

Combining imperfect automated annotations of underwater images with human annotations to obtain precise and unbiased population estimates

Jui-Han Chang¹, Deborah R. Hart^{1*}, Burton V. Shank¹, Scott M. Gallager²,
Peter Honig², and Amber D. York²

¹Northeast Fisheries Science Center, National Marine Fisheries Service,
166 Water St., Woods Hole, MA 02543, USA

²Biology Department, Woods Hole Oceanographic Institution,
Woods Hole, MA 02543, USA

*Email: deborah.hart@noaa.gov

August 10, 2016

2 Abstract

3 Optical methods for surveying populations are becoming increasingly popular. These meth-
4 ods often produce hundreds of thousands to millions of images, making it impractical to an-
5 alyze all the images manually by human annotators. Computer vision software can rapidly
6 annotate these images, but their error rates are often substantial, vary spatially and are
7 autocorrelated. Hence, population estimates based on the raw computer automated counts
8 can be seriously biased. We evaluated four estimators that combine automated annotations
9 of all the images with manual annotations from a random sample to obtain (approximately)
10 unbiased population estimates, namely: ratio, offset, and linear regression estimators as well
11 as the mean of the manual annotations only. Each of these estimators was applied either
12 globally or locally (i.e., either all data were used or only those near the point in question, to
13 take into account spatial variability and autocorrelation in error rates). We also investigated
14 a simple stratification scheme that splits the images into two strata, based on whether the
15 automated annotator detected no targets or at least one target. The 16 methods result-
16 ing from a combination of four estimators, global or local estimation, and one stratum or
17 two strata, were evaluated using simulations and field data. Our results indicated that the
18 probability of a false negative is the key factor determining the best method, regardless of
19 the probability of false positives. Stratification was the most effective method in improving
20 the accuracy and precision of the estimates, provided the false negative rate was not too
21 high. If the probability of false negatives are low, stratified estimation with the local ratio
22 estimator or local regression (essentially geographically weighted regression) are best. If the
23 probability of false negatives are high, no stratification with a simple global linear regression
24 or simply the manual sample mean alone is recommended.

25

26 Keywords: Underwater imagery; Computer vision; Population estimation; Scallop; Geo-
27 graphically weighted regression

28 **1 Introduction**

29 Underwater optical surveys of fish and invertebrate populations are becoming increasingly
30 common (e.g., Davis et al., 1992; Gallager et al., 2005; Howland et al., 2006; Yoklavich et
31 al., 2007; Rosenkranz et al., 2008; Taylor et al., 2008; Tolimieri et al., 2008; Singh et al.,
32 2013; Gallager et al., 2014). Such surveys have numerous advantages over traditional surveys
33 using fishing gear, including being able to observe populations at all scales under natural
34 conditions, and detection efficiency that potentially approaches 100%.

35 Optical surveys often generate hundreds of thousands to millions of images. Manually
36 annotating all of the images (i.e., having people identifying the targets of interest in each
37 image) would thus often be impractical. The traditional statistical approach to this prob-
38 lem would be to only manually annotate a sample of the images and obtain inferences on
39 the population (which for our purposes is defined as the targets contained in all of the col-
40 lected images) based on the sample. Alternatively, computer vision software can produce
41 “automated annotations” that identify the targets in every image. However, automated an-
42 notators can make errors, both because they may not detect some targets (“false negatives”)
43 and because the annotator mistakenly identifies some objects (“distractors”) as targets when
44 they are not (“false positives”). Thus, analyses based on the raw automated counts can be
45 seriously biased. Errors from automated annotations are often autocorrelated and spatially
46 non-stationary due to, for example, a certain region having high densities of distractors or
47 reduced visibility. Manual annotations of a sample of the images can help detect and correct
48 for errors by the automated annotators, in which case the goal is to produce estimators for
49 the population, based on the combination of automated and manual annotations that are
50 more efficient than using the manual annotations alone (i.e., the variances of estimators are
51 less than the variance of the sample mean of the manual images), as well as being at least
52 approximately unbiased.

53 Although there have been numerous studies devoted to automated detection and classifi-
54 cation of marine organisms (e.g., Culverhouse et al., 2006; Marcos et al., 2008; Spampinato
55 et al., 2008; Beijbom et al., 2012), these studies usually conclude with estimating confusion
56 matrices or error rates. The final task of obtaining estimates of the population of targets in

57 all images from automated annotations that contain errors has received less attention. Sоловьев et al. (2001) considered the situation where classification of plankton samples may be in
58 error, which were corrected by inverting the confusion matrix (see also Hu and Davis, 2006;
59 Verikas et al., 2015). The problem they considered is simpler than the one we are considering
60 here because they were only concerned with classification of an object but not its detection,
61 and because errors were assumed to be stationary and not autocorrelated. Beijbom (2014)
62 analyzed what we have termed the offset estimator to bias-correct automated counts using
63 a random sample of manual annotations from a cost reduction point of view.

64 The purpose of this paper is to explore and compare performance of several methods
65 for estimating population abundance (or biomass) based on automated annotations of all
66 images combined with manual annotations of a random sample of the images. This study is
67 motivated by surveys of sea scallops (*Placopecten magellanicus*) using the HabCam (Habitat
68 Mapping Camera System) towed underwater camera system (Howland et al. 2006; Taylor et
69 al., 2008; NEFSC, 2014; see Figure 1 for an example of HabCam images of sea scallops and
70 sand dollars, a common distractor). Computer vision software for detecting sea scallops is
71 continuing to be developed (Dawkins et al., 2013; Kannappan et al., 2014; Gallager et al., un-
72 published). The U.S. sea scallop fishery has annual ex-vessel revenue averaging around \$500
73 million in recent years, so obtaining accurate and precise estimates of sea scallop abundance
74 is of immediate practical significance.

76 **2 Methods, Theory, and Calculation**

77 **2.1 Global Population Estimators**

78 We tested four different estimators of population size (i.e., the number of true targets in an
79 image set) based on a combination of manual and automated annotations. In the following,
80 it is assumed that each image has been annotated by software, but only a random sample
81 of n images out of a total of N images have been annotated manually, and the manual
82 annotations are without error (it is straightforward to extend the theory to cases where only
83 a sample has been annotated by software). Let X_i and Y_i be the number of targets detected

84 in the i th image by the automated and manual annotators, respectively.

Four global estimators for the total number of targets in the images, Z , are:

Manual sample only:
$$Z_m = \bar{Y}N \quad (1)$$

Ratio estimator:
$$Z_r = \mu_X N \frac{\bar{Y}}{\bar{X}} \quad (2)$$

Offset estimator:
$$Z_o = \sum_{i=1}^N X_i - \frac{N}{n} \sum_{j=1}^n (X_j - Y_j) \quad (3)$$

Regression estimator:
$$Z_g = \sum_{i=1}^N \alpha + \beta X_i \quad (4)$$

85 where \bar{X} and \bar{Y} are the mean number of targets detected by automated and human annota-
86 tors in the sample of images that have been manually annotated, μ_X is the mean number of
87 targets over all images detected by the automated annotator, and α and β in equation (4)
88 are the intercept and slope obtained by regressing the automated vs. manual annotations.
89 The last three methods can be considered as ways to adjust, or bias correct, the automated
90 counts based on the comparison between the automated and manual counts in the sample.
91 The ratio estimator adjusts the automated counts by a multiplicative constant, the offset es-
92 timator adjustment by an additive constant, and the regression estimator combines additive
93 (intercept) and multiplicative (slope) adjustments.

94 Although the ratio estimator (2) is biased, this bias is negligible for all the simulated
95 datasets because the coefficients of variation of \bar{X} and \bar{Y} are both smaller than 0.1 (Cochran,
96 1977), which should typically be the case because the sample sizes for both the automated
97 and manual annotations will usually be large. An approximate bias correction can be applied
98 if this is a concern. The Appendix derives analytically the conditions when the variance of the
99 ratio estimator applied to a random sample is lower than manual sampling alone. Beijbom
100 (2014) similarly gave analytic derivations of properties of the offset estimator of a random
101 sample.

102 2.2 Local Population Estimators

103 The automated annotator error rate may vary spatially, depending on factors such as water
104 clarity, substrate type, and the densities of targets and distractors. All these factors, and

105 therefore the automated annotator error rates, are typically spatially autocorrelated. If
 106 this is the case, it may be more efficient to bias-correct the automated annotations locally,
 107 rather than using a single global correction as in equations (1)-(4). In addition, the spatial
 108 distribution of the population is often of interest. If the error rates vary spatially, the
 109 correction for these errors also needs to vary accordingly to accurately reflect the actual
 110 distribution of the population.

