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Abstract Strong correlations of O3-CH,0, O3-CO and CO-CH,O were observed during the Deriving
Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality
(DISCOVER-AQ) aircraft experiment in July 2011 over the Washington-Baltimore area. The linear regression
slopes of observed 0O5-CH,0, 03-CO, and CO-CH,0 do not vary significantly with time (11 a.m. to 4 p.m.) or
altitude in the boundary layer. These observed relationships are simulated well by a regional chemical
transport model. Using tagged-tracer simulations, we find that biogenic isoprene oxidation makes the largest
contribution to the regression slope of O3-CH,0 across much of the eastern United States, providing a good
indicator for O3 enhanced by biogenic isoprene oxidation. In contrast, the regression slope of Os-CO is
controlled by both anthropogenic and biogenic emissions. Therefore, we use the CO-CH,0 relationship to
separate biogenic from anthropogenic contributions to CO. By combining these regressions, we can track the
contributions to surface O3 by anthropogenic and biogenic factors and build a fast-response ozone estimator
using near-surface CH,0 and CO concentrations as inputs. We examine the quality of O; estimator by
increasing or decreasing anthropogenic emissions by up to 50%. The estimated O3 distribution is in
reasonably good agreement with the full-model simulations (R? > 0.77 in the range of —30% to +50% of
anthropogenic emissions). The analysis provides the basis for using high-quality geostationary satellites with
UV, thermal infrared, or near-infrared instruments for observing CH,O and CO to improve surface O3
distribution monitoring. The estimation model can also be applied to derive observation-derived regional
metrics to evaluate and improve full-fledged 3-D air quality models.

1. Introduction

Ozone (0s3) is a major pollutant in the troposphere (e.g., Lelieveld & Dentener, 2000; Logan et al., 1981;
Wang et al, 1998; Wang & Jacob, 1998). Thus, monitoring tropospheric O3 at regional and global scales
is important for environmental protection. Spaceborne remote sensing utilizing its absorption features in
the ultraviolet (UV) and the thermal infrared (TIR) bands is the most convenient way to provide Oz spatial
distributions around the globe. However, because of the molecular scattering of UV (X. Liu, Bhartia, et al.,
2010) and lack of contrast of TIR (Beer, 2006), the satellite observations for Os still show a limited sensitivity
in the lowermost troposphere, especially near the surface, which is directly relevant to air quality (e.g.,
Cuesta et al,, 2013).

Three-dimensional air quality models can provide information on the distribution of surface Os, but the accu-
racy of surface O3 simulations is limited by uncertainties in precursor emissions, atmospheric processes, and
nonlinear photochemistry. Some model uncertainties can be mitigated through probabilistic approaches
(e.g., Dabberdt et al., 2004; Delle Monache, Deng, et al., 2006; Delle Monache, Hacker, et al., 2006; Vautard
et al., 2009). Statistical methods have also been applied to estimate O3 distributions, including classification
and regression trees, linear regression, and neural networks (e.g., Biancofiore et al., 2015; Burrows et al., 1995;
Cobourn, 2007; Perez & Reyes, 2006; Shad et al., 2009; Van der Wal & Janssen, 2000). The advantage of such
statistical modeling is that it offers moderate to high accuracy at a moderate cost (Y. Zhang et al., 2012).
However, the nature of statistical modeling often requires a suite of input variables and does not enable
better understanding of chemical and physical processes (e.g., Guillas et al., 2008).
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An alternative to numerical or statistical modeling is to make use of the observations of O3 surrogates. The
correlations between O3 and other chemical species might be used effectively to diagnose Oz chemical
and physical processes (e.g., Chin et al., 1994; Koo et al., 2012; Parrish et al,, 1993; Wang & Zeng, 2004).
Carbon monoxide (CO) is often observed and simulated to have a linear relationship with Os in the lower
atmosphere (e.g., Buhr et al., 1996; Cardenas et al, 1998; Cheng et al,, 2017; Chin et al,, 1994; Cooper,
Moody, Parrish, Trainer, Holloway, et al., 2002; Cooper, Moody, Parrish, Trainer, Ryerson, et al, 2002;
Fishman & Seiler, 1983; Honrath et al., 2004; Huntrieser et al., 2005; Q. Li et al., 2002; Mao & Talbot, 2004;
Parrish et al.,, 1993, 1998). Over the eastern United States, the observed slope of Os to CO at ~0.3 reflects con-
tributions by CO from primary anthropogenic emissions and that from biogenic isoprene oxidation (Cheng
et al,, 2017) due in part to the production of both O3 and CO from biogenic volatile organic compound
(VOCQ) oxidation (Atkinson & Arey, 1998; Choi et al., 2010; Geng et al., 2011; Guenther et al., 1995; Hudman
etal, 2008; K.-Y. Lee et al., 2014; Pang et al., 2009; Pierce et al., 1998; Y. Zhang & Wang, 2016). It implies that
the observations of CO concentrations can be potentially applied to track the contributions to surface Os by
anthropogenic and biogenic factors. In addition to Environmental Protection Agency surface monitoring net-
works, satellite observations of lower tropospheric CO are more promising than O3 over polluted regions
since CO concentrations are usually higher in the boundary layer than the free troposphere and unlike Os
it does not have high concentrations in the stratosphere, although both CO and Os have substantial free tro-
pospheric columns relative to the boundary layer. CO can be detected by satellite TIR, near-infrared (NIR), and
joint TIR and NIR instruments, such as the NIR SCanning Imaging Absorption spectroMeter for Atmospheric
CHartographY (SCIAMACHY; e.g., De Laat et al., 2012), the Measurement of Pollution in the Troposphere
(e.g., Emmons et al., 2004; Straume et al., 2005), and Atmospheric Infrared Sounder Aumann et al., 2003).

Formaldehyde (CH,O0) is a principal intermediate species in the oxidation of atmospheric hydrocarbons (e.g.,
Duane et al., 2002; Fried et al,, 2011; Pang et al., 2009; Wiedinmyer et al., 2001, and references therein). It is
also a major radical source leading to ozone production in the presence of nitrogen oxides (NO,; e.g.,
Z. Liu, Wang, Vrekoussis, et al., 2012). We will show that regional CH,O is also correlated to Oz in section 3.
Since the sources of CO and CH,O0 are often different, the two correlations can provide separate constraints
on Oj distributions. While regulatory monitoring of surface CH,O is unavailable, CH,O is detectable from
space with good sensitivities in the boundary layer by measuring backscattered solar UV between 325 and
360 nm (Chance et al., 2000), including SCIAMACHY (Wittrock et al., 2006), Ozone Monitoring Instrument
(Gonzélez Abad et al, 2015; Kurosu et al, 2004), Global Ozone Monitoring Experiment-2 (GOME-2;
De Smedt et al.,, 2012), and Ozone Mapping Profiler Suite (Gonzalez Abad et al., 2016; C. Li et al., 2015). The
total uncertainty of the HCHO vertical column data is typically in the range of 50-105% for each measure-
ment. Through averaging, the uncertainties for monthly means are down to 20-40% for GOME-2A and
SCIAMACHY (De Smedt et al., 2008), 38% for Ozone Monitoring Instrument, and 46% for GOME-2B (Zhu
et al,, 2016). Therefore, the uncertainty of the monthly HCHO vertical column data from polar-orbiting instru-
ments are in the range of 20-50%.

In this study, we apply a 3-D chemical transport model to quantitatively study factors contributing to the
observed correlations and regression slopes of Os with CH,O and CO and those of CO with CH,O using
the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations
Relevant to Air Quality (DISCOVER-AQ) measurements. The analysis will show that it is feasible to use
observed aircraft CO and CH,0 concentrations to improve estimates of the surface Os distribution over the
eastern United States. The uncertainties of current satellite-derived near-surface CO and CH,0 are still too
large (e.g., Buchwitz et al., 2007; Gloudemans et al., 2005; L. Zhang, Jiang, et al., 2016) to be applied in this
method. The Environmental Protection Agency surface CO monitoring data are also unusable since CO
concentrations are often below the reporting limit (e.g., Zeng & Wang, 2011). We therefore use the model
simulated data, which reasonably captures the observed aircraft concentrations and relationships of Os,
CO, and CH,0 during the DISCOVER-AQ campaign, to develop and evaluate a surface O3 estimation model
with surface CO and CH,O as input parameters. In the future, geostationary satellite instruments such as
Tropospheric Emissions: Monitoring of Pollution (TEMPO; Chance et al., 2013) and Geostationary Carbon
Observatory (Polonsky et al., 2014) will greatly improve the monitoring of near-surface measurements of
05 precursors with sufficient accuracy and therefore make it possible to use observed CH,0O and CO in the
O3 estimator we develop here. We describe the 3-D chemical transport model, DISCOVER-AQ data set,
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analysis methods, the O3 estimation model, and validation method in section 2. Section 3 describes the ana-
lysis, modeling, and evaluation results. Discussion of implementing the O3 estimator and conclusions are
given in sections 4 and 5, respectively.

