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Abstract
Unlike the retail-like (for selected variables) statistical post-processing meth-
ods, a wholesale-like (for all variables) dynamical approach is proposed to
correct forecast bias during model integration. Subtracting a bias tendency from
the model total tendency is intended to de-bias all variables at once to better
(i.e. more dynamically consistent) couple with downstream applications. Three
experiments were tested using an ensemble prediction system since the method
is intended for an ensemble model. The verification was carried out over China
for a period of 31 days (1–31 July 2015). The verification of 500 hPa tempera-
ture indicates that all three experiments have significantly improved the raw
ensemble forecasts with reduced bias error, a more accurate ensemble mean, a
better spread-skill relationship, and more reliable and sharper probabilities. The
performance is better than or comparable to the current operational statistical
method. When the verification was expanded to include more variables, a sum-
mary scorecard shows that the three experiments also had a general positive
or neutral impact on both upper-air and surface variables, especially the height
and temperature fields. Precipitation forecasts remained relatively unchanged.
There were only a few categories that were degraded. The comparison between
the three experiments yielded a mixed result: the most sophisticated approach
often performed the best for 500 hPa temperature, while the simplest approach
worked the best when verifying a mixture of variables. The degradation of
the wind forecasts by the third experiment was discussed. These are the two
challenges: how to accurately describe the bias tendency and how to add inter-
nally coherent bias tendencies to multiple variables. Given its advantages, this
approach could be a promising approach for correcting biases in a numerical
model.
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1 INTRODUCTION

Our recent study shows that ensemble performance and
verification is very sensitive to model bias (Wang et al.,
2018). Therefore, systematic model bias has to be removed
from each ensemble member in order to maximize the
forecast utility as well as allow for a correct assessment
of an ensemble prediction system (EPS). Current meth-
ods to remove bias are retail-like (only for some selected
variables), mainly statistical, and done separately from the
model integration as a post-model correction (Roulston
and Smith, 2003; Gneiting et al., 2005; Monache et al.,
2005; Raftery et al., 2005; Bakhshaii and Stull, 2009; Du
and Zhou, 2011; Cui et al., 2012; Satterfield and Bishop,
2014). This requires the addition of an extra step to remove
the bias before utilizing and verifying an ensemble of
forecasts. Besides the inconvenience, this causes a seri-
ous problem or even a stoppage to some downstream
applications if one wants to use bias-corrected fields, due
to dynamical inconsistency among variables. The cur-
rent methods correct only a small subset of all model
output variables (it is almost impossible to correct every-
thing in an operational environment) and correct each
of those variables independently. As a consequence, the
final forecast products (often multi-variable based) some-
times behave erroneously due to the inconsistency among
the ingredient variables (i.e. a mixed use of some inde-
pendently corrected and other uncorrected variables). For
example, an inconsistency between winter precipitation
type and surface temperature was seen (National Centers
for Environmental Prediction (NCEP) Weather Prediction
Center, personal communication). A poor replication of
the convective environment (such as convective available
potential energy, CAPE) might be produced due to the
inconsistently corrected temperature and moisture fields
(NCEP Storm Prediction Center, personal communica-
tion). In other cases, one simply cannot use the bias'-
corrected variables in one's application. For example, it
is impossible to use bias-corrected fields to initialize a
downstream model like a nested domain (including a con-
currently running nest like the NCEP FV3 nested run),
an air-quality or a dispersion model, due to the inconsis-
tency among input variables. Therefore, we need a new
type of bias correction approach to overcome all these dif-
ficulties in numerical weather prediction (NWP). An ideal
approach would be: (a) de-biasing all the model output
fields (not only a few selected fields), including all derived
fields like precipitation and clouds, together in a dynam-
ically consistent way, (b) doing the de-biasing during the
model integration with no extra step needed following the
model integration, and (c) having the capability to remove
a big portion of the bias errors. This study will design

and test such a new type of wholesale-like approach:
bias correction through model integration. Results will be
assessed through the verification of ensemble forecasts. It
will demonstrate that this approach can perfectly satisfy
the first two criteria. As a first attempt with this method,
we do not expect that it will remove all model biases
but hope that it will perform better than or at least be
comparable to a commonly used statistical method. There-
fore, a comparison with a current operational statistical
method will also be given in this study. More impor-
tantly, issues we encountered in this study will be pre-
sented and discussed for future research to improve the
method.

The dynamical de-biasing concept is not entirely new
in literature. It can be traced all the way back to the work
of Leith (1978). The method has already been applied
to a simplified weather model with promising results by
Danforth et al. (2007). Following the work of Danforth
et al. (2007), work is ongoing to apply the method to
an operational NWP model as documented in Bhargava
et al. (2018). Independently, a group at the UK Met Office
(UKMO) developed a similar methodology, to be used
in their global EPS, which tries to replace the model's
stochastic physics perturbations where the model error
tendency is estimated from archived analysis increments
(Piccolo and Cullen, 2016; Piccolo et al., 2019), assum-
ing that analysis increments are a good proxy to diagnose
model errors. The UKMO method is the same concept
as this study, although the approach proposed by Piccolo
and Cullen (2016) differs from this work in that it accom-
plishes de-biasing and spread inflation at the same time,
whereas, in this study, spread inflation is accounted for by
using different parametrization schemes in different mem-
bers (Table 1). As an extension of the work of this study,
a unified scheme has also been proposed to accomplish
de-biasing and spread inflation at the same time by apply-
ing this bias-correction method and a stochastic physics
scheme together (Xia et al., 2019). The UKMO work might
be in alignment with this extended work of ours.