111 For the local estimators, the correction factor is calculated for each data point, and the
 112 estimators are similar to the global estimators described above except that only data less
 113 than a distance, or “bandwidth”, h_j from the point j are used, and the data are weighted as
 114 a decreasing function of the distance from the target data point, using an adaptive bisquare
 115 distance decay kernel function:

$$w_{(j,k)} = \begin{cases} \left[1 - \left(\frac{d_{(j,k)}}{h_j}\right)^2\right]^2 & d_{(j,k)} \leq h_j \\ 0 & d_{(j,k)} > h_j, \end{cases} \quad (5)$$

116 where $w_{(j,k)}$ is the weighting factor of point k that is used to calculate the bias correction
 117 factor for point j , and $d_{(j,k)}$ is the distance between points j and k . The bandwidth is
 118 adapted to the density of the data; it is larger when data are sparser and smaller when
 119 data are denser. Even though the bandwidth may vary by location, the number of data
 120 points within the bandwidth is the same across locations. The bandwidth (or number of
 121 data points to be included at each location) is determined by minimizing the leave-one-out
 122 cross-validation squared error:

$$CV = \sum_{j=1}^n \left[Y_j - \hat{Y}_{\neq j}(h_j) \right]^2, \quad (6)$$

123 where $\hat{Y}_{\neq j}(h_j)$ is the fitted value of Y_j with the data points where point j is omitted from
 124 the estimation process (Guo et al., 2008).

125 The local method for the regression estimator is essentially a form of geographically
 126 weighted regression (GWR) that is used specifically for situations when the relationship be-
 127 tween variables differs across space (i.e., spatial non-stationarity and spatial autocorrelation;
 128 Brunsdon et al., 2008). Compared to standard (global) regression models where a single pa-

129 parameter set is estimated for the entire dataset, GWR estimates regression parameters that
130 vary for each data point based on data that is in the local neighborhood of that point.

131 2.3 Stratification

132 Population densities from underwater images are often “zero-inflated”, i. e., a high proportion
133 of photos contain no targets. In such a case, the images can be separated into two strata: one
134 where no targets were detected by the automated annotator, and the other where at least
135 one target is detected. Manual annotations are then allocated among the two strata based on
136 the automated annotations and their overall false negative rates, using approximate Neyman
137 optimal allocations. For this purpose, the standard deviation of the true target counts in
138 the zero stratum, s_0 , is: $\sqrt{Z_0 P_S (1 - P_S)}$, where Z_0 is the number of targets in the zero
139 stratum (i.e. the number of false negatives), P_S is the probability of detecting a target by
140 the automated annotator, and $1 - P_S$ is the probability of a false negative. In the simulation,
141 Z_0 and P_S are known, but in practice, they would have to be estimated either from previous
142 data or by obtaining a small sample of manual annotations prior to the allocation. The
143 standard deviation of targets in the non-zero stratum, s_1 , is approximated by the standard
144 deviation of the automated counts in this stratum. The Neyman optimal allocation is then:

$$n_m = \frac{n N_m s_m}{\sum_{m=0}^1 N_m s_m}, \quad (7)$$

145 where n is total number of manual sample size, and N_m is the total number of images in
146 stratum m .

147 2.4 Simulation Design

148 We tested the performance of the above methods using simulated data. The simulation
149 design is based on the US sea scallop population characteristics as observed by the HabCam
150 survey. The simulation domain is 70 km (longitude) by 140 km (latitude), with a 50 m
151 grid size, roughly corresponding to the density of annotated images in actual data sets. The
152 spatial distribution of sea scallops is non-stationary due to the influences of physical and
153 biological environment including current, depth, and predator distributions (Brand, 2006).

154 Therefore, we assumed that the simulated scallop population has large-scale smooth trends
 155 in its expected mean (first-order effect) that are added to a stationary autocorrelated random
 156 field (second-order effect; Cressie, 1993). We simulated the variations of global mean density
 157 using a double logistic function that is constant with latitude but varies with longitude:

$$p(l) = \begin{cases} \frac{1}{1 + \exp(-a(l - b))} & l \leq \frac{l_{max}}{2} \\ \frac{1}{1 + \exp(a(l - b - \frac{l_{max}}{2}))} & l > \frac{l_{max}}{2}, \end{cases} \quad (8)$$

158 where l is longitude, l_{max} is the maximum longitude in the surveyed area, and a and b are
 159 the parameters that determine the shape of the logistic curve. The simulated first-order
 160 effects are high in the middle and decrease logically toward the left and right edge of the
 161 simulation domain, which is typical of actual scallop distribution patterns (Hart, 2006). The
 162 second-order effects were simulated using stationary Gaussian random fields with a spherical
 163 isotropic covariance structure (Cressie, 1993):

$$\gamma(d) = \begin{cases} 0 & d = 0 \\ c_0 + c_1 \left\{ \frac{3}{2} \frac{d}{r} - \frac{1}{2} \left(\frac{d}{r} \right)^3 \right\} & 0 < d \leq r, \\ c_0 + c_1 & d \geq r \end{cases} \quad (9)$$

164 where c_0 , c_1 , and r are the nugget, partial sill, and range parameter, respectively. The
 165 nugget/sill (n/s) ratio ($\frac{c_0}{c_0 + c_1}$) determines randomness and r determines the aggregation
 166 size of the second-order effects. We chose the simulation parameter values based on estimates
 167 from the actual HabCam data.

168 To reflect the highly zero-inflated nature of scallop distributions, those locations where the
 169 sum of the first-order and second-order effects values were smaller than its 90th percentile
 170 were set to zero. The simulated scallops count for the remaining 10% is simply the sum
 171 of the first- and second-order effects (Figure 2). The resultant simulated data is patchy,
 172 zero-inflated, and has a large scale trend along one direction, consistent with actual scallop
 173 populations. The shape and direction of tracks used to survey the simulated population
 174 was designed to mimic the actual HabCam survey design, where more effort was put in the

175 middle high density area (Figure 2; NEFSC, 2014). A total of 9,001 photos were simulated
176 along the track (Figure 2).

177 False positives were simulated by using distractors. The two most common distractors
178 for sea scallops are sand dollars (*Echinarachnius parma*; Figure 1) and dead scallop shells
179 (Dawkins et al., 2013; Kannappan et al., 2014). The distribution of sand dollars are typically
180 independent or negatively correlated with scallops, whereas dead scallop shells would be
181 expected to be positively related to (live) scallops. The spatial distribution of distractors
182 were simulated similar to scallops, but the distractor's patches were assumed larger (larger
183 range) and less noisy (smaller n/s ratio) than the scallop target distribution, based on actual
184 observations of sand dollars (Figure 2).

185 Water visibility may affect automated annotation accuracy by reducing the probability
186 of detecting a target or a distractor. We simulated water visibility to be trendless but with
187 spatial autocorrelation. In other words, it is a random field with no first-order effect. It was
188 assumed to have the same noise level but larger patch size as the distractor (larger range;
189 Figure 2).

190 2.5 Simulation of Automated Count Data

191 The simulated manually annotated data are assumed to have no errors. For the computer
192 automated counts, each simulated target (S) and distractor (D) has a probability of being
193 detected as a target by the automated annotator:

$$P_S = (1 - F1_S)(1 - F2_S) \text{ and } P_D = 1 - (1 - F1_D)(1 - F2_D), \quad (10)$$

194 where the $F1_S$ and $F1_D$ are the probabilities of a false negative and false positive with good
195 water visibility, and $F2_S$ and $F2_D$ are the reduced probabilities of detecting targets and
196 distractors due to water visibility. In our simulations, it is assumed that $F2_S = F2_D$. The
197 simulated total number of targets reported by the automated annotator in the i th image is:

$$X_i = \sum_{m=1}^M (S_{im} + D_{im}), \quad (11)$$

198 where M is the total number of objects simulated within image i , S_{im} is the number of

199 correctly identified targets (true positives minus false negatives), and D_{im} is the number of
200 distractors incorrectly identified as targets (false positives).

