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ABSTRACT

In this study, precipitation and temperature forecasts during El Niflo—Southern Oscillation (ENSO) events
are examined in six models in the North American Multimodel Ensemble (NMME), including the CFSv2,
CanCM3, CanCM4, the Forecast-Oriented Low Ocean Resolution (FLOR) version of GFDL CM2.5, GEOS-5,
and CCSM4 models, by comparing the model-based ENSO composites to the observed. The composite
analysis is conducted using the 1982-2010 hindcasts for each of the six models with selected ENSO episodes
based on the seasonal oceanic Nifio index just prior to the date the forecasts were initiated. Two types of
composites are constructed over the North American continent: one based on mean precipitation and tem-
perature anomalies and the other based on their probability of occurrence in a tercile-based system. The
composites apply to monthly mean conditions in November, December, January, February, and March as well
as to the 5-month aggregates representing the winter conditions. For anomaly composites, the anomaly
correlation coefficient and root-mean-square error against the observed composites are used for the evalu-
ation. For probability composites, a new probability anomaly correlation measure and a root-mean proba-
bility score are developed for the assessment. All NMME models predict ENSO precipitation patterns well
during wintertime; however, some models have large discrepancies between the model temperature com-
posites and the observed. The fidelity is greater for the multimodel ensemble as well as for the 5-month
aggregates. February tends to have higher scores than other winter months. For anomaly composites,
most models perform slightly better in predicting El Nifio patterns than La Nifia patterns. For probability
composites, all models have superior performance in predicting ENSO precipitation patterns than temper-
ature patterns.

1. Introduction Yang and DelSole 2012). The 1997/98 El Nifio had
record-breaking sea surface temperature anomalies in
the tropical Pacific and a profound impact on the
global climate, resulting in many extreme events around
the world (Bell et al. 1999; Barnston et al. 1999). For
example, flooding in the central and northeastern
United States and the U.S. West Coast (Bell et al. 1999;
Persson et al. 2005), the Mexican drought (Bell et al.

Corresponding author e-mail: Li-Chuan Chen, lichuan.chen@ 1999), the Yangtze River flood in China (Lau and
noaa.gov Weng 2001), Indonesian forest fires (Gutman et al. 2000;

El Nifio—Southern Oscillation (ENSO) has a large
influence on the seasonal precipitation P and tempera-
ture T patterns over the United States and across the
globe (Ropelewski and Halpert 1986, 1987; Kiladis and
Diaz 1989; Trenberth et al. 1998; Dai and Wigley 2000;
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Parameswaran et al. 2004), and excessive rainfall in
southern Africa (Lyon and Mason 2007), all attributed
to the 1997/98 event.

At the National Oceanic and Atmospheric Adminis-
tration (NOAA) Climate Prediction Center (CPC), a
large effort is devoted to monitoring and forecasting of
Nifio-3.4 sea surface temperature and the tropical Pa-
cific Ocean conditions in order to provide the most up-
to-date information on the phase of the ENSO cycle.
Statistical tools have been developed for objective sea-
sonal prediction using Niflo-3.4 region sea surface
temperature forecasts in conjunction with observed
temperature and precipitation composites keyed to
phases of the ENSO cycle (Higgins et al. 2004). On the
other hand, many studies (e.g., Kumar et al. 1996;
Rowell 1998; Shukla et al. 2000; Mathieu et al. 2004;
Saha et al. 2014; Yang and Jiang 2014) have shown
that improved skill of P and T prediction in climate
models can be attributed to the known impacts of
ENSO signals, especially during the Northern Hemi-
sphere (NH) cold season. Recent developments in
multimodel ensembles provide a promising way to
increase P and T predictive skill using dynamical
model forecasts (Graham et al. 2000; Hagedorn et al.
2005; Weisheimer et al. 2009; Kirtman et al. 2014).

With a warm or cold event approaching, one not only
wants to know whether a climate model can predict the
onset of an ENSO event but also whether the model can
adequately predict its impacts on remote P and T pat-
terns if an ENSO event is in progress. In other words, to
what extent does the real-time forecast by model M
resemble (its own version of) ENSO composites. We
here provide a tool to answer that question. We intend
to take advantage of the large ensemble of the North
American Multimodel Ensemble (NMME) and exam-
ine how well NMME (or its constituent models) fore-
casts ENSO events by comparing the model-based
ENSO composites to the observed. The study of com-
posites based on model forecast data has been attemp-
ted before. Smith and Ropelewski (1997) studied
rainfall composites based on the NCEP Medium-Range
Forecast Model spectral T40 version (Ji et al. 1994;
Kumar et al. 1996) and found substantial discrepancies.
Since then, much has advanced in atmospheric general
circulation models and thus a reassessment of ENSO-
precipitation (or temperature) relationships from cli-
mate models is needed.

In this study, we construct two types of composites
over the North American continent: one based on mean
precipitation and temperature anomalies in physical
units, the other based on the probability of occurrence
in a three-class forecast system. They are referred as
anomaly and probability composites, respectively,
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hereafter. The composite analyses are conducted us-
ing the 1982-2010 hindcasts from six models in
NMME with selected ENSO episodes based on the
seasonal oceanic Niflo index (ONI; Kousky and
Higgins 2007) just prior to the date the forecasts were
initiated. The composites apply to monthly mean
conditions in November, December, January, Febru-
ary, and March (NDJFM) as well as to the 5-month
aggregates representing the winter conditions.

To analyze how well the model composites resemble
the observed, we compute performance scores for each
model and month as well as the NMME ensemble and
5-month aggregates. For anomaly composites, we use the
anomaly correlation coefficient (ACC) and root-mean-
square error (RMSE) against the observed composites
for evaluation. For probability composites, unlike con-
ventional probabilistic forecast verification assuming bi-
nary outcomes in the observations, both model and
observed composites are expressed in probability terms.
Performance metrics for such validation are limited.
Therefore, we develop a probability anomaly correlation
(PAC) measure and a root-mean probability score
(RMPS) for assessment. Our study is focused on land
where ENSO impacts are the greatest (in terms of the
population affected) and forecasts are most needed.

In the following, section 2 introduces the NMME
forecast data and the precipitation and temperature
observations used in the study. Section 3 describes the
methodology for constructing the composites. Section 4
explains the performance metrics, including the devel-
opment of the new scores. Section 5 presents the
anomaly composite analysis and evaluation. The ex-
amination of probability composites is shown in section
6. Section 7 carries out a sensitivity analysis of the per-
formance scores to the sample used for constructing the
composites. Section 8 discusses the results and chal-
lenges of ENSO forecast validation. Finally, section 9
summarizes the major findings from the investigation.