2. Data and Analysis Methods
2.1. Observations and Simulations

The observation data used in this study were obtained from the NASA 2011 DISCOVER-AQ airborne campaign
(http://www-air.larc.nasa.gov/missions/discover-ag/discover-ag.html). Sampling by the NASA P-3B aircraft
was conducted from Washington'’s Beltway northeast to Baltimore and continuing on to the Delaware state
line and occasionally over the Chesapeake Bay. Fourteen flights over six locations selected for aircraft spirals
were carried out to measure the vertical structures of pollutants. Two hundred fifty-three daytime vertical
profiles from 300 m to 5 km were measured between 27 June and 31 July. CO was measured by a diode laser
spectrometer (Sachse et al., 1987). Oz was measured by the National Center for Atmospheric Research four-
channel chemiluminescence instrument (Weibring et al.,, 2010). The uncertainties of the measurements on
these two species are 2% and 5%, respectively. CH,O was measured by a difference frequency generation
absorption spectrometer (Weibring et al,, 2010). For CH,O0 levels above 1 ppbv the total measurement uncer-
tainty at the 1o level was estimate to be around 5%, which folds in systematic and limits of detection uncer-
tainties. To evaluate model simulations with the observations, we identify the model profiles corresponding
to the locations of aircraft spirals and the time of aircraft sampling. Corresponding model vertical profiles and
observations are used in correlation analysis to evaluate model performance.

We use a 3-D Regional chEmical trAnsport Model (REAM) to represent the observations and then conduct
further correlation analyses. The REAM model was applied in previous studies to analyze vertical mixing,
large-scale transport, emission estimates, and tropospheric chemistry over North America and East Asia
(e.g., Cheng et al., 2017; Choi et al., 2005; Choi, Wang, Yang, et al., 2008; Choi, Wang, Zeng, et al., 2008; Gu
et al, 2013, 2014, 2016; Jing et al.,, 2006; Z. Liu, Wang, et al,, 2010; Z. Liu, Wang, Gu, et al.,, 2012; Z. Liu,
Wang, Vrekoussis, et al.,, 2012; Z. Liu et al., 2014; Wang et al., 2006, 2007; Yang et al., 2011; Zeng et al.,
2003, 2006; Zhao & Wang, 2009; Zhao, Wang, Choi, & Zeng, 2009; Zhao, Wang, & Zeng, 2009; Zhao et al.,
2010; Y. Zhang, Wang, et al., 2016; Y. Zhang & Wang, 2016; R. Zhang et al., 2017). The model domain covers
the contiguous United States with a horizontal resolution of 36 x 36 km?. The chemistry mechanism in REAM
is the GEOS-Chem standard chemical mechanism (V9-02; Bey et al,, 2001) with updates of kinetics data
(http://jpldataeval.jpl.nasa.gov). The anthropogenic emission inventory used in the model is the 2011
National Emission Inventory (https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inven-
tory-nei-data). The biogenic isoprene emissions are the results of the Model of Emissions of Gases and
Aerosols from Nature version 2.1 (Guenther et al., 2012). Initial and boundary conditions for chemical tracers
are taken from the GEOS-Chem (V9-02) 2°x 2.5°simulation results (Bey et al., 2001). Meteorology fields are
from the Weather Research and Forecasting model, which assimilated products from the Climate Forecast
System Reanalysis (http://cfs.ncep.noaa.gov/cfsr).

The previous study by Cheng et al. (2017) shows that REAM simulates well the observed vertical and temporal
variations of O3, CO, NO,, isoprene, and CH,0, as well as the correlation between O and CO, and the 03-CO
regression slopes during the 2011 DISCOVER-AQ campaign. In this work, we therefore focus on analyzing the
correlation and regression slope of O3-CH,0. We trace separately via tagged tracers three different CH,O
sources, primary anthropogenic emissions and the oxidation of anthropogenic VOCs (CH;O,nthrovocs), the
oxidation of biogenic isoprene (CH,Opioisop), and transport from model lateral and upper boundaries
(CH,0g(), to analyze the contribution from each source to the observed O3-CH,0 relationship. Other biogenic
VOCs are not taken into account because isoprene provides the source for the vast majority biogenic CH,0
(e.g., Guenther et al.,, 2012; Kesselmeier & Staudt, 1999; Lathiere et al., 2006; Sindelarova et al., 2014). In
tagged-tracer simulations, relevant species and radicals, such as O3, NO,, and HO, (OH and HO,), are fixed
using results archived from the standard simulation. The sum of the three individual tagged tracers is within
2% of the total CH,O concentrations in the standard simulation for grid cells over the Washington-Baltimore
region. We carry out minor scaling adjustments in postprocessing, assuming that relative CH,O attributions
stay the same, to ensure that the sum of the CH,O0 tracers is the same as the total CH,O for each grid cell in
the standard simulation. We evaluate the scaling adjustments by calculating the relative error of the sum of

CHENG ET AL.

7644


http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html
http://jpldataeval.jpl.nasa.gov
https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data
http://cfs.ncep.noaa.gov/cfsr

100 Journal of Geophysical Research: Atmospheres 10.1029/2018JD028452

nnnnnnnnnnnnnn
'AND SPACE SCiENCE

the three tagged CH,O0 to the total simulated CH,O (Figure S1 in the supporting information). In the study
domain (mainly the southeast United States), the error is <0.5%. Since the magnitude of total CH,O is lower
in other areas, the error is lager but is still <1.5% for western United States and 3% for other rural regions.
With simulated CH,O attribution results, we can decompose the O3-CH,0 regression slope into three sub-
slopes of the corresponding CH,O0 tracers (equation (1), derived in Appendix A),

Least squares regression slope of 03-CH,0
_ Cov(CH;Oanthrovocs; Os) | Cov(CH208c, Os) | Cov(CH;Opioisor, O3) )
Var(CH;,Oxotal) Var(CH;,Oxotal) Var(CH;,Oxotal)

where Cov and Var denote covariance and variance, respectively. Equation (1) shows that the contribution of
each CH,O tracer, that is, the subslope values, to the O3-CH,0 regression slope is proportional to its covar-
iance with Os. It is therefore possible to have both positive and negative slope contributions.

For the DISCOVER-AQ region during the Baltimore-Washington study, where the majority of CH,O is bio-
genic, we can use the regression slope of O3-CH,0 in the evaluation of model results using the observa-
tions. When extending the analysis using equation (1) to remote regions, the small variance of background
CH,O0 leads to abnormally large slopes, making it difficult to show the spatial distribution of the regression
slope. We therefore use an inversed slope of ACH,0/AQO3 (equation (2), see the Appendix A) to illustrate the
spatial distribution over the United States since the variance of Os is a more stable denominator that that
of CH,0,

Least squares regression slope of CH,0-O3
_ Cov(CH;Oanthrovocs; Os) | Cov(CH208c, Os) | Cov(CH;Opioisor, O3) )
Var(0O3) Var(0s) Var(0s)

2.2. Surface Ozone Distribution Estimation

The total O3 concentration is contributed by three major sources: anthropogenic O3 production (Osanthro)s
biogenic Os production (Ospioisop), and the transport from the lateral and upper model boundaries
(O3background; €quation (3)). In the ozone estimation model, we estimate Oszanthro and Ospioisop Using the
regressions of O3 with source-tagged CO and CH,0. We will show in the next section that the correlations
and regression slopes of O3-CH,0 and CO-CH,O0 are almost entirely due to biogenic isoprene over the eastern
United States, where CH,0 concentrations are mostly due to oxidation of biogenic isoprene. We make use of
this finding and use CH,0 as a proxy for O related to biogenic emissions. We decompose surface O3 concen-
trations in equation (3) into three components related to regional anthropogenic emissions, biogenic
emissions, and background (not related to the emissions within the estimation domain). We approximate
the emission related components using CO (equation (4)). Recognizing that we would like to make use of
observation-based CO and CH,O concentrations, we replace CO from anthropogenic emissions (COanthro)
with CO-COpjogenic-CObackground: Where COpiggenic is CO from biogenic isoprene oxidation that proceeds
through CH,0, and further compute COpjogenic as a function of CH,O from biogenic isoprene oxidation
(CH,0pioisop; €quation (5)). Considering that most of CH,O is biogenic over the region in the summer, we
replace CH,Opioisop @s CH20-CH;0packground (€quation (6)).

[03] = [03]anthro + [03]bigenic + [03}background 3)
A[Os] A[Os]
~ A, o [COlanthro + AlCOLmor - [COlpioisop 1 [O3lbackground @
_ A[Oﬂ A[Co]biO|SOP
- A[Co]anthro X ([Co}total A[CHZO]bIOISOP X [CHZO]bioISOP [Co]background
A[O;] A[CO}y,;
* BlCOlyusor ™ AlCH Ol 12O Oslcgna ©
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A[O;] A[COJpi0i50p
~ A[CO], e x ([Co]total - W]IziolSOP X ([CHZO}total - [CHZO]background) — [COlpackground

A[Os]

+ m X ([CHZO}total - [CHZO]background) + [03]background 6)

10!
= A X [COJ ) + B X [CH20] ) + C 7)
AO; A[O3 A[CO) A[0s _ A[0s A[0s

where A = i B =~y X SO, + a0 €= ~ 500 % [ COlbadground + (A[céun]m X

A[COlyioisop _ A[Os]

A[CH;0Ji0150p A[CHzo]bioISOP) X [CHZO}background + [03}background.

