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Abstract

Optical methods for surveying populations are becoming increasingly popular. These meth-
ods often produce hundreds of thousands to millions of images, making it impractical to an-
alyze all the images manually by human annotators. Computer vision software can rapidly
annotate these images, but their error rates are often substantial, vary spatially and are
autocorrelated. Hence, population estimates based on the raw computer automated counts
can be seriously biased. We evaluated four estimators that combine automated annotations
of all the images with manual annotations from a random sample to obtain (approximately)
unbiased population estimates, namely: ratio, offset, and linear regression estimators as well
as the mean of the manual annotations only. Each of these estimators was applied either
globally or locally (i.e., either all data were used or only those near the point in question, to
take into account spatial variability and autocorrelation in error rates). We also investigated
a simple stratification scheme that splits the images into two strata, based on whether the
automated annotator detected no targets or at least one target. The 16 methods result-
ing from a combination of four estimators, global or local estimation, and one stratum or
two strata, were evaluated using simulations and field data. Our results indicated that the
probability of a false negative is the key factor determining the best method, regardless of
the probability of false positives. Stratification was the most effective method in improving
the accuracy and precision of the estimates, provided the false negative rate was not too
high. If the probability of false negatives are low, stratified estimation with the local ratio
estimator or local regression (essentially geographically weighted regression) are best. If the
probability of false negatives are high, no stratification with a simple global linear regression

or simply the manual sample mean alone is recommended.

Keywords: Underwater imagery; Computer vision; Population estimation; Scallop; Geo-

graphically weighted regression
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1 Introduction

Underwater optical surveys of fish and invertebrate populations are becoming increasingly
common (e.g., Davis et al., 1992; Gallager et al., 2005; Howland et al., 2006; Yoklavich et
al., 2007; Rosenkranz et al., 2008; Taylor et al., 2008; Tolimieri et al., 2008; Singh et al.,
2013; Gallager et al., 2014). Such surveys have numerous advantages over traditional surveys
using fishing gear, including being able to observe populations at all scales under natural
conditions, and detection efficiency that potentially approaches 100%.

Optical surveys often generate hundreds of thousands to millions of images. Manually
annotating all of the images (i.e., having people identifying the targets of interest in each
image) would thus often be impractical. The traditional statistical approach to this prob-
lem would be to only manually annotate a sample of the images and obtain inferences on
the population (which for our purposes is defined as the targets contained in all of the col-
lected images) based on the sample. Alternatively, computer vision software can produce
“automated annotations” that identify the targets in every image. However, automated an-
notators can make errors, both because they may not detect some targets (“false negatives”)
and because the annotator mistakenly identifies some objects (“distractors”) as targets when
they are not (“false positives”). Thus, analyses based on the raw automated counts can be
seriously biased. Errors from automated annotations are often autocorrelated and spatially
non-stationary due to, for example, a certain region having high densities of distractors or
reduced visibility. Manual annotations of a sample of the images can help detect and correct
for errors by the automated annotators, in which case the goal is to produce estimators for
the population, based on the combination of automated and manual annotations that are
more efficient than using the manual annotations alone (i.e., the variances of estimators are
less than the variance of the sample mean of the manual images), as well as being at least
approximately unbiased.

Although there have been numerous studies devoted to automated detection and classifi-
cation of marine organisms (e.g., Culverhouse et al., 2006; Marcos et al., 2008; Spampinato
et al., 2008; Beijbom et al., 2012), these studies usually conclude with estimating confusion

matrices or error rates. The final task of obtaining estimates of the population of targets in
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all images from automated annotations that contain errors has received less attention. Solow
et al. (2001) considered the situation where classification of plankton samples may be in
error, which were corrected by inverting the confusion matrix (see also Hu and Davis, 2006;
Verikas et al., 2015). The problem they considered is simpler than the one we are considering
here because they were only concerned with classification of an object but not its detection,
and because errors were assumed to be stationary and not autocorrelated. Beijbom (2014)
analyzed what we have termed the offset estimator to bias-correct automated counts using
a random sample of manual annotations from a cost reduction point of view.

The purpose of this paper is to explore and compare performance of several methods
for estimating population abundance (or biomass) based on automated annotations of all
images combined with manual annotations of a random sample of the images. This study is
motivated by surveys of sea scallops (Placopecten magellanicus) using the HabCam (Habitat
Mapping Camera System) towed underwater camera system (Howland et al. 2006; Taylor et
al., 2008; NEFSC, 2014; see Figure 1 for an example of HabCam images of sea scallops and
sand dollars, a common distractor). Computer vision software for detecting sea scallops is
continuing to be developed (Dawkins et al., 2013; Kannappan et al., 2014; Gallager et al., un-
published). The U.S. sea scallop fishery has annual ex-vessel revenue averaging around $500
million in recent years, so obtaining accurate and precise estimates of sea scallop abundance

is of immediate practical significance.

2 Methods, Theory, and Calculation

2.1 Global Population Estimators

We tested four different estimators of population size (i.e., the number of true targets in an
image set) based on a combination of manual and automated annotations. In the following,
it is assumed that each image has been annotated by software, but only a random sample
of n images out of a total of N images have been annotated manually, and the manual
annotations are without error (it is straightforward to extend the theory to cases where only

a sample has been annotated by software). Let X; and Y; be the number of targets detected
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in the th image by the automated and manual annotators, respectively.