2. Data
a. NMME seasonal forecast data

NMME is an experimental multimodel forecasting
system consisting of coupled climate models from U.S.
modeling centers (including NCEP, GFDL, NASA,
and NCAR) and the Canadian Meteorological Centre
(CMC), aimed at improving intraseasonal to interannual
prediction capability as recommended by the National
Research Council (NRC 2010). The multimodel en-
semble approach has proven effective at quantifying
prediction uncertainty due to uncertainty in model for-
mulation and has proven to produce better forecast
quality (on average) than the constituent single model
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ensembles (Weisheimer et al. 2009; Kirtman et al. 2014;
Becker et al. 2014). The NMME seasonal system cur-
rently contains eight climate models that provide vari-
ous periods of hindcasts from 1981 to 2012 and real-time
forecasts starting from August 2011. In this study, we
selected six models, Climate Forecast System, version 2
(CFSv2; Saha et al. 2006, 2014); Canadian Centre for
Climate Modelling and Analysis (CCCma) Third and
Fourth Generation Canadian Coupled Global Climate
Model (CanCM3 and CanCM4, respectively; Merryfield
et al. 2013); the Forecast-Oriented Low Ocean Resolu-
tion (FLOR) version of GFDL CM2.5 (Vecchi et al.
2014; Jia et al. 2015); Goddard Earth Observing System
model, version 5 (GEOS-5; Vernieres et al. 2012); and
Community Climate System Model, version 4 (CCSM4;
Danabasoglu et al. 2012), that have a common period of
hindcasts from 1982 to 2010 for the evaluation. The
number of ensemble members ranges from 10 (for
CanCM3, CanCM4, and CCSM4) to 24 (for CFSv2 and
FLOR), and NMME has a total of 89 ensemble members.
Despite the original spatial resolution of the participating
models, all NMME forecasts are remapped to a common
grid system of 1° X 1° resolution covering the globe. More
detailed information about the NMME project and data
can be found on NOAA Climate Test Bed website (http:/
www.nws.noaa.gov/ost/CTB/nmme.htm).

b. Observed precipitation data

The CPC precipitation reconstruction (PREC) global
land analysis is used to construct the observed ENSO
composites for comparison. PREC is a gridded monthly
precipitation product that interpolated gauge observa-
tions from over 17000 stations collected in the Global
Historical Climatology Network (GHCN) and the Cli-
mate Anomaly Monitoring System (CAMS). Details of
the PREC dataset and the optimal interpolation tech-
nique used to create this dataset are described in Chen
et al. (2002). The PREC product is reprocessed to the
1° X 1° NMME grid system from its original 0.5° X 0.5°
resolution using bilinear interpolation. Monthly data
from January 1950 to December 2010 are used in this
study.

c. Observed temperature data

The observed temperature composites are computed
using a global monthly land surface temperature analysis—
the GHCN-CAMS gridded 2-m temperature data. This
dataset combines station observations from the GHCN
and CAMS and employed the anomaly interpolation
approach with spatially and/or temporally varying tem-
perature lapse rates derived from the reanalysis for to-
pographic adjustment (Fan and Van den Dool 2008).
Similar to the PREC data, the GHCN-CAMS data are
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also reprocessed to the 1° X 1° NMME grid system from
its original 0.5° X 0.5° resolution to be consistent in the
analysis. Monthly data from January 1950 to December
2010 are employed as well.

3. ENSO composites

Two types of model composites are constructed in this
study: one based on forecast anomalies and the other
based on forecast probabilities. Their procedures are
described below.

a. Anomaly composites

For each model, monthly ensemble mean P and T
forecasts are first obtained by averaging all members.
The P and T anomalies for a given start and lead time
are then computed as the difference between the en-
semble mean P and T forecasts and the lead-specific
model climatology derived from the hindcast mean of
all members and all years excluding the forecast year.
The P and T anomaly composites for the warm ENSO
(El Nifio) events and cold ENSO (La Niifia) events
are simply the average of the ensemble P and T
anomaly maps of selected years. The years are cho-
sen based on the historical ONI (starting from 1950)
published on the CPC website (at http://www.cpc.
ncep.noaa.gov/products/analysis_monitoring/ensostuff/
ensoyears.shtml). If the seasonal ONI just prior to the
date the forecasts were initiated indicates a warm or
cold ENSO episode, the forecasts are selected for the
composite analysis. For example, July—September (JAS)
1982 ONI indicates a warm ENSO episode is in prog-
ress, and thus the forecasts with initial condition (IC) of
1 October 1982 are chosen for the El Nifio composite
analysis of November. In doing so, we avoid the ques-
tion whether the model itself is actually predicting the
|ONI]| to be larger than 0.5.

Table 1 specifies all the years used in the composite
analysis for each initial condition. Only the ENSO
events that occurred between 1982 and 2010 are used
for computing the model composites. The number of
ENSO episodes varies with initial condition from 7 to
10 cases depending on the month. In this paper, we only
present lead-1 month forecasts in the figures. For ex-
ample, the November composites are the average of
8yr of forecasts with IC of 1 October for El Nifio
(warm) events. Since the analysis applies to lead-1
forecasts, we do stay fairly close to the real world’s
classification of events. (Lead-7 composites based on
the model’s predicted ONI might look rather differ-
ent.) We acknowledge that the quality of model com-
posites may depend on lead (or seasonal mean), but
from a practical standpoint it is easier to deal with
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TABLE 1. Selected years used in the ENSO composite analysis. The years are chosen based on |[ONI| = 0.5 on average for the three
consecutive months prior to the initial time of model integration. The 1982-2010 set is used for model and observed composites. The 1950—

2010 set is used for observed composites only.

ite 1 Oct 1 Nov 1 Dec 1 Jan 1 Feb
Month November December January February March
ENSO Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold
1950-81 1951 1950 1951 1954 1951 1950 1952 1951 1952 1951
1953 1954 1953 1955 1953 1954 1954 1955 1954 1955
1957 1955 1957 1956 1957 1955 1958 1956 1958 1956
1963 1956 1963 1964 1963 1956 1959 1957 1959 1957
1965 1964 1965 1970 1965 1964 1964 1965 1964 1965
1968 1970 1968 1971 1968 1970 1966 1971 1966 1971
1969 1971 1969 1973 1969 1971 1969 1972 1969 1972
1972 1973 1972 1975 1972 1973 1970 1974 1970 1974
1975 1976 1976 1974 1973 1975 1973 1975
1977 1977 1975 1977 1976 1977 1976
1978 1978
1982-2010 1982 1985 1982 1983 1982 1983 1983 1984 1983 1984
1986 1988 1986 1985 1986 1984 1987 1985 1987 1985
1987 1998 1987 1988 1987 1988 1988 1989 1988 1989
1991 1999 1991 1995 1991 1995 1992 1996 1992 1996
1997 2000 1994 1998 1994 1998 1995 1999 1995 1999
2002 2007 1997 1999 1997 1999 1998 2000 1998 2000
2004 2010 2002 2000 2002 2000 2003 2001 2003 2001
2009 2004 2007 2004 2007 2005 2006 2005 2006
2006 2010 2006 2010 2007 2008 2007 2008
2009 2009 2010 2009 2010 2009
Total No. of events from 1982 to 2010 8 7 10 9 10 9 10 10 10 10
Total No. of events from 1950 to 2010 16 16 20 17 20 19 21 20 21 20

short leads because the ENSO classification based on
ONI in the real world applies better to forecasts for
short leads.