201 2.6 Scenarios Tested

202 To understand whether the estimation methods are robust to changes in the environment,
203 species distributions and the capabilities of the automated annotator, we tested the perfor-
204 mance of these methods by varying the following quantities:

205 (1) Automated annotator's performance: probability of a false negative/positive ($F1_S$ and
206 $F1_D$) from 0 to 1 by 0.05;
207 (2) Water visibility: good, moderate, or poor (expected value of $F2 = 0, 0.05, 0.1$);
208 (3) Correlation between scallop and distractor distribution: negative, zero, or positive;
209 (4) Degree of spatial autocorrelation of distractors: low, medium, and high;
210 (5) Percent of total sample size that was annotated manually: 1%, 3%, 7%, 11%, and 15%.

211 A base case was selected where the water visibility is good, the correlation between the
212 spatial distribution of scallops and distractors is negative, the spatial autocorrelation of
213 distractors is medium, and manual annotations were performed on 7% of the photographs.
214 The base case was then varied for each of the attributes (2)-(5) individually, keeping the
215 other three at their base case values. Thus, a total of 14 scenarios were simulated. For each
216 choice of (2)-(5), $F1_S$ and $F1_D$ were varied from 0 to 1 by 0.05 increments, as specified in
217 (1).

218 For all scenarios, scallops have high densities in middle longitudes of the simulation do-
219 main (simulated using equation 8), and water visibility has no first-order effects. Distractors
220 have high first-oder effects on the left (which used only the second part of the equation 8 on
221 $l \leq \frac{l_{max}}{2}$ part of the simulation domain), except for the scenarios of zero and positive corre-
222 lations between scallop and distractor distribution where there are no effects or high effects
223 in the middle, respectively. The partial sill, n/s ratio, and range parameter used to simulate
224 second-order effects are 0.18, 0.6, and 200 for scallops, 0.18, 0.6, and 400 for distractors,
225 and 0.18, 0.6, and 600 for water visibility. For the scenarios where distractors have high
226 and low autocorrelation, the n/s ratio is 0.3 and 0.9, respectively. For the scenarios where

227 water visibility is moderate or poor, the effects of water visibility on the probability of a false
228 negative and false positive is one or two times, respectively, compared to the corresponding
229 scenarios of good water visibility.

230 For each scenario, the manual annotation subset was resampled 30 times. For each
231 iteration, we tested the combinations of the four estimators applied either globally or locally,
232 and using two strata or one stratum (unstratified) to allocate manual annotations, resulting
233 in 16 different estimation methods.

234 For stratified estimation, the ratio estimator is undefined in the zero stratum, so the mean
235 of the manual annotations in this stratum was used instead. Since the offset and regression
236 estimators reduce to simply taking the mean of the manual annotations in the zero stratum,
237 all four methods produce the same estimate in this stratum, so any differences among the
238 methods with stratification stem from the non-zero stratum.

239 **2.7 Field Data Analysis**

240 HabCam images from the US sea scallop survey (NEFSC, 2014) were used to illustrate
241 the usefulness of the methods discussed above on real data. For testing purposes, all the
242 images were annotated using computer vision software (Gallager et al., unpublished) and
243 also manually annotated, so that the estimates can be compared to their true values.

244 The automated annotator used a series of features including texture, color, and shape.
245 A kernel of 100 x 100 pixels was run through each image left to right, top to bottom,
246 extracting each feature set resulting in a feature vector of length 480 by width 3 (texture,
247 color, and shape). Texture features were extracted using a 2-dimensional Gabor wavelet
248 convolved with Gaussian kernels at 360 orientations for each pixel box providing rotational
249 independent texture features (Gallager and Tiwari, 2008). Color was extracted in L*A*B*
250 color space using the color angle approach, where the standard deviation of the gradient
251 between the pixel radius at 10 degree increments was extracted with 128 colors (Gallager
252 and Tiwari, 2008). For each kernel, a Canny edge detection algorithm was used followed by
253 extraction of Fourier shape descriptors. A Principal Component Analysis was run to reduce
254 data dimensionality from > 4000 to 128 principal components. Finally, a linear Support
255 Vector machine was trained on 3800 images containing scallops of various sizes as well as

256 images containing no scallops over varying substrate conditions. The result was a probability
257 of the presence of a scallop; a scallop was considered as detected if this probability was greater
258 than 90%.

259 One out of every 50 images collected were annotated manually as well as with software
260 (Table 1), and this collection of images served as the data for our analysis. Data from
261 three regions with various probability of a false negative were selected. The probability of
262 a false positive could not be defined for our datasets because number of possible distractors
263 for each image was not identified. For each region, the manual annotations from a 7%
264 random subset of the images were used for estimation along with automated annotations
265 from each image; error rates could therefore be assessed because each image in the datasets
266 were annotated manually, even though only a sample of the manual annotations were used
267 in the analysis. The manual annotation subset was resampled 2000 times, and the various
268 estimation methods were applied to each iteration.

269 In the field, factors such as vehicle altitude, depth, etc. may also influence the performance
270 of the estimators. We tested an additional method that included auxiliary variables in the
271 two-strata local regression:

$$Y_j = a_0(u_j, v_j) + a_1(u_j, v_j)X_j + \sum_{b=2}^5 a_b(u_j, v_j)A_{bj} + \epsilon_j \quad (12)$$

272 where (u_j, v_j) is the coordinates of point j and $a_b(u_j, v_j)$'s are the coefficients of variables A
273 including altitude, depth, squared depth, and latitude at location (u_j, v_j) point j .

274 2.8 Evaluation of Methods

275 For both simulation and field data analysis, mean squared error (MSE) and mean absolute
276 error (MAE) were used as the principal measures of precision and bias:

$$\text{MSE} = \frac{1}{K} \sqrt{\sum_{k=1}^K (Z_k - \mu)^2} \text{ and } \text{MAE} = \frac{1}{K} \sum_{k=1}^K |Z_k - \mu|, \quad (13)$$

277 where Z is the population estimates based on automated and manual annotations, μ is the
278 true population abundance, and K is the number of iterations. These were reported relative

279 to the global unstratified manual sample mean (M1G):

$$\text{MSE}_{\text{Re}} = \frac{\text{MSE} - \text{MSE}_{\text{M1G}}}{\text{MSE}_{\text{M1G}}} \text{ and } \text{MAE}_{\text{Re}} = \frac{\text{MAE} - \text{MAE}_{\text{M1G}}}{\text{MAE}_{\text{M1G}}}. \quad (14)$$

280 MAE and MSE both reflect precision as well as bias but MSE weights more on large errors
281 than small ones.

282 3 Results

283 3.1 Simulation Results

284 Combining automated and manual annotations using our methods increased precision of the
285 estimates over manual counts alone by up to a maximum of 73%, whereas using the uncor-
286 rected automated counts could decrease both accuracy and precision up to 717%, compared
287 to using manual counts only (Tables 2 and 3). Increasing the number of manual samples
288 increased the precision of all methods, but only by a modest amount (up to 15%).

289 In the base case, splitting the annotations into two strata was the most effective way of
290 improving estimation precision, except at very high false negative rates where stratification
291 degraded the estimates (Figures 3 and 4). When both false negative and false positive rates
292 are low, the use of automated data for stratification and/or estimation substantially improves
293 the precision and accuracy of the estimates regardless of the estimator used. Local models
294 were superior to global models only when stratification was employed. For one-stratum
295 allocation and when the probability of a false positive is high, the ratio and regression
296 estimator performed better, whereas the offset estimator was better when the probability
297 of a false negative is high but false positive rate is low. Similar patterns were observed for
298 the other scenarios tested, i.e., the performance of the bias correction methods we tested are
299 robust to changes in the environment and species distributions.

300 The probability of a false negative is the key factor determining the most effective bias
301 correction methods, regardless of the level of probability of a false positive (Tables 2-5).
302 When the probability of a false negative is low, nearly all the methods can improve the
303 accuracy and precision of the population estimates, but stratification with the local ratio or
304 the local regression estimator was generally superior. If the probability of false negatives is

305 high, no stratification with a simple global linear regression or manual sampling alone tended
306 to have the best performance. If in addition the false positive rate is low, the global offset
307 estimator also performs well.

308 **3.2 Field Data Analysis Results**

309 Results from the field data analysis were consistent with those from the simulations. Esti-
310 mations of the mean using automated annotations alone were 63% to 498% higher than the
311 simple manual sample mean (Table 1). For the region with low false negative rates (0.31), the
312 two-strata local regression without auxiliary variables and two-strata local ratio estimator
313 were superior; these increased precision over the simple manual sample mean by up to 51%
314 (Table 1). When the false negative rate was higher (0.73-0.75), global regression or simply
315 the manual sample mean were the best, with the global regression model improving precision
316 by at most 11% over the simple manual sample mean. The offset estimator performed better
317 than the ratio estimator in one case, likely because the false positive rate of this dataset is
318 low; however, this is not totally clear since the false positive rates were not available for all
319 of our field data. Auxiliary variables did not improve the performance of local regression for
320 these data.