Four global estimators for the total number of targets in the images, Z, are:

Manual sample only: Zm=YN (1)
Y
Ratio estimator: Z, = ,uXNi (2)
N N n
Offset estimator: L, = X, —— X, -Y; 3
set estimator ; . ;( j ) (3)
N
Regression estimator: Zy = Z a+ BX; (4)
i=1

where X and Y are the mean number of targets detected by automated and human annota-
tors in the sample of images that have been manually annotated, px is the mean number of
targets over all images detected by the automated annotator, and a and 3 in equation (4)
are the intercept and slope obtained by regressing the automated vs. manual annotations.
The last three methods can be considered as ways to adjust, or bias correct, the automated
counts based on the comparison between the automated and manual counts in the sample.
The ratio estimator adjusts the automated counts by a multiplicative constant, the offset es-
timator adjustment by an additive constant, and the regression estimator combines additive
(intercept) and multiplicative (slope) adjustments.

Although the ratio estimator (2) is biased, this bias is negligible for all the simulated
datasets because the coefficients of variation of X and Y are both smaller than 0.1 (Cochran,
1977), which should typically be the case because the sample sizes for both the automated
and manual annotations will usually be large. An approximate bias correction can be applied
if this is a concern. The Appendix derives analytically the conditions when the variance of the
ratio estimator applied to a random sample is lower than manual sampling alone. Beijbom
(2014) similarly gave analytic derivations of properties of the offset estimator of a random

sample.

2.2 Local Population Estimators

The automated annotator error rate may vary spatially, depending on factors such as water

clarity, substrate type, and the densities of targets and distractors. All these factors, and

4
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therefore the automated annotator error rates, are typically spatially autocorrelated. If
this is the case, it may be more efficient to bias-correct the automated annotations locally,
rather than using a single global correction as in equations (1)-(4). In addition, the spatial
distribution of the population is often of interest. If the error rates vary spatially, the
correction for these errors also needs to vary accordingly to accurately reflect the actual
distribution of the population.

For the local estimators, the correction factor is calculated for each data point, and the
estimators are similar to the global estimators described above except that only data less
than a distance, or “bandwidth”, h; from the point j are used, and the data are weighted as
a decreasing function of the distance from the target data point, using an adaptive bisquare

distance decay kernel function:

M
1—( 7 ) dir < hj
k) —

0 d(j,k) > hj,

()

where w(;) is the weighting factor of point k that is used to calculate the bias correction
factor for point j, and d;) is the distance between points j and k. The bandwidth is
adapted to the density of the data; it is larger when data are sparser and smaller when
data are denser. Even though the bandwidth may vary by location, the number of data
points within the bandwidth is the same across locations. The bandwidth (or number of
data points to be included at each location) is determined by minimizing the leave-one-out

cross-validation squared error:

Z ¥~ Vahy)] (0

where Y.;(h;) is the fitted value of Y; with the data points where point j is omitted from
the estimation process (Guo et al., 2008).

The local method for the regression estimator is essentially a form of geographically
weighted regression (GWR) that is used specifically for situations when the relationship be-
tween variables differs across space (i.e., spatial non-stationarity and spatial autocorrelation;

Brunsdon et al., 2008). Compared to standard (global) regression models where a single pa-
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rameter set is estimated for the entire dataset, GWR estimates regression parameters that

vary for each data point based on data that is in the local neighborhood of that point.

2.3 Stratification

Population densities from underwater images are often “zero-inflated”, i. e., a high proportion
of photos contain no targets. In such a case, the images can be separated into two strata: one
where no targets were detected by the automated annotator, and the other where at least
one target is detected. Manual annotations are then allocated among the two strata based on
the automated annotations and their overall false negative rates, using approximate Neyman
optimal allocations. For this purpose, the standard deviation of the true target counts in
the zero stratum, s, is: \/m, where Z; is the number of targets in the zero
stratum (i.e. the number of false negatives), Ps is the probability of detecting a target by
the automated annotator, and 1— Pgs is the probability of a false negative. In the simulation,
Zy and Pg are known, but in practice, they would have to be estimated either from previous
data or by obtaining a small sample of manual annotations prior to the allocation. The
standard deviation of targets in the non-zero stratum, s;, is approximated by the standard

deviation of the automated counts in this stratum. The Neyman optimal allocation is then:

niN,,Sm
S ev— (7)
2 in—o NmSm

where n is total number of manual sample size, and N,, is the total number of images in

Nim

stratum m.

2.4 Simulation Design

We tested the performance of the above methods using simulated data. The simulation
design is based on the US sea scallop population characteristics as observed by the HabCam
survey. The simulation domain is 70 km (longitude) by 140 km (latitude), with a 50 m
grid size, roughly corresponding to the density of annotated images in actual data sets. The
spatial distribution of sea scallops is non-stationary due to the influences of physical and

biological environment including current, depth, and predator distributions (Brand, 2006).
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Therefore, we assumed that the simulated scallop population has large-scale smooth trends
in its expected mean (first-order effect) that are added to a stationary autocorrelated random
field (second-order effect; Cressie, 1993). We simulated the variations of global mean density

using a double logistic function that is constant with latitude but varies with longitude:

1 l < l’max
1+exp(—a(l —b)) - 2
pll) = i - e (®)
1+ exp(a(l — b— mo)) 2

2

where [ is longitude, l,,4, is the maximum longitude in the surveyed area, and a and b are
the parameters that determine the shape of the logistic curve. The simulated first-order
effects are high in the middle and decrease logistically toward the left and right edge of the
simulation domain, which is typical of actual scallop distribution patterns (Hart, 2006). The
second-order effects were simulated using stationary Gaussian random fields with a spherical

isotropic covariance structure (Cressie, 1993):

0 d=0
Yd) = co+e{dd-1(9)3) 0<d<r, (9)
co+ 1 d=>r
\

where ¢y, c¢1, and r are the nugget, partial sill, and range parameter, respectively. The

nugget/sill (n/s) ratio (Co j(_) . ) determines randomness and r determines the aggregation
size of the second-order effects. We chose the simulation parameter values based on estimates
from the actual HabCam data.