The composites apply to monthly mean conditions in
NDJFM as well as the 5S-month aggregates to represent
the winter conditions. We focus on NH winter only,
when most ENSO cases in nature have happened and
the extratropical impact should be the largest, according
to theory (Opsteegh and Van den Dool 1980; Hoskins
and Karoly 1981). The NMME composites are the
equally weighted mean of the six models’ composites.

b. Probability composites

For each model, P and T forecasts for a given start and
lead time are classified into three categories (above, near,
and below normal) based on the terciles derived from the
hindcasts of all members excluding the forecast year. For
precipitation forecasts, the tercile thresholds are the 33rd
and 67th percentiles determined by fitting a gamma dis-
tribution to the hindcasts. For temperature forecasts, the
tercile thresholds are set as mean *0.431 multiplied by the
standard deviation by assuming a Gaussian distribution.
The classification applies to each individual member fore-
cast, and the number of ensemble members that fell into
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the three categories under the warm (EI Nifio) and cold
(La Nifa) events are counted for the selected ENSO years.
For model composites, the years (between 1982 and 2010)
are chosen based on the ONI criterion discussed in section
3a. At each grid point, the probability of occurrence for
each category under the El Nifio (or La Nifa) condition is
then calculated by dividing the total number of counts by
the product of the number of the selected ENSO years
and the number of ensemble members for each model.

The ENSO probability composites for NDJFM are
the combination of all five winter months, that is, the
probability of occurrence for each category is calcu-
lated by summing all counts in each of the five months
(all at lead 1) divided by the total number of events
from all five months. Similarly, the NMME probability
composites are the combination of all six models by
adding all counts in each category from the six models
together, but note that the classification of each model
is determined separately in respect to the model’s own
hindcast distribution for a particular month.

c. Observed composites

The model composites provide a general picture of
how NMME models predict ENSO impacts on P and T
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patterns. To examine if NMME models can adequately
reproduce ENSO signals in their forecasts, we also cre-
ate observed ENSO composites using historical P and T’
observations for comparison. The observed composites
are computed using the same procedures as those used
to derive model composites. For instance, November
1982 is part of the observed El Nifio composite because
the ONI satisfies the threshold just prior to 1 October.
Different from model composites, observed composites
are constructed based on a single realization, and thus
the sample size is much smaller than that of model
composites. For observed probability composites, cal-
culations based solely on 1982-2010 events (7-10 cases)
are not sufficient to yield statistically meaningful re-
sults and show sudden category changes in adjacent
areas and discontinuities in spatial patterns for indi-
vidual month composites. To increase the sample size
to reach a more stable result for observed probability
calculations, we selected ENSO events from the period
of 1950-2010. Depending on month, the criterion gives
16-21 ENSO events in that month in this 61-yr period
(also listed in Table 1). These events provide a better
estimate of the probability of occurrence from limited
observations [given that CPC places higher confi-
dence in years after 1950 and no longer uses ENSO
cases before 1950 as in Ropelewski and Halpert (1986,
1987)]. For observed anomaly composites, we also
explore two scenarios: one based on the 1982-2010
events to coincide with the hindcast period and the
other based on the 1950-2010 events to have a larger
sample.

Our observed composites do not follow exactly the
method used at CPC (Higgins et al. 2004) for making
ENSO composites. In particular, we did not attempt to
separate the signal into high and low frequency [a de-
batable activity in Higgins et al. (2004), attempting to
deal with global change]. Our concern is mainly
whether models resemble observations, and both in-
clude unspecified trends. The CPC case selection is
furthermore ‘‘simultaneous’ with no lag in time—that
may also lead to minor differences. Our goal, similar to
Smith and Ropelewski (1997), is to diagnose the
models’ ability in reproducing P and T patterns under
ENSO conditions.

4. Performance metrics

The ENSO composite of a given variable (P or T)
for a given model and a given month is validated
against the P or T composite derived from the obser-
vations for the same target month. For example, the El
Nifio 7 anomaly composite for NMME February
forecasts (with IC of 1 January) is validated with
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the El Nifilo 7 anomaly composite derived from the
observations for the selected Februarys (given the ONI
classification just prior to 1 January; see Table 1 for
participating years). Under this framework, the evalu-
ation is straightforward for the anomaly composites;
note that there is no dimension time in calculating
performance metrics after compositing. We employ the
ACC and RMSE, commonly used in forecast verifica-
tion, as the performance metrics but summing in
space only.

The ACC measures the linear association between the
model anomaly and the observed anomaly across a given
domain with area weighting. It is calculated using the
formula

D w, XX, XX))
ACC = =1 S ., ()

n n
2 (W XX2) X 3 (w, X X2)
i=1 ! i=1 !

where X, is the model ensemble mean anomaly
(either P or T) at grid i, X,, is the observed anomaly
at grid i, n is the total number of land grid points
within the North American domain, and w; is the
weighting coefficient based on the latitude (y) of grid
i, that is,

w, = cos(y,). 2)

The RMSE calculates the average of the squared
differences between the model ensemble mean anom-
aly and the observed anomaly over the North Ameri-
can domain with area weighting, and thus it has the
same unit as the measurements. For the P anomaly, the
unit is in millimeters per day, and for the 7 anomaly,
the unit is degrees Celsius. The equation is written as

S 2
1 Wi(Xm[ - Xo,)

RMSE = |= 3)

s

w.
i
1

1

For the probability composites, both model and
observed composites are expressed in probability
terms—a unique case in verification study. Classical
probabilistic forecasts in a tercile-based system are
usually validated under the assumption that the
verifying quantities are exact and by assigning binary
outcomes to the observations. Most standard metrics
formulated under this assumption, such as Brier
score and ranked probability score, cannot be di-
rectly applied to our case without modifications
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(Candille and Talagrand 2008). To have similar
measures to the anomaly composites for comparison,
we develop a PAC and RMPS for the assessment.

At each grid, the model and observed probabilities
are given in three categories: above, near, and below
normal. We define the probability anomaly for a cat-
egory as the difference between the model (or ob-
served) probability and the climatology value (i.e.,
0.333) for the given category. The PAC, mimicking the
ACC, quantifies the strength of the linear association
between the model probability anomaly and the ob-
served probability anomaly across all three forecast
categories with area weighting. It is computed using
the formula

PAC

n
D WA, XA, +N, XN +B XB,)

9’

_ =1
\/Z w(A2, + N2 + B2 )X 2 w(A2 +N2 +B2)
=1 i i i ) i i i
4)

where A,,,, N,,,, and B,,, are the probability anomalies of
the above-, near-, and below-normal categories from the
model composite, respectively, and A,, N,, and B, are
the probability anomalies of the above-, near-, and
below-normal categories from the observed composite,
respectively.

The PAC and ACC calculated in this study are spa-
tial correlations (aggregated/averaged across space).
One way to assess the validity of spatial correlations is
through statistical significance tests. Because of the
dependency and inhomogeneity of climate fields, sig-
nificance testing for spatial correlations is still an open
research topic. Here, we adopt the approach described
in Van den Dool (2007) and use the degrees of free-
dom (dof; or effective sample size) to determine a
significance threshold based on Student’s ¢ test or
Fisher z test (Wilks 2011). By doing so, we implicitly
assume that probability anomalies and anomaly cor-
relations are Gaussian distributions. The dof is ob-
tained from Wang and Shen (1999), who compared
four different methods for estimating spatial dof and
suggested that dof is around 60-80 in the NH winter
months. Using this approach, the significance thresh-
old is about *0.2 for both the Student’s ¢ test and
Fisher z test.