We will show that this function works well for the eastern United States in the summer. The study domain

(to be shown in Figure 4) is selected where >90% of monthly mean surface CH,O is biogenic. Over the

AlOs] A[Os] A[COlpiois0p
A[CO] A[COJ 01500 A[CH,Ol 01500

squares regression slope formulations of O3-CO by Cheng et al. (2017) and O3-CH,0 in equation (1). The
tagged-tracer simulations show that background values do not have a significant spatial dependence and
we use a value of 60 ppbv for COpackground and a value of 200 pptv for CH;0packground- Regression of equa-
tion (6) yields a value of 10 ppbv for Ospackground- As we will discuss in section 4, the unique feature of this
surface O3 estimation is that it is based on the temporospatial stability of the predicting parameters of the
regression slopes and background values. To demonstrate the feasibility of this O3 estimator, for hourly esti-
mation from 11:00 a.m. to 4:00 p.m., we group the corresponding model data in all grid cells in the same
hour and compute the regional regression slope values. Therefore, the estimated Os spatial variation is
due to those of CO and CH,O only. In order to test the reliability, the above estimation method is validated
through leave-one-out cross validation (LOOCV). The method uses a single sample from the original data sets
as the validation data, and the remaining samples (excluding the selected validation data point) are used in
the estimator. Each sample in the data sets is used once as validation data. We conduct the validation indi-
vidually for each hour of a day from 11:00 a.m. to 4:00 p.m. Of the 31 days from 1 to 31 July (d;, d>... d31), the
day i (d)) is selected as the validation data, and the remaining days (dy, d>... d;; 1), dj + 1)..- d31) are used to
compute the regression slopes and estimate the surface Os distribution of day i. We exclude the data before
11:00 a.m. or after 4 p.m. when the estimation has large biases because photochemical production of Os,
CO, and CH,O0 s still slow and the correlations among the species are not photochemically driven.

domain of surface O3 estimation, we compute the values using the least

’
anthro

3. Results
3.1. Correlations and Regression Slopes of 05-CH,0 and CO-CH,0

We compare simulated O3-CH,O correlations to the DISCOVER-AQ observations as a function of altitude or as
a function of time in Figure 1. Simulated and observed correlation coefficient (R) values are in good agree-
ment. Strong correlation between O3 and CH,0 is found from 300 m to the top of the boundary layer
(~2.5 km) with a narrow range of R values (~0.75). Near the surface, simulated R values show a slight decrease
due to the increase of the contribution of surface primary emissions of CH,O, which are not directly related to
photochemical Oz production. From the upper boundary layer to the free troposphere, R values show a dras-
tic drop and changes sign from positive to negative. The sign change reflects the rapid decrease of CH,0 with
altitude in the lower free troposphere where O3 increases with altitude (Figure S2 in the supporting informa-
tion). In the middle and upper boundary layers, the relative contribution by photochemical CH,O production
increases with altitude. Therefore, the concurrent photochemical production of O3 and CH,0 is a major factor
contributing to the observed positive correlation between O3 and CH,O0 in the boundary layer. We also com-
pare the simulated and observed O3-CH,0 correlation coefficient as a function of time of the day with data
from 300 m to 2.5 km (Figure 1b). These R values represent the spatial correlation in a given hour and are
somewhat lower than the spatial correlations in the vertical just discussed. The model is in good agreement
with the observations except the underestimation at 9 a.m. and overestimation at 5 p.m., which again is
related to the fact that photochemistry becomes less important here.

The observed regression slope of O3 to CH,0 is also captured by model simulation with satisfactory agree-
ment in both vertical distribution and diurnal variation (Figures 1c and 1d). The O3-CH,0 regression slope
at a given altitude is underestimated by the model at 0.3-2.5 km by ~15%. However, the observed slight
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Figure 1. Observed and simulated O3-CH,0 correlation coefficients (R) and regression slope and subslopes (equation (1)) as a function of altitude (of data for 11 a.m.
to 4 p.m,; a, ¢) and as a function of local time (of data for altitude of 0.3-2.5 km; b, d). The subslopes due to varied CH,0 sources are shown using areas filled with
different colors (equation (1)). The legends for different CH,O sources are the same as in equation (1). The horizontal bars in (c) and vertical bars in (d) show

the observed or simulated standard deviations of the regression slopes. The R, slope, and subslope values are computed using the DISCOVER-AQ (DAQ) observations
or corresponding model data at a given altitude bin or for a given period. DISCOVER-AQ = Deriving Information on Surface Conditions from Column and Vertically
Resolved Observations Relevant to Air Quality; REAM = Regional chEmical trAnsport Model.

increase (from ~5 to ~8 ppbv/ppbv) in the boundary is captured by the model. The observed O3-CH,0O
regression slope at a given hour is better simulated than that at a given altitude. We further quantify
source contributions by decomposing the Os-CH,0 regression slope into the different CH,O sources using
equation (1). During DISCOVER-AQ, the regression slope of O3-CH,0 is contributed almost exclusively by
that of biogenic CH,0.

Over the United States, we use the model results in Figure 2 to understand the relative contributions of CH,O
sources to the CH,0-O5 regression slope near the surface (equation (2)). The slope decomposition results
show that the contribution from biogenic isoprene to the slope of O3 to CH,O is overwhelming over most
regions of the eastern United States. Over the regions where it dominates, biogenic CH,O has positive corre-
lations with O3 due to the concurrent production of these two species from the oxidation of biogenic VOCs.
The exception is in central United States, where biogenic CH,O concentrations are high but O3 concentra-
tions are low due to low NO, concentrations. The chemical loss of Os leads to a negative regression slope,
which appears high because of the low variance of O3 in the region (equation (2)). Without significant photo-
chemical production, the variation of Os in this region is low and is therefore relatively easier to estimate than
the other regions. Overall, the short lifetimes of biogenic isoprene and CH,0 make it possible to use its con-
centrations to estimate the spatial variation of O3 using relationships like equation (7).

We also compare observed and simulated correlation and regression slopes of CO and CH,0 using an equa-
tion similar to equation (1) for the Baltimore-Washington area. This information is also used in equation (7).
The simulation results are in good agreement with the observations as a function of altitude or time of a
day (Figure 3). Strong correlation between CO and CH,0O (R = ~0.85) is observed and simulated from
300 m to 2.5 km (Figure 3a). This correlation is most likely due to the coemissions from anthropogenic sources
and the coproduction of mostly biogenic CO and CH,O0. In this altitude range, the regression slope of CO to
CH,0 is about ~20 ppbv/ppbv without little variation between 9 a.m. and 5 p.m. (Figure 3c). Below 300 m,
simulated R value decreases toward the surface because the contribution of CO primary emissions increases
significantly near the surface while the secondary formation is still the major source of CH,O (Figure S3 in the
supporting information). These two processes are not correlated. Correspondingly, the slope of CO to CH,O
increases from 200 m to surface because the gradient of CO is larger than that of CH,O (Figure S2) due to the
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Figure 2. Distribution of the regression slopes and subslopes of surface CH,0-O3 (equation (2)) over the United States. The
title All stands for the slope computed by total O3 and total CH,0 concentration; the titles of Bio ISOP, Anthro VOCs, and BC
stand for the subslopes computed by total Oz and CH,0 from primary anthropogenic emissions and oxidation of
anthropogenic VOCs, oxidation of biogenic isoprene, and transport from the lateral and upper model boundaries,
respectively. The slope and subslope values on each grid are computed using selected hourly data on daytime of
11: 00 am. to 04: 00 p.m. from 1 to 30 July. VOCs = volatile organic compounds.
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Figure 3. Observed and simulated CO-CH,0 correlation coefficients (R) and regression slope for the Baltimore-Washington area as a function of altitude for
daytime of 11:00 a.m. to 04:00 p.m. (a, ¢) and local time for altitude of 0.3-2.5 km (b, d). The horizontal bars in (c) and vertical bars in (d) show the observed
standard deviations of the regression slopes. Shaded blue areas in (c) and (d) show simulated standard deviations of the regression slopes. The R and slope values are
computed using the DISCOVER-AQ (DAQ) observations or corresponding model data at a given altitude bin or for a given time period. DISCOVER-AQ = Deriving
Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality; REAM = Regional chEmical trAnsport Model..
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Figure 4. Distributions of monthly mean (11:00 a.m. to 4:00 p.m.) REAM and LOOCV estimation of surface O3 concentrations for July 2011 under different anthro-
pogenic emission scenarios. In LOOVC hourly estimation, the regional parameters in equation (7) are estimated using data not including the day of estimation.
Scatterplots of corresponding grid-cell hourly REAM and LOOCV estimation data are shown in the third row; the 1:1 line is shown in red. Seven emission scenarios
are presented. +50%, +30%, +15%, Standard, —15%, —30%, and —50% on the top of columns denote 150%, 130%, 115%, original, 85%, 70%, and 50% of anthro-
pogenic CO and NO, emissions of the 2011 National Emission Inventory. The comparison statistics are listed in Table 1. REAM = Regional chEmical trAnsport Model;

LOOCV = leave-one-out cross validation

surface primary emissions. However, we also test the correlation of surface COyjogenic and CH,O, which shows
an R value in a range of 0.85 to 0.95 in the areas where more than 90% monthly mean CH,O is from biogenic
isoprene oxidation. It implies that CH,O and the correlation of CO-CH,O can be used to separate
anthropogenic and biogenic CO. Above 2.5 km, the R value decreases from the boundary layer top to the
free troposphere. This is because above the boundary layer CO is mainly from transport from lateral
and upper boundaries, which does not contribute to CH,O as much due to its short chemical lifetime
(Figure S3). The slope of CO to CH,0 also increases from the boundary layer to the free troposphere due
to low concentrations of CH,O in free troposphere. As a function of time, the R value does not show a
significant variation. The regression slope of CO-CH,O remains at ~20 ppbv/ppbv in daytime except higher
values in the morning (before 8: 00 a.m.) when photochemistry is weak.