321 **4 Discussion**

322 The results indicate that combining even a mediocre automated annotator with manual
323 annotations may be able to improve statistical efficiency over manual annotations alone when
324 using the methods presented here. The combination of automated and manual annotations
325 outperformed manual or (unadjusted) automated annotations alone, even when the false
326 positive and false negative rates were as high as 0.5. The results from both simulations and
327 field data analysis are consistent, and indicate that probability of a false negative is the
328 key factor determining the best estimation method. The probability of a false positive does
329 matter to some extent, especially when the probability of a false negative is higher, but even
330 in this case, it is not the main factor determining the best method.

331 Stratification based on zero and positive automated counts is the most effective technique

332 to improve precision except at very high false negative rates. Stratification directly improves
333 precision when the within-strata variance is less than the between strata variance (Cochran,
334 1977), which is likely to be the case for even a moderately effective automated annotator.
335 In addition, the allocation of manual samples between the two strata often further increases
336 performance by allocating disproportionately more manual samples to the more variable
337 stratum. Stratified estimates are in particular more precise at high false positive but low
338 false negative rates. The zero stratum has no false positives, and contains a limited number
339 of actual targets when the false negative rates are low. The zero stratum thus tends to have
340 a low variance, so the number of targets in this stratum can be estimated precisely by a
341 relatively small number of manual samples. This allows for higher sampling rates in the
342 non-zero stratum, increasing the precision there.

343 The simple two-strata stratification presented here is natural for zero-inflated data such
344 as in our examples. In some cases, more complex stratification may give further benefits. For
345 example, there could be three strata, composed of where the automated annotator detects
346 zero, one or more than one targets. We implicitly assumed for simplicity that the cost of a
347 manual annotation is the same in each stratum. In reality, the labor cost of annotating an
348 image tends to go up with the number of targets in the image. If this cost function is known,
349 it can be taken into account in the optimal allocation among strata (Cochran, 1977).

350 In real world situations, the false negative (and positive) rates may be uncertain. In such
351 cases, we recommend manually annotating a small sample of images to roughly estimate
352 this rate, and select the manual sampling strategy (e.g., stratification scheme) and estimator
353 based on this information. The optimal strategy is fairly robust to modest changes in the
354 automated annotator error rates, so only a crude estimate of the false negative rates is needed
355 to design a sampling strategy.

356 The offset estimator, by its definition, can account for errors that are independent of the
357 target density, but less efficient in tracking errors that vary with the targets. Conversely, the
358 ratio estimator is more effective without stratification when there are false negatives but few
359 false positives (Figures 3 and 4), because the ratio estimator can take into account errors
360 that are proportional to the target density. The precision of the ratio estimator depends on
361 the correlation between automated and true counts (see Appendix); false positives directly

362 reduce this correlation.

363 In principle, the regression estimator should be able to account for both these types of
364 errors, but it has the disadvantage of having two parameters that can be confounded with
365 each other, especially at low sample sizes and when the data are zero-inflated. For stratified
366 local regressions, the manual sample size used to estimate the regression parameters at each
367 location is low, and might be one of the reasons why its performance is slightly lower than the
368 stratified local ratio estimator. The difference in performance of stratified local regression
369 estimator and stratified local ratio estimator was larger when the manual sample size is only
370 1% and became smaller as the manual sample size increased (Tables 2 and 3).

371 There are nonetheless some advantages of regression methods. For example, multiple
372 regression can be used if there is more than one automated annotator available, using counts
373 from each automated annotator as predictors. Even though in our example field data it
374 was not effective, auxiliary variables such as water depth, latitude, or substrate type may
375 sometimes also be useful as predictors in a multiple regression.

376 Local estimation methods can improve estimates when the distribution of targets or
377 errors is autocorrelated. In particular, false positives induced by distractors such as sand
378 dollars and dead scallop shells are typically autocorrelated. False negative rates could be in
379 some cases also autocorrelated (caused by e.g., poor visibility), but this would normally be
380 a weaker effect than false positives if it exists at all. Stratification isolates the false positives
381 in one stratum, which may be the reason that it enhances the effectiveness of using local
382 estimation methods. The benefits of local estimation methods are however minor compared
383 to stratification, even in the presence of substantial autocorrelation.

384 Although computer vision methods are rapidly improving, it is unlikely that automated
385 detection of underwater organisms will be error free in the foreseeable future. Many marine
386 organisms are cryptic, and can adjust their pattern and coloration to match their surround-
387 ings, thus making it difficult to totally eliminate false negatives. For scallops in particular,
388 false negatives can be caused by colonization of their shell by epifauna or the shell being
389 covered by marine snow or sediments. In addition, a small percentage (~5-10%) of sea
390 scallops are “albinos”, with white upper shells, that are difficult to distinguish from dead
391 scallop shells. While we believe that the false positives induced by sand dollars can be

392 reduced considerably compared to present methods, it is also unlikely that false positives
393 can be completely eliminated (for example, it is sometimes difficult to distinguish a dead
394 scallop shell from a live scallop). Thus, combining automated and manual annotations using
395 the methods described here is likely to continue to be an improvement over using either
396 automated or manual annotations alone.

397 While we have focused on automated annotations of marine organisms, our methods are
398 applicable to a much wider set of problems. For example, our methods could be employed
399 whenever there are at least two observers counting the same things, one of whom is an
400 expert (or is a reference collection) who is considered error free but only observes a sample.
401 Annotations using crowd-sourcing (Simpson et al., 2014) may be subject to higher error rates
402 than those done by experts, which can be corrected using the techniques presented here.
403 Our methods also are applicable to automated or crowd-sourced annotations of a variety
404 of targets beyond those underwater, such as targets from aerial photography, surveillance
405 cameras, medical imaging and testing, and industrial quality control.

406 5 Acknowledgements

407 We thank Chris Legault and two anonymous reviewers for their constructive comments.
408 The research was supported in part by funding from the NOAA Automated Image Analysis
409 Strategic Initiative.

410 References

411 Bejbom, O. 2014. Random Sampling in an Age of Automation: Minimizing Expenditures
412 through Balanced Collection and Annotation. arXiv preprint arXiv:1410.7074.
413
414 Bejbom, O., Edmunds, P.J., Kline, D., Mitchell, B.G., Kriegman, D., 2012. Automated
415 annotation of coral reef survey images. IEEE Conference In Computer Vision and Pattern
416 Recognition (CVPR), p. 1170-1177.

417

418 Brand, A.R., 2006. Scallop ecology: distributions and behavior. In: *Scallops: Biology, Ecol-*
419 *ogy, and Aquaculture*, Elsevier, Amsterdam, p. 651-744.

420

421 Brunsdon, C., Fotheringham, A.S., and Charlton, M., 2008. Geographically weighted re-
422 gression: a method for exploring spatial nonstationarity. *Encyclopedia of Geographic Infor-*
423 *mation Science*, 558.

424

425 Culverhouse, P.F., Williams, R., Benfield, M., Flood, P. R., Sell, A.F., Mazzocchi, M.G.,
426 Buttino, I. Sieracki, M., 2006. Automatic image analysis of plankton: Future perspectives.
427 *Mar. Ecol. Prog. Ser.* 312, 297-309.

428

429 Cochran, W.G., 1977. *Sampling Techniques*: 3rd Ed., Wiley, New York.

430

431 Cressie, N.A.C., 1993. *Statistics for Spatial Data*, revised edition. Wiley, New York.

432

433 Davis, C.S., Gallager, S.M., Solow, A.R., 1992. Microaggregations of oceanic plankton ob-
434 served by towed video microscopy. *Science* 257(5067), 230-232.

435

436 Dawkins, M., Stewart, C., Gallager, S., York, A., 2013. Automatic scallop detection in ben-
437 thic environments, 2013 IEEE Workshop on Applications of Computer Vision (WACV), p.
438 160-167.

439

440 Gallager, S.M., Singh, H., Tiwari, S., Howland, J., Rago, P., Overholtz, W., Taylor, R.,
441 Vine, N., 2005. High resolution underwater imaging and image processing for identifying
442 essential fish habitat. Report of the National Marine Fisheries Service Workshop on Under-
443 water Video analysis. DA Somerton and CT Glendill (eds) NOAA Technical Memorandum
444 NMFS-F/SPO-68. p. 44-54.