Analogous to the RMSE, the RMPS measures the
difference between the model composite and the ob-
served composite with area weighting. Specifically, it is
the root-mean-square error between the model and
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observed probability anomalies from all three forecast
categories, that is,

RMPS

2wlA, —A,)+©N, —N,)’+(B, —B,)]
[:1 1 1 1 1 1 13

Y 3w,
i=1

®)

5. Anomaly composite analysis

Figure 1 presents the NMME El Nifio P anomaly
composites for November, December, January, Feb-
ruary, and March forecasts, and these are shown in-
dividually, so any evolution of the ENSO response
pattern throughout the winter can be judged. In the
display, Fig. 1f for NDJFM has been added that com-
bines all five winter months at lead 1. For each model
(figures not shown but are available on CPC NMME
website at http://www.cpc.ncep.noaa.gov/products/
NMME/enso/), this is the typical winter ENSO com-
posite about 1-2 months after initiation of the forecast.
In Fig. 1f (NDJFM), the sample size is attractively
large. Five winter months times (about) nine cases
times the number of ensemble members would be a
sample size of around 4000 for NMME, 1100 for CFSv2
and FLOR, 500 for GEOS-5, and 450 for CCSM4
and both CanCM models. For individual months the
sample size is 5 times smaller. For the 1982-2010 ob-
served composites, the sample size for NDJFM is only
about 45, and it is very possible that the NDJFM com-
posite is a better prediction for an independent new case
in January than a January composite alone (based on
about nine cases).

Figure 2 shows the El Nifio P anomaly composites of
December, February, and NDJFM based on the 1950-
2010 and 1982-2010 observations. There are slight
differences in magnitude between the two sets of
composites because of the differences in sample size
and period. Despite that, both sets of composites
closely resemble the El Nifio precipitation pattern
characterized by Ropelewski and Halpert (1986, 1987)
using station data from 1875 to 1980, with enhanced
rainfall over the southern United States and northern
Mexico and drier conditions over the Pacific Northwest
and Ohio River valley.

Comparing NMME P anomaly composites (Fig. 1)
to the observed, we can see that NMME is able to
capture the evolution of ENSO response and re-
produce El Nifio precipitation patterns well, and
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NMME EI Nino P Anomaly Composites for Lead—1 Forecasts
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FIG. 1. NMME EI Nifio precipitation anomaly (mm day ') composites for lead-1 forecasts with initial conditions of
(a) 1 Oct, (b) 1 Nov, (c) 1 Dec, (d) 1 Jan, and (e) 1 Feb, and for (f) 5-month (NDJFM) aggregates.

this is true for all models. There are subtle differ-
ences between the NMME and observed composites
throughout the winter months. The most apparent
difference is over the Pacific Northwest. In the NMME
composites, negative anomalies exist in this region
from November to March. In the observed composites
(both the 1950-2010 and 1982-2010 sets), a strong
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dry signal appears in November over the Pacific
Northwest, then it switches to wet conditions in Janu-
ary (not shown) and back to dry conditions in February
and March.

In a more compact display, Fig. 3 shows the La Nifia
P anomaly composites for NDJFM based on 1982—
2010 and 1950-2010 observations, NMME, and the six
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Observed EI Nino P Anomaly Composites
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FIG. 2. El Nifio precipitation anomaly (mm day ') composites based on (a) December 1950-2010, (b) December
1982-2010, (c¢) February 1950-2010, (d) February 1982-2010, (¢) NDJFM 1950-2010, and (f) NDJFM 1982-2010

observations.

models. All models and the 1950-2010 observed
composites present drier than normal conditions over
the southern United States and enhanced rainfall
over the Pacific Northwest, consistent with the pat-
tern suggested by Ropelewski and Halpert (1986,
1987). The 1982-2010 observed NDJFM P anomaly
composite also displays a similar La Nifia pattern to
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the 1950-2010 observed. In contrast to the NMME
and 1950-2010 observed composites, the 1982-2010
observed has below-normal rainfall over the Pacific
Northwest. There are some variations among the six
models but all models are reasonably good. CFSv2 has
the biggest north—south contrast in the anomalies and
its dry area is spread farther into central Mexico, while
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La Nina P Anomaly Composites for NDJFM
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FIG. 3. La Nifia precipitation anomaly (mm day ') composites for NDJFM based on (a) 1982-2010 observations, (b) 1950-2010 ob-
servations, (c) NMME, (d) CFSv2, (e¢) CanCM3, (f) CanCM4, (g) FLOR, (h) GEOS-5, and (i) CCSM4 forecasts over the North American

continent.

both CanCM models produce a large negative de-
viation over the southeastern United States. Despite
these subtle differences, the remarkable similarity be-
tween the NMME and observed P anomaly composites
under both El Nifio and La Nifia conditions demon-
strates the significant progress in ENSO-precipitation
relationships from seasonal dynamical models since
Smith and Ropelewski (1997).

Figure 4 presents the La Nifia 7" anomaly composites
for NDJFM based on 1982-2010 and 1950-2010 ob-
servations, NMME, and the six models. Unlike the P
anomaly composites, there are major differences be-
tween the model and 1950-2010 observed composites.
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The differences are even greater when compared to
the 1982-2010 observed composites. All six models
feature large cold anomalies (in some cases exceeding
2°C) over Alaska and western Canada (oriented west—
east rather than northwest-southeast as in the ob-
served), allowing warm air to extend from the south-
eastern United States into central United States. In
some models (e.g., the GEOS-5, CanCM4, and FLOR
models), positive anomalies are seen over more than
half of the United States, resulting in a large area of
warming in the NMME composite, in contrast to the
small warming area over the Gulf states and north-
eastern Mexico in the observed. It should be noted
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La Nina T Anomaly Composites for NDJFM
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FIG. 4. As in Fig. 3, but for temperature anomaly (°C).

that because of different samples, the warming area in
the 1982-2010 observed T anomaly composite is much
less than what Ropelewski and Halpert (1986, 1987)
found, which covered most of the southeastern United
States.

To present a quantitative evaluation of how well
NMME models predict P and 7 patterns under ENSO
conditions, we compute the ACC and RMSE for Pand T
anomaly composites. Figure 5 shows the matrix charts of
ACC for all models and months, including NMME and
NDJFM, using the 1950-2010 observations for valida-
tion. ACC values greater than 0.2 are significantly dif-
ferent from zero at the 90% confidence level based on
the Student’s ¢ test (Wilks 2011). In Fig. 5, matrix grids
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are shaded with green colors indicating the level of skill.
For example, the ACC for the El Nifio P anomaly
composite of CFSv2 NDJFM (row 1, column 6 in Fig. 5a)
is 0.81, shaded with the darkest green. Matrix charts are
frequently used in climate ensemble evaluation (e.g.,
Gleckler et al. 2008) and biological sciences and statis-
tical communities to identify the dominant factors
among (or describe the relationships between) two or
more groups of variables.

