
1.  Introduction
Thermosphere-ionosphere metal (TIMt) layers occur, above the permanent metal layers, in a large altitude 
range from ∼110 to ∼200 km (Chu & Yu, 2017; Chu et al., 2011, 2020; Plane et al., 2015). They usually 
possess broad layer widths and exhibit either gravity-wave or tidal-wave downward phase progression (e.g., 
Chu et al., 2011, 2020; Gao et al., 2015). Morphologies of TIMt layers are different from the main layer top-
side (e.g., Höffner & Friedman, 2005) and also distinctly different from sporadic metal layers (Plane, 2003), 
including high-altitude sporadic metal layers (e.g., Collins et al., 1996; Gardner et al., 2001; Ma & Yi, 2010). 
Since the first discovery 10 years ago, TIMt layers have attracted research attention because they open a 
new window to studying fundamental processes in the E–F regions where measurements of the neutral 
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Plain Language Summary  Thermosphere-ionosphere metal (TIMt) layers are an intriguing 
phenomenon discovered 10 years ago in Antarctica. They provide a natural laboratory and tracer to study 
the complex space-atmosphere interactions in the Earth’s thermosphere and ionosphere. TIMt layers 
have been observed in the neutral Fe (iron), Na (sodium), and K (potassium) species in both the polar 
and tropical regions but quite rarely at midlatitudes. To date, all reported TIMt layers have an irregular 
occurrence. This article reports an exciting new discovery made at a mid-latitude site. That is, the TIMt 
layers in the Na species (thermosphere-ionosphere Na layers) occur fairly regularly before dawn and after 
dusk. Such regular occurrence of thermosphere-ionosphere Na (TINa) layers is reported for the first time. 
Such layers are tenuous and their detection is enabled by a Na Doppler lidar developed at the University 
of Colorado Boulder, which possesses very high detection sensitivity. Utilizing the thermospheric wind 
data from a new satellite mission (Ionospheric Connection Explorer), it is found that these neutral metal 
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way to study the ion transport in the E to lower F regions.
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atmosphere are scarce but plasma-neutral interactions are crucial (e.g., Chu & Yu, 2017; Chu et al., 2020; 
Huba et al., 2019, 2020; Plane et al., 2015).

The first report of TIMt layers was given by Chu et al. (2011) in Antarctica via lidar observations of ther-
mosphere-ionosphere Fe (TIFe) layers. Neutral metal Fe layers with gravity-wave downward phase progres-
sion and periods (∼1.5 h) were observed reaching 155 km in May 2011 at McMurdo (77.84°S, 166.67°E). 
Following this discovery, not only were more TIFe layers observed, but also were other metal species re-
ported, including thermosphere-ionosphere Na (TINa) and K (TIK) layers. At high latitudes, many more 
TIFe layers were further observed at McMurdo with various morphologies, for example, the June 1, 2013, 
case reached over 170 km with ∼2 h wave period and possessed high Fe density of ∼500 cm−3 at 140 km 
(Chu et  al.,  2016), and numerous cases revealed diurnal variations of TIFe layers (Chu et  al.,  2020; Yu 
et al., 2020). TIFe layers were also observed at Davis (69°S) with a tidal phase (Lübken et al., 2011). TINa 
layers were observed at Syowa (69°S) with a gravity wave phase and period of ∼2 h (Tsuda et al., 2015). 
Recently, Chu et al. (2020) reported the simultaneous observations of TIFe and TINa layers at McMurdo, 
showing unexpected differences between distinct TIFe and diffuse TINa. At low latitudes, a TIK layer was 
first reported at Arecibo (18.35°N, 66.75°W) by Friedman et al. (2013), and then TINa layers were reported 
for Lijiang (26.7°N, 100.0°E) by Gao et al.  (2015) and Cerro Pachon (30.25°S, 70.74°W) (Liu et al., 2016; 
Smith & Chu, 2015), all exhibiting downward tidal-phase progression. The Arecibo TIK layer occurred near 
sunrise, while both Lijiang and Cerro Pachon showed a single TINa layer across the local midnight. Raiza-
da et al. (2015) reported a simultaneous observation of TINa and TIK at Arecibo, revealing much slower 
downward phase speed and different occurrence local time than the TIK reported by Friedman et al. (2013). 
Interestingly, the TINa and TIK layers behaved similarly in the report of Raizada et al. (2015), in contrast to 
the stunning differences between TINa and TIFe observed at McMurdo (Chu et al., 2020). At midlatitudes 
(∼35°–60°), the occurrence of TIMt layers appeared to be much rarer than at high and low latitudes, and 
reports to date came from two stations (Yanqing and Pingquan) close to Beijing (40.5°N). Wang et al. (2012) 
and Xia et al. (2020) reported TINa layers going up to 125 km with clear downward phase progression. Xun 
et al. (2019) reported four cases of TINa out of 137 nights of lidar observations, with one reaching 196 km. 
These cases near Beijing do not reveal a consistent trend in the occurrence time, progression phase, or peri-
od (Wang et al., 2012; Xia et al., 2020; Xun et al., 2019).