3.2. Surface Ozone Estimation Using Equation (7)

For July 2011, we estimate the LOOCV surface O3 distribution using equation (7). The averaged parameters of
equation (7) for the 30 validations are listed in Table S2 in the supporting information. To examine the sensi-
tivity of the estimation to emissions, we also increase (or decrease) anthropogenic emissions by 15%, 30%,
and 50%, respectively. The full REAM model is run with different emissions. For the LOOCV estimation

CHENG ET AL.

7649



~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Journal of Geophysical Research: Atmospheres 10.1029/2018JD028452

Table 1
Comparison of Hourly REAM and LOOCV Estimation of Surface O3 Concentrations Under Different Anthropogenic
Emissions Scenarios

Emission REAM mean Estimation mean Mean Least squares
scenarios +Std (ppbv) +Std (ppbv) Bias MSE R slope (ppbv/ppbv)

+50% 63.0 +£8.2 64.1 + 8.1 1.1 7.6 0.90 1.06
+30% 590+78 599+76 0.9 7.1 0.89 1.04
+15% 539+75 54.6 £7.5 0.7 85 0.87 1.02
Standard 514 +7.0 51.8+6.9 04 7.8 0.86 0.99
—15% 48.2 £ 6.8 47.2 +6.8 -1.0 9.5 0.81 0.97
—30% 443 £ 6.6 432+63 -1.1 11.0 0.77 0.95
—50% 388 +6.2 37355 -15 13.6 0.65 0.91

Note. All grids in the domain in all certain hours (11:00 a.m. to 4:00 p.m.) are grouped together. REAM = Regional
chEmical trAnsport Model; LOOCV = leave-one-out cross validation; Std = standard deviation; MSE = mean squared error.

Al0s] A[0s] A[COpqis0p
COlanthro” AlCOlbioisop’ A[CH0]0150p

The only changes are for the CO and CH,0 surface concentrations used. The premise is that the regression

A0 A0y o AlCOlyse
A[co]anthm ! A[co]hioISOP ! A[CHIO]bioISDP

therefore the estimation model using equation (7) provides a robust means to estimate surface Oz
distribution when the distributions of CO and CH,0 are known.

using equation (7), the A values are the same as in the standard simulation.

slopes of

are relatively stable with respect to emission changes and

Since equations (4)-(7) are more accurate when CH,0 is dominated by oxidation of biogenic isoprene, the
estimation evaluation is only for the eastern U.S. regions where monthly mean biogenic CH,O is >90%.
We compare the averaged estimation results with REAM results for these regions under different emission
scenarios in Figure 4. In the standard simulation, the estimation shows a similar distribution and explains
86% of the variance of the full REAM results (R*> = 0.86) with no significant overall bias (Table 1), although
the scatterplot shows a slight tendency of low biases for O3 above 60 ppbv with an average of —1.7 ppbv.
As the anthropogenic emissions decrease by 15-50%, the REAM model shows a decrease from 3.0 to
12.4 ppbv on average in these regions. The estimation model using equation (7) overestimates the O3
decrease by 1.0-1.5 ppbv on average and the explained variance decreases from 81% to 65%. When
anthropogenic emissions increase by 15%-50%, the full REAM results show surface Oz increases from 2.7
to 11.8 ppbv. As anthropogenic emissions increase, the O3 hot spots due to urban emissions become more
obvious. The estimation model using equation (7) shows similar features but overestimates the O3 increase
by 0.7-1.1 ppbv on average. However, the explained variance (R? value) increases from 0.87 to 0.90 due lar-
gely to good estimations of urban increases. We also tested the estimation model performance by increasing
(or decreasing) biogenic isoprene emissions by 15%, 30%, and 50%, respectively. The full REAM model shows
much lower dependence of surface Os to biogenic emissions than anthropogenic emissions (Figure S4 in the
supporting information). The estimation model shows similar results with R? values ranging from 0.77 to 0.86
(Table S1 in the supporting information).

4, Discussion

The surface Os estimator (equation (7)) works very well for the regions shown in Figure 4, and, it is also
quite robust with R? values >0.77 for anthropogenic emissions in the range of —30% to +50% and bio-
genic emissions of —50% to +50%. Therefore, it has the potential of being used for rapid Os distribution
assessment if the distributions of surface CO and CH,0 are known. Given the current lack of usable sur-

face CO and CH,O observations, we cannot test the estimator using observed data. In this analysis, the

AlOs] A[Os] and A[COlyiois0p
co]anthro ’ A[co]bioISOP ’ A[CHzo]biolsoP

are based on model simulations, although we show that model simulations are in good agreement with
DISCOVER-AQ observations (Figures 1 and 3; Cheng et al., 2017). If the distributions of O3, CO, and CH,0
are known, equation (6) can be used to obtain the observation-based regression slopes using least
squares regression. These parameters can provide insights in understanding of biases of air quality model
simulations and be applied to improve the model.

key parameters of the estimator, that is, the regression slopes of A[
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Surface CO measurements are readily obtained if existing instruments are calibrated and the reporting limit is
lowered. In situ observation of CH,0 is more complex and expensive than CO. For both species, the high con-
centrations in the boundary layer and very low concentrations in the stratosphere imply that satellite instru-
ments have better sensitivity to derive their near-surface concentrations than Os. The relatively large
uncertainties of the current generation instruments on Sun-synchronous satellites can be greatly reduced
(due in part to the large increase of observation frequency) by instruments on board geostationary satellites
such as TEMPO over North America (Chance et al., 2013), SENTINEL-4 over Europe (Ingmann et al,, 2012), and
GEMS over East Asia (Bak et al.,, 2013). High-quality CH,0 measurements over the United States will be avail-
able from TEMPO. Deployment of near-IR and thermal instruments on geostationary satellites will be needed
for improved satellite measurements of near-surface CO. More complex statistical methods can be applied to
combine such derived O3 estimation with in situ surface O3 observations (Y. Zhang et al.,, 2018).

The estimator is valid only in the regions where CH,0 is dominated by oxidation of biogenic isoprene during
the period of the year when isoprene emissions are large. As anthropogenic emissions are expected to con-
tinue decreasing (Cheng et al., 2017), the regions where biogenic CH,0 dominates and the estimator can be
applied will increase. There are limitations in the estimator of equation (7). The relatively good performance
of the estimation model with changing anthropogenic emissions is not because surface Os is insensitive to
anthropogenic NO, emissions. In fact, most of the changes shown in Table 1 are due to NO,. However, surface
NO, is not as useful a predictor as CO and CH,0 in the formulation of equation (7). O3 is a secondary pollutant
while, NO, is mostly a primary pollutant in our study region. In comparison, biogenic CO and CH,O are sec-
ondary. As NO, is oxidized and its concentration decreases, Os, biogenic CO, and CH,O are produced and
their concentrations increase. The anthropogenic CO is a better tracer for the cumulative effect of O produc-
tion by anthropogenic NO, because of its much longer lifetime than NO, and fast-reacting VOCs (e.g., Chin
et al, 1994).

In REAM simulations, we make an implicit assumption that NO, and CO emission ratios of anthropogenic
sources do not change. This assumption is not always valid; for example, NO, emission reduction from the
electric generating utility sources in the past two decades did not reduce CO emissions significantly
(https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data). When the emission

changes of anthropogenic NO, and CO are sufficiently different, the estimator needs to be reconstructed

with updated regression slopes of A[C%‘]:ﬂm, A[C%[](:;].so.,’ an A?C[:(z)(];]i:::g; -

pollutant sources such as fires that are not included in the model, the estimation results will be biased.
Another uncertainty of this estimator could come from isoprene chemistry. If a specific isoprene oxidation

pathway significantly affects the regression slopes of A[CAC[,?’] , A[cf,[f: 3]|50P’ A[Ac[ﬁ?i;’]‘:f‘i;,

applied to derive these parameters on the basis of the observations, which can then be applied to evalu-
ate the chemical pathway representation in the model.

. Furthermore, if a region is affected by

equation (6) can be

anthro

5. Conclusions

Extensive measurement of O3, CO, and CH,0 were conducted during the DISCOVER-AQ aircraft experiment in
July 2011 over the Washington-Baltimore area. We find strong correlation and stable linear regression slopes
of 03-CH,0, 03-CO, and CO-CH,0 with no significant variation with time (11 a.m. to 4 p.m.) or altitude in the
boundary layer. The concentrations, correlations, and regression slopes of these tracers are reproduced well
by the REAM model. We find that biogenic isoprene oxidation makes most of the contribution to the
regression slopes of CH,0-Os3 in large regions of the eastern United States using the slope decomposition
method by tracing separately three different CH,O sources, including primary anthropogenic emissions
and oxidation of anthropogenic VOCs, oxidation of biogenic isoprene, and transport from the lateral and
upper model boundaries.

Making use of the robust regression slopes, we construct a surface ozone estimation model using the distri-
butions of CH,0 and CO as input parameters. In this model, CH,O is used as a proxy to calculate O3 and CO
produced by the oxidation of biogenic VOCs. The estimator can explain >77% of the surface O3 variance
simulated by the full 3-D model in the range of 70% to 150% of the anthropogenic emissions. It provides a
fast regional surface O3 estimation in most regions of the eastern United States in summer where CH,0 is
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dominated by oxidation of biogenic isoprene. With high-quality geostationary satellite observations of CO
and CH,0, the estimator could be applied to improve surface O distribution, which is challenging to mea-
sure directly from space. The function of equation (6) relates surface concentrations of O3 to those of CO

and CH,0. Using a sizable observation data set of these concentrations of a given region, regional metrics,

such as the regression slopes ofA[CA([)iﬂhm, A[CAO[E?Q]\SOP’ and A[Agf‘?gg]w::zzzp, can be empirically determined and applied

to investigate model performance and biases. Therefore, the estimation model provides the means of using
observations to evaluate and improve full-fledged 3-D air quality models.

