Rapid Refresh (HRRR) system for forecasting precipitation, wind, and temperature. As 

examples, see Hartman et al. (2021), Turner et al. (2022) and Jeon et al. (2022). 
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mountains. Based on the duration and integrated water vapor transport characteristics, the  

event was probably an AR2 using the scale developed by Ralph et al. (2019). According to  

the Ralph et al. study, AR2 events are described as being “mostly beneficial but also  

hazardous”. Although similar in many respects to ARs impacting central CA during the  

winter season, it was a “cold” event with low freezing levels and produced snow on the peaks  

surrounding the Bay area (Fig. 6). The Weather Prediction Center issued high risk for  

flooding on both 27 and 28 January and flash flood warnings were issued for many of the  

burn scar regions in the area with resulting debris flows occurring in some parts of central  

and southern CA.  

  

Figure 6.  The snow-level display produced from data collected by an S-band precipitation  
profiling radar located in Middletown, California, at 972 m elevation.  Colors represent the  
Doppler vertical velocity (m s-1; color scale on right), which is dominated by hydrometeor  
fall velocity in precipitation.  The table lists the snow level (when it is above the radar) and  
the surface temperature.  Precipitation fell as snow on Jan. 27, before transitioning to a cold  
rain on Jan 28 with snow levels remaining below ~1.5 km MSL. This profiling radar was  
installed prior to AQPI with support from the Sonoma Water Agency and is being leveraged  
as part of the AQPI project.  
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The performance of the operational NOAA HRRR precipitation forecast for the period  

extending from 00Z on 27 January to 12Z on 29 January is shown in Fig 7. In particular, the  

6-h precipitation accumulation forecast was evaluated.  Overall, the HRRR performed quite  

well during this event, but had a dry bias along the Pacific coast and a wet bias in the Sierra  

Range similar to other cases evaluated in English et al. (2021).    
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Figure 7. Difference plot of all HRRR 6 hr precipitation accumulation (6 hr forecasts) and  
associated Stage IV QPEs for the period 00 UTC on 27 January, 2021 to 12 UTC on 29  
January, 2021. a) Full AQPI domain with Bay Area outline indicated by black rectangle. b)  
Same as (a) except for Bay Area region-only. Warm colors indicate an underestimate of  
HRRR precipitation relative to Stage IV while cool colors indicate an overestimate.  

   

A detailed evaluation of the AQPI radar QPE was conducted for this event as described in  

Biswas et al. (2022). Scatter plots and error statistics for both of the operating AQPI radars  

are shown in Figure 8. The AQPI radar QPEs showed good skill overall with improvement  

over both the MRMS QPE products in terms of bias, error, and correlation statistics.  While  

not as good as the Santa Clara radar performance, the Sonoma radar QPE shown in Figure 8  

is still a large improvement over MRMS QPE.  Differences in performance between the two  

radars are likely a result of the more complicated terrain surrounding the Sonoma vs the  

Santa Clara radar.  Also, as discussed in Biswas et al. 2022, there is a lot of QPE performance  

variability from event to event, depending on the height of the melting layer and the amount  

of orographic enhancement resulting in variability of raindrop size distribution. However, in  

all cases examined, the AQPI radar QPE product outperforms both MRMS Radar-Only and  

Multisensor Pass1 QPE products. Future efforts to improve the AQPI QPE will include  

implementing a composite QPE product that will combine information from higher elevation  

radar scans to fill in the gaps. Additionally, efforts are being made to examine possible  

Machine Learning approaches that will use ground-based rain gauge data for QPE correction.  
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Figure 8. Scatter plots and error statistics for the (a) Santa Clara and (b) Sonoma AQPI  
radar domains  (blue) for the period from 00UTC 28 January, 2021 - 00UTC 29 January,  
2021. Blue, yellow, and orange colors represent AQPI radar QPE, MRMS Multisensor  
Pass1, and MRMS radar-only, respectively.  

  

 As shown in Fig. 9, the NWM 18-h forecasts were evaluated from 00 UTC 27 January -  

23 UTC 28 January 2021. The metrics used in the evaluation include Klein-Gupta efficiency  

(KGE; Gupta et al. 2009), Nash Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970),  

correlation coefficient (CORR), and root mean square error (RMSE), where NSE and KGE  

are commonly used statistics to calibrate and measure the predictive skill of hydrologic   

models. The results show the best performance at the shortest lead times, with errors rapidly  

decreasing until approximately 9 hour lead time. These results are similar to Kim et al. (2021)  

described above.  
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Figure 9. Performance of NWM (V2.1) short-range forecast (1-18 hour) streamflow products 
in the AQPI domain for the period from 00 UTC 27 January, 2021 to 23 UTC 28 January, 
2021. (a) location of USGS stream gauges (blue dots) used in this analysis, and (b) error 
statistics of NWM V2.1 short-range forecasts at the lead times of 1 - 18 hour, including KGE 
(blue), NSE (black), CORR (red) and RMSE (green).  