To reflect the highly zero-inflated nature of scallop distributions, those locations where the
sum of the first-order and second-order effects values were smaller than its 90th percentile
were set to zero. The simulated scallops count for the remaining 10% is simply the sum
of the first- and second-order effects (Figure 2). The resultant simulated data is patchy,
zero-inflated, and has a large scale trend along one direction, consistent with actual scallop

populations. The shape and direction of tracks used to survey the simulated population

was designed to mimic the actual HabCam survey design, where more effort was put in the
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middle high density area (Figure 2; NEFSC, 2014). A total of 9,001 photos were simulated
along the track (Figure 2).

False positives were simulated by using distractors. The two most common distractors
for sea scallops are sand dollars (Echinarachnius parma; Figure 1) and dead scallop shells
(Dawkins et al., 2013; Kannappan et al., 2014). The distribution of sand dollars are typically
independent or negatively correlated with scallops, whereas dead scallop shells would be
expected to be positively related to (live) scallops. The spatial distribution of distractors
were simulated similar to scallops, but the distractor’s patches were assumed larger (larger
range) and less noisy (smaller n/s ratio) than the scallop target distribution, based on actual
observations of sand dollars (Figure 2).

Water visibility may affect automated annotation accuracy by reducing the probability
of detecting a target or a distractor. We simulated water visibility to be trendless but with
spatial autocorrelation. It other words, it is a random field with no first-order effect. It was
assumed to have the same noise level but larger patch size as the distractor (larger range;

Figure 2).

2.5 Simulation of Automated Count Data

The simulated manually annotated data are assumed to have no errors. For the computer
automated counts, each simulated target (S) and distractor (D) has a probability of being

detected as a target by the automated annotator:

Pg=(1—Flg)(1— F2g) and Pp =1— (1 — Flp)(1 — F2p), (10)

where the F'lg and F'1p are the probabilities of a false negative and false positive with good
water visibility, and F2g and F2p are the reduced probabilities of detecting targets and
distractors due to water visibility. In our simulations, it is assumed that F2¢ = F2p. The

simulated total number of targets reported by the automated annotator in the ith image is:

m=1

where M is the total number of objects simulated within image i, S;,, is the number of
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correctly identified targets (true positives minus false negatives), and D, is the number of

distractors incorrectly identified as targets (false positives).

2.6 Scenarios Tested

To understand whether the estimation methods are robust to changes in the environment,
species distributions and the capabilities of the automated annotator, we tested the perfor-

mance of these methods by varying the following quantities:

(1) Automated annotator’s performance: probability of a false negative/positive (F'1g and
F1p) from 0 to 1 by 0.05;

2) Water visibility: good, moderate, or poor (expected value of F2 =0,0.05,0.1);

3) Correlation between scallop and distractor distribution: negative, zero, or positive;

4

(2)
(3)
(4) Degree of spatial autocorrelation of distractors: low, medium, and high;
(5) Percent of total sample size that was annotated manually: 1%, 3%, 7%, 11%, and 15%.

A base case was selected where the water visibility is good, the correlation between the
spatial distribution of scallops and distractors is negative, the spatial autocorrelation of
distractors is medium, and manual annotations were performed on 7% of the photographs.
The base case was then varied for each of the attributes (2)-(5) individually, keeping the
other three at their base case values. Thus, a total of 14 scenarios were simulated. For each
choice of (2)-(5), F1g and F'1p were varied from 0 to 1 by 0.05 increments, as specified in
(1).

For all scenarios, scallops have high densities in middle longitudes of the simulation do-
main (simulated using equation 8), and water visibility has no first-order effects. Distractors

have high first-oder effects on the left (which used only the second part of the equation 8 on

[ < lmzax part of the simulation domain), except for the scenarios of zero and positive corre-
lations between scallop and distractor distribution where there are no effects or high effects
in the middle, respectively. The partial sill, n/s ratio, and range parameter used to simulate
second-order effects are 0.18, 0.6, and 200 for scallops, 0.18, 0.6, and 400 for distractors,
and 0.18, 0.6, and 600 for water visibility. For the scenarios where distractors have high

and low autocorrelation, the n/s ratio is 0.3 and 0.9, respectively. For the scenarios where

9
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water visibility is moderate or poor, the effects of water visibility on the probability of a false
negative and false positive is one or two times, respectively, compared to the corresponding
scenarios of good water visibility.

For each scenario, the manual annotation subset was resampled 30 times. For each
iteration, we tested the combinations of the four estimators applied either globally or locally,
and using two strata or one stratum (unstratified) to allocate manual annotations, resulting
in 16 different estimation methods.

For stratified estimation, the ratio estimator is undefined in the zero stratum, so the mean
of the manual annotations in this stratum was used instead. Since the offset and regression
estimators reduce to simply taking the mean of the manual annotations in the zero stratum,
all four methods produce the same estimate in this stratum, so any differences among the

methods with stratification stem from the non-zero stratum.

2.7 Field Data Analysis

HabCam images from the US sea scallop survey (NEFSC, 2014) were used to illustrate
the usefulness of the methods discussed above on real data. For testing purposes, all the
images were annotated using computer vision software (Gallager et al., unpublished) and
also manually annotated, so that the estimates can be compared to their true values.