445

446 Gallager, S.M., Tiwari, S., 2008. Optical method and system for rapid identification of
447 multiple refractive index materials using multiscale texture and color invariants. US patent

448 Number 7,415,136.

449

450 Gallager, S.M., Nordahl, V., Godlewski, J.M., 2014. The habitat mapping camera system
451 (HabCam). Proceedings of the Undersea Imaging Workshop. R Langton and P Rowe, Eds.

452

453 Gallager, S.M., Honig, P., York, A.D, Hart D.R., Unpublished. Automated detection and
454 classification of benthic fauna along the US Northeast Continental Shelf. Unpublished Re-
455 sults.

456

457 Guo, L., Ma, Z., Zhang, L., 2008. Comparison of bandwidth selection in application of geo-
458 graphically weighted regression: a case study. Can. J. Fish. Aquat. Sci. 38(9), 2526-2534.

459

460 Hart, D.R., 2006. Effects of sea stars and crabs on sea scallop (*Placopecten magellanicus*)
461 recruitment in the Mid-Atlantic Bight. Mar. Ecol. Prog. Ser. 306, 209-221.

462

463 Howland, J., Gallager, S.M., Singh Girard, H., Abrams, L., Griner, C., 2006. Development
464 of a towed, ocean bottom survey camera system for deployment by the fishing industry.
465 IEEE Oceans p. 1-10.

466

467 Hu, Q., Davis, C.S., 2006. Accurate automatic quantification of taxa-specific plankton abun-
468 dance using dual classification with correction. Mar. Ecol. Prog. Ser. 306, 51-61.

469

470 Kannappan, P., Walker, J.H., Trembanis, A., Tanner, H.G., 2014. Identifying sea scallops
471 from benthic camera images. Limnol. Oceanogr.: Methods 12, 680-693.

472

473 Marcos, M.S.A., David, L., Peñaflor, E., Ticzon, V., Soriano, M., 2008. Automated benthic
474 counting of living and non-living components in Ngedarrak Reef, Palau via subsurface un-
475 derwater video. Environ. Monit. Assess. 145(1-3), 177-184.

476

477 Northeast Fisheries Science Center [NEFSC]. 2014. 59th Northeast Regional Stock Assess-

478 ment Workshop: Assessment Report. Northeast Fisheries Science Center Reference Docu-
479 ment 14-09.

480

481 Rosenkranz, G.E., Gallager, S.M., Shepard, R.W., Blakesleed, M., 2008. Development of a
482 high-speed, megapixel benthic imaging system for coastal fisheries research in Alaska. Fish.
483 Res. 92, 340–344.

484

485 Simpson, R., Page, K.R., De Roure, D., 2014. Zooniverse: observing the world's largest
486 citizen science platform. In: Proceedings of the companion publication of the 23rd inter-
487 national conference on the World Wide Web International World Wide Web Conferences
488 Steering Committee, p. 1049-1054.

489

490 Singh, W., Örnólfssdóttir, E.B., Stefansson, G., 2013. A camera-based autonomous underwa-
491 ter vehicle sampling approach to quantify scallop abundance. J. Shellfish Res. 32(3),725-732.

492

493 Solow, A., Davis C., Hu, Q., 2001. Estimating the taxonomic composition of a sample when
494 individuals are classified with error. Mar. Ecol. Prog. Ser. 216, 309-311.

495

496 Spampinato, C., Chen-Burger, Y.H., Nadarajan, G., Fisher, R.B. 2008. Detecting, tracking
497 and counting fish in low quality unconstrained underwater videos. VISAPP (2), 2008, 514-
498 519.

499

500 Taylor, R., Vine, N., York, A., Lerner, S., Hart, D., Howland, J., Prasad, L., Mayer, L.,
501 Gallager, S., 2008. Evolution of a benthic imaging system from a towed camera to an auto-
502 mated habitat characterization system. IEEE Oceans p. 1-7.

503

504 Tolimieri, N., Clarke, M.E., Singh, H., Goldfinger, C. 2008. In: Reynolds, J.R. and Greene,
505 H.G. (eds.), 2008. Marine Habitat Mapping Technology for Alaska, Alaska Sea Grant Col-
506 lege Program, University of Alaska Fairbanks.

507

508 Verikas, A., Gelzinis, A., Bacauskiene, M., Olenina, I., Vaiciukynas, E., 2015. An Integrated
509 Approach to Analysis of Phytoplankton Images. IEEE J. Ocean. Eng. 40(2), 315-326.

510

511 Yoklavich, M.M., Love, M.S., Forney, K.A. 2007. A fishery-independent assessment of an
512 overfished rockfish stock, cowcod (*Sebastodes levis*), using direct observations from an occupied
513 submersible. Can. J. Fish. Aquat. Sci. 64(12), 1795-1804.

514

Table 1: Relative mean squared error (MSE_{Re}) and relative mean absolute error (MAE_{Re}) for each estimator, using unstratified (one-stratum) or two strata estimation, and either local or global estimation for three sets of actual HabCam field data. Error rates are relative to the global unstratified manual mean, which is used as a baseline. “AUTO” represents MSE_{Re} or MAE_{Re} calculated using only the automated annotations. “L+Var” represents local regression with auxiliary variables. The dark and light grey-shaded entries represent the best and second best method, respectively.

Sample	False	Stat	Auto	Manual Mean				Ratio Est.				Offset Est.				Regression Est.						
				One-stratum		Two-strata		One-stratum		Two-strata		One-stratum		Two-strata		One-stratum		Two-strata				
				Size	Negative	Global	Local	Global	Local	Global	Local	Global	Local	Global	Local	Global	Local	Global	L+Var			
5057	0.31	MSE _{Re}	1.68		0	-0.06	-0.04	-0.21		-0.07	-0.31	-0.09	-0.50	-0.02	0.01	-0.02	-0.19	-0.07	-0.26	-0.10	-0.51	-0.04
		MAE _{Re}	0.78		0	-0.03	-0.02	-0.11		-0.04	-0.16	-0.04	-0.29	-0.01	0.01	-0.00	-0.10	-0.04	-0.14	-0.05	-0.31	-0.08
9610	0.73	MSE _{Re}	4.98		0	0.04	-0.04	0.02		-0.06	-0.01	-0.03	0.03	-0.10	-0.05	-0.04	0.02	-0.11	-0.07	-0.03	0.03	0.05
		MAE _{Re}	1.68		0	0.01	-0.02	0.01		-0.03	-0.01	-0.01	0.01	-0.06	-0.03	-0.02	0.01	-0.06	-0.04	-0.02	0.01	0.01
14856	0.75	MSE _{Re}	1.25		0	0.71	0.37	0.16		0.28	2.06	0.89	0.55	0.40	1.90	1.16	1.61	-0.00	0.93	0.37	0.07	0.04
		MAE _{Re}	0.63		0	0.36	0.17	0.07		0.13	0.88	0.37	0.26	0.18	0.75	0.47	0.62	-0.00	0.47	0.17	0.03	0.02

Table 2: Relative mean squared error (MSE_{Re} , using the global unstratified manual mean as the baseline method) for the five scenarios by types of statistics (M: manual sample mean, Ra: ratio estimator, O: offset estimator, and Re: regression estimator), using global (G) or local (L), and one-stratum (1) or two-strata (2) estimation, along with MSE_{Re} calculated using only the automated annotations (AUTO). For each scenario, the cell outlined in bold is the best method.