With the merging of the dynamical de-biasing
approach, we invite other researchers to join us to further
refine this technique to improve its effectiveness in remov-
ing the bias. Based on this study, some possible areas for
future improvement will be discussed at the end of this
article. The scope of this study is to design and demon-
strate this new type of method to float an idea to the NWP
community rather than complete a systematic verification
study. The rest of this article is organized as follows. The
model and methodology are described in Section 2. In
Section 3 the verification results are given through three
experiments. A summary and discussion are presented in
Section 4.
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Member ICs and LBCs Convective scheme PBL scheme

Control Down-scaling from
global EPS member

Kain–Fritsch–Eta
(Kain and Fritsch, 1993;
Kain, 2004)

MRF (Hong
and Pan,
1996)

Member 1 Down-scaling Original Kain–Fritsch
(Kain and Fritsch, 1990)

MRF

Member 2 Down-scaling Betts–Miller–Janjić
(Betts, 1986)

MRF

Member 3 Down-scaling Kain–Fritsch–Eta MRF

Member 4 Down-scaling Original Kain–Fritsch MRF

Member 5 Down-scaling Betts–Miller–Janjić MRF

Member 6 Down-scaling Kain–Fritsch–Eta MRF

Member 7 Down-scaling Original Kain–Fritsch MRF

Member 8 Down-scaling Simplified
Arakawa–Schubert
(Pan and Wu, 1995)

YSU (Hong
et al., 2006)

Member 9 Down-scaling Betts–Miller–Janjić YSU

Member 10 Down-scaling Original Kain–Fritsch YSU

Member 11 Down-scaling Simplified
Arakawa–Schubert

YSU

Member 12 Down-scaling Betts–Miller–Janjić YSU

Member 13 Down-scaling Original Kain–Fritsch YSU

Member 14 Down-scaling Simplified
Arakawa–Schubert

YSU

T A B L E 1 Configuration of the
GRAPES_REPS

2 MODEL AND METHODOLOGY

A regional version of the Global and Regional Assimila-
tion and Prediction Enhanced System (GRAPES) is the
base model employed in this study, which is developed at
the Numerical Weather Prediction Center of China Mete-
orological Administration (CMA) (Chen et al., 2008). The
main features of GRAPES include a fully compressible
dynamical core with non-hydrostatic approxima-
tion, a semi-implicit and semi-Lagrangian scheme for
time integration, and a height-based terrain-following
sigma coordinate. The model physics includes RRTM
(Rapid Radiative Transfer Model) long-wave radia-
tion (Mlawer et al., 1997), Dudhia short-wave radiation
(Dudhia, 1989), the Weather Research and Forecasting
Single-Moment 6-class (WSM-6) microphysics (Hong
and Lim, 2006), Noah land surface model (Mahrt and
Ek, 1984), Medium Range Forecast (MRF) planetary
boundary-layer (PBL) scheme (Hong and Pan, 1996),
and Monin–Obukhov surface layer scheme (Noilhan
and Planton, 1989). Model analysis is produced by a
4-dimensional variable data assimilation scheme, avail-
able every 6 hr. Based on the GRAPES model, a Regional

Ensemble Prediction System (GRAPES-REPS, Table 1)
was also developed and is running operationally at
CMA (Zhang et al., 2014). It has 15 ensemble members
(1 control and 14 perturbed members) with 51 vertical
levels (model top is 10 hPa) and a horizontal resolution
of 15 km. Initial and boundary condition uncertainties
are provided by different members of a global EPS also
operationally running at CMA. The initial condition
perturbations of the global EPS are generated by the
breeding vector (Toth and Kalnay, 1997). Model pertur-
bation of the GRAPES-REPS is represented by multiple
physics schemes (Stensrud et al., 2000; Du et al., 2015).
GRAPES-REPS runs twice a day, initialized at 0000 and
1200 UTC, respectively, out to a 72 hr forecast lead time.
The model integration time step is 60 s. There is no per-
turbation in the control member. It is the GRAPES-REPS
that will be used in this study.

Following a stochastic physics perturbation approach
(Houtekamer et al., 1996; Buizza et al., 1999; Shutts, 2005;
Berner et al., 2009; Ollinaho et al., 2017), a bias-correction
forcing is added to the model total tendency term of a state
variable S at every time step during a model's integration,
with the intent that it will produce bias-free forecasts for
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(a) (b)

(c) (d)

F I G U R E 1 The forecast biases of the ensemble control member for (a) potential temperature th (𝜃, K), (b) zonal wind u (m⋅s−1), (c)
meridional wind v (m⋅s−1), and (d) dimensionless pressure pi (𝜋) on a grid point (114◦E, 31◦N) near 700 hPa level over forecast hours. It is
estimated from the 0000 UTC cycle forecasts during 19–28 June 2015 and approximated as the biases for the 72 hr model integration
initialized at 0000 UTC 1 July 2015

all variables. Equation 1 is the model integration formula:

Sj(t) = ∫
t

t=0
{A(Sj, t) + P(Sj, t)}𝑑𝑡, (1)

where Sj(t) is a state variable of the jth ensemble member
at model integration time t, j = 0 is the control fore-
cast, and j = 1, 2, … , n represent n perturbed ensemble
members (n = 14 in this study). A is the model dynamic
tendency term, and P is the physical process tendency
term. De-biasing is realized by subtracting a bias tendency
B from dynamic and physical process tendencies during
model integration, shown in Equation 2:

Sj(t) = ∫
t

t=0
{A(Sj, t) + P(Sj, t) − B(Sj, t)}𝑑𝑡. (2)

Equation 2 is the theoretical formula for this new
approach.