The automated annotator used a series of features including texture, color, and shape.
A kernel of 100 x 100 pixels was run through each image left to right, top to bottom,
extracting each feature set resulting in a feature vector of length 480 by width 3 (texture,
color, and shape). Texture features were extracted using a 2-dimensional Gabor wavelet
convolved with Gaussian kernels at 360 orientations for each pixel box providing rotational
independent texture features (Gallager and Tiwari, 2008). Color was extracted in L*A*B*
color space using the color angle approach, where the standard deviation of the gradient
between the pixel radius at 10 degree increments was extracted with 128 colors (Gallager
and Tiwari, 2008). For each kernel, a Canny edge detection algorithm was used followed by
extraction of Fourier shape descriptors. A Principal Component Analysis was run to reduce
data dimensionality from > 4000 to 128 principal components. Finally, a linear Support

Vector machine was trained on 3800 images containing scallops of various sizes as well as
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images containing no scallops over varying substrate conditions. The result was a probability
of the presence of a scallop; a scallop was considered as detected if this probability was greater
than 90%.

One out of every 50 images collected were annotated manually as well as with software
(Table 1), and this collection of images served as the data for our analysis. Data from
three regions with various probability of a false negative were selected. The probability of
a false positive could not be defined for our datasets because number of possible distractors
for each image was not identified. For each region, the manual annotations from a 7%
random subset of the images were used for estimation along with automated annotations
from each image; error rates could therefore be assessed because each image in the datasets
were annotated manually, even though only a sample of the manual annotations were used
in the analysis. The manual annotation subset was resampled 2000 times, and the various
estimation methods were applied to each iteration.

In the field, factors such as vehicle altitude, depth, etc. may also influence the performance
of the estimators. We tested an additional method that included auxiliary variables in the

two-strata local regression:

5
Y; = ao(uz,v;) + ax(ug, 0) X5+ as(ug, v;) Ay + ¢ (12)
b=2

where (u;,v;) is the coordinates of point j and ay(u;, v;)’s are the coeflicients of variables A

including altitude, depth, squared depth, and latitude at location (u;,v;) point j.

2.8 Evaluation of Methods

For both simulation and field data analysis, mean squared error (MSE) and mean absolute

error (MAE) were used as the principal measures of precision and bias:

(13)

where Z is the population estimates based on automated and manual annotations, pu is the

true population abundance, and K is the number of iterations. These were reported relative
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to the global unstratified manual sample mean (M1G):

MSE — MSE,;1¢ MAE — MAE;¢
MSEre = d MAEye = . 14
re MSEMlG a re MAEMIG ( )

MAE and MSE both reflect precision as well as bias but MSE weights more on large errors

than small ones.

3 Results

3.1 Simulation Results

Combining automated and manual annotations using our methods increased precision of the
estimates over manual counts alone by up to a maximum of 73%, whereas using the uncor-
rected automated counts could decrease both accuracy and precision up to 717%, compared
to using manual counts only (Tables 2 and 3). Increasing the number of manual samples
increased the precision of all methods, but only by a modest amount (up to 15%).

In the base case, splitting the annotations into two strata was the most effective way of
improving estimation precision, except at very high false negative rates where stratification
degraded the estimates (Figures 3 and 4). When both false negative and false positive rates
are low, the use of automated data for stratification and/or estimation substantially improves
the precision and accuracy of the estimates regardless of the estimator used. Local models
were superior to global models only when stratification was employed. For one-stratum
allocation and when the probability of a false positive is high, the ratio and regression
estimator performed better, whereas the offset estimator was better when the probability
of a false negative is high but false positive rate is low. Similar patterns were observed for
the other scenarios tested, i.e., the performance of the bias correction methods we tested are
robust to changes in the environment and species distributions.

The probability of a false negative is the key factor determining the most effective bias
correction methods, regardless of the level of probability of a false positive (Tables 2-5).
When the probability of a false negative is low, nearly all the methods can improve the
accuracy and precision of the population estimates, but stratification with the local ratio or

the local regression estimator was generally superior. If the probability of false negatives is
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high, no stratification with a simple global linear regression or manual sampling alone tended
to have the best performance. If in addition the false positive rate is low, the global offset

estimator also performs well.

3.2 Field Data Analysis Results

Results from the field data analysis were consistent with those from the simulations. Esti-
mations of the mean using automated annotations alone were 63% to 498% higher than the
simple manual sample mean (Table 1). For the region with low false negative rates (0.31), the
two-strata local regression without auxiliary variables and two-strata local ratio estimator
were superior; these increased precision over the simple manual sample mean by up to 51%
(Table 1). When the false negative rate was higher (0.73-0.75), global regression or simply
the manual sample mean were the best, with the global regression model improving precision
by at most 11% over the simple manual sample mean. The offset estimator performed better
than the ratio estimator in one case, likely because the false positive rate of this dataset is
low; however, this is not totally clear since the false positive rates were not available for all
of our field data. Auxiliary variables did not improve the performance of local regression for

these data.

4 Discussion

The results indicate that combining even a mediocre automated annotator with manual
annotations may be able to improve statistical efficiency over manual annotations alone when
using the methods presented here. The combination of automated and manual annotations
outperformed manual or (unadjusted) automated annotations alone, even when the false
positive and false negative rates were as high as 0.5. The results from both simulations and
field data analysis are consistent, and indicate that probability of a false negative is the
key factor determining the best estimation method. The probability of a false positive does
matter to some extent, especially when the probability of a false negative is higher, but even
in this case, it is not the main factor determining the best method.

Stratification based on zero and positive automated counts is the most effective technique
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to improve precision except at very high false negative rates. Stratification directly improves
precision when the within-strata variance is less than the between strata variance (Cochran,
1977), which is likely to be the case for even a moderately effective automated annotator.
In addition, the allocation of manual samples between the two strata often further increases
performance by allocating disproportionately more manual samples to the more variable
stratum. Stratified estimates are in particular more precise at high false positive but low
false negative rates. The zero stratum has no false positives, and contains a limited number
of actual targets when the false negative rates are low. The zero stratum thus tends to have
a low variance, so the number of targets in this stratum can be estimated precisely by a
relatively small number of manual samples. This allows for higher sampling rates in the
non-zero stratum, increasing the precision there.