Several features are worth highlighting in Fig. 5.
First, the fidelity is generally higher for NMME com-
posites as well as for NDJFM composites. Second,
predictive skill varies with month. All models, as well
as NMME, have greater ACC for February prediction,
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Anomaly Correlation Coefficient
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FIG. 5. ACC of all models and months for anomaly composites of (a) El Niflo precipitation, (b) La Nifia pre-
cipitation, (c¢) El Nifio temperature, and (d) La Nifia temperature, validated with 19502010 observations. Values >0.2
are significant at the 90% confidence level based on Student’s ¢ test. The level of green shading corresponds to the

range of ACC values indicated by the color bar.

and this is seen for both P and T anomaly composites
under either El Nifio or La Nifa condition. Third, for
NDJFM composites, all models perform better in
predicting El Nifio P and T anomaly patterns than
La Niia patterns. This result is consistent with the
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literature. The El Nifio response is known to be
stronger than the La Niiia response (Frauen et al.
2014), and the higher the signal-to-noise ratio, the
better the prediction skill in the way we measure skill.
Fourth and last, based on the sample at hand, the
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Differences in Anomaly Correlation Coefficient
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FIG. 6. As in Fig. 5, but for differences in ACC between validated with 1950-2010 observations and 1982-2010
observations. Values >0.2 or <—0.2 are significant at the 90% confidence level based on Fisher z test.

CFSv2 model did quite well, with CanCM3 as a close
competitor for 7 anomaly composites.

The above findings also hold true for the validation
with the 1982-2010 observed composites; however,
their ACC scores are generally lower. The differences
in ACC between validations with the 1950-2010
and 1982-2010 observations are shown in Fig. 6.
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Positive values (green colors) indicate greater ACC if
validated with the 1950-2010 observations, and dif-
ferences within the range from —0.2 to 0.2 are statis-
tically insignificant based on Fisher z test (Wilks
2011) at the 90% confidence level. Since most num-
bers in Fig. 6 are positive, it is evident that model P
and T anomaly composites correspond better with the
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TABLE 2. RMSE for NMME anomaly composites for P (mm day ') and 7' (°C) of selected target months. Area of validation is the North
American continent within the domain of 10°~72°N, 60°~170°W. The normalized RMSE for a given month (shown in parentheses) is the
ratio of the RMSE to the observed standard deviation of a given variable (P or T') averaged over the North American continent. The

corresponding ACC scores are shown in Fig. 5.

P El Nifio P La Nina T El Nifio T La Nina
RMSE (normalized RMSE) validated with 1982-2010 observations
November 0.41 (0.37) 0.39 (0.35) 0.68 (0.22) 0.89 (0.29)
December 0.28 (0.27) 0.29 (0.28) 113 (0.32) 1.04 (0.29)
January 0.26 (0.27) 0.37 (0.39) 0.62 (0.18) 0.99 (0.29)
February 021 (0.22) 0.23 (0.24) 0.86 (0.25) 121 (0.35)
March 0.25 (0.31) 0.29 (0.36) 0.79 (0.28) 1.19 (0.42)
NDJFM 0.15 (0.15) 0.20 (0.20) 0.46 (0.14) 0.85 (0.26)
RMSE (normalized RMSE) validated with 1950-2010 observations
November 0.29 (0.26) 0.30 (0.27) 0.43 (0.15) 0.54 (0.18)
December 0.17 (0.17) 0.24 (0.23) 0.53 (0.15) 0.61 (0.17)
January 0.24 (0.24) 0.25 (0.25) 0.69 (0.18) 0.68 (0.18)
February 0.17 (0.18) 0.18 (0.19) 0.50 (0.14) 0.57 (0.16)
March 0.18 (0.22) 0.24 (0.29) 0.80 (0.26) 0.95 (0.31)
NDJFM 0.11 (0.11) 0.15 (0.15) 0.38 (0.11) 0.45 (0.13)

1950-2010 observed composites, which have a larger
sample size. The improvement in La Nifia 7 anomaly
composites is substantial. No model has skill in pre-
dicting La Nifia 7 anomaly patterns if validated with
the 1982-2010 observed composites, pointing to a
major challenge in temperature forecast and verifi-
cation under ENSO conditions that will be discussed
more in section 8.

While ACC provides a measure of the linear asso-
ciation between the model and observation, RMSE is
the overall accuracy metric. The assessment based on
RMSE is consistent with the results from ACC. Table 2
lists the RMSE values of all target months for NMME
composites validated with the 1982-2010 (top of Table
2) and 1950-2010 (bottom of Table 2) observed
anomaly composites. Because RMSE has the same unit
as the variable (mmday ! for P anomaly and °C for T
anomaly), RMSE from P and T composites cannot be
directly compared. Therefore, we also calculate the
normalized RMSE (shown in parentheses) by dividing
RMSE by the observed standard deviation of a given
variable (P or T) for a given month averaged over the
North American continent. Similar to the ACC anal-
ysis, RMSE values vary with month and NMME has the
lowest normalized RMSE in February for predicting
ENSO P patterns regardless of the validation period.
Under ENSO conditions, NDJFM composites have the
best performance compared to any single month for
both P and T anomaly composites. Performance is very
poor for predicting La Nifia 7 patterns when validated
with the 1982-2010 observed composites (top of Table
2, last column), and its RMSE for February composite
is the largest among all five winter months, contrary to
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those validated with the 1950-2010 observed and for P
anomaly composites.

6. Probability composite analysis

Conventional atmospheric anomaly composites are
derived as an arithmetic mean based on a selected
sample under a specific condition and thus provide a
mean state for that condition in physical units. The
simplicity of this approach has made it widely used in
many climatological studies to provide a typical pattern
under a certain condition, such as El Nifio or La Nifia.
However, arithmetic mean is strongly affected by out-
liers (large deviations) in the sample, especially when
the sample size is small, and this situation is frequently
encountered in ENSO composite analysis. To reduce
the influence from outliers and take advantage of
NMME’s large ensemble size, we develop a new type of
composites based on the probability of occurrence in a
three-class forecast system commonly used in opera-
tional seasonal prediction (Higgins et al. 2004). The idea
is to provide explicit information on the likelihood of a
specific category (i.e., above, near, or below normal) to
occur under ENSO conditions.

Figure 7 shows the El Nifio P probability composites
for NDJFM based on 1982-2010 and 1950-2010 obser-
vations, NMME, and the six models. In the maps, the
above-normal shading (green) at a grid point is shown
only when its probability is greater than 38% and the
probability of below normal at the same location is
lower than 33%. In contrast, below-normal shading
(brown) is shown when its probability is greater than
38%, and the probability of above normal at the same
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El Nino P Probability Composites for NDJFM
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FIG. 7. El Nifio precipitation probability composites for NDJFM based on (a) 1982-2010 observations, (b) 19502010 observations,
(c) NMME, (d) CFSv2, (e) CanCM3, (f) CanCM4, (g) FLOR, (h) GEOS-5, and (i) CCSM4 forecasts over the North American continent.
Brown, gray, and green colors indicate the probability of below-normal, near-normal, and above-normal categories, respectively. Forecast
category displayed in model composites, where colors are shown, is significant at the 90% confidence level.