Bias tendency B can be estimated from the variation
in available bias error with forecast time. For example, in
our case, for a 72 hr model integration initialized on 1
July 2015, the bias was approximated by the average error
of the old forecasts for the period of 19–28 June 2015 at
each forecast hour. The reason for using a 10-day period

to estimate bias is that it is not too short to miss the main
features of systematic error, and also not too long to com-
pletely filter out flow-dependent error. Since bias is regime
dependent (Du and DiMego, 2008), it should be beneficial
to retain some recent flow-dependent bias information in
the bias tendency. A period of about 10–20 days has been
proven to be optimal for correcting regime-dependent bias
in short-range weather forecasts, as shown by the expe-
rience of the US NCEP's Short Range Ensemble Forecast
(Du et al., 2015). To mimic an operational environment,
the estimation of forecast bias was done directly on the
GRAPES model native grid and levels using the GRAPES
analysis (f00 files) as truth for the four state variables
(potential temperature 𝜃, zonal wind u, meridional wind
v, and dimensionless pressure 𝜋), so that there was no hor-
izontal or vertical grid interpolation error introduced. In
spite of the fact that the estimated bias here is only rela-
tive to the GRAPES analysis but not to observations, this
configuration is the only implementable way in real-time
production. However, for forecast verification, the inde-
pendent and best available ECMWF analysis will be used
in the next section. Once we have bias on model grid, the
needed bias tendency B can be derived from it. Figure 1
is the estimated biases varying with forecast hour (0–72 hr



CHEN et al. 1153

(a) (b)

(c) (d)

F I G U R E 2 The 6 hr bias tendencies corresponding to Figure 1. Note that although the red dots are plotted only at the middle point of
a 6 hr window, they really represent the bias tendency values over the entire 6 hr window

at 6 hr intervals) at a model grid point for the four state
variables. Based on Figure 1, bias tendency can be cal-
culated at any time interval. For example, the 6 hr bias
tendency (Figure 2) is the change in bias between the two
consecutive forecast hours in Figure 1. A linear regression
is used to estimate the bias increment b̂ over a time win-
dow Δ (in hours) by linearly fitting all bias values within
the window. Therefore, bias tendency over a time step 𝛿t
(in seconds, 𝛿t = 60 s in this case), denoted as B̂l(Sj, t), can
be obtained as the following:

B̂l(Sj, t) = slope × time step = b̂
Δ × 3600

× 𝛿𝑡. (3a)

Equation 3a becomes Equation 3b if there are only two
bias values available within Δ:

B̂l(Sj, t) =
B(Sj, t+Δ) − B(Sj, t)

Δ × 3600
× 𝛿𝑡. (3b)

Thus, by repeating the above steps on every model
grid point at all model levels within the model domain, a
three-dimensional B̂l(Sj, t) can be obtained at every model
integration time step. With this, Equation 2 can be approx-
imated into Equation 4,

Sj(t) = ∫
t

t=0
{A(Sj, t) + P(Sj, t) − B̂l(Sj, t)}𝑑𝑡, (4)

which is the practical version of this proposed bias cor-
rection approach we are going to test in this study. This
method can be applied to any NWP model. The difference
between Equations 2 and 4 has two aspects: the omission of
nonlinear bias tendency (unresolved temporal structures)
and at least partially flow-dependent bias (unresolved spa-
tial structures) by Equation 4. The omission of nonlinear
bias tendency is due to the linear fitting used to interpret
a large time interval (Δ) value into a time-step value (any-
thing less than Δ time-scale is not resolved). Obviously,
the smaller the interval Δ is, the closer B̂l will be to B. The
omission of flow-dependent bias is due to the time averag-
ing in the bias estimation process over a past time period
where only the systematic component (spatial structure)
is retained. How to include full flow-dependent bias effect
in Equation 4 is a challenging issue, where the singular
value decomposition (SVD) method has been tried by Dan-
forth et al. (2007). By the way, if bias estimation is done on
a different grid and at levels other than the model native
grid and levels, the process of spatial interpolation (both
horizontal and vertical to model native grid and level) will
introduce errors too.

The ensemble forecast verification metrics are selected
based on Du and Zhou (2017) and Jolliffe and Stephenson
(2003). In addition to ensemble mean, ensemble spread
and probability distribution are the two important features
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(a) (b)

(c) (d)

F I G U R E 3 The 10-day (19–28 June 2015) evolution of the model domain-averaged forecast biases of the control member at different
forecast hours for (a) potential temperature th (𝜃, K), (b) zonal wind u (m⋅s−1), (c) meridional wind v (m⋅s−1), and (d) dimensionless pressure
pi (𝜋) near 700 hPa level

to be verified in this study. Model bias is calculated sepa-
rately for the 0000 and 1200 UTC cycles and obtained by
averaging forecast errors over a time period of 10 days (for
the reason already mentioned above) immediately prior to
model integration. For example, for a 72 hr model forecast
initialized at 0000 UTC on 1 July 2015, the model bias is
obtained from the 0000 UTC cycle forecasts from 19 to 28
June 2015. In this study, the experimental period is 31 days
from 1 to 31 July 2015 for forecasts initialized at 0000 UTC
(i.e. a total of 31 72-hr forecasts) over China as a demon-
stration. The averaged results of these 31 days should be
robust enough, and will be presented in the next section.
The 6 hr ECMWF gridded analysis (https://apps.ecmwf.
int/datasets/data/interim-full-daily/levtype=pl) is used as
truth (except for precipitation) in verification (Sections
3.2 and 3.3), while the CMPAS-V2.1 (CMA Multi-source
merged Precipitation Analysis System: Pan et al., 2015) is
used as truth for verifying precipitation.