The simple two-strata stratification presented here is natural for zero-inflated data such
as in our examples. In some cases, more complex stratification may give further benefits. For
example, there could be three strata, composed of where the automated annotator detects
zero, one or more than one targets. We implicitly assumed for simplicity that the cost of a
manual annotation is the same in each stratum. In reality, the labor cost of annotating an
image tends to go up with the number of targets in the image. If this cost function is known,
it can be taken into account in the optimal allocation among strata (Cochran, 1977).

In real world situations, the false negative (and positive) rates may be uncertain. In such
cases, we recommend manually annotating a small sample of images to roughly estimate
this rate, and select the manual sampling strategy (e.g., stratification scheme) and estimator
based on this information. The optimal strategy is fairly robust to modest changes in the
automated annotator error rates, so only a crude estimate of the false negative rates is needed
to design a sampling strategy.

The offset estimator, by its definition, can account for errors that are independent of the
target density, but less efficient in tracking errors that vary with the targets. Conversely, the
ratio estimator is more effective without stratification when there are false negatives but few
false positives (Figures 3 and 4), because the ratio estimator can take into account errors
that are proportional to the target density. The precision of the ratio estimator depends on

the correlation between automated and true counts (see Appendix); false positives directly
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reduce this correlation.

In principle, the regression estimator should be able to account for both these types of
errors, but it has the disadvantage of having two parameters that can be confounded with
each other, especially at low sample sizes and when the data are zero-inflated. For stratified
local regressions, the manual sample size used to estimate the regression parameters at each
location is low, and might be one of the reasons why its performance is slightly lower than the
stratified local ratio estimator. The difference in performance of stratified local regression
estimator and stratified local ratio estimator was larger when the manual sample size is only
1% and became smaller as the manual sample size increased (Tables 2 and 3).

There are nonetheless some advantages of regression methods. For example, multiple
regression can be used if there is more than one automated annotator available, using counts
from each automated annotator as predictors. Even though in our example field data it
was not effective, auxiliary variables such as water depth, latitude, or substrate type may
sometimes also be useful as predictors in a multiple regression.

Local estimation methods can improve estimates when the distribution of targets or
errors is autocorrelated. In particular, false positives induced by distractors such as sand
dollars and dead scallop shells are typically autocorrelated. False negative rates could be in
some cases also autocorrelated (caused by e.g., poor visibility), but this would normally be
a weaker effect than false positives if it exists at all. Stratification isolates the false positives
in one stratum, which may be the reason that it enhances the effectiveness of using local
estimation methods. The benefits of local estimation methods are however minor compared
to stratification, even in the presence of substantial autocorrelation.

Although computer vision methods are rapidly improving, it is unlikely that automated
detection of underwater organisms will be error free in the foreseeable future. Many marine
organisms are cryptic, and can adjust their pattern and coloration to match their surround-
ings, thus making it difficult to totally eliminate false negatives. For scallops in particular,
false negatives can be caused by colonization of their shell by epifauna or the shell being
covered by marine snow or sediments. In addition, a small percentage (~5-10%) of sea
scallops are “albinos”, with white upper shells, that are difficult to distinguish from dead

scallop shells. While we believe that the false positives induced by sand dollars can be
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reduced considerably compared to present methods, it is also unlikely that false positives
can be completely eliminated (for example, it is sometimes difficult to distinguish a dead
scallop shell from a live scallop). Thus, combining automated and manual annotations using
the methods described here is likely to continue to be an improvement over using either
automated or manual annotations alone.

While we have focused on automated annotations of marine organisms, our methods are
applicable to a much wider set of problems. For example, our methods could be employed
whenever there are at least two observers counting the same things, one of whom is an
expert (or is a reference collection) who is considered error free but only observes a sample.
Annotations using crowd-sourcing (Simpson et al., 2014) may be subject to higher error rates
than those done by experts, which can be corrected using the techniques presented here.
Our methods also are applicable to automated or crowd-sourced annotations of a variety
of targets beyond those underwater, such as targets from aerial photography, surveillance

cameras, medical imaging and testing, and industrial quality control.
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Table 1: Relative mean squared error (MSEre) and relative mean absolute error (MAEye) for
each estimator, using unstratified (one-stratum) or two strata estimation, and either local
or global estimation for three sets of actual HabCam field data. Error rates are relative
to the global unstratified manual mean, which is used as a baseline. “AUTO” represents
MSEre or MAEye calculated using only the automated annotations. “L-+Var” represents
local regression with auxiliary variables. The dark and light grey-shaded entries represent
the best and second best method, respectively.

| | Manual Mean | Ratio Est. | Offset Est. | Regression Est.
Sample False Stat ‘Auto‘ One-stratum  Two-strata ‘ One-stratum  Two-strata ‘ One-stratum  Two-strata ‘ One-stratum Two-strata

Size Negative | | Global Local Global Local|Global Local Global Local|Global Local Global Local | Global Local Global Local L+Var
5057 0.31 MSEye | 1.68 0 -0.06 -0.04 -0.21 -0.07 -0.31 -0.09 -0.50 -0.02 0.01 -0.02 -0.19 -0.07 -0.26 -0.10[-0.51 -0.04
: MAEyre | 0.78 0 -0.03 -0.02 -0.11 -0.04 -0.16 -0.04 -0.29 -0.01 0.01 -0.00 -0.10 -0.04 -0.14 -0.05]-0.31 -0.08