Using a TIFe model, Chu and Yu (2017) replicated the McMurdo observations on May 28, 2011, using a 
hypothesis that the TIFe layers are produced through neutralization of converged Fe+ layers via recom-
bination with electrons, where Fe+ ions are transported and converged by polar electric fields and gravi-
ty-wave-induced neutral winds. Chu and Yu (2017) further suggested extrapolating the TIFe theory to help 
infer a global picture of multiple metal species (e.g., Fe, Mg, Na, K, etc.). For instance, outside the polar 
regions, the plasma fountain effect at low latitudes due to the equatorial electric fields substitutes for the 
polar electric fields in transporting metal ions vertically, and gravity-wave-induced wind shears in the polar 
region are replaced by tidal-wave-driven wind shears. While the polar electric fields and equatorial dyna-
mo electric fields are effective in vertical transport of metal ions at high and low latitudes, the 

 
E B drift 

does not diminish to zero and tidal winds are strong at mid-latitudes. Therefore, in principle TIMt layers 
should form for mid-latitude sites with recurrent occurrence. However, observing such tenuous TIMt layers 
is very challenging as it demands high detection sensitivity of lidars. Here, we report the first observations 
of mid-latitude TINa over Boulder, Colorado, with regular occurrence around dawn and dusk. Possible for-
mation mechanisms are discussed after the observation report.

2.  Observations With High-Sensitivity Lidar Over Boulder
TINa observations were made at Table Mountain Observatory (40.13°N, 105.24°W), north Boulder with 
an advanced resonance-fluorescence lidar, the Student Training and Atmospheric Research (STAR) Na 
Doppler lidar. This lidar employed a narrowband laser transmitter tuned to the D2a line at 589 nm, and a 
3-frequency Doppler-ratio technique to measure Na density, temperature, and vertical wind simultaneously 
(Chu & Papen, 2005). It was initially constructed with a 40-cm diameter true-Cassegrain telescope in sum-
mer 2010, and its data at the levels of ∼20–50 counts per laser shot was used in the studies of mesospheric 
Na and Fe layers (Huang et al., 2013) and their fluxes (Huang et al., 2015). In summer 2011, the lidar was 
upgraded to an 81-cm diameter prime-focus Newtonian telescope with high-efficiency receiver architecture 
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(Smith & Chu, 2015). Combined with further updates in laser transmitter later on, the Na signal levels were 
improved by 20–50 times to ∼1,000–2,000 counts per laser shot, enabling high-sensitivity detection. Such 
high-quality measurements of vertical winds and temperatures in the mesopause region were used in stud-
ies of high-to-medium frequency gravity waves (Lu et al., 2015, 2017).

TINa layers were observed in the nighttime E region (100–150 km) in various months and years. For this 
first report, we illustrate in Figure 1 the Na number densities, relative density perturbations, and volume 
mixing ratios for selected nights in November and January when the Na column abundances are high and 
lidar observations span long nights. The relative Na density perturbations are computed by subtracting the 
nightly mean profile and then dividing by this mean profile. The Na volume mixing ratios are calculated 
by dividing the Na density profiles with the corresponding total atmospheric number density profiles at 
Boulder provided by the MSISE00 model (Picone et al., 2002). Note that 7 UT corresponds to Boulder local 
midnight, and 1 and 13 UT correspond to dusk and dawn (6 p.m. and 6 a.m. local time). The most distinct 
feature is a TINa layer broad in time and altitude before dawn, which exhibits ascending features in the 
envelope of Na total density (e.g., Figure 1a) from 8–9 to ∼12 UT but descending features in the maximum 
mixing ratio (e.g., Figure 1f) from ∼140 to 150 km around 10–11 UT to ∼120–110 km around 12–13 UT. 
Such a TINa layer occurs on every night shown here as long as the observations are long enough to cover 
the sunrise time. Another distinct feature is a concentrated descending TINa layer occurring at dusk, which 
starts to descend at 1 UT from ∼125–120  to ∼110 km merging with the main metal layers around 4 UT. Be-
tween the dusk and dawn layers, a third layer near the local midnight occurs on some nights (e.g., Novem-
ber 11, 2013), but does not show up on the others (e.g., November 2, 2013). Occasionally, more than three 
layers occur within a night (e.g., January 11, 2014). The classification of dawn, dusk, midnight, and multiple 
TINa layers based on the limited nights shown in Figure 1 is consistent with a larger database consisting of 
7 years (2011–2017) of measurements. The statistical characterization of the TINa layers spanning 7 years 
is beyond the scope of this work but will be addressed in future work.