3 RESULTS

3.1 Forecast bias analysis

Let us examine the forecast bias situation over a period
of 10 days prior to our test period (1–31 July 2015). While
Figure 1 is the 10-day (19–28 June 2015) averaged biases
for a grid point, Figures 3 and 4 are for the domain average.
Figure 3 shows the 10-day time evolution of the control
member's biases at each forecast hour for the four state
variables, at a level near 700 hPa. Apparently, persistent
biases exist in all variables. The strongest bias is in the
potential temperature (Figure 3a, it is about 50–80% rela-
tive to its total forecast error); a moderate bias is in both
the dimensionless pressure (Figure 3d, about 10–20%) and
the meridional wind (Figure 3c, about 10%); and a weak
bias is in the zonal wind (Figure 3b, about 2%). For the
zonal wind, moderate bias also exists at other levels as

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl


CHEN et al. 1155

(a) (b)

(c) (d)

F I G U R E 4 The vertical distribution of the domain-averaged biases at the forecast lead time of 24 (blue), 48 (green), and 72 h (black)
for (a) potential temperature th (𝜃, K), (b) zonal wind u (m⋅s−1), (c) meridional wind v (m⋅s−1), and (d) dimensionless pressure pi (𝜋). The
results are the 10-day average for the 0000 UTC cycle control member during 19–28 June 2015

shown in Figure 4. Both Figures 1 and 3 clearly show that
potential temperature has the most dominant warm bias
with a linear upward trend with forecast time. The max-
imum bias reaches about 4 K at 72 hr forecast lead time
(Figure 1a). The dimensionless pressure also shows an
obvious negative bias with a linear downward trend, i.e.
becoming stronger with forecast time (Figures 1d and 3d).
The zonal and meridional winds exhibit apparent diur-
nal biases: too strong during the daytime and normal or
slightly too weak during the night-time (Figures 1b,c and
3c). While Figures 1–3 show the biases at one particular
level (700 hPa), Figure 4 shows the vertical distribution
of the control member's biases. For potential temperature
(Figure 4a) it had a warm bias in the entire atmosphere

except in a layer near 200 hPa where a cold bias existed. For
zonal wind (Figure 4b) a westerly bias was observed below
the 600 hPa level, and an easterly bias between 600 and
200 hPa. For meridional wind (Figure 4c) a southerly bias
was observed below 800 hPa, a northerly bias existed above
550 hPa, and little bias was seen between 800 and 550 hPa.
For the dimensionless pressure (Figure 4d) it was nega-
tively biased below 550 hPa and positively biased above 550
hPa. For all the four variables, their biases increased as the
forecast length increased.

These biases are similarly present in the experimen-
tal period (1–31 July 2015). For instance, Figure 5 is the
domain-averaged biases at the 700 hPa level, derived from
the first 10 days of the experimental period (1–10 July
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(a) (b)

(c) (d)

F I G U R E 5 The model domain-averaged biases of the 15 ensemble members plus the ensemble mean for (a) potential temperature th
(𝜃, K), (b) zonal wind u (m⋅s−1), (c) meridional wind v (m⋅s−1), and (d) dimensionless pressure pi (𝜋) near 700 hPa level, averaged over the 10
forecasts (1–10 July 2015)

2015). Besides the control member, Figure 5 also shows
the biases of the 14 perturbed members and the ensemble
mean. It suggests that all members have similar bias ten-
dency to that of the control member (less so in the zonal
wind due to its weaker bias). Given this similarity, it is rea-
sonable to use the bias tendency of the control member
to correct the 14 perturbed ensemble members. Therefore,
Equation 4 can be further simplified into

Sj(t) = ∫
t

t=0
{A(Sj, t) + P(Sj, t) − B̂l(S0, t)}𝑑𝑡. (5)

Since forecast bias could be different in a multi-physics
EPS, using the control member's bias tendency for all
members is an approximation. As stochastic physics is
more preferable than multi-physics and becomes more
popular for perturbing a model (Du et al., 2018), this
approximation should be eased with time.

For an implementation of this method into operations,
the control member runs without bias correction to estab-
lish a historical raw forecast dataset for the bias tendency

estimation of other perturbed ensemble members.
Although this method might not be practical (resource
costs) in operations for a single deterministic model (since
it requires the same model to run twice, once with bias
correction for the actual application and again without
bias correction for the bias tendency calculation), it can
be implemented at almost no cost in an EPS environment.
It takes about 7 min to estimate past bias and prepare bias
tendency for model integration in our IBM Flex-460 com-
puter. The model integration time is almost unchanged
after the bias tendency term is added to the model. Keep
in mind that an EPS has become a standard prediction
system nowadays at all major NWP centres in the world
(Buizza et al., 2018).