Scenarios		Estimators																	
		AUTO	M1G	M1L	M2G	M2L	Ra1G	Ra1L	Ra2G	Ra2L	O1G	O1L	O2G	O2L	Re1G	Re1L	Re2G	Re2L	
S2: Good Vis.	0.5	0	0.5	-0.24	-0.17	-0.5	-0.5	-0.51	-0.6	-0.46	-0.35	-0.49	-0.49	-0.26	-0.25	-0.52	-0.58		
Mod.	0.53	0	0.51	-0.21	-0.14	-0.48	-0.48	-0.49	-0.57	-0.45	-0.32	-0.46	-0.47	-0.25	-0.24	-0.49	-0.56		
Poor	0.51	0	0.52	-0.2	-0.13	-0.48	-0.48	-0.48	-0.55	-0.44	-0.32	-0.46	-0.46	-0.26	-0.24	-0.48	-0.54		
S3: Neg. Cor.	1.57	0	0.5	-0.35	-0.31	-0.17	-0.22	-0.34	-0.58	0	0.1	-0.26	-0.24	-0.11	-0.12	-0.36	-0.57		
Pos.	2.66	0	0.51	-0.42	-0.37	-0.07	-0.17	-0.37	-0.57	0.27	0.28	-0.18	-0.19	-0.09	-0.1	-0.43	-0.55		
None	1.88	0	0.49	-0.33	-0.3	-0.15	-0.2	-0.31	-0.56	0.04	0.15	-0.2	-0.2	-0.09	-0.1	-0.34	-0.56		
S4: High Autocor.	0.67	0	0.49	-0.21	-0.25	-0.5	-0.56	-0.51	-0.72	-0.47	-0.18	-0.5	-0.59	-0.15	-0.27	-0.52	-0.7	S1: F1S<=0.5 & F1D<=0.5	
Medium	0.5	0	0.5	-0.24	-0.17	-0.5	-0.5	-0.51	-0.6	-0.46	-0.35	-0.49	-0.49	-0.26	-0.25	-0.52	-0.58		
Low	0.38	0	0.53	-0.24	-0.09	-0.51	-0.42	-0.53	-0.54	-0.47	-0.33	-0.51	-0.48	-0.28	-0.16	-0.53	-0.52		
S5: M/T 1%	-0.44	0	0.27	-0.22	-0.13	-0.49	-0.44	-0.51	-0.5	-0.47	-0.4	-0.5	-0.44	-0.41	-0.39	-0.4	-0.36		
3%	-0.05	0	0.34	-0.23	-0.16	-0.52	-0.52	-0.53	-0.56	-0.49	-0.41	-0.51	-0.48	-0.37	-0.37	-0.53	-0.54		
7%	0.5	0	0.5	-0.24	-0.17	-0.5	-0.5	-0.51	-0.6	-0.46	-0.35	-0.49	-0.49	-0.26	-0.25	-0.52	-0.58		
11%	0.91	0	0.61	-0.26	-0.2	-0.52	-0.49	-0.54	-0.65	-0.48	-0.32	-0.52	-0.54	-0.18	-0.16	-0.54	-0.63		
15%	1.3	0	0.52	-0.25	-0.16	-0.5	-0.47	-0.52	-0.67	-0.46	-0.36	-0.5	-0.55	-0.09	-0.13	-0.52	-0.66		
S2: Good Vis.	3.97	0	0.5	-0.31	-0.31	-0.14	-0.18	-0.29	-0.56	0.14	0.25	-0.12	-0.18	-0.1	-0.07	-0.33	-0.54		
Mod.	3.6	0	0.51	-0.3	-0.29	-0.13	-0.18	-0.29	-0.55	0.13	0.23	-0.14	-0.18	-0.1	-0.08	-0.32	-0.54		
Poor	3.61	0	0.5	-0.27	-0.26	-0.15	-0.19	-0.25	-0.54	0.11	0.23	-0.09	-0.17	-0.1	-0.08	-0.28	-0.52		
S3: Neg. Cor.	4.83	0	0.51	-0.36	-0.36	-0.08	-0.14	-0.31	-0.59	0.32	0.44	-0.06	-0.1	-0.09	-0.08	-0.37	-0.59		
Pos.	8.57	0	0.5	-0.47	-0.4	0.02	0	-0.36	-0.53	0.96	1.17	0.13	0.03	-0.06	-0.05	-0.47	-0.53		
None	5.32	0	0.49	-0.36	-0.36	-0.06	-0.11	-0.31	-0.59	0.38	0.49	-0.05	-0.09	-0.06	-0.05	-0.36	-0.58		
S4: High Autocor.	5.05	0	0.5	-0.27	-0.31	-0.13	-0.37	-0.27	-0.73	0.18	0.79	-0.1	-0.32	-0.08	-0.31	-0.29	-0.72		
Medium	3.97	0	0.5	-0.31	-0.31	-0.14	-0.18	-0.29	-0.56	0.14	0.25	-0.12	-0.18	-0.1	-0.07	-0.33	-0.54		
Low	3.83	0	0.51	-0.32	-0.25	-0.12	-0.02	-0.3	-0.45	0.19	0.31	-0.13	-0.2	-0.11	0.11	-0.35	-0.41		
S5: M/T 1%	0.97	0	0.27	-0.3	-0.23	-0.09	-0.04	-0.28	-0.3	0.21	0.33	-0.09	0.03	0.03	0.06	-0.26	-0.27		
3%	2.48	0	0.34	-0.3	-0.26	-0.1	-0.11	-0.27	-0.42	0.24	0.32	-0.08	-0.04	-0.04	-0.03	-0.29	-0.41		
7%	3.97	0	0.5	-0.31	-0.31	-0.14	-0.18	-0.29	-0.56	0.14	0.25	-0.12	-0.18	-0.1	-0.07	-0.33	-0.54		
11%	5.87	0	0.59	-0.32	-0.32	-0.12	-0.21	-0.3	-0.63	0.19	0.36	-0.11	-0.23	-0.11	-0.1	-0.34	-0.62		
15%	7.17	0	0.51	-0.34	-0.31	-0.13	-0.29	-0.32	-0.67	0.19	0.27	-0.15	-0.26	-0.12	-0.16	-0.36	-0.65		
S2: Good Vis.	1.33	0	0.51	0.68	0.86	-0.05	2	0.68	0.81	-0.12	0.26	0.66	0.85	-0.18	-0.03	0.63	0.85	S1: F1S>0.5 & F1D<=0.5	
Mod.	1.11	0	0.5	0.74	0.91	-0.1	-0.07	0.73	0.88	-0.14	0.2	0.69	0.87	-0.18	-0.04	0.73	0.92		
Poor	1.13	0	0.53	0.77	0.94	-0.07	-0.04	0.73	0.9	-0.12	0.24	0.7	0.89	-0.17	-0.02	0.7	0.91		
S3: Neg. Cor.	0.19	0	0.51	0.14	0.23	0.45	1.2	0.56	0.48	0.26	0.58	0.61	0.81	0.02	0.18	0.22	0.33	S1: F1S>0.5 & F1D>0.5	
Pos.	0.7	0	0.52	0	0.09	0.49	0.36	0.41	0.37	0.46	0.59	0.66	0.63	0.03	0.22	0.05	0.19		
None	0.19	0	0.52	0.2	0.29	0.45	0.46	0.59	0.51	0.29	0.63	0.67	0.88	0.02	0.18	0.28	0.39		
S4: High Autocor.	1.44	0	0.52	0.73	0.72	0.03	0.92	0.72	0.6	-0.08	0.55	0.73	0.7	-0.14	-0.13	0.66	0.63		
Medium	1.33	0	0.51	0.68	0.86	-0.05	2	0.68	0.81	-0.12	0.26	0.66	0.85	-0.18	-0.03	0.63	0.85		
Low	1.75	0	0.51	0.68	0.92	0.1	0.58	0.7	0.97	-0.08	0.33	0.68	0.86	-0.16	0.13	0.6	0.93		
S5: M/T 1%	-0.01	0	0.27	0.7	0.77	0.41	21.23	0.89	0.96	-0.08	0.13	0.72	0.73	-0.07	0.07	0.7	0.77		
3%	0.68	0	0.33	0.67	0.85	0.12	46.59	0.71	0.89	-0.07	0.17	0.66	0.84	-0.14	-0.01	0.68	0.9		
7%	1.33	0	0.51	0.68	0.86	-0.05	2	0.68	0.81	-0.12	0.26	0.66	0.85	-0.18	-0.03	0.63	0.85		
11%	2.36	0	0.62	0.78	0.95	0.07	0.08	0.73	0.8	-0.08	0.44	0.76	0.93	-0.16	0.04	0.66	0.82		
15%	2.88	0	0.49	0.67	0.83	0.06	0.68	0.67	0.7	-0.09	0.26	0.68	0.81	-0.17	-0.04	0.59	0.69		
S2: Good Vis.	1.06	0	0.51	0.24	0.3	0.23	0.2	0.54	0.52	0.37	0.72	0.83	1.01	-0.01	0.18	0.25	0.37		
Mod.	0.89	0	0.52	0.32	0.41	0.19	0.14	0.6	0.57	0.32	0.64	0.86	1.05	-0.01	0.14	0.36	0.47		
Poor	0.88	0	0.51	0.29	0.38	0.18	0.13	0.6	0.58	0.29	0.63	0.89	1.11	-0.01	0.14	0.33	0.45		
S3: Neg. Cor.	1.62	0	0.51	0.08	0.15	0.32	1.37	0.41	0.37	0.53	0.9	0.79	0.96	0	0.25	0.09	0.24		
Pos.	5.35	0	0.52	-0.06	-0.01	0.34	0.33	0.19	0.24	1.08	1.26	0.88	0.87	0	0.3	-0.06	0.07		
None	2.11	0	0.52	0.09	0.15	0.3	0.24	0.41	0.37	0.57	0.92	0.85	1	-0.01	0.26	0.09	0.24		
S4: High Autocor.	1.84	0	0.52	0.21	0.1	0.18	2.02	0.47	0.24	0.37	1.39	0.8	0.62	-0.01	0.18	0.25	0.37		
Medium	1.06	0	0.51	0.24	0.3	0.23	0.2	0.54	0.52	0.37	0.72	0.83	1.01	-0.01	0.18	0.25	0.37		
Low	0.78	0	0.53	0.15	0.3	0.32	0.64	0.45	0.74	0.43	0.84	0.74	0.84	0	0.44	0.15	0.45		
S5: M/T 1%	-0.19	0	0.28	0.19	0.32	0.78	1.89	0.76	1.13	0.44	0.67	0.82	1.1	0.19	0.47	0.22	0.39		
3%	0.38	0	0.32	0.16	0.24	0.35	0.43	0.46	0.55	0.42	0.65	0.71	0.92	0.03	0.18	0.22	0.44		
7%	1.06	0	0.51	0.24	0.3	0.23	0.2	0.54	0.52	0.37	0.72	0.83	1.01	-0.01	0.18	0.25	0.37		
11%	1.89	0	0.63	0.21	0.28	0.28	0.24	0.49	0.41	0.44	0.98	0.82	0.91	-0.01	0.24	0.22	0.33		
15%	2.36	0	0.49	0.19	0.2	0.28	0.5	0.46	0.32	0.44	0.72	0.81	0.82	-0.01	0.14	0.19	0.26		