 

An evaluation of the CoSMoS short-range forecast was also conducted for the 27-28 

January event.  As shown in Fig. 10, although no significant coastal flooding occurred during 

this event the waterlevels throughout the bay were predicted very well. The highest 

waterlevel at the San Francisco station occurred just after 6PM on January 28. During this 

time period, the waterlevels were more than 20cm above the tidally predicted values. The 

model error (mean bias) over this time period ranges from -2.48 cm (at Port Chicago) to 1.52 

cm (at Alameda). 
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Figure10. Performance of Hydro-CoSMoS short-range forecast waterlevel products during  
the 27-28 January event. a) Map of maximum water level in meters relative to NAVD88 over  
the 18-h forecast started on Jan 28 0600 UTC . b-g)Comparison of modeled and observed  
waterlevels at selected NOAA COOPS tides and currents stations.  

  

Next Steps for AQPI  

AQPI has advanced to the point that the information delivered by this system is being  

used by local water managers on a regular basis. The information will continue to improve as  

the additional radar systems come online, are integrated into the AQPI system providing  

improved nowcasted QPF products, and are assimilated into the operational HRRR and the  

HRRR’s eventual replacement - the Rapid Refresh Forecast System. Water agencies have  

already developed methods to integrate the information into their operations and this process  

is expected to accelerate over time. To facilitate this process, AQPI has developed a Data  

Implementation Working Group where local users from the water management community  

interact with the technical development team and provide ongoing feedback to improve the  

system’s products and services as well as talk about ways to help each other use the AQPI  

information effectively and provide lessons learned. Still, challenges lay ahead for AQPI,  

including where the system will ultimately reside after NOAA completes development and  

hands it off, and how the annual operations and maintenance costs will be supported. Toward  

that end, AQPI has implemented a Local Partner Advisory Committee (LPAC) to help  

resolve issues related to radar and other instrument deployments, outreach for the program,  

and the development of a plan for long term operations of AQPI data system.   

The concept of AQPI, where improvements to high resolution observations and forecasts  

are driven by end users working closely with scientists and developers to improve informed  

decision making could be replicated in other urban centers in the U.S. and abroad. Moreover,  

in CA where flooding events are almost entirely restricted to the cool season, AQPI is  

exploring the benefit of leveraging the radar assets to track wildfire emissions during the  

warm season (e.g., Zrnic et al. 2020), as well as monitoring for post-fire debris flow hazards  

(e.g., Jorgensen et al. 2011). More information about AQPI, as well as access to real-time  

information can be found at https://psl.noaa.gov/aqpi/.  
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Data Availability Statement.  

Data sets that are part of the AQPI system are available from the following sites online.  

Atmospheric model (HRRR and GFS) and National Water Model data are available through  

NOAA National Centers for Environmental Prediction (NCEP) web site:  

https://www.nco.ncep.noaa.gov/pmb/products/. Surface data is available through the MADIS  

interface: https://madis.ncep.noaa.gov/ and the rough NOAA PSL at:  

https://psl.noaa.gov/data/obs/datadisplay/. MRMS is also available at NCEP:  

https://mrms.ncep.noaa.gov/data/  

  

Side Bar  

Weather radars operate  in different frequency bands. The most commonly used  

operational systems are at S-band (2700-3000 MHz), C-band (5600-5700 MHz) and X-band  

(9300-9500 MHz). To first order, the minimum antenna size of the radar is inversely  
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proportional to frequency, to support the narrow beams,  which means radars operating at  

higher frequencies can have a smaller antenna size. This is an important consideration for  

overall cost and “agility” of the radar system. For example, S-band systems like WSR-88D  

have an antenna diameter of about 8.5m.  X-band systems like those used in AQPI are much  

smaller with an antenna diameter of about 1.8m.  They can be mounted in a variety of  

locations, including building roof tops and communication towers. C-band antenna diameters  

are in the range of 4.5m, making them less agile than X-band but still transportable and a  

good compromise between S and X bands. For example, C-band radars have been deployed  

aboard research ships (see Rutledge et al. 2019).   

Because of the enhanced cross section of meteorological targets with higher  

frequency,  higher frequency radar systems like X-band can operate at lower power, and can  

provide the same sensitivity at moderate ranges. Higher frequency electromagnetic waves  

experience attenuation due to propagation through rain. Even though techniques are available  

to correct for attenuation so long as there is a signal, the amount of additional power needed  

to mitigate attenuation effects is too high and it is cheaper to deploy another radar at a farther  

distance than to transmit extra power to mitigate attenuation. Therefore X-band radars are  

typically made for shorter ranges such as 40 to 60km to be cost effective. Each of these  

frequency bands has certain advantages and are tailored for specific applications. S-band and  

C-band have been generally used to establish radar networks over large regions of continental  

scales.  X-band networks are becoming the deployment of choice for urban areas as the social  

footprint of these radars are very low (example transmitted power, and radar size). The X  

band systems can sit on existing infrastructure and, because of their relatively small size, they  

tend to be lower cost and can also be moved around easily (Chandrasekar et al. 2018).  Often  

the infrastructure costs of weather radars far exceed the cost of radar itself in urban regions.  
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