To further quantify the TINa observed, the Na density profiles and the volume mixing ratio profiles are 
plotted in log-10 scales in Figure 2 for the dusk and dawn layers. The time spans of the mean profiles are 
marked in the figure legends. The log-scale density profiles of dawn layers show a turning point around 
110 km, above and below which the slopes are different. Correspondingly, the TINa volume mixing ratio 
exhibits a weak, broad peak above ∼110 km, very similar to the findings at McMurdo (Chu et al., 2020). The 
dusk layers exhibit a narrower mixing ratio peak above its density slope turning point that is usually sev-
eral kilometers lower than that of the dawn layers (except January 23, 2015). Such increased mixing ratios 
provide strong evidence for in-situ production of Na above the turning point (∼105–110 km) for both the 
dusk and dawn layers as discussed in Chu et al. (2020). Interestingly, the mixing ratio of the dawn layer on 
January 11, 2014 above the turning point is higher (   111.3 10 ) than other nights, and its shape is nearly 
flat. The dusk layers usually have lower maximum altitudes (∼120–125 km) than those of the dawn layers 
(∼140–150 km), but the dusk layers on January 23 and 27, 2015, reach over 130 km.

The number densities of TINa occurring above 120 km in Figure 2 are very low. Typical Na densities are 
0.1–0.5 cm−3 from 150 to 140 km, ∼1 cm−3 at 130 km, and 3–5 cm−3 at 120 km, which are in general smaller 
than those at McMurdo (Chu et al., 2020). Fortunately, the STAR lidar had high detection sensitivity (better 
than 0.1 cm−3) on many nights as shown in Figure 2, enabling the detection of such tenuous TINa layers. 
The dusk TINa layer has densities and mixing ratios even smaller than the dawn layer. The vertical phase 
speed roughly estimated by tracking the maximum mixing ratio in Figure 1 is ∼10 km/h, translating to 
∼2.7 m/s, which is a typical semidiurnal tidal phase speed from 150 to 130 km (Friedman et al., 2013). The 
dusk layer is narrower in time span and has a slower vertical phase speed of ∼5 km/h, that is, 1.3 m/s, which 
is consistent with an average of semidiurnal tidal phase speed from 120 to 105 km (Friedman et al., 2013). 
Boulder TINa layers have starkly different shapes and phases from those at McMurdo where gravity wave 
periods with much larger phase speeds are observed (Chu et al., 2020).
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3.  Discussion
Boulder TIMt layers occur at least twice during a night at regular phases (dawn and dusk), in stark con-
trast to the McMurdo TIMt layers exhibiting gravity-wave phases and periods (Chu et al., 2011, 2020). The 
low-latitude TIMt layers show tidal phases but a single layer during nighttime observations (Friedman 
et al., 2013; Gao et al., 2015; Raizada et al., 2015; Smith & Chu, 2015). Interestingly, Boulder dawn layers 
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Figure 1.  Na Doppler lidar observations of thermosphere-ionosphere Na layers at Boulder over multiple nights. (left) Na number density in log-10 scale. 
(middle) relative Na density perturbation in percentage. (right) Na volume mixing ratio plotted in uneven color scales. The Na density is retrieved with 
resolutions of 7.5 min and 960 m. The full range (75–150 km) plots are provided in Supporting Information. Note that 7 UT corresponds to Boulder local 
midnight.
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have more complicated motions than the dusk layers. The regularity of 
TINa layer occurrence and broad peak of mixing ratio above 110 km lead 
to the hypothesis that the dawn and dusk TINa layers are formed by in 
situ Na production that is modulated by tidal winds, rather than pure 
transport of neutral Na.