Table 3: Relative mean absolute error (MAE_{re}, using the global manual mean as the baseline method) for the five scenarios by type of estimators. See Table 2 for explanations of the notations.

Scenarios	S1: F1S<0.5 & F1D>0.5																	
	AUTO	M1G	M1L	M2G	M2L	Ra1G	Ra1L	Ra2G	Ra2L	O1G	O1L	O2G	O2L	Re1G	Re1L	Re2G	Re2L	
S2: Good Vis.	0.27	0	0.22	-0.15	-0.11	-0.31	-0.31	-0.34	-0.42	-0.29	-0.21	-0.33	-0.34	-0.14	-0.13	-0.35	-0.41	
Mod.	0.28	0	0.23	-0.13	-0.1	-0.3	-0.29	-0.32	-0.4	-0.28	-0.19	-0.31	-0.32	-0.14	-0.12	-0.33	-0.39	
Poor	0.27	0	0.23	-0.13	-0.09	-0.3	-0.29	-0.32	-0.38	-0.27	-0.19	-0.3	-0.31	-0.14	-0.13	-0.32	-0.38	
S3: Neg. Cor.	0.71	0	0.22	-0.21	-0.18	-0.09	-0.11	-0.21	-0.39	0	0.06	-0.15	-0.15	-0.06	-0.08	-0.22	-0.38	
Pos.	1.03	0	0.23	-0.25	-0.21	-0.04	-0.09	-0.22	-0.37	0.11	0.12	-0.12	-0.12	-0.05	-0.05	-0.26	-0.35	
None	0.82	0	0.22	-0.2	-0.17	-0.08	-0.11	-0.19	-0.38	0.02	0.07	-0.13	-0.13	-0.06	-0.07	-0.21	-0.37	
S4: High Autocor.	0.33	0	0.22	-0.14	-0.15	-0.31	-0.35	-0.34	-0.51	-0.3	-0.1	-0.33	-0.4	-0.07	-0.13	-0.35	-0.5	
Medium	0.27	0	0.22	-0.15	-0.11	-0.31	-0.31	-0.34	-0.42	-0.29	-0.21	-0.33	-0.34	-0.14	-0.13	-0.35	-0.41	
Low	0.21	0	0.24	-0.15	-0.07	-0.32	-0.25	-0.36	-0.37	-0.29	-0.2	-0.34	-0.33	-0.16	-0.07	-0.36	-0.36	
S5: M/T 1%	-0.23	0	0.11	-0.13	-0.09	-0.31	-0.27	-0.34	-0.33	-0.29	-0.24	-0.33	-0.3	-0.24	-0.23	-0.28	-0.26	
3%	0.01	0	0.15	-0.14	-0.11	-0.33	-0.32	-0.35	-0.38	-0.3	-0.25	-0.33	-0.32	-0.21	-0.21	-0.35	-0.37	
7%	0.27	0	0.22	-0.15	-0.11	-0.31	-0.31	-0.34	-0.42	-0.29	-0.21	-0.33	-0.34	-0.14	-0.13	-0.35	-0.41	
11%	0.42	0	0.28	-0.18	-0.13	-0.33	-0.3	-0.37	-0.46	-0.3	-0.19	-0.36	-0.37	-0.09	-0.07	-0.37	-0.46	
15%	0.57	0	0.24	-0.17	-0.09	-0.31	-0.28	-0.36	-0.46	-0.29	-0.22	-0.35	-0.38	-0.04	-0.05	-0.36	-0.47	
S2: Good Vis.	1.46	0	0.22	-0.18	-0.18	-0.07	-0.1	-0.18	-0.38	0.07	0.12	-0.08	-0.12	-0.05	-0.04	-0.19	-0.36	
Mod.	1.37	0	0.22	-0.18	-0.17	-0.07	-0.1	-0.18	-0.37	0.06	0.11	-0.09	-0.12	-0.06	-0.05	-0.19	-0.36	
Poor	1.37	0	0.22	-0.16	-0.16	-0.08	-0.11	-0.16	-0.37	0.05	0.11	-0.07	-0.12	-0.06	-0.05	-0.18	-0.35	
S3: Neg. Cor.	1.67	0	0.23	-0.21	-0.21	-0.05	-0.08	-0.18	-0.4	0.15	0.2	-0.05	-0.08	-0.05	-0.04	-0.22	-0.39	
Pos.	2.42	0	0.22	-0.28	-0.24	0.01	0	-0.21	-0.34	0.39	0.45	0.04	-0.01	-0.04	-0.03	-0.28	-0.33	
None	1.8	0	0.22	-0.21	-0.21	-0.03	-0.07	-0.18	-0.4	0.17	0.22	-0.04	-0.07	-0.04	-0.03	-0.21	-0.39	
S4: High Autocor.	1.72	0	0.23	-0.16	-0.18	-0.07	-0.21	-0.17	-0.51	0.08	0.39	-0.07	-0.19	-0.04	-0.17	-0.18	-0.51	
Medium	1.46	0	0.22	-0.18	-0.18	-0.07	-0.1	-0.18	-0.38	0.07	0.12	-0.08	-0.12	-0.05	-0.04	-0.19	-0.36	
Low	1.41	0	0.23	-0.19	-0.14	-0.07	-0.01	-0.18	-0.3	0.08	0.15	-0.09	-0.13	-0.06	0.06	-0.21	-0.27	
S5: M/T 1%	0.56	0	0.11	-0.17	-0.13	-0.04	-0.02	-0.16	-0.19	0.1	0.15	-0.06	-0.01	0.01	0.03	-0.16	-0.17	
3%	1.06	0	0.14	-0.17	-0.16	-0.05	-0.06	-0.16	-0.28	0.11	0.15	-0.06	-0.05	-0.03	-0.02	-0.17	-0.28	
7%	1.46	0	0.22	-0.18	-0.18	-0.07	-0.1	-0.18	-0.38	0.07	0.12	-0.08	-0.12	-0.05	-0.04	-0.19	-0.36	
11%	1.89	0	0.27	-0.19	-0.18	-0.07	-0.11	-0.18	-0.43	0.09	0.17	-0.08	-0.14	-0.06	-0.05	-0.21	-0.41	
15%	2.17	0	0.25	-0.21	-0.17	-0.07	-0.15	-0.2	-0.45	0.09	0.13	-0.1	-0.15	-0.06	-0.08	-0.23	-0.44	
S2: Good Vis.	0.59	0	0.23	0.29	0.35	-0.04	0.03	0.27	0.31	-0.07	0.12	0.27	0.34	-0.1	-0.02	0.26	0.32	
Mod.	0.51	0	0.23	0.32	0.37	-0.06	-0.05	0.3	0.34	-0.07	0.1	0.3	0.35	-0.1	-0.03	0.3	0.35	
Poor	0.51	0	0.24	0.32	0.38	-0.05	-0.03	0.3	0.35	-0.06	0.11	0.29	0.36	-0.09	-0.01	0.29	0.36	
S3: Neg. Cor.	0.14	0	0.23	0.07	0.11	0.19	0.18	0.23	0.2	0.12	0.26	0.26	0.33	0.01	0.08	0.1	0.14	
Pos.	0.36	0	0.24	0	0.04	0.21	0.15	0.18	0.15	0.2	0.26	0.27	0.26	0.01	0.1	0.02	0.07	
None	0.12	0	0.23	0.09	0.13	0.19	0.14	0.24	0.21	0.13	0.28	0.28	0.36	0.01	0.08	0.11	0.15	
S4: High Autocor.	0.62	0	0.23	0.3	0.29	-0.02	0.03	0.29	0.22	-0.05	0.26	0.3	0.28	-0.08	-0.08	0.27	0.24	
Medium	0.59	0	0.23	0.29	0.35	-0.04	0.03	0.27	0.31	-0.07	0.12	0.27	0.34	-0.1	-0.02	0.26	0.32	
Low	0.76	0	0.23	0.28	0.36	0.02	0.13	0.28	0.36	-0.04	0.16	0.28	0.34	-0.09	0.06	0.25	0.34	
S5: M/T 1%	0.05	0	0.1	0.27	0.32	0.07	0.38	0.31	0.36	-0.04	0.05	0.28	0.29	-0.05	0	0.27	0.32	
3%	0.36	0	0.14	0.28	0.34	0.01	0.33	0.27	0.33	-0.04	0.07	0.27	0.33	-0.08	-0.03	0.28	0.34	
7%	0.59	0	0.23	0.29	0.35	-0.04	0.03	0.27	0.31	-0.07	0.12	0.27	0.34	-0.1	-0.02	0.26	0.32	
11%	0.94	0	0.3	0.32	0.38	0.01	0	0.3	0.32	-0.05	0.21	0.32	0.38	-0.09	0.02	0.27	0.32	
15%	1.07	0	0.23	0.29	0.34	-0.01	0.02	0.27	0.28	-0.05	0.13	0.28	0.33	-0.09	-0.02	0.25	0.27	
S2: Good Vis.	0.52	0	0.23	0.11	0.14	0.1	0.08	0.23	0.22	0.17	0.32	0.35	0.41	-0.01	0.08	0.12	0.16	
Mod.	0.48	0	0.23	0.15	0.18	0.08	0.06	0.25	0.25	0.15	0.29	0.36	0.43	-0.01	0.07	0.16	0.2	
Poor	0.47	0	0.23	0.13	0.16	0.07	0.05	0.25	0.24	0.13	0.28	0.37	0.43	-0.01	0.06	0.15	0.18	
S3: Neg. Cor.	0.74	0	0.22	0.04	0.06	0.13	0.16	0.17	0.15	0.23	0.38	0.33	0.39	0	0.11	0.04	0.09	
Pos.	1.8	0	0.24	-0.03	-0.01	0.15	0.16	0.08	0.1	0.45	0.51	0.37	0.36	0	0.14	-0.03	0.02	
None	0.92	0	0.24	0.04	0.07	0.13	0.1	0.18	0.15	0.25	0.4	0.36	0.41	0	0.12	0.04	0.1	
S4: High Autocor.	0.79	0	0.24	0.1	0.05	0.08	0.23	0.2	0.1	0.17	0.61	0.34	0.27	-0.01	-0.03	0.1	0.01	
Medium	0.52	0	0.23	0.11	0.14	0.1	0.08	0.23	0.22	0.17	0.32	0.35	0.41	-0.01	0.08	0.12	0.16	
Low	0.39	0	0.24	0.07	0.14	0.14	0.24	0.2	0.3	0.19	0.37	0.32	0.36	0	0.2	0.07	0.19	
S5: M/T 1%	-0.06	0	0.11	0.08	0.13	0.21	0.35	0.26	0.35	0.19	0.29	0.33	0.42	0.05	0.15	0.09	0.16	
3%	0.22	0	0.14	0.07	0.11	0.13	0.15	0.18	0.22	0.17	0.32	0.35	0.41	-0.01	0.08	0.12	0.16	
7%	0.52	0	0.23	0.11	0.14	0.1	0.08	0.23	0.22	0.17	0.32	0.35	0.41	-0.01	0.12	0.1	0.14	
11%	0.78	0	0.29	0.11	0.13	0.12	0.1	0.21	0.18	0.2	0.42	0.35	0.38	-0.01	0.12	0.1	0.14	
15%	0.92	0	0.23	0.09	0.09	0.12	0.11	0.2	0.14	0.2	0.32	0.34	0.34	-0.01	0.06	0.08	0.11	