3.2 Three experiments

Based on the above forecast bias analysis, we have
designed three experiments to examine the effectiveness
of ways to incorporate the bias tendency term in a model.
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F I G U R E 6 The ensemble mean forecast biases at 72 hr forecast lead time for (a) the raw forecast, (b) Exp. 1, (c) Exp. 2, and (d) Exp. 3.
The results are the 31-day average for the 0000 UTC cycle during 1–31 July 2015. The variable is 500 hPa temperature

The first experiment (Exp. 1) is the most simplified one:
since the potential temperature bias is the most dominant
and has a roughly linear increasing trend over all forecast
times, only the potential temperature's bias tendency of the
first time step (Equation 3a was used with Δ = 72 hr) will
be used in the bias correction term throughout the entire
model integration, i.e. the bias tendency forcing is fixed at
all time steps,

𝜃j(t) = ∫
t

t=0
{A(𝜃j, t) + P(𝜃j, t) − B̂l(𝜃0, 0)}𝑑𝑡. (6)

No bias tendencies of other variables are used in Exp.
1. The second experiment (Exp. 2) is the same as Exp. 1 but
the potential temperature's bias tendency varies at every
time step during the model integration (Equation 3b was
used with Δ = 6 hr),

𝜃j(t) = ∫
t

t=0
{A(𝜃j, t) + P(𝜃j, t) − B̂l(𝜃0, t)}𝑑𝑡. (7)

The third experiment (Exp. 3) is the most sophisticated
one, directly using Equation 5 with no simplifications.
The time-varying bias tendencies (Equation 3b was used
with Δ = 6 hr) are added to four state variables (𝜃, u, v
and 𝜋) in the model integration (note: other two model
state variables, vertical velocity w and moisture q, were not
perturbed),

Sj(t) = ∫
t

t=0
{A(Sj, t) + P(Sj, t) − B̂l(S0, t)}𝑑𝑡, (8)

S → {𝜃,u, v, 𝜋}. (9)

Figure 6 compares the 500 hPa temperature biases
of the ensemble mean forecasts at 72 hr forecast lead
time for the original (raw, Figure 6a) and the three exper-
iments (Figure 6b–d). The results show that all three
experiments can greatly reduce the bias compared to the
raw run, although the warm bias still exists in all runs.
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F I G U R E 7 The domain-averaged biases of the ensemble
mean varying with forecast hour from the raw and three
experimental runs as well as the Kalman-filter based statistical
method (“debias”). The results are the 31-day average for the 0000
UTC cycle during 1–31 July 2015. The variable is 500 hPa
temperature

The domain-averaged biases (Figure 7) show that this
reduction increases with forecast lead time and is about
30–40% on average for all forecast hours. The reduction is
statistically significant at the 99.95% level based on Stu-
dent's t-test (which will be used elsewhere throughout
this article as the statistical significance test). Exp. 3 and
Exp. 1 worked noticeably better than Exp. 2 before 48 hr
and similarly afterwards. To get an idea about the rel-
ative performance of this new method, we compared it
with the Kalman-filter (or decaying average) based statis-
tical bias-correction method, which is currently used in
operations at both CMA and NCEP (Du and Zhou, 2011;
Cui et al., 2012). The result of this statistical method for
the same time period is shown by the magenta curve in
Figure 7. Apparently, the performance of the new method
is better or comparable to the current operational statisti-
cal method, which is encouraging.

Although the under-dispersive nature still exists in all
runs, the three experimental runs have greatly improved
the ensemble's spread-skill relationship (Whitaker and
Loughe, 1998; Du, 2012; Fortin et al., 2014; Du and
Zhou, 2017). Figure 8 shows that the ensemble spread
(black dashed line) and the root-mean-squared error of
the ensemble mean forecast (RMSE, the black solid line)
are much closer to each other in the experimental runs
(Figure 8b–d) than in the raw run (Figure 8a) for 500 hPa
temperature. An average improvement of about 20–27%

has been achieved in Consistency score (the ratio of the
RMSE of ensemble mean forecast to ensemble spread,
the red solid line): from 2.24 (raw) to 1.65 (Exp. 1), 1.82
(Exp. 2), and 1.64 (Exp. 3). This improvement is statis-
tically significant at all forecast lead times for all three
experiments. Exp. 3 worked the best, followed by Exp. 1
and Exp. 2.

Rank histogram is another common metric to verify
ensemble spread (Talagrand et al., 1997; Hamill, 2001;
Candille and Talagrand, 2005; Jolliffe and Primo, 2008;
Du and Zhou, 2017). Figure 9a compares the rank his-
tograms of 500 hPa temperature at 72 hr forecast lead time
for the four runs. Although all runs have a strong warm
bias (“L” shape), the three experimental runs noticeably
reduced the warm bias, showing a reduced extent of the
left-skewness. This warm bias reduction significantly (at
99.9% level) reduced the outlier (Figure 9b), from the orig-
inal 50% to about 35% (a 30% improvement) for the exper-
imental runs at 72 hr forecast lead time. Therefore, the
experimental ensembles have a greater chance of encom-
passing the truth in their forecasts than the raw ensemble.
Consistent with the result of Figure 7, Exp. 1 and Exp. 3
had slightly outperformed Exp. 2 in the first 2 days, while
Exp. 1 and Exp. 3 had similar performance over all forecast
hours.