Pure neutral transport cannot explain the observations because pure ver-
tical transport of neutrals cannot substantially increase its mixing ratio 
as discussed in Cox et al. (1993) and Chu et al. (2020). The mixing ratios 
at the turning point around 110 km are smaller than the mixing ratios of 
the dusk layer around 120 km and dawn layer at 125 km (e.g., November 
2 and 11, 2013, cases); therefore, upward diffusion of neutral metals from 
the main layer below 110 km cannot explain the observed TINa layers 
with enhanced mixing ratios. Furthermore, the mixing ratios at the top 
of E region (∼150 km) are smaller than the peak mixing ratios of dusk 
and dawn layers; therefore, downward transport of neutral metals from 
the top of E region also cannot explain the observations. The mixing ra-
tio results rule out the mechanism of pure neutral transport. Therefore, 
there must be in situ production of neutral metals along the TIMt layer 
altitudes.

Two possible mechanisms for neutral Na production include the neu-
tralization of Na+ ions with electrons and the sputtering of metals off 
meteoroids. One may argue for the sputtering of metals from meteoroids 
by air molecules when meteoroids enter the atmosphere. However, there 
is no reason for sputtering to be correlated with regular tidal phases. 
First-principle modeling studies show negligible injection rate of met-
als above 120 km by sputtering (Carrillo-Sanchez et al., 2015, 2016). For 
rare or sporadic cases like the ones observed at Beijing (Xun et al., 2019) 
and the simultaneous observations of TINa and TIK at Arecibo (Raiza-
da et al., 2015), we do not rule out the possibility that a strong meteor 
event deposited a large amount of metals in the atmosphere, and they 
are horizontally transported over the lidar sites while descending down. 
Such meteor events would be irregular in local time so could not explain 
the regular occurrence of TIMt layers at Boulder.

It is necessary to invoke the ion transport and neutralization as modeled 
in Chu and Yu  (2017). From previous modeling, we have learned that 
both the electric fields and neutral winds can transport ions upward and 
downward as well as converge ions to form dense ion layers (Bishop & 
Earle,  2003; Chu & Yu,  2017; Huba et  al.,  2019). While the polar elec-
tric fields are large and provide the major driving force to transport met-
al ions at McMurdo, the electric fields at midlatitudes (e.g., Buonsanto 
et al., 1993) are much smaller (several vs. 10s mV/m) than at McMurdo 
while the tidal horizontal winds are strong at midlatitudes. The regular 
occurrence of TINa layers with apparent downward phase progression 
strongly suggests tidal winds playing important roles in the layer forma-
tion. Although vertical shears of the horizontal winds cannot converge 
neutrals, they can converge ions strongly via geomagnetic Lorentz forc-
ing and ion-neutral collisional coupling in the E and lower F regions, 
as explained in wind shear mechanisms (e.g., Axford, 1963; Haldoupis 
et  al.,  2004; Whitehead,  1961,  1989). The vertical drift velocity of Na+ 
ions, izwV , induced by neutral winds is given below (Chu & Yu, 2017)
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Figure 2.  Vertical profiles of Na density and volume mixing ratio for dusk 
(red) and dawn (blue) layers at Boulder for six nights shown in Figure 1. 
The Na detection limit is better than 0.1 cm−3. The uncertainty (precision) 
of Na density varies from ∼0.1% at the mesospheric peak to ∼2%–10% in 
the thermosphere-ionosphere Na.
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where   is the ratio of ion-neutral collision frequency to the gyro frequency of Na+ (Figure 3a), D is the 
dip angle, and nV  is the neutral winds in geomagnetic zonal (x), meridional (y), and vertical (z) coordinates. 
Because   66.55D  for Boulder, the zonal wind factor Uf  is positive while the meridional wind factor Vf  is 
negative (see Figure 3b).
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Consequently, eastward and southward (westward and northward) winds transport ions upward (down-
ward). It is clear that zonal wind factor dominates below ∼122 km while the meridional wind factor dom-
inates at higher altitudes, and the ion drifts are the combined effects. As the declination angle of the geo-
magnetic field is only ∼8.5° at Boulder, the geographic zonal and meridional directions are close to those 
of the geomagnetic coordinates. Therefore, the geographic zonal and meridional winds derived from the 
Ionospheric Connection Explorer (ICON) mission (Immel et al., 2018) are used in the izwV  calculation. The 
Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI) instrument on 
ICON observes temperatures and winds from 90 to 300 km during daytime and from 90 to ∼109 km in the 
night in the latitude range of 10°S–42°N (Englert et al., 2017; Stevens et al., 2018). The tidal neutral winds 
are obtained by fitting Hough Mode Extensions (HMEs) to MIGHTI wind data. Detailed HME methodolo-
gies are summarized in Forbes et al. (1994) and HME for ICON is summarized in Forbes et al. (2017) and 
Cullens et al. (2020). Although the ICON wind data are in a different year (2020) than the lidar data, the re-
peated occurrence of dawn/dusk TINa layers in different months and years strongly suggests fairly regular 
recurring mechanisms like tidal winds. Therefore, to first order it is reasonable to use the ICON wind data 
to represent the climatological features of thermospheric winds over Boulder. An example of the zonal (U) 
and meridional (V) tidal winds, averaged over January 1–15, 2020, are shown in Figures 3c and 3d, and the 