9610 0.73 MSEye | 4.98 0 0.04 -0.04 0.02 -0.06 -0.01 -0.03 0.03 -0.10 -0.05 -0.04 0.02 -0.11 -0.07 -0.03 0.03 0.05
: MAEyre | 1.68 0 0.01 -0.02 0.01 -0.03 -0.01 -0.01 0.01 -0.06 -0.03 -0.02 0.01 -0.06 -0.04 -0.02 0.01 0.01

14856 0.75 MSEye | 1.25 0 0.71 0.37 0.16 0.28 2.06 0.89 0.55 0.40 1.90 1.16 1.61 -0.000 0.93 0.37 0.07 0.04
: MAEyre | 0.63 0 0.36 0.17 0.07 0.13 0.88 0.37 0.26 0.18 0.75 0.47 0.62 -0.00 0.47 0.17 0.03 0.02
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Table 2: Relative mean squared error (MSEre, using the global unstratified manual mean as
the baseline method) for the five scenarios by types of statistics (M: manual sample mean,
Ra: ratio estimator, O: offset estimator, and Re: regression estimator), using global (G)
or local (L), and one-statum (1) or two-strata (2) estimation, along with MSEye calculated
using only the automated annotations (AUTO). For each scenario, the cell outlined in bold
is the best method.

S2:Good Vis.-| 05 0 | 05 -0.24 -017| -05 -05 -051[-06]-046 -0.35 -0.49 -0.49 -0.26 -0.25 -0.52 -0.58
Mod.- 053 0 | 051 -0.21 -0.14 -0.48 -0.48 -0.49[-057|-045 -0.32 -0.46 -0.47 -0.25 -0.24 -0.49 -0.56
Poor- 051 | 0 | 052 -02|-013 -048 -0.48 -048|-055[-044 -0.32 -0.46 -0.46 -0.26 -0.24 -0.48 -054
S3:Neg. Cor.-| 157 | 0 05 -035 -0.31 -0.17 -0.22 -0.34[-058] o | 01 -026 -024 -0.11 -0.12 -0.36 -0.57 F
Pos.-| 266 0 | 051 -042 -0.37 -0.07 -0.17 -0.37|-057]| 027 028 -0.18 -0.19 -0.09 -0.1 -043 -055 1
None- 1.88 0 | 049 -0.33 -03 -015 -0.2 -0.31[-056| 004 015 -02 -02 -009 -0.1 —0.34?’}’
S4: High Autocor. = 0.67 | 0 | 049 -0.21 -025 -05 -056 -051[-072|-0.47 -0.18 -05 -089 -0.15 -0.27 -052 0.7 ©
Medium- 05 | 0 05 -024 -017 -05 -05 -051|-0.6 [-0.46 -0.35 -0.49 -0.49 -0.26 -0.25 -0.52 -0.58 go
Low- 038 0 | 053 -0.24 -0.09 -051 -0.42 -053[-054]|-047 -0.33 -051 -0.48 -029 -0.16 -053 -052 1
S5:M/T1%- -044 0 027 -0.22 -0.13 -049 -044[-051| 05 -047 -04 -05 -0.44 -041 -039 -0.4 -0.36 %
3%- -005 0 034 -023 -0.16 -0.52 -052 -0.53]0.56]-049 -0.41 -051 -048 -037 -0.37 -0.53 -054 ©
7%- 05 0 05 -024 -017 -0.5 -05 -0.51| -0.6 [-0.46 -0.35 -0.49 -0.49 -0.26 -0.25 -0.52 -0.58
11%- 091 0 061 -0.26 -0.2 -0.52 -0.49 -0.54[-0.65|-048 -032 -052 -0.54 -0.18 -0.16 -0.54 -0.63
15%- 18 0 052 -025 -0.16 -0.5 -0.47 -0.52|-0.67|-046 -0.36 -05 -0.55 -0.09 -0.13 -0.52 -0.66
S2: Good Vis. - 887 | o | 05 -0.31 -0.14 -0.18 -0.29[-056] 0.14 | 025 | -0.12 -0.18 -0.1 |-0.07|-0.33 -0.54
Mod.- 86 0 | 051 -0.29 -0.13 -0.18 -0.29|-055] 0.13 | 023 -0.14 -0.18 -0.1 |-0.08 -0.32 -0.54
poor-{ 861 0 05 -0.26 -0.15 -0.19 -0.25|-0.54| 0.11 | 0.23 -0.09 -0.17 -0.1 -0.08 -0.28 —0.52
S3:Neg. Cor.- 483 0 | 051 -0.36 -0.08 -0.14 -0.31[-059] 0.32 | 0.44 -0.06 -0.0 -0.09 -0.08 -0.37[-0.59] 2
Pos.- 857 0 | 05 -04 002 0 -036[-053]096 117 013 003 -0.06 -0.05 -0.47 s
None-/532 0 | 049 -0.36 -0.06 -0.11 -0.31[-059] 0.38 049 -0.05 -0.09 -0.06|-0.05 -0.36 -058 %
S4: High Autocor. -[ 505 0 = 05 -031 -0.13 -0.37 -0.27|-0.73| 0.18 | 0.79 -0.1 -0.32 -0.08 -0.31 -0.29 -0.72 &