Appendix A

CH,0 concentration is the sum of that from primary anthropogenic emissions and the oxidation of anthro-
pogenic VOCs (CH,O4nthrovocs), the oxidation of biogenic isoprene (CH,Opi01s0p), and transport from model
lateral and upper boundaries (CH,Og():

[CH20] 521 = [CH20],throvocs + [CH20]gc + [CH20] 5101506 - (AT)
The slope of O3 to CH,0 in a least squares regression is thus

Least squares regression slope of O3-CH,0
_ COV(CHZOIOtEﬂSa 03) (AZ)
Var(CHZOtotal)

[CHZO]tota - [CHZO]tota [O ] - m
- ( I Var(CHzotog)( 1) o

<[CHZO}anthroVOCs + [CH20lgc + [CH20lio150p — ([CH20]anthrovocs + [CH20]ge + [CHZO]bioISOP)) ([03] - @)

Var(CHzotota|)
(A4)
([CHZo]anthroVOCS - [CHZO]anthroVOCs> ([03] - @)
_ +([CH20]BC - [CHZO]BC> ([03] - @) + ([CH2O}biolsop - [CHZO]biolsop) ([03] - @) (A5)
Val’(CHzototaO
_ Cov(CH,0anthrovocs, Os) | Cov(CH,08c, 0s) | Cov(CH,Opioisop, Os) (A6)

Var(CHZOtom) Var(CHZOtota|) Var(CHZOtom)

where X donates the average value of X.

References

Atkinson, R, & Arey, J. (1998). Atmospheric chemistry of biogenic organic compounds. Accounts of Chemical Research, 31(9), 574-583. https://
doi.org/10.1021/ar970143z

Aumann, H. H., Chahine, M. T, Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M,, et al. (2003). AIRS/AMSU/HSB on the Aqua mission:
Design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 253-264.
https://doi.org/10.1109/TGRS.2002.808356

Bak, J., Kim, J. H,, Liu, X., Chance, K., & Kim, J. (2013). Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI
spectra. Atmospheric Measurement Techniques, 6(2), 239. https://doi.org/10.5194/amtd-5-6733-2012

Beer, R. (2006). TES on the Aura mission: Scientific objectives, measurements, and analysis overview. IEEE Transactions on Geoscience and
Remote Sensing, 44(5), 1102-1105. https://doi.org/10.1109/TGRS.2005.863716

Bey, I, Jacob, D. J,, Yantosca, R. M., Logan, J. A, Field, B. D., Fiore, A. M., et al. (2001). Global modeling of tropospheric chemistry with
assimilated meteorology: Model description and evaluation. Journal of Geophysical Research, 106(D19), 23,073-23,095. https://doi.org/
10.1029/2001JD000807

Biancofiore, F., Verdecchia, M., Di Carlo, P., Tomassetti, B., Aruffo, E., Busilacchio, M., et al. (2015). Analysis of surface ozone using a recurrent
neural network. Science of the Total Environment, 514, 379-387. https://doi.org/10.1016/j.scitotenv.2015.01.106

Buchwitz, M., Khlystova, I, Bovensmann, H., & Burrows, J. P. (2007). Three years of global carbon monoxide from SCIAMACHY: Comparison
with MOPITT and first results related to the detection of enhanced CO over cities. Atmospheric Chemistry and Physics, 7(9), 2399-2411.
https://doi.org/10.5194/acp-7-2399-2007

CHENG ET AL.

7652


https://doi.org/10.1021/ar970143z
https://doi.org/10.1021/ar970143z
https://doi.org/10.1109/TGRS.2002.808356
https://doi.org/10.5194/amtd-5-6733-2012
https://doi.org/10.1109/TGRS.2005.863716
https://doi.org/10.1029/2001JD000807
https://doi.org/10.1029/2001JD000807
https://doi.org/10.1016/j.scitotenv.2015.01.106
https://doi.org/10.5194/acp-7-2399-2007
http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html
http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html
http://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html

~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Journal of Geophysical Research: Atmospheres 10.1029/2018JD028452

Buhr, M., Sueper, D., Trainer, M., Goldan, P., Kuster, B., Fehsenfeld, F., et al. (1996). Trace gas and aerosol measurements using aircraft data
from the North Atlantic Regional Experiment (NARE 1993). Journal of Geophysical Research, 101(D22), 29,013-29,027. https://doi.org/
10.1029/96JD01159

Burrows, W. R, Benjamin, M., Beauchamp, S., Lord, E. R., McCollor, D., & Thomson, B. (1995). CART decision-tree statistical analysis and
prediction of summer season maximum surface ozone for the Vancouver, Montreal, and Atlantic regions of Canada. Journal of Applied
Meteorology, 34(8), 1848-1862. https://doi.org/10.1175/1520-0450(1995)034%3C1848:CDTSAA%3E2.0.CO;2

Cardenas, L., Austin, J., Burgess, R, Clemitshaw, K, Dorling, S., Penkett, S., & Harrison, R. (1998). Correlations between CO, NO,, O3 and
non-methane hydrocarbons and their relationships with meteorology during winter 1993 on the North Norfolk coast, UK. Atmospheric
Environment, 32(19), 3339-3351. https://doi.org/10.1016/51352-2310(97)00445-7

Chance, K, Liu, X., Suleiman, R. M., Flittner, D. E., Al-Saadi, J., & Janz, S. J. (2013). Tropospheric Emissions: Monitoring of Pollution (TEMPO).
Earth Observing Systems XVIII (Vol. 8866, p. 88660D). International Society for Optics and Photonics. https://doi.org/10.1117/
12.2024479

Chance, K., Palmer, P. 1, Spurr, R. J. D,, Martin, R. V., Kurosu, T. P., & Jacob, D. J. (2000). Satellite observations of formaldehyde over North
America from GOME. Geophysical Research Letters, 27(21), 3461-3464. https://doi.org/10.1029/2000GL011857

Cheng, Y., Wang, Y., Zhang, Y., Chen, G., Crawford, J. H., Kleb, M. M., et al. (2017). Large biogenic contribution to boundary layer O3-CO
regression slope in summer. Geophysical Research Letters, 44, 7061-7068. https://doi.org/10.1002/2017GL074405

Chin, M., Jacob, D. J., Munger, J. W., Parrish, D. D., & Doddridge, B. G. (1994). Relationship of ozone and carbon monoxide over North America.
Journal of Geophysical Research, 99(D7), 14,565-14,573. https://doi.org/10.1029/94JD00907

Choi, Y., Osterman, G., Eldering, A,, Wang, Y., & Edgerton, E. (2010). Understanding the contributions of anthropogenic and biogenic sources
to CO enhancements and outflow observed over North America and the western Atlantic Ocean by TES and MOPITT. Atmospheric
Environment, 44(16), 2033-2042. https://doi.org/10.1016/j.atmosenv.2010.01.029

Choi, Y., Wang, Y., Yang, Q., Cunnold, D., Zeng, T., Shim, C,, et al. (2008). Spring to summer northward migration of high O3 over the western
North Atlantic. Geophysical Research Letters, 35, L04818. https://doi.org/10.1029/2007GL032276

Choi, Y., Wang, Y., Zeng, T, Cunnold, D., Yang, E. S., Martin, R, et al. (2008). Springtime transitions of NO,, CO, and O3 over North America:
Model evaluation and analysis. Journal of Geophysical Research, 113, D20311. https://doi.org/10.1029/2007JD009632

Choi, Y., Wang, Y., Zeng, T, Martin, R. V., Kurosu, T. P., & Chance, K. (2005). Evidence of lightning NO, and convective transport of pollutants in
satellite observations over North America. Geophysical Research Letters, 32, L02805. https://doi.org/10.1029/2004GL021436

Cobourn, W. G. (2007). Accuracy and reliability of an automated air quality forecast system for ozone in seven Kentucky metropolitan areas.
Atmospheric Environment, 41(28), 5863-5875. https://doi.org/10.1016/j.atmosenv.2007.03.024

Cooper, O., Moody, J., Parrish, D., Trainer, M., Holloway, J., Hiibler, G., et al. (2002). Trace gas composition of midlatitude cyclones over the
western North Atlantic Ocean: A seasonal comparison of Oz and CO. Journal of Geophysical Research, 107(D7), 4057. https://doi.org/
10.1029/2001JD000902

Cooper, O., Moody, J., Parrish, D., Trainer, M., Ryerson, T., Holloway, J., et al. (2002). Trace gas composition of midlatitude cyclones over the
western North Atlantic Ocean: A conceptual model. Journal of Geophysical Research, 107(D7), 4056. https://doi.org/10.1029/
2001JD000901

Cuesta, J., Eremenko, M,, Liu, X., Dufour, G,, Cai, Z,, Hopfner, M., et al. (2013). Satellite observation of lowermost tropospheric ozone by
multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe. Atmospheric Chemistry and Physics,
13(19), 9675-9693. https://doi.org/10.5194/acp-13-9675-2013