izwV  calculated for Na+ using Equation 1 is shown in Figure 3e.

When considering vertical transport only, the ion density ( iN ) time rate of change is  
  

      
izi i

i iz
VN NN V

t z z
, where izV  is the total vertical drift velocity of ions. Consequently, descending 

convergent ion layers are expected where /izdV dz is negative and izV  approximately equals the phase veloc-

ity of descending contours, as around 1 UT at ∼115 km and around 11 UT at ∼145 km in Figure 3e. This is 
the situation illustrated at the left of Figure 3f. The Na produced by Na+ neutralization in such a descending 
layer will tend to accumulate above the TINa+ layer so that a TINa layer peak may lie above the TINa+ layer 
peak. For a convergent region of ascending TINa+ like that at 7 UT around 135 km (illustrated by the second 
sketch in Figure 3f), the TINa density peak may lie below the TINa+ peak. Modeling will be necessary to 
fully understand the spatial and temporal relations between TINa+ and TINa layers. Nonetheless, there is a 
close relation between features of izwV  in Figure 3e and relative Na density perturbations in Figure 1. From 
0 to 4 UT, the ion convergence phase is limited to a narrow altitude range (from ∼120 to ∼105 km) with 
downward phase progression following the downward ion flow. The phase speed is ∼1.3 m/s, agreeing with 
the well-confined TINa layers observed after dusk on November 2 and 11, 2013. Passing local midnight (7 
UT), the tidal winds start to transport Na+ upward above 112 km, and the maximum upward drift is ∼5 m/s 
around 9 UT and 124 km. The faster drifting ions can catch up with the slower drifting ions around 130–
140 km, accumulating Na+ ions at ∼9 UT. Such convergent flow occurs in a wide altitude and time range 
because of the ion-drift velocity gradient; therefore, Na+ ion accumulation could span over several hours 
from ∼8 to 9 UT to the end of nighttime lidar observations, and also in a relatively large altitude range from 
150 to ∼115 km. Such ion convergent range and time are consistent with the broad TINa distributions ob-
served, and the phase speed of ∼3 m/s is also consistent with the TINa downward phase speed before dawn.
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Figure 3.  (a) The ratio of Na+ ion-neutral collision frequency to gyro frequency, (b) the zonal and meridional wind 
factors for Na+. (c) Zonal and (d) meridional tidal winds constructed from Hough Mode Extension from ICON mission 
(positive is eastward and northward, respectively). (e) Vertical drift velocity of Na+ ions for Boulder (positive is upward). 
(f) Sketch of convergent and divergent flows of ions, inspired by Chu and Yu (2017).
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Buonsanto et al.  (1993) reported the statistical mean of F-region ion transport at Millstone Hill (42.6°N, 
72.6°W) using an incoherent scatter radar (ISR), where geographic and geomagnetic latitudes are similar 
to Boulder. The diurnal variation of NV  (northward ion drift velocity perpendicular to the magnetic field 
line) shows a reversal from northward to southward drifts near noon, and a return to northward drifts in the 
pre-midnight hours, see Figure 1 winter panel in Buonsanto et al. (1993). The ISR-measured F-region ion 
drifts perpendicular to 