Medium- 897 0 | 05 -0.31 -0.14 -018 -0.20|-0.56| 0.14 | 0.25 -012 -0.48  -0.1 -0.07 -0.33 -0.54 o
Low- 38 0 051 -025 -0.12 -002 -03 [-045] 0.19 | 031 -013 -02 -0.11 0.1 -0.35 -0.41 T
S5:M/T1%~- 097 | 0 | 027 -0.23 -0.09 -0.04 -0.28[ -03] 021 033 -009 003 003|006 -026 -027 ¢
3%- 248 0 | 034 -026 -0.1 -0.11 -0.27[-042] 0.24 032 -0.08 -0.04 -0.04|-0.03 -0.29 -0.41 §
7%-1897 0 | 05 -0.31 -0.14 -0.18 -0.29|-056] 0.14 | 025 -0.12 -0.18 -0.1 |-0.07 -0.33 -0.54 15
9 11%- 587 0 059 -032 -0.12 -021 -03 [-0.63] 0.19 | 0.36 -0.11 -0.23 -0.11 -0.1 -0.34 -0.62 10
= 15%- 747 0 | 051 -031 -0.13 -0.29 -0.32[|-0.67| 0.19 | 0.27 -0.15 -0.26 -0.12 -0.16 -0.36 |-0.65 05
§ S2:Good Vis.-| 183 | 0 | 051 068 08 -005| 2 068 081 -012 026 066 085 [-0.18]-003 063 085 00
%] Mod.- 111 0 | 05 074 091 -01 -007 073 088 -014 02 069 087 [-018|-004 073 092
Poor-1113 0 053 077 094 -007 -004 073 09 -012 024 07 089 |-017]|-0.02 07 091 -0.5
S3:Neg. Cor.- 019 [ 0 Jo51 014 023 045 1.2 056 048 026 058 061 081 002 018 022 033 &
Pos.- 07 | 0 |os2[ o ]009 049 036 041 037 046 059 066 063 003 022 005 019 T
None- 019 [ 0 | 052 02 | 029 045 046 059 051 029 063 067 08 002 018 028 039 &
S4: High Autocor. - 444\ 0 | 052 073 072 003 092 072 06 -008 055 073 0.7 [-0.14]-0.13 066 063 &
Medum-{133| 0 051 068 08 -005/ 2 068 081 -012 026 066 085[-018|-003 063 085 &
Low-/175  ©0 051 068 092 01 058 07 097 -008 033 068 086 [-016]013 06 083 &
S5:M/T1%- -0.01 0 027 07 077 041 2123 089 096 072 073 -007 007 07 077 }
3%- 068 O 033 067 085 012 4659 071 089 -007 017 066 084 [-014]-001 068 09 &
7%- 133 0 | 051 068 086 -0.05, 2 068 081 -012 026 066 085 |-018|-003 063 085
11%- 286 0 | 062 078 095 007 008 073 08 -008 044 076 093 [-016] 004 066 082
15% -/ 28 0 | 049 067 083 006 068 067 07 -009 026 068 081 [-017|-004 059 069
S2:Good Vis.-| 1.06 | 0 | 051 024 03 023] 02 054 052 037 072 083 101 [-001] 018 025 037
Mod.- 0.89 0 | 052 032 041 019 014 06 057 032 064 086 1.05[-001]014 036 047
Poor- 088 0 051 029 038 018 013 06 058 029 063 089 111 [-001]014 033 045
S3:Neg. Cor.- 162 [ 0 | 051 008 015 032 [187 041 037 053 09 079 09 | 0 |025 009 024 @
Pos.- 535 0 052 [-0.06]-001 034 033 019 024 108 126 088 087 0 03 [-006] 007 m
None- 211 0 | 052 009 015 03 024 041 037 057 092 085 1 |-001] 026 009 | 0.24 '@
S4: High Autocor. -/ 184 0 | 052 021 | 01 018 [202 047 024 037 (139 08 062 -002[-005] 022 006
Medium- 1.06 0 | 051 024 03 023 02 054 052 037 072 083 1.01[-001]018 025 037 o
Low- 078 o ]o53 015 03 032 064 045 074 043 084 074 084 0 | 044 015 045 2
S5 MIT1%-[-019] 0 028 019 032 078 (189 076 113 044 067 082 11 019 047 022 0.39 g
3%- 038 | 0 | 032 016 024 035 043 046 055 042 065 071 092 003 018 022 044 @
7%-1106 0 | 051 024 03 023 02 054 052 037 072 083 101 [-001] 018 025 037
11%- 189 0 | 063 021 028 028 024 049 041 044 098 082 091 [-001] 024 022 033
15%-/2.86 0 049 019 02 028 05 046 032 044 072 081 082 [-001] 014 019 0.26