Improved ensemble mean and spread should result
in better probabilistic forecasts. Figure 10 shows the con-
tinuous ranked probability score (CRPS: Hersbach, 2000;
Grimit et al., 2006) of 500 hPa temperature at 72 hr forecast
lead time. CRPS is a negatively oriented score, the smaller
the better (with more reliable and higher-resolution infor-
mation). The overall reduction in CRPS can be clearly
observed over the entire domain from the raw run
(Figure 10a) to the experimental runs (Figure 10b–d). The
improvement occurs at all forecast hours and increases
with the increase in forecast length (Figure 11). The exper-
imental runs reduced the CRPS by about 33% from 1.5
to 1 at 72 hr forecast lead time. This reduction is statis-
tically significant (99.9%) at all forecast lead times for all
experiments. In general, the three experiments performed
similarly, with Exp. 2 slightly behind Exp. 3 and 1.

Reliability is an important characteristic of proba-
bilistic forecasts, providing a key factor in the cost/loss
ratio based decision-making process (Du and Deng, 2010).
Figure 12 shows the reliability diagrams of 500 hPa temper-
ature at various forecast hours for the four runs. The event
defined for producing probability is selected as exceeding
1 ◦C over climatology. Although all runs are overconfident
due to the warm bias, the improvement of the experimen-
tal runs over the raw run is obvious: the reliability curves
of the three experimental runs are closer to the diagonal
line (perfect reliability). This improvement is statistically
significant at all forecast lead times for all experiments.
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F I G U R E 8 The domain-averaged ensemble mean forecast RMSE (black solid line), ensemble spread (black dashed line) as well as
consistency score (RMSE/spread, red solid line) and the perfect consistency line (red dashed line) varying with forecast hour for (a) the raw
forecast, (b) Exp. 1, (c) Exp. 2 and (d) Exp. 3. The averaged consistency score value over all forecast hours for each run is shown on each
subplot. The results are the 31-day average for the 0000 UTC cycle during 1–31 July 2015. The variable is 500 hPa temperature

Among the three experiments, Exp. 2 and 3 are slightly
more reliable than Exp. 1.

Unlike the CRPS and reliability diagram, the relative
operating characteristics (ROC) is a score that is less sen-
sitive to model bias. Figure 13 is the ROC diagrams of
500 hPa temperature at various forecast hours for the four
runs. The threshold to define an event for producing prob-
ability is the same as was used in the calculation of relia-
bility. Figure 13 shows that there is still an improvement
(higher hitting rate and lower missing rate) in the three
experimental runs over the raw run, although the score is
less sensitive to model bias. The improvement increases
with the increase in forecast length. This improvement is
also statistically significant at all forecast lead times for all
experiments. The three experimental runs performed very
similarly to each other in terms of ROC.

All the verification above is based on 500 hPa tem-
perature, which has a strong warm bias. To determine if

the proposed approach can also calibrate other variables
including surface variables and derived fields such as pre-
cipitation, a scorecard approach is applied. A scorecard is
a summary of statistics from many variables and can eas-
ily show which variables or aspects have been improved,
worsened or were neutral (remaining unchanged) by a
new method. In our scorecard, several forecast skill scores
are computed for some isobaric fields including geopoten-
tial height (H), temperature (T), zonal wind (U) and merid-
ional wind (V) at 200, 500, 700, 850 and 1,000 hPa levels,
as well as some near-surface fields such as 2 m tempera-
ture (T2m), 10 m wind (U10m, V10m), and light, moderate
and heavy precipitation at 24 hr, 48 hr and 72 hr forecast
lead times. For non-precipitation fields the verification
metrics are RMSE, Consistency (RMSE/spread), CRPS and
outlier; for precipitation the metrics AROC (area under
ROC curve) and BS (Brier score) are used. There is a
total of 294 categories in the scorecard. Figure 14 shows
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F I G U R E 9 (a) The rank histograms at 72 h forecast lead time, and (b) the outliers over forecast hour. Black bar is for the raw forecast,
blue for Exp. 1, green for Exp. 2 and red for Exp. 3. The results are the 31-day average for the 0000 UTC cycle during 1–31 July 2015. The
variable is 500 hPa temperature

the three scorecards, respectively, for Exp. 1, Exp. 2 and
Exp. 3 improving upon the raw run. Consistent with the
verification results of 500 hPa temperature, all three exper-
imental runs had a generally positive or neutral impact
on both upper-air and surface variables, especially the
height and temperature fields. Precipitation forecasts gen-
erally remain unchanged. The improvement (green), neu-
tral (grey) and degradation (red) rates are, respectively, 59%
(172/294), 40% (119/294) and 1% (3/294) for Exp. 1; 46%
(135/294), 53% (155/294) and 1% (4/294) for Exp. 2; and
34% (101/294), 40% (116/294) and 26% (77/294) for Exp. 3.
Particular attention needs to be paid to the behaviour of the
most sophisticated or least simplified approach Exp. 3. As
with Exp. 1 and Exp. 2, Exp. 3 has greatly improved height
and temperature forecasts in most categories. However,
it unfortunately degraded many upper-air wind forecasts,
resulting in the highest degradation rate (26%) among the
three experimental runs. On the other hand, our investi-
gation reveals that Exp. 3 increased ensemble spread the
most, while the other two experiments had little impact
on ensemble spread (Figure 15). This implies that model
forecasts were more sensitive to bias tendency in wind
than in temperature. Adding bias tendency to the wind
fields results in larger variations among ensemble mem-
bers (larger spread), which is a welcome change for an
under-dispersive EPS such as this one.