B in the meridional plane represent the electric field effects. Assuming the mid-lat-

itude E region has similar electric field effects, the pre-midnight return to northward (thereby upward) 
perpendicular drifts is in phase with the tidal-wind-induced upward ion transport before dawn, and the 
electric-field-induced southward drifts after noon are also consistent with the tidal-wind-induced down-
ward ion transport at dusk. The combination of the tidal wind and electric field effects on ion transport 
likely produces the converged Na+ layers near dusk and dawn phases. These ion layers undergo neutraliza-
tion processes via direct and dissociative recombination with electrons (Plane, 2003; Plane et al., 2015) and 
convert a tiny portion of metal ions to neutrals. As modeled in Chu and Yu (2017) for TIFe, less than 1% 
neutralization of converged ions is sufficient to produce the neutral metals observed. Such hypothesis pro-
vides the most likely explanation to the regular occurrence of TINa layers in the E region over Boulder. The 
real situations could be more complicated because of a time lag between ion convergence and iN , and the 




iN
t

 dependence on 



izV
z

 and izV  when 





0iN
z

. Also, the altitudes of peak TINa and TINa+ densities do not 

necessarily coincide because of a time lag associated with recombination and possible height variations of 
Na diffusion and loss (Yu, 2014). Future simulations are necessary to study the relation of TINa with TINa+ 
convergent flow, expanding from the TIFe modeling work.

4.  Conclusions
The STAR Na Doppler lidar with high detection sensitivities has enabled the discovery of mid-latitude TINa 
layers in the E region with fairly regular occurrence over Boulder. A TINa layer descends from ∼125 km 
after dusk and merges with the main layer around 4 UT. Another TINa layer occurs broad in time and alti-
tude before dawn with an ascending envelope of Na total density but a descending maximum mixing ratio 
starting from ∼150 km. The downward-progression phase speeds are ∼3 m/s above 120 km and ∼1 m/s be-
low 115 km, consistent with semidiurnal tidal phase speeds over Boulder as derived from HME tidal winds 
of the ICON mission. Occasionally, one or several layers occur across local midnight or between the dusk 
and dawn layers. Typical number densities of the dawn TINa layers are ∼0.1–0.5 cm−3 from 150 to 140 km, 
∼1 cm−3 at 130 km, and 3–5 cm−3 at 120 km. The Boulder TINa layers exhibit a similar turning point around 
110 km as McMurdo, above and below which both the log-scale density and mixing-ratio profiles change 
to different slopes or trends. The broad peak of mixing ratios above the turning point in Figure 2 rules out 
pure neutral Na transport from below or from above but provides strong evidence for in situ production of 
the dawn/dusk neutral TINa layers.

The most probable formation mechanism of TINa is the neutralization of tidal Na+ layers via recombi-
nation with electrons, where TINa+ ions are transported and converged by tidal winds and electric fields. 
The vertical drift velocity of TINa+ calculated using ICON-HME tidal winds shows convergent flow phases 
agreeing with the phases (time and altitude) of observed dusk and dawn TINa layers, likely explaining the 
recurrent occurrence of these dusk and dawn TIMt layers at semidiurnal tidal phases with enhanced mixing 
ratios. Numerical simulations and multiple-instrument measurements of neutral and ionized metals as well 
as electron densities are needed to verify the hypothesis and investigate detailed formation mechanisms. 
Boulder TINa dawn layers occur all year round, including summer months, but the dusk layers occur less 
frequently. As for the irregular layers occurring between dusk and dawn, some midnight layers even reach 
∼170 km. Full characterization of Boulder TINa layers and their formation mechanisms are beyond the 
scope of this paper but will be addressed in future studies.

The TINa detection is unequivocal but such low density demands very high detection sensitivities (better 
than 0.1 cm−3). Most Na lidars operated in the world had/have the detection limits above a few cm−3 and 
signal levels well below that achieved by the STAR lidar (Smith & Chu, 2015), so the TINa signals would 
be buried in their background noise. Indeed, an earlier version of the STAR lidar, before it was upgraded 
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to high-sensitivity, was not able to detect TINa layers above 115 km (Huang et al., 2013). Therefore, it is 
understandable why many years of lidar observations at midlatitudes did not discover such TINa layers 
until this report. In the future, lidars with high detection sensitivity enabled by large-aperture telescope, 
high-efficiency receiver architecture, and powerful transmitter will likely lead to the detection of tenuous 
TIMt layers globally. These layers provide a natural laboratory for studying the ion-neutral coupling and act 
as tracers for profiling the neutral wind and temperature in the E to lower F regions. Observing these metal 
layers also provides a unique way of monitoring vertical transport in the thermosphere and ionosphere.

Data Availability Statement
The data shown in this work can be downloaded online (from https://data.mendeley.com/datasets/
nshhxnmrzh/2).
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