Dabberdt, W. F., Carroll, M. A, Baumgardner, D., Carmichael, G., Cohen, R, Dye, T, et al. (2004). Meteorological research needs for improved
air quality forecasting: Report of the 11th prospectus development team of the US weather research program. Bulletin of the American
Meteorological Society, 85(4), 563-586. https://doi.org/10.1175/BAMS-85-4-563

De Laat, A. T.J,, Dijkstra, R., Schrijver, H., Nédélec, P., & Aben, I. (2012). Validation of six years of SCCAMACHY carbon monoxide observations
using MOZAIC CO profile measurements. Atmospheric Measurement Techniques, 5(9), 2133-2142. https://doi.org/10.5194/amt-5-2133-2012

De Smedt, |, Miiller, J. F., Stavrakou, T., Van Der, A. R, Eskes, H., & Van Roozendael, M. (2008). Twelve years of global observations of
formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 8(16), 4947-4963. https://doi.
org/10.5194/acp-8-4947-2008

De Smedt, I, Van Roozendael, M., Stavrakou, T., Miiller, J.-F., Lerot, C,, Theys, N, et al. (2012). Improved retrieval of global tropospheric for-
maldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues. Atmospheric Measurement
Techniques, 5(11), 2933-2949. https://doi.org/10.5194/amt-5-2933-2012

Delle Monache, L., Deng, X., Zhou, Y., & Stull, R. (2006). Ozone ensemble forecasts: 1. A new ensemble design. Journal of Geophysical Research,
111, D05307. https://doi.org/10.1029/2005JD006310

Delle Monache, L., Hacker, J. P, Zhou, Y., Deng, X., & Stull, R. B. (2006). Probabilistic aspects of meteorological and ozone regional ensemble
forecasts. Journal of Geophysical Research, 111, D24307. https://doi.org/10.1029/2005JD006917

Duane, M., Poma, B., Rembges, D., Astorga, C., & Larsen, B. (2002). Isoprene and its degradation products as strong ozone precursors in
Insubria, northern Italy. Atmospheric Environment, 36(24), 3867-3879. https://doi.org/10.1016/51352-2310(02)00359-X

Emmons, L. K., Deeter, M. N,, Gille, J. C,, Edwards, D. P., Attié, J. L., Warner, J,, et al. (2004). Validation of Measurements of Pollution in the
Troposphere (MOPITT) CO retrievals with aircraft in situ profiles. Journal of Geophysical Research, 109, D03308. https://doi.org/10.1029/
2003JD003970

Fishman, J., & Seiler, W. (1983). Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone
budget. Journal of Geophysical Research, 88(C6), 3662-3670. https://doi.org/10.1029/JC088iC06p03662

Fried, A., Cantrell, C,, Olson, J., Crawford, J. H., Weibring, P., Walega, J., et al. (2011). Detailed comparisons of airborne formaldehyde
measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: Potential evidence for significant impacts of
unmeasured and multi-generation volatile organic carbon compounds. Atmospheric Chemistry and Physics, 11(22), 11,867-11,894. https://
doi.org/10.5194/acp-11-11867-2011

Geng, F., Tie, X, Guenther, A, Li, G., Cao, J., & Harley, P. (2011). Effect of isoprene emissions from major forests on ozone formation in the city
of Shanghai, China. Atmospheric Chemistry and Physics, 11(20), 10,449-10,459. https://doi.org/10.5194/acp-11-10449-2011

Gloudemans, A. M. S., Schrijver, H., Kleipool, Q., Van den Broek, M. M. P., Straume, A. G,, Lichtenberg, G., et al. (2005). The impact of
SCIAMACHY near-infrared instrument calibration on CH,4 and CO total columns. Atmospheric Chemistry and Physics, 5(9), 2369-2383.
https://doi.org/10.5194/acp-5-2369-2005

Gonzalez Abad, G, Liu, X., Chance, K.,, Wang, H., Kurosu, T. P., & Suleiman, R. (2015). Updated Smithsonian Astrophysical Observatory Ozone
Monitoring Instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 8(1), 19-32. https://doi.org/10.5194/
amt-8-19-2015

CHENG ET AL.

7653


https://doi.org/10.1029/96JD01159
https://doi.org/10.1029/96JD01159
https://doi.org/10.1175/1520-0450(1995)034%3C1848:CDTSAA%3E2.0.CO;2
https://doi.org/10.1016/S1352-2310(97)00445-7
https://doi.org/10.1117/12.2024479
https://doi.org/10.1117/12.2024479
https://doi.org/10.1029/2000GL011857
https://doi.org/10.1002/2017GL074405
https://doi.org/10.1029/94JD00907
https://doi.org/10.1016/j.atmosenv.2010.01.029
https://doi.org/10.1029/2007GL032276
https://doi.org/10.1029/2007JD009632
https://doi.org/10.1029/2004GL021436
https://doi.org/10.1016/j.atmosenv.2007.03.024
https://doi.org/10.1029/2001JD000902
https://doi.org/10.1029/2001JD000902
https://doi.org/10.1029/2001JD000901
https://doi.org/10.1029/2001JD000901
https://doi.org/10.5194/acp-13-9675-2013
https://doi.org/10.1175/BAMS-85-4-563
https://doi.org/10.5194/amt-5-2133-2012
https://doi.org/10.5194/acp-8-4947-2008
https://doi.org/10.5194/acp-8-4947-2008
https://doi.org/10.5194/amt-5-2933-2012
https://doi.org/10.1029/2005JD006310
https://doi.org/10.1029/2005JD006917
https://doi.org/10.1016/S1352-2310(02)00359-X
https://doi.org/10.1029/2003JD003970
https://doi.org/10.1029/2003JD003970
https://doi.org/10.1029/JC088iC06p03662
https://doi.org/10.5194/acp-11-11867-2011
https://doi.org/10.5194/acp-11-11867-2011
https://doi.org/10.5194/acp-11-10449-2011
https://doi.org/10.5194/acp-5-2369-2005
https://doi.org/10.5194/amt-8-19-2015
https://doi.org/10.5194/amt-8-19-2015

~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Journal of Geophysical Research: Atmospheres 10.1029/2018JD028452

Gonzalez Abad, G, Vasilkov, A, Seftor, C,, Liu, X, & Chance, K. (2016). Smithsonian Astrophysical Observatory Ozone Mapping and Profiler
Suite (SAO OMPS) formaldehyde retrieval. Atmospheric Measurement Techniques, 9(7), 2797-2812. https://doi.org/10.5194/
amt-9-2797-2016

Gu, D, Wang, Y., Smeltzer, C., & Boersma, K. F. (2014). Anthropogenic emissions of NO, over China: Reconciling the difference of inverse
modeling results using GOME-2 and OMI measurements. Journal of Geophysical Research: Atmospheres, 119, 7732-7740. https://doi.org/
10.1002/2014JD021644

Gu, D, Wang, Y., Smeltzer, C, & Liu, Z. (2013). Reduction in NO, emission trends over China: Regional and seasonal variations. Environmental
Science & Technology, 47(22), 12,912-12,919. https://doi.org/10.1021/es401727e

Gu, D, Wang, Y., Yin, R, Zhang, Y., & Smeltzer, C. (2016). Inverse modelling of NO, emissions over eastern China: Uncertainties due to
chemical non-linearity. Atmospheric Measurement Techniques, 9(10), 5193-5201. https://doi.org/10.5194/amt-9-5193-2016

Guenther, A, Hewitt, C. N, Erickson, D, Fall, R, Geron, C., Graedel, T, et al. (1995). A global model of natural volatile organic compound
emissions. Journal of Geophysical Research, 100(D5), 8873-8892. https://doi.org/10.1029/94JD02950

Guenther, A, Jiang, X, Heald, C,, Sakulyanontvittaya, T., Duhl, T., Emmons, L., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions. https://doi.org/10.5194/
gmd-5-1471-2012

Guillas, S., Bao, J.,, Choi, Y., & Wang, Y. (2008). Statistical correction and downscaling of chemical transport model ozone forecasts over
Atlanta. Atmospheric Environment, 42(6), 1338-1348. https://doi.org/10.1016/j.atmosenv.2007.10.027

Honrath, R, Owen, R. C, Val Martin, M., Reid, J., Lapina, K., Fialho, P., et al. (2004). Regional and hemispheric impacts of anthropogenic and
biomass burning emissions on summertime CO and O3 in the North Atlantic lower free troposphere. Journal of Geophysical Research, 109,
D25310. https://doi.org/10.1029/2004JD005147

Hudman, R.C,, Murray, L. T., Jacob, D. J., Millet, D., Turquety, S., Wu, S., et al. (2008). Biogenic versus anthropogenic sources of CO in the United
States. Geophysical Research Letters, 35, L04801. https://doi.org/10.1029/2007GL032393

Huntrieser, H., Heland, J., Schlager, H., Forster, C,, Stohl, A., Aufmhoff, H., et al. (2005). Intercontinental air pollution transport from North
America to Europe: Experimental evidence from airborne measurements and surface observations. Journal of Geophysical Research, 110,
D01305. https://doi.org/10.1029/2004JD005045

Ingmann, P., Veihelmann, B., Langen, J., Lamarre, D., Stark, H., & Courréges-Lacoste, G. B. (2012). Requirements for the GMES atmosphere
service and ESA’s implementation concept: Sentinels-4/—5 and-5p. Remote Sensing of Environment, 120, 58-69. https://doi.org/10.1016/
j.rse.2012.01.023