3.3 A challenging issue to be
investigated

A failure can be the mother of future success if we can
learn a lesson from it. Why were the upper-level wind
forecasts degraded in Exp. 3? One possible reason is the

violation of the linear assumption in estimating bias ten-
dencies for the wind field, given the obvious diurnal vari-
ation of u and v biases as shown in Figures 1,3 and 5.
Another reason might be the inconsistency in the wind
field when u and v biases were processed separately. Biases
in u and v are related; they might need to be dealt with
together. Generally speaking, since wind bias is likely
to be more flow dependent than temperature bias, it is
more challenging to “correctly” incorporate wind bias ten-
dency in a model than a thermal or mass field. In addi-
tion to wind, the internal consistency among all model
state variables should also be carefully investigated in the
multi-variable approach (as Exp. 3).

Although a thorough in-depth study of this challenge
certainly needs a separate study, a preliminary investiga-
tion was performed to shed a light. Since the 24 hr forecasts
of 200 hPa u were improved in Exp. 1 and 2 but degraded
in Exp. 3 (Figure 14), this variable is chosen for investi-
gation. Figure 16 is the bias error of the ensemble mean
forecasts for the four runs, while Figure 17 is the abso-
lute value of the bias error. It is insightful to see that the
bias magnitude was reduced but the spatial pattern or bias
sign remained the same (mainly easterly bias) in Exp. 1
and 2 (Figure 16a–c), while the spatial pattern or bias sign
changed (e.g. easterly bias was replaced by westerly bias
over a large portion of the area) in Exp. 3 (Figure 16d).
This result can be confirmed by the domain-averaged
bias: −0.54 m⋅s−1 for Raw run, −0.49 m⋅s−1 for Exp. 1,
−0.5 m⋅s−1 for Exp. 2, and 0.028 m⋅s−1 for Exp. 3. This
means that the bias was over-corrected in Exp. 3, which
leads to a larger absolute bias error (Figure 17) and total
forecast error (figure not shown). Figure 17 shows that
the domain-averaged absolute bias error is 2.61 m⋅s−1 for
Raw run, 2.56 m⋅s−1 for Exp. 1, 2.47 m⋅s−1 for Exp. 2, and
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F I G U R E 10 The CRPS of the ensemble-based probabilistic forecasts at 72 hr forecast lead time for (a) the raw forecast, (b) Exp. 1, (c)
Exp. 2, and (d) Exp. 3. Probability of exceeding 1 ◦C over climatology is used. The results are the 31-day average for the 0000 UTC cycle during
1–31 July 2015. The variable is 500 hPa temperature

F I G U R E 11 The domain-averaged CRPS of the ensemble-
based probabilistic forecasts varying with forecast hour. Black line is
for the raw forecast, blue for Exp. 1, green for Exp. 2 and red for
Exp. 3. Probability of exceeding 1 ◦C over climatology is used. The
results are the 31-day average for the 0000 UTC cycle during 1–31
July 2015. The variable is 500 hPa temperature

2.72 m⋅s−1 for Exp. 3. The degradation could be caused
by either one of the two reasons mentioned above (i.e.
the linear assumption violation or inconsistency among
variables).

Given the fact that this problem might not exist in
the one-variable approach as in Exp. 1, the simplest
one-variable (such as temperature) approach is recom-
mended to use in production for now. Since temperature
has a dominant bias in this case, if this is the reason that
Exp. 1 worked well or not is also a question to answer. For
example, for a model where no single variable has a domi-
nant bias, will this one-variable approach still be superior
to a multi-variable approach?

4 SUMMARY AND DISCUSSIONS

Unlike the retail-like (for selected fields) statistical
post-processing methods commonly used to calibrate fore-
cast biases, this study proposed and tested a wholesale-like
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F I G U R E 12 Reliability diagrams of the ensemble-based probabilistic forecasts for the raw and three experimental forecasts at the
forecast lead time of (a) 12, (b) 24, (c) 36, (d) 48, and (e) 72 hr as well as (f) the average of all forecast hours (6–72 hr). Probability of exceeding
1 ◦C over climatology is used. The results are the 31-day average for the 0000 UTC cycle during 1–31 July 2015. The variable is 500 hPa
temperature

(for all fields) dynamical approach to correct forecast bias
during model integration. The method is not only more
convenient (two steps are consolidated into one step) but
also makes the downstream products more consistent and
makes some downstream applications such as model ini-
tialization possible. Following the idea of the ensemble
stochastic physics perturbation, this approach subtracts a
bias tendency from the model's total tendency term of a
state variable. The bias tendency is updated at every time
step until the end of model integration. The bias tendency
can be estimated from the bias error of past forecasts.
During this bias tendency estimation, two approxima-
tions have been introduced: one is the omission of at least
a partial flow-dependent bias (unresolved spatial struc-
tures) caused by averaging over a period of time to obtain
the bias error. Another is the omission of nonlinear bias
tendency (unresolved temporal structures) caused by the
linear fitting to interpret a large time interval value into a
time-step value (e.g. any bias for less than a 6 hr time-scale
is not resolved in this study). Since these approximations
reduce the accuracy of this method, how to accurately

describe the bias tendency term should be one of the main
tasks to improve the approach. Given the advantages of
this approach, we believe that it represents the future
of correcting biases in a numerical weather prediction
model. The computing resource needed for this method is
almost negligible in a major operational NWP centre.