location is lower than 33%. Near-normal condition is
shown when more than 38% of the counts fell into the
neutral tercile and the probabilities of above normal and
below normal are both less than 33%. When no class is
dominant (either all categories are under 38% or both
above and below normal are over 33%), no shading is
shown. This set of rules for displaying probability com-
posites is the same as that used for CPC’s operational
probabilistic forecasts. The 38% threshold, with an es-
timated margin of error of 5%, is placed to present a
forecast category that is significant at the 90% confi-
dence level in model composites.
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Generally, P probability composites resemble similar
spatial patterns to P anomaly composites (Figs. 1f, 2e,f),
but the dry signal over the Pacific Northwest shifts more
inland. This is because a probability composite implies a
normalization so that a relatively large anomaly signal
over the Pacific Northwest coast, where rainfall clima-
tology and variability is high, is not as large in terms of
probability. The spatial patterns of the 1982-2010 and
1950-2010 observed P probability composites are very
much alike with slight differences in magnitude. As
noted in the anomaly composite analysis, there are
only small variations among the models. CFSv2 again
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El Nino T Probability Cemposites for NDJFM
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FIG. 8. Asin Fig. 7, but for temperature. Here, blue, gray, and yellow-to-red colors indicate the probability of below-normal, near-normal,
and above-normal categories, respectively.

generates spatial patterns most similar to the observed,
while CanCM3 and FLOR models produce less rainfall
over the southwestern United States, and CanCM4
overproduces wetness south of 40°N. Overall, NMME
probability composite reproduces the wet—dry pattern
and magnitude as seen in the 1950-2010 observed P
probability composite.

Figure 8 presents the El Nifio T probability compos-
ites for NDJFM based on 1982-2010 and 1950-2010
observations, NMME, and the six models. Unlike the
observed P probability composites, there are larger
differences between the 1982-2010 and 1950-2010
observed T probability composites. The 1982-2010
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observed composite has a bigger warm-cold (north—
south) contrast, and its below-normal area is centered
over Texas and northern Mexico and does not cover the
southeastern United States. Similar to the findings
from the La Nifia 7 anomaly composites (Fig. 4), T
probability composites vary with model. Again,
GEOS-5, CanCM4, and FLOR models have the largest
deviations and are the main contributors to the differ-
ence between the NMME and observed probability
composites.

For a formal validation, we compute the PAC and
RMPS for all models and months. Figure 9 shows the
matrix charts of PAC for P and T probability composites
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Probability Anomaly Correlation
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FIG. 9. PAC of all models and months for probability composites of (a) El Nifio precipitation, (b) La Nifia
precipitation, (c) El Nifio temperature, and (d) La Nifia temperature, validated with 1950-2010 observations.
Values >0.2 are significant at the 90% confidence level based on Student’s ¢ test. The level of green shading
corresponds to the range of PAC values indicated by the color bar.

under El Nifio and La Nifia conditions. Consistent with  outperform NMME prediction. Among all months,
the findings from the ACC analysis (Fig. 5), the fidelity ~February tends to have higher scores than other
for NMME and NDJFM composites is generally greater months for both P and T probability composites under
than that for individual models and months, although either El Nifio or La Nifia condition. Different from
a particular model in a specific month may still the ACC analysis, PAC is able to discriminate the
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TABLE 3. RMPS for NMME probability composites of selected
target months. Area of validation is the North American continent
within the domain of 10°-72°N, 60°-170°W. Note that the corre-
sponding PAC scores are shown in Fig. 9.

PEINino PLaNina TEINiio 7 La Nina

RMPS validated with 1982-2010 observations

November 0.163 0.160 0.211 0.212
December 0.149 0.147 0.222 0.205
January 0.131 0.161 0.197 0.214
February 0.135 0.142 0.215 0.209
March 0.144 0.150 0.207 0.216
NDJFM 0.074 0.078 0.170 0.175
RMPS validated with 1950-2010 observations

November 0.118 0.110 0.184 0.182
December 0.104 0.111 0.183 0.180
January 0.101 0.115 0.183 0.183
February 0.098 0.106 0.185 0.186
March 0.099 0.111 0.185 0.196
NDJFM 0.053 0.058 0.166 0.164

performance between the P and T prediction more
and shows larger scores for P composites than 7 com-
posites under both El Nifio and La Nifia conditions.

The high predictive skill in February is also seen in
the ACC analysis and can be explained by the steady-
state linear response of the atmosphere to thermal
forcing in the tropics (Hoskins and Karoly 1981).
Opsteegh and Van den Dool (1980) found that the
impact of tropical heating anomalies on the mid-
latitudes is achieved via Rossby wave propagation.
Rossby waves excited by heating anomalies are trap-
ped in the deep tropics if the upper-level winds are
from the east. In the climatological annual cycle the
upper-level westerly wind in the NH, conducive for
Rossby wave propagation and typical for midlatitude
and subtropics, push farther equatorward in late winter
(January-February) than in any other season (Van den
Dool 1983, his Fig. 2), although the precise reason for a
favorable waveguide in February may be more com-
plicated to describe in a realistic zonally varying basic
state (Newman and Sardeshmukh 1998). In contrast,
broad upper-level easterlies in NH summer and early
fall reduce the potential for any direct impact of ENSO
on the midlatitudes.

Table 3 provides the RMPS values of selected target
months for NMME probability composites validated
with the 1982-2010 (top of Table 3) and 1950-2010
(bottom of Table 3) observed. Since both P and T
composites are expressed in probability terms, their
RMPS values can be directly compared. Here, we can
clearly see that NMME has higher performance in
predicting P patterns than 7 patterns under both El
Niflo and La Nifa conditions, and the NDJFM com-
posite is more accurate than any single month composite,
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regardless of the validation period. However, because
of the smaller sample size, each count is weighted more
in the probability calculations and hence RMPS is
constantly larger for the validation with the 1982-2010
observed probability composites. Different from the
anomaly composite analysis, NMME has indistinguish-
able skill (in terms of probability accuracy) in predicting
El Nifio and La Nifia patterns, for both P and T proba-
bility composites.

7. Sensitivity analysis

In the anomaly composite analysis, we have noticed
some discrepancies between the 1982-2010 and 1950-
2010 observed composites. The differences are mainly
caused by the sample used to construct the composites.
To examine how sensitive the validation is to the se-
lected sample, we carry out a numerical experiment to
illustrate the effects by removing one major El Nifio
episode and one major La Nifia episode from the event
list in Table 1. During the 1982-2010 period, the stron-
gest El Nifio event occurred in 1997/98, and the largest
La Nifia event happened in 1988/89. Therefore, we
choose to delete these two biggest events from the list
and then recompute the composites from both obser-
vations and model hindcasts following the same pro-
cedures described in section 3. After the composites are
reconstructed, we recalculate the performance scores:
ACC and RMSE for anomaly composites and PAC and
RMPS for probability composites. Because the 1997/98
El Nifo and 1988/89 La Nifia events are not included in
either model or observed composites, the new scores
measure the performance from a new sample slightly
different from the original one.