Jing, P, Cunnold, D., Choi, Y., & Wang, Y. (2006). Summertime tropospheric ozone columns from Aura OMI/MLS measurements
versus regional model results over the United States. Geophysical Research Letters, 33, L17817. https://doi.org/10.1029/
2006GL026473

Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of
Atmospheric Chemistry, 33(1), 23-88. https://doi.org/10.1023/A:1006127516791

Koo, J.-H., Wang, Y., Kurosu, T., Chance, K., Rozanov, A, Richter, A, et al. (2012). Characteristics of tropospheric ozone depletion events in the
Arctic spring: Analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations. Atmospheric Chemistry and
Physics, 12(20), 9909-9922. https://doi.org/10.5194/acp-12-9909-2012

Kurosu, T. P., Chance, K., & Sioris, C. E. (2004). December. Preliminary results for HCHO and BrO from the EOS-aura ozone monitoring
instrument. In Passive optical remote sensing of the atmosphere and clouds IV (Vol. 5652, pp. 116-124). Bellingham, Washington:
International Society for Optics and Photonics. https://doi.org/10.1117/12.578606

Lathiere, J.,, Hauglustaine, D., Friend, A., Noblet-Ducoudré, N. D, Viovy, N., & Folberth, G. (2006). Impact of climate variability and land use
changes on global biogenic volatile organic compound emissions. Atmospheric Chemistry and Physics, 6(8), 2129-2146. https://doi.org/
10.5194/acp-6-2129-2006

Lee, K-Y., Kwak, K-H., Ryu, Y.-H., Lee, S-H., & Baik, J.-J. (2014). Impacts of biogenic isoprene emission on ozone air quality in the Seoul
metropolitan area. Atmospheric Environment, 96, 209-219. https://doi.org/10.1016/j.atmosenv.2014.07.036

Lelieveld, J., & Dentener, F. J. (2000). What controls tropospheric ozone? Journal of Geophysical Research, 105(D3), 3531-3551. https://doi.org/
10.1029/1999JD901011

Li, C., Joiner, J., Krotkov, N. A., & Dunlap, L. (2015). A new method for global retrievals of HCHO total columns from the Suomi National
Polar-orbiting Partnership Ozone Mapping and Profiler Suite. Geophysical Research Letters, 42, 2515-2522. https://doi.org/10.1002/
2015GL063204

Li, Q. Jacob, D. J., Bey, I, Palmer, P. I, Duncan, B. N,, Field, B. D., et al. (2002). Transatlantic transport of pollution and its effects on surface
ozone in Europe and North America. Journal of Geophysical Research, 107(D13), 4166. https://doi.org/10.1029/2001JD001422

Liu, X,, Bhartia, P. K., Chance, K., Spurr, R. J. D., & Kurosu, T. P. (2010). Ozone profile retrievals from the Ozone Monitoring Instrument.
Atmospheric Chemistry and Physics, 10(5), 2521-2537. https://doi.org/10.5194/acp-10-2521-2010

Liu, Z., Wang, Y., Costabile, F., Amoroso, A., Zhao, C,, Huey, L. G,, et al. (2014). Evidence of aerosols as a media for rapid daytime HONO
production over China. Environmental Science & Technology, 48(24), 14,386-14,391. https://doi.org/10.1021/es504163z

Liu, Z,, Wang, Y., Gu, D., Zhao, C,, Huey, L. G,, Stickel, R., et al. (2010). Evidence of reactive aromatics as a major source of peroxy acetyl nitrate
over China. Environmental Science & Technology, 44(18), 7017-7022. https://doi.org/10.1021/es1007966

Liu, Z, Wang, Y., Gu, D., Zhao, C,, Huey, L. G,, Stickel, R, et al. (2012). Summertime photochemistry during CAREBeijing-2007: RO, budgets and
O3 formation. Atmospheric Chemistry and Physics, 12(16), 7737-7752. https://doi.org/10.5194/acp-12-7737-2012

Liu, Z, Wang, Y., Vrekoussis, M., Richter, A., Wittrock, F., Burrows, J. P., et al. (2012). Exploring the missing source of glyoxal (CHOCHO) over
China. Geophysical Research Letters, 39, L10812. https://doi.org/10.1029/2012GL051645

Logan, J. A, Prather, M. J., Wofsy, S. C.,, & McElroy, M. B. (1981). Tropospheric chemistry: A global perspective. Journal of Geophysical Research,
86(C8), 7210-7254. https://doi.org/10.1029/JC086iC08p07210

Mao, H., & Talbot, R. (2004). O3 and CO in New England: Temporal variations and relationships. Journal of Geophysical Research, 109, D21304.
https://doi.org/10.1029/2004JD004913

Pang, X, My, Y., Zhang, Y., Lee, X., & Yuan, J. (2009). Contribution of isoprene to formaldehyde and ozone formation based on its oxidation
products measurement in Beijing, China. Atmospheric Environment, 43(13), 2142-2147. https://doi.org/10.1016/j.atmosenv.2009.01.022

Parrish, D. D., Holloway, J. S., Trainer, M., Murphy, P. C,, Fehsenfeld, F. C., & Forbes, G. L. (1993). Export of North American ozone pollution to
the North Atlantic Ocean. Science, 259(5100), 1436-1439. https://doi.org/10.1126/science.259.5100.1436

Parrish, D. D., Trainer, M., Holloway, J., Yee, J., Warshawsky, M., Fehsenfeld, F., et al. (1998). Relationships between ozone and carbon
monoxide at surface sites in the North Atlantic region. Journal of Geophysical Research, 103(D11), 13,357-13,376. https://doi.org/10.1029/
98JD00376

CHENG ET AL.

7654


https://doi.org/10.5194/amt-9-2797-2016
https://doi.org/10.5194/amt-9-2797-2016
https://doi.org/10.1002/2014JD021644
https://doi.org/10.1002/2014JD021644
https://doi.org/10.1021/es401727e
https://doi.org/10.5194/amt-9-5193-2016
https://doi.org/10.1029/94JD02950
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.1016/j.atmosenv.2007.10.027
https://doi.org/10.1029/2004JD005147
https://doi.org/10.1029/2007GL032393
https://doi.org/10.1029/2004JD005045
https://doi.org/10.1016/j.rse.2012.01.023
https://doi.org/10.1016/j.rse.2012.01.023
https://doi.org/10.1029/2006GL026473
https://doi.org/10.1029/2006GL026473
https://doi.org/10.1023/A:1006127516791
https://doi.org/10.5194/acp-12-9909-2012
https://doi.org/10.1117/12.578606
https://doi.org/10.5194/acp-6-2129-2006
https://doi.org/10.5194/acp-6-2129-2006
https://doi.org/10.1016/j.atmosenv.2014.07.036
https://doi.org/10.1029/1999JD901011
https://doi.org/10.1029/1999JD901011
https://doi.org/10.1002/2015GL063204
https://doi.org/10.1002/2015GL063204
https://doi.org/10.1029/2001JD001422
https://doi.org/10.5194/acp-10-2521-2010
https://doi.org/10.1021/es504163z
https://doi.org/10.1021/es1007966
https://doi.org/10.5194/acp-12-7737-2012
https://doi.org/10.1029/2012GL051645
https://doi.org/10.1029/JC086iC08p07210
https://doi.org/10.1029/2004JD004913
https://doi.org/10.1016/j.atmosenv.2009.01.022
https://doi.org/10.1126/science.259.5100.1436
https://doi.org/10.1029/98JD00376
https://doi.org/10.1029/98JD00376

~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Journal of Geophysical Research: Atmospheres 10.1029/2018JD028452

Perez, P., & Reyes, J. (2006). An integrated neural network model for PM; forecasting. Atmospheric Environment, 40(16), 2845-2851. https://
doi.org/10.1016/j.atmosenv.2006.01.010

Pierce, T., Geron, C., Bender, L., Dennis, R, Tonnesen, G., & Guenther, A. (1998). Influence of increased isoprene emissions on regional ozone
modeling. Journal of Geophysical Research, 103(D19), 25,611-25,629. https://doi.org/10.1029/98JD01804

Polonsky, I. N., O'Brien, D. M., Kumer, J. B,, & O'Dell, C. W. (2014). Performance of a geostationary mission, geoCARB, to measure CO,, CH, and
CO column-averaged concentrations. Atmospheric Measurement Techniques, 7(4), 959-981. https://doi.org/10.5194/amt-7-959-2014

Sachse, G. W., Hill, G. F.,, Wade, L. O, & Perry, M. G. (1987). Fast-response, high-precision carbon monoxide sensor using a tunable diode laser
absorption technique. Journal of Geophysical Research: Atmospheres, 92(D2), 2071-2081. https://doi.org/10.1029/JD092iD02p02071

Shad, R., Mesgari, M. S., & Shad, A. (2009). Predicting air pollution using fuzzy genetic linear membership kriging in GIS, Computers.
Environment and Urban Systems, 33(6), 472-481. https://doi.org/10.1016/j.compenvurbsys.2009.10.004

Sindelarova, K., Granier, C., Bouarar, I, Guenther, A, Tilmes, S., Stavrakou, T, et al. (2014). Global data set of biogenic VOC emissions calculated
by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14(17), 9317-9341. https://doi.org/10.5194/
acp-14-9317-2014