I I I I I I I I I I I I
AUTO M1G MIL M2G M2L RalG RallL Ra2G Ra2L O1G OI1L 02G O02L RelG Rell Re2G Re2L
Estimators
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Table 3: Relative mean absolute error (MAFEye, using the global manual mean as the baseline
method) for the five scenarios by type of estimators. See Table 2 for explanations of the
notations.

S2:Good Vis.- 027 0 | 022 -015 -0.11 -0.31 -0.31 -0.34[-0.42|-0.29 -0.21 -0.33 -0.34 -0.14 -0.13 -0.35 -0.41
Mod.- 028 0 | 023 -013 -0.1  -0.3 -029 -0.32[-04 |-0.28 -0.19 -0.31 -0.32 -0.14 -0.12 -0.33 -0.39
Poor- 027 | 0 | 023 -0.13 -009 -03 -0.29 -0.32[-0.38|-027 -0.19 -03 -031 -0.14 -0.13 -0.32 "
S3:Neg. Cor.- 071 0 | 022 -021 -0.18 -0.09 -0.11 -0.21[-0.39| 0 006 -0.15 -0.15 -0.06 -0.08 -0.22 -0.38 F*
Pos.- 103 | 0 | 023 -0.25 -0.21 -0.04 -0.09 -0.22[-0.37| 0.11 | 0.12 |-0.12 -0.12 -0.05 -0.05 -0.26 -0.35 X
None- 0.82 0 022 -0 -0.17 -0.08 -0.11 -0.19]/-0.38] 0.02 | 0.07 -0.13 -0.13 -0.06 -0.07 -0.21 -0.37 ‘{’}’
S4: High Autocor. - 0.33 | 0 | 022 -0.14 -0.15 -031 -0.35 -0.34[-051]| -0.3 -0.1 -0.33 -04 -007 -0.13 -0.35 -05 ©
Medium- 027 0 022 -015 -0.11 -0.31 -0.31 -0.34[-0.42|-029 -0.21 -0.33 -0.34 -0.14 -0.13 -0.35 -0.41 go
Low- 021 0 | 024 -0.15 -0.07 -0.32 -0.25 -0.36|-0.37|-029 -0.2 -0.34 -0.33 -0.16 -0.07 -0.36 -0.36 &
S5:M/T1%- -023 0 | 011 -0.13 -0.09 -0.31 -0.27[-0.34|-0.33 -029 -0.24 -0.33 -0.3 -0.24 -0.23 -0.28 -0.26 ﬁ'
3%- 001 0 015 -0.14 -0.11 -033 -032 -035/-038| -0.3 -0.25 -0.33 -0.32 -0.21 -0.21 —0.35 037 ©
7%- 027 0 | 022 -0.15 -0.11 -0.31 -0.31 -0.34[-0.42|-029 -0.21 -0.33 -0.34 -0.14 -0.13 -0.35 -0.41
11%- 042 0 028 -0.18 -0.13|-0.33 -0.3 -0.37|-046] -03 -0.19 -0.36 -0.37 -0.09 -0.07 -0.37[-0.46]
15%- 057 0 024 -017 -0.09 -0.31 -0.28 -0.36 -0.46 -0.29 -0.22 -0.35 -0.38 -0.04 -0.05 -0.36
S2:Good Vis. - 146 0 | 022 -018 -0.18 -0.07 -0.1 -0.18[-0.38| 007 0.12 -008 -0.12 -0.05 -0.04 -0.19 -0.36
Mod. - 1.37 0 | 022 -0.18 -0.7 -0.07 -0.1 -0.18[-0.37] 0.06 0.1 -0.09 -0.12 -0.06 -0.05 -0.19 -0.36
Poor-/ 437 | 0 | 022 -0.16 -0.16 -0.08 -0.11 -0.16[-0.37| 0.05 | 0.11 | -0.07 -0.12 -0.06 -0.05 -0.18 -0.35
S3:Neg. Cor.-| 167 0 | 023 -021 -021 -0.05 -0.08 -0.18| 04| 015 02 -0.05 -0.08 -0.05 -0.04 -022 -039 &
Pos.- 242 0 | 022 -028 -024 001 0 -021|-0.34[039 045 004 -001 -0.04 -0.03 -0.28 -0.33 |
None-| 1.8 0 | 022 -0.21 -0.21 -0.03 -0.07 -0.18| -0.4 | 0.17 022 -0.04 -0.07 -0.04 -0.03 -0.21 039 %
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Table 4: Proportion of runs with the least mean square error (MSE) for the five scenarios
by type of estimators. See Table 2 for explanations of the notations.
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Table 5: Proportion of runs with the least mean absolute error (MSE) for the five scenarios
by type of estimators. See Table 2 for explanations of the notations.
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Figure 1: HabCam Images with scallops (left) and its common distractor sand dollars (right).
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Figure 2: Example simulated distributions of scallops (left), distractors (center; moderate
autocorrelation and negatively correlated with scallop distribution), and water visibility
(right; poor) with an over-layed sampling track (red line). The colors represent counts
per m? for scallops and distractors and the reduced probabilities of detecting scallops and
distractors due to poor water visibility.
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Figure 3: Mean squared error (MSE, indicated by color) at various false negative and false
positive rates in the base case scenario, by estimator type, global or local estimation, and
unstratified (one-statum) or two-strata estimation.
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Figure 4: Mean absolute error (MAE, indicated by color) at various false negative and false
positive rates in the base case scenario, by estimator type, global or local estimation, and
unstratified (one-statum) or two-strata estimation.
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Appendix - Analytic derivation of properties of the ratio estimator

Let Y; be the number of targets in the ¢th randomly chosen image; it will be assumed that
manual processing is perfect, so that Y; is also the number of targets that were detected
manually. Let X; be the number of targets detected by the automated software in the ith

image. We will consider the following ratio estimator for the mean number of targets:

Vi+Yo+..+Y, Y (15)
X1+ X0+ ...+ X, HX%

T:/LX

where py is the mean of the automated counts over all photographs, and X and Y are the
sample means for the automated and manual counts for a randomly chosen sample of n
images. Let uxy = E(X;) and uy = E(Y;), ox and oy be the standard deviations of X; and
Y;, respectively, and let p be the correlation between X; and Y;. Assuming for simplicity
that the finite population correction factor is negligible (i.e., that the total number of images
is large relative to n; this does not affect the main results below), using the approximate

variance for a ratio (Cochran, 1977),

Y 1 o3 113

Var(T) = /@(Varf ~ ;L%(u—Q [0} + ify - QPUXUYZ_;]/R (16)
X X

= lo¥+ox Zlox X — 200y} (17)

Hence, Var(T') decreases linearly with p. If ux = py and ox = oy, this reduces to Var(T') ~
20%(1 - p)/n.

By comparison, a simple random sample of n manual images has variance Var(Y) = o2 /n,
which is the first term of equation (17). Thus, the ratio estimator 7" has lower variance than

simply using the manual images (i.e., Var(T) < Var(Y) ) if and only if UXHJ—Y — 2poy <0,
Hx
ie.,
ox My

20y px

(18)

In particular, if the X;s and Y;s have the same means and variances, then the ratio estimator

is an improvement over simple random sampling of the manual images if and only if p > 1/2.
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