Figure 10 shows the differences in ACC (validated
with 1982-2010 observations) after the two events were
removed for both P and 7 anomaly composites under El
Nifio or La Nifia condition. A positive number indicates
an increase in score after the event was deleted and vice
versa. There are clearly large differences after the 1997/
98 El Nifio and 1988/89 La Nifia events were removed.
For P anomaly composites, most models and months
have lower ACC if the 1997/98 and 1988/89 events were
not included in the composite analysis. CFSv2 and
CCSM4 models have the greatest decrease (—0.21 for
CFSv2 and —0.16 for CCSM4 February prediction)
under El Nifio condition. The influence is stronger for
El Nifio composites than La Nifia composites. For
T anomaly composites, the differences are even more
pronounced. The changes can be as large as —0.30 for
El Nino composites (CanCM4 March prediction)
and —0.47 for La Nifia composites (NMME and
CanCM4 January prediction). Yet, some increases in
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Differences in Anomaly Correlation Coefficient (Sensitivity Analysis)
a) P_EI Nino b) P_La Nina
CFSv24-0.07 [-0.11[-0.13[-0.21|-0.04|-0.12 CFSv24-0.12|-0.09|-0.11|-0.02| -0.10| -0.11
ConCM34 0.02 | 0.02 [—0.10|-0.04|-0.01|-0.05 CanCM34 0.03 |-0.14|-0.04|-0.05|-0.04 | -0.07
CanCM4 4 -0.00| 0.01 [-0.08(-0.10(-0.03|-0.06| CanCM4-{ 0.09 |-0.13|-0.04 |-0.02|-0.09|-0.08
FLOR4{-0.04|-0.06| 0.01 [-0.01| 0.01 |-0.04 FLOR{-0.01|-0.06 | -0.02|-0.03| -0.13| —-0.09
GEOS54-0.07|—0.08| 0.03 | 0.07 |-0.02|-0.03 GEQS54-0.08|-0.05|-0.13|-0.03| -0.08 | —-0.12
CCSM4{-0.01|-0.12|-0.07|-0.16( -0.09| -0.14 CCSM4{ 0.08 | -0.08|-0.13| 0.03 | 0.06 |-0.00
NMME { —0.03| -0.04|—0.07 | -0.11 | -0.04| —0.08 NMME{ 0.01 |-0.10|-0.09 | -0.02| —0.07|-0.08
Nov Dec Jan Feb Mar NDJFM Nov Dec Jan Feb  Mar NDJFM
¢) T_EI Nino d) T _La Ning
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FIG. 10. Differences in ACC (validated with 1982-2010 observations) after the 1997/98 El Nifio and 1988/89 La
Nifia events were removed from the composite analysis for anomaly composites of (a) El Nifio precipitation, (b) La
Nifia precipitation, (c) El Nifio temperature, and (d) La Nifia temperature. Values >0.2 or <—0.2 are significant at
the 90% confidence level based on Fisher z test.

ACC can be seen for December and February pre-
diction under La Nifia condition.

The same experiment is repeated for the validation
with 1950-2010 observations. Similar to the above
findings, most models and months show decreases in
ACC for P and T anomaly composites after the two
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events were deleted, and the impact is greater for T
composites than P composites. However, because of the
larger sample size, the differences in ACC are not as big
as those validated with the 1982-2010 observed anomaly
composites. For P anomaly composites, the changes
span from —0.17 (CCSM4 December prediction under
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Differences in Probability Anomaly Correlation (Sensitivity Analysis)

a) P_EI Nino b) P_La Nina

CFSv24-0.03|-0.10|-0.03|-0.06|-0.04| -0.09 CFSv24-0.11|-0.07 | —0.04 | —0.02| -0.04 | =0.07
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¢) T_EI Nino d) T _La Nina
CFSv2{-0.00(—0.07| 0.00 |-0.06|-0.02|-0.02|  CFSv2{ 0.00 | 0.03 |-0.06| 0.01 |-0.08|-0.02
CanCM3{ -0.06|-0.05| 0.05 |-0.04|-0.03|-0.02| CanCM3{-0.05|-0.02|-0.02| 0.02 |-0.05|-0.02
0.35
0.25
CanCM44 -0.02|—-0.08| 0.06 |-0.01|-0.06|-0.03 CanCM4 4 0.03 0.02 |-0.13| 0.06 |-0.04|-0.02
—0.15
0.05
FLOR4 -0.05|-0.05| 0.05 |-0.01|-0.05|-0.03 FLORH 0.03 |-0.03|-0.10| 0.03 |-0.05|-0.03
——=0.05
—=0.15
GEOQS51 0.01 |—-0.06| 0.08 |-0.02|-0.05(-0.02 GEQS54 0.02 0.01 |-0.13| 0.05 | -0.02|-0.01 0ia5
-0.35
CCSM4 4 -0.01| 0.01 | 0.01 [-0.07[-0.03|-0.02 CCSM4{-0.09|-0.02 | -0.05|-0.01|-0.07 | -0.04 Y
NMME 4 -0.02 | —-0.05| 0.06 |-0.03|-0.04|-0.02 NMME 1 ©.01 0.00 |-0.10| 0.03 |-0.06|-0.02
Nov. Dec Jan Feb  Mar NDJFM Nov Dec Jan Feb Mar NDJFM

FIG. 11. As in Fig.10, but differences in PAC.

El Nifio condition) to 0.10 (FLOR January prediction
under La Nifia condition). For 7" anomaly composites,
ACC differences vary from —0.38 (CanCM3 January
prediction) to 0.06 (GEOS-5 February prediction) un-
der La Nifia condition. This result demonstrates the
importance of sample size for the ENSO validation
study. When sample size is small, performance assess-
ment based on anomaly composites is largely influenced
by strong ENSO events.
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The sensitivity analysis is also carried out for probability
composite validation. Figure 11 presents the differences in
PAC (validated with 1982-2010 observations) after the two
events were removed for both P and T probability com-
posites under El Nifio or La Nifia condition. In contrast to
the results from the anomaly composites (Fig. 10), the dif-
ferences in PAC for the probability composites are small:
within —0.13 and 0.08 for all cases. The differences in PAC
when validated with 1950-2010 observed probability
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FIG. 12. Box-and-whisker plots of fractional change after the 1997/98 El Nifio and 1988/89 La Nifia events were
removed from the composite analysis for composites of (a) El Nifio precipitation, (b) La Nifia precipitation, (c) El
Nifio temperature, and (d) La Nifia temperature. The number after the underscore with ACC or PAC on the x axes
indicates the starting year of the validation period. Indicated for each box are the median (horizontal line through
the box middle), the 25th and 75th percentiles (top and bottom edges of the box), and the minimum and maximum

(lower and upper ends of the vertical whisker line).

composites are even smaller. In fact, the differences in PAC
(validated with 1950-2010 observations) are within the
range from —0.05 to 0.05 for most models and months,
except for December and NDJFM P probability compos-
ites under El Nifio condition and a few others.

To have a level comparison between ACC and PAC, we
calculate the fractional changes, defined as (ACemoved —
ACriginal)/ACoriginai, Where AC is ACC or PAC, for the
four sets of experiments. Their box-and-whisker plots are
displayed in Fig. 12. Each box and whisker represents the
distribution of the 42 combinations from six choices of
month (including NDJFM) and seven choices of model
(including NMME) for each panel in the matrix charts
(Figs. 5, 6, and 9-11). Indicated for each box are the me-
dian (horizontal line through the box middle), the 25th
and 75th percentiles (top and bottom edges of the box),
and the minimum and maximum (lower and upper ends of
the vertical whisker line). It is clearly seen that the range of
fractional changes for PAC usually is smaller than that for
ACC when validated with the same period of observations.
For PAC, the fractional change after removing a major
ENSO episode is always smaller for validation with 1950
2010 observations than that validated with 1982-2010
observations. This result suggests that the probability
composite is less sensitive to the particular sample used to
construct the composite and thus gives a more robust
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estimate of the true ENSO impact. Because of that, sample
size is a more critical factor for probability composite
validation than the sample period.