With this proposed approach, three experiments (Exp.
1–3) were carried out and compared with each other to
examine the effectiveness of ways to incorporate bias ten-
dency into a model. Exp. 1 tests the most simplified setting
by adding the bias tendency term only to the most biased
variable (potential temperature in this case), where the
bias tendency does not vary with forecast time (i.e. the first
time-step value is used for all time steps). Exp. 2 is the same
as Exp. 1 but the potential temperature's bias tendency
varies at every time step during the model integration. Exp.
3 is the most sophisticated, where the time-varying bias
tendencies were added to four state variables (𝜃, u, v and 𝜋)
in the model integration. To mimic operational implemen-
tation of this method, the control member ran without bias
correction to provide a historical dataset of raw forecasts
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F I G U R E 13 Same as Figure 12 but for ROC diagrams

for the bias tendency estimation. The experiments were
performed on each of the 14 perturbed members of the
GRAPES-REPS. Given the similarity of the bias tenden-
cies of the 14 perturbed members to the control member,
the use of the control member's bias tendency for all 14
perturbed members is reasonable, although this is another
approximation of the method.

The verification was carried out in the framework of
ensemble forecasts over China for a period of 31 days (0000
UTC 1–31 July 2015). It was done for 500 hPa temper-
ature first and then expanded to many other variables
including near-surface variables and precipitation. RMSE
and bias score were used for ensemble mean and indi-
vidual members; spread-skill relationship (Consistency
score), rank histogram and outlier for ensemble spread;
and CRPS, BS, reliability, ROC diagrams and AROC for
probabilistic forecasts. A scorecard was created to summa-
rize multiple variables and multiple scores of a variable.
From the verification of 500 hPa temperature, results indi-
cate that all three experiments significantly improved the
raw ensemble forecasts in all aspects with reduced bias
error, more accurate ensemble mean, better spread-skill
relationship, and more reliable and sharper probabilities.
The improvement normally increased as forecast length
increased. Among the three experiments, Exp. 1 and 3

generally performed better than Exp. 2. A comparison of
the new method with the Kalman-filter based statistical
method currently used in the operations showed better or
at least similar performance. This is very encouraging.

When the verification was expanded to include more
variables, the scorecard (containing 294 categories) shows
that the three experiments also had a general positive or
neutral impact on both upper-air and surface variables,
especially the height and temperature fields. Precipita-
tion forecasts remained relatively unchanged. There were
only a few aspects that were degraded. For example, the
improvement rates are 59, 46 and 34% out of the 294 cate-
gories for Exp. 1–3, respectively; the degradation rates are
1, 1 and 26%; and the neutral rates are 40, 53 and 40%. An
unexpected result is that the most sophisticated approach,
Exp. 3, while being a superior player for 500 hPa tem-
perature, became the worst performer overall among the
three experimental runs. Exp. 3 degraded many u and v
components of upper-air wind forecasts, resulting in the
highest degradation rate (26%). Our preliminary investi-
gation suggests that the bias of wind forecasts was overly
corrected. On other hand, Exp. 3 increased ensemble
spread the most, while the other two experiments had
little impact. This implies that model forecasts were more
sensitive to bias tendency in wind than in temperature.
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F I G U R E 14 Scorecards for (a) Exp.
1, (b) Exp. 2 and (c) Exp. 3. Green indicates
an improvement, red a degradation, and
grey a no-change (neutral) with respect to
the raw run. Different symbols are
associated with different level of statistical
significance of t-test (see the legend for the
details). The results are the 31-day average
for the 0000 UTC cycle during 1–31 July
2015. Note that the scores AROC and BS
were used for precipitation forecasts only

(a)

(b)

(c)

Thus, adding bias tendency to wind fields could result
in larger variations among ensemble members, a desired
property for an under-dispersive EPS.

The scope of this study is to propose and demonstrate
this new type of method but it is not a thorough verification
study. To fully understand and refine this new approach,
more case-studies using different numerical weather pre-
diction models are needed. Many questions have not been

answered yet. For example, why did Exp. 3 overly correct
the wind bias? Can the inconsistency among model state
variables, especially u and v after independently adding
bias tendencies, play a role? Or is it due to the imperfect
treatment of the bias tendency in wind (i.e. a violation of
the linearity assumption)? These issues need to be further
investigated using different models with different scenar-
ios, such as “no dominant bias by one single field” and
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F I G U R E 15 Scorecard of Exp. 1–3
for ensemble spread only

F I G U R E 16 The biases of 200 hPa u at 24 hr lead time for (a) raw (−0.54 m⋅s−1), (b) Exp. 1 (−0.49 m⋅s−1), (c) Exp. 2 (−0.5 m⋅s−1), and
(d) Exp. 3 (0.028 m⋅s−1). The values inside the brackets are the domain-averaged bias
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F I G U R E 17 The absolute biases of 200 hPa u at 24 h lead time for (a) raw (2.61 m⋅s−1), (b) Exp. 1 (2.56 m⋅s−1), (c) Exp. 2 (2.47 m⋅s−1),
and (d) Exp. 3 (2.72 m⋅s−1). The values inside the brackets are the domain-averaged absolute bias

“weak bias for all variables”. Last but not least, the approx-
imation of the use of the control member's bias tendency
for all other members should also limit the effectiveness of
this method. This approximation will fortunately be eased
with time as stochastic physics becomes more popular
than multi-physics for perturbing a model in an EPS.
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