Straume, A. G,, Schrijver, H., Gloudemans, A. M. S., Houweling, S., Aben, |., Maurellis, A. N., et al. (2005). The global variation of CH, and CO as
seen by SCIAMACHY. Advances in Space Research, 36(5), 821-827. https://doi.org/10.1016/j.asr.2005.03.027

Van der Wal, J., & Janssen, L. (2000). Analysis of spatial and temporal variations of PM;, concentrations in the Netherlands using Kalman
filtering. Atmospheric Environment, 34(22), 3675-3687. https://doi.org/10.1016/51352-2310(00)00085-6

Vautard, R, Schaap, M., Bergstrom, R., Bessagnet, B., Brandt, J., Builtjes, P., et al. (2009). Skill and uncertainty of a regional air quality model
ensemble. Atmospheric Environment, 43(31), 4822-4832. https://doi.org/10.1016/j.atmosenv.2008.09.083

Wang, Y., Choi, Y., Zeng, T., Davis, D., Buhr, M., Huey, L. G., & Neff, W. (2007). Assessing the photochemical impact of snow NO, emissions over
Antarctica during ANTCI 2003. Atmospheric Environment, 41(19), 3944-3958. https://doi.org/10.1016/j.atmosenv.2007.01.056

Wang, Y., Choi, Y., Zeng, T., Ridley, B., Blake, N., Blake, D., & Flocke, F. (2006). Late-spring increase of trans-Pacific pollution transport in the
upper troposphere. Geophysical Research Letters, 33, L01811. https://doi.org/10.1029/2005GL024975

Wang, Y., & Jacob, D. J. (1998). Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. Journal of Geophysical
Research, 103(D23), 31,123-31,135. https://doi.org/10.1029/1998JD100004

Wang, Y., Jacob, D. J,, & Logan, J. A. (1998). Global simulation of tropospheric O3-NO,-hydrocarbon chemistry: 1. Model formulation.
Journal of Geophysical Research, 103(D9), 10,713-10,725. https://doi.org/10.1029/98JD00158

Wang, Y., & Zeng, T. (2004). On tracer correlations in the troposphere: The case of ethane and propane. Journal of Geophysical Research, 109,
D24306. https://doi.org/10.1029/2004JD005023

Weibring, P., Richter, D., Walega, J., Rippe, L., & Fried, A. (2010). Difference frequency generation spectrometer for simultaneous multispecies
detection. Optics Express, 18(26), 27,670-27,681. https://doi.org/10.1364/0E.18.027670

Wiedinmyer, C,, Friedfeld, S., Baugh, W., Greenberg, J., Guenther, A, Fraser, M., & Allen, D. (2001). Measurement and analysis of atmospheric
concentrations of isoprene and its reaction products in central Texas. Atmospheric Environment, 35(6), 1001-1013. https://doi.org/
10.1016/51352-2310(00)00406-4

Wittrock, F., Richter, A., Oetjen, H., Burrows, J. P., Kanakidou, M., Myriokefalitakis, S., et al. (2006). Simultaneous global observations of glyoxal
and formaldehyde from space. Geophysical Research Letters, 33, L16804. https://doi.org/10.1029/2006GL026310

Yang, Q, Wang, Y., Zhao, C, Liu, Z., Gustafson, W. I. Jr,, & Shao, M. (2011). NO, emission reduction and its effects on ozone during the 2008
Olympic Games. Environmental Science & Technology, 45(15), 6404-6410. https://doi.org/10.1021/e5200675v

Zeng, T, & Wang, Y. (2011). Biomass burning induced nationwide summer peaks of OC/EC ratios in the continental United States.
Atmospheric Environment, 45(3), 578-586. https://doi.org/10.1016/j.atmosenv.2010.10.038

Zeng, T, Wang, Y., Chance, K, Blake, N., Blake, D., & Ridley, B. (2006). Halogen-driven low-altitude O3 and hydrocarbon losses in spring at
northern high latitudes. Journal of Geophysical Research, 111, D17313. https://doi.org/10.1029/2005JD006706

Zeng, T, Wang, Y., Chance, K., Browell, E. V., Ridley, B. A., & Atlas, E. L. (2003). Widespread persistent near-surface ozone depletion at northern
high latitudes in spring. Geophysical Research Letters, 30(24), 2298. https://doi.org/10.1029/2003GL018587

Zhang, L., Jiang, H., Lu, X., & Jin, J. (2016). Comparison analysis of global carbon monoxide concentration derived from SCIAMACHY, AIRS, and
MOPITT. International Journal of Remote Sensing, 37(21), 5155-5175. https://doi.org/10.1080/01431161.2016.1230282

Zhang, R, Wang, Y., He, Q, Chen, L,, Zhang, Y., Qu, H, et al. (2017). Enhanced trans-Himalaya pollution transport to the Tibetan Plateau by
cut-off low systems. Atmospheric Chemistry and Physics, 17(4), 3083-3095. https://doi.org/10.5194/acp-17-3083-2017

Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., & Baklanov, A. (2012). Real-time air quality forecasting, part II: State of the science, current
research needs, and future prospects. Atmospheric Environment, 60, 656-676. https://doi.org/10.1016/j.atmosenv.2012.02.041

Zhang, Y., & Wang, Y. (2016). Climate-driven ground-level ozone extreme in the fall over the southeast United States. Proceedings of the
National Academy of Sciences of the United States of America, 113(36), 10,025-10,030. https://doi.org/10.1073/pnas.1602563113

Zhang, Y., Wang, Y., Chen, G., Smeltzer, C,, Crawford, J,, Olson, J,, et al. (2016). Large vertical gradient of reactive nitrogen oxides in the
boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations. Journal of Geophysical Research: Atmospheres, 121, 1922-1934.
https://doi.org/10.1002/2015JD024203

Zhang, Y., Wang, Y., Crawford, J., Cheng, Y., &LLi, J. (2018). Improve observation-based ground-level ozone spatial distribution by compositing
satellite and surface observations: A simulation experiment. Atmospheric Environment, 180, 226-233. https://doi.org/10.1016/
j.atmosenv.2018.02.044

Zhao, C, & Wang, Y. (2009). Assimilated inversion of NO, emissions over East Asia using OMI NO, column measurements. Geophysical
Research Letters, 36, L06805. https://doi.org/10.1029/2008GL037123

Zhao, C, Wang, Y., Choi, Y., & Zeng, T. (2009). Summertime impact of convective transport and lightning NO, production over North America:
Modeling dependence on meteorological simulations. Atmospheric Chemistry and Physics, 9(13), 4315-4327. https://doi.org/10.5194/
acp-9-4315-2009

Zhao, C, Wang, Y., Yang, Q., Fu, R, Cunnold, D., & Choi, Y. (2010). Impact of East Asian summer monsoon on the air quality over China: View
from space. Journal of Geophysical Research, 115, D09301. https://doi.org/10.1029/2009JD012745

Zhao, C, Wang, Y., & Zeng, T. (2009). East China plains: A “basin” of ozone pollution. Environmental Science & Technology, 43(6), 1911-1915.
https://doi.org/10.1021/es8027764

Zhu, L., Jacob, D. J,, Kim, P. S, Fisher, J. A, Yu, K, Travis, K. R, et al. (2016). Observing atmospheric formaldehyde (HCHO) from space:
Validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC 4 RS aircraft observations
over the southeast US. Atmospheric Chemistry and Physics, 16(21), 13,477-13,490. https://doi.org/10.5194/acp-16-13477-2016

CHENG ET AL.

7655


https://doi.org/10.1016/j.atmosenv.2006.01.010
https://doi.org/10.1016/j.atmosenv.2006.01.010
https://doi.org/10.1029/98JD01804
https://doi.org/10.5194/amt-7-959-2014
https://doi.org/10.1029/JD092iD02p02071
https://doi.org/10.1016/j.compenvurbsys.2009.10.004
https://doi.org/10.5194/acp-14-9317-2014
https://doi.org/10.5194/acp-14-9317-2014
https://doi.org/10.1016/j.asr.2005.03.027
https://doi.org/10.1016/S1352-2310(00)00085-6
https://doi.org/10.1016/j.atmosenv.2008.09.083
https://doi.org/10.1016/j.atmosenv.2007.01.056
https://doi.org/10.1029/2005GL024975
https://doi.org/10.1029/1998JD100004
https://doi.org/10.1029/98JD00158
https://doi.org/10.1029/2004JD005023
https://doi.org/10.1364/OE.18.027670
https://doi.org/10.1016/S1352-2310(00)00406-4
https://doi.org/10.1016/S1352-2310(00)00406-4
https://doi.org/10.1029/2006GL026310
https://doi.org/10.1021/es200675v
https://doi.org/10.1016/j.atmosenv.2010.10.038
https://doi.org/10.1029/2005JD006706
https://doi.org/10.1029/2003GL018587
https://doi.org/10.1080/01431161.2016.1230282
https://doi.org/10.5194/acp-17-3083-2017
https://doi.org/10.1016/j.atmosenv.2012.02.041
https://doi.org/10.1073/pnas.1602563113
https://doi.org/10.1002/2015JD024203
https://doi.org/10.1016/j.atmosenv.2018.02.044
https://doi.org/10.1016/j.atmosenv.2018.02.044
https://doi.org/10.1029/2008GL037123
https://doi.org/10.5194/acp-9-4315-2009
https://doi.org/10.5194/acp-9-4315-2009
https://doi.org/10.1029/2009JD012745
https://doi.org/10.1021/es8027764
https://doi.org/10.5194/acp-16-13477-2016


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