In addition to the above advantage, there are several
benefits of probability composites. First, they naturally unify
P and T composites through the use of probability (0-1) as
a unit. Second, they directly provide probability distribution
information for three category outcomes (as used in CPC’s
operational seasonal prediction). Third, by using the tercile
thresholds, each count is treated and contributed equally
and thus the effect of outliers is reduced. Fourth, because
both model and observed composites are derived with re-
spect to their own distributions, we bypass the question of
whether the model and observation have the same distri-
bution. In cases when a model cannot reproduce the dis-
tribution as the observed, the probability composite
provides a better depiction of the possible deviations closer
to the observed. These advantages indicate that the prob-
ability composite is a far more robust and effective tool than
the anomaly composite for describing and predicting
ENSO impacts over the North American continent.

8. Discussion

In previous sections, we have illustrated one major
challenge in ENSO validation study—limited observations!
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This situation becomes problematic when there is signifi-
cant contrast in the sample size of the large ensemble pre-
diction (such as NMME) and the single verifying quantity.
The validation of model-based ENSO composites, although
based on 1982-2010 hindcast data, fares better, by all
measures, against observed ENSO composites if the latter
are based on as many years as possible. While there may
be some inherent merit in using matching years, that merit
is outweighed by the lack of sample in the observations.

By using the composite approach, we implicitly as-
sume that the sample is drawn from the same population
invariant in time, and thus the larger the sample size, the
more stable the mean is. Under this assumption, it is
justifiable to use ENSO events from a longer period of
time to derive a more stable observed composite (cli-
matology) for validation. This strategy works well for
variables that meet the requirement, such as pre-
cipitation that has marginal climatic changes over the
1950-2010 period, as seen in Fig. 2. However, for non-
stationary variables, such as temperature, this strategy
may be questionable. Smith and Ropelewski (1997) did
not provide an assessment on ENSO-temperature re-
lationships in the climate model, and to our knowledge
we are the first to attempt such evaluation in multimodel
ensemble forecasts.

We have noticed greater differences between the
1982-2010 and 1950-2010 observed T composites, es-
pecially for La Nifia patterns. One factor contributing to
the differences are the strong outliers that occurred
within the 1982-2010 period. Another factor is the
global warming effect. Several studies (e.g., Collins et al.
2010; Bayr et al. 2014) have proposed a theory on pos-
sible influences on ENSO due to global warming. Lim-
ited by observations, its actual effects remain unknown.
Among the six NMME models, only a few models (e.g.,
CFSv2) have displayed some warming trends in their
temperature forecasts but not as large as the observed.
How climate models simulate this trend and its effects
on ENSO is beyond the scope of this paper and requires
further investigations. On top of that, how to combine
and adjust model forecasts with diverse trends (and no
trend) is a challenging topic. We conduct the validation
without any adjustments to the temperature forecasts
and observations as the first step to understand the models’
ability in predicting ENSO impacts. We hope our study
will inspire more research on nonstationarity in multi-
model ensemble forecasts.

In spite of the focus on ENSO model composites here,
we do NOT suggest that model forecasts should be
replaced by ENSO composites in years when a warm or
cold event is in progress. Neither do we suggest that
observed ENSO composites are the best a model can
do. There may be legitimate case-to-case variations in

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:27 PM UTC

ET AL. 1123

ENSO (flavors of ENSO), and models may attempt to
include other conditions that apply only to the year in
question. One thing one can learn from a large (model)
ensemble is that there are considerable variations from a
composite based on ensemble member j versus ensem-
ble member k. This adds a note of caution in the use of
observed composites for seasonal prediction, which are
based on a single realization.

The similarity of model and observed composites
(broadly speaking and precipitation in particular) does
suggest that models are quite good at simulating tele-
connections (the response to ENSO over the United
States is an obvious teleconnection). To the extent that
teleconnections can be explained from the dispersion of
Rossby waves, this should have been expected. How-
ever, errors in the mean state and misplacement of the
jet stream can cause Rossby wave trains to take different
routes (Hoskins and Karoly 1981). The results are thus
encouraging.

9. Summary and conclusions

We have compared and validated precipitation and
temperature forecasts under ENSO conditions in six
NMME models with long-term climate observations.
Our aim is to understand whether coupled climate
models can adequately predict ENSO’s impacts on
North American precipitation and temperature patterns
while an El Nifio or La Nifia event is in progress. We
focus on the overall model performance and provide a
comprehensive analysis and validation of both the
anomaly and probability composites constructed from
selected warm or cold ENSO episodes based on the
tropical Pacific Ocean conditions during the Northern
Hemisphere winter season. The key findings from the
study are summarized below. These findings are robust
regardless of the validation period or the type of com-
posite used in the analysis:

e NMME predicts ENSO precipitation patterns well
during wintertime. All models are reasonably good.
CFSv2 performs particularly well. This result gives us
confidence in NMME precipitation forecasts during
an ENSO episode and the models’ ability in simulating
teleconnections.

e There are some discrepancies between the NMME
and observed composites for temperature forecasts in
terms of both magnitude and spatial distribution. The
differences are mainly contributed by the GEOS-5,
CanCM4, and FLOR models, and thus the NMME
aggregates have difficulties in reproducing the ENSO-
temperature relationships.

o For all ENSO precipitation and temperature compos-
ites, the fidelity is greater for the multimodel ensemble
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as well as for the 5-month aggregates. February tends
to have higher performance scores than other
winter months.

e For anomaly composites, most models perform
slightly better in predicting El Nifio patterns than La
Nifia patterns.

 For probability composites, all models have superior
performance in predicting ENSO precipitation pat-
terns than temperature patterns.

o Compared to the anomaly composite, the probability
composite is less sensitive to the particular sample used
to construct the composite and has several advantages,
suggesting that probability composite is a more robust
and effective tool for describing and predicting ENSO’s
impacts over the North American continent.

Our findings are encouraging. We have demonstrated
the progress of ENSO precipitation forecasts made in
atmospheric models since Smith and Ropelewski (1997)
and yet identified some deficiencies in temperature
forecasts in the current NMME models. We hope this
study will inspire more research to improve our un-
derstanding on how ENSO is simulated in climate
models and lead to model enhancement, advanced en-
semble techniques, and better forecasts. In addition to
the above findings, we have developed two new per-
formance metrics, PAC and RMPS, for verifying prob-
abilistic forecasts when both prediction and observation
are expressed in probability terms. These metrics can
also be applied to validate ensemble prediction systems
when observational errors (or uncertainty) are taken
into consideration. We have also produced global anomaly
and probability composites using the described method-
ology. The complete set of ENSO composites for all
models and months (including all the figures not shown
in this manuscript), along with the global composites,
are available on the CPC NMME website (at http://www.
cpc.ncep.noaa.gov/products/ NMME/enso/).
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