S1: F1S>0.5 & F1D>0.5

Scenarios

Estimators

Scenarios

Table 4: Proportion of runs with the least mean square error (MSE) for the five scenarios by type of estimators. See Table 2 for explanations of the notations.

Scenarios	S1: $F1S < 0.5 \text{ & } F1D < 0.5$																	
	AUTO	M1G	M1L	M2G	M2L	Ra1G	Ra1L	Ra2G	Ra2L	O1G	O1L	O2G	O2L	Re1G	Re1L	Re2G	Re2L	
S2: Good Vis.	0.16	0	0	0	0	0.09	0.08	0.03	0.32	0.01	0	0.01	0	0.05	0	0.07	0.18	
Mod.	0.15	0	0	0	0	0.11	0.07	0.05	0.29	0.01	0	0	0.01	0.06	0	0.08	0.17	
Poor	0.13	0	0	0	0	0.1	0.07	0.03	0.26	0.02	0	0.02	0.02	0.05	0	0.12	0.18	
S3: Neg. Cor.	0.09	0	0	0.01	0.01	0	0.02	0	0.51	0	0	0	0	0.03	0	0.32		
Pos.	0.07	0.02	0	0.02	0	0	0	0	0.74	0	0	0	0	0.01	0.02	0.13		
None	0.07	0.01	0	0.02	0	0	0.01	0	0.45	0	0	0	0	0.02	0.01	0	0.41	
S4: High Autocor.	0.1	0	0	0	0	0.08	0.07	0.02	0.37	0	0	0.01	0	0.02	0	0.05	0.28	
Medium	0.16	0	0	0	0	0.09	0.08	0.03	0.32	0.01	0	0.01	0	0.05	0	0.07	0.18	
Low	0.15	0	0	0.02	0	0.16	0.01	0.07	0.28	0.02	0.01	0.02	0.04	0.07	0	0.12	0.03	
S5: M/T 1%	0.4	0	0	0	0	0.07	0	0.06	0.16	0.02	0	0.07	0.01	0.06	0.01	0.09	0.06	
3%	0.22	0	0	0	0	0.14	0.04	0.04	0.23	0.04	0	0.02	0.02	0.04	0	0.05	0.15	
7%	0.16	0	0	0	0	0.09	0.08	0.03	0.32	0.01	0	0.01	0	0.05	0	0.07	0.18	
11%	0.11	0	0	0	0	0.09	0.04	0.02	0.32	0.02	0	0.01	0.01	0.04	0	0.12	0.22	
15%	0.1	0	0	0.02	0	0.11	0.06	0.03	0.31	0	0	0.02	0.03	0	0.09	0.23		
S2: Good Vis.	0	0	0	0.01	0.01	0	0.06	0	0.61	0	0	0	0	0.02	0.01	0	0.26	
Mod.	0	0.01	0	0.02	0	0	0.05	0	0.64	0	0	0	0	0.01	0.02	0	0.26	
Poor	0	0.03	0	0.02	0	0	0.02	0	0.68	0	0	0	0	0.03	0.03	0	0.2	
S3: Neg. Cor.	0	0	0	0.01	0.02	0	0.01	0	0.56	0	0	0	0	0.01	0	0	0.39	
Pos.	0	0	0	0.08	0.04	0	0	0	0.58	0	0	0	0	0.01	0	0.09	0.2	
None	0	0	0	0.01	0.01	0	0.01	0	0.57	0	0	0	0	0.01	0.01	0	0.38	
S4: High Autocor.	0	0	0	0	0	0	0	0	0.56	0	0	0	0	0.01	0	0	0.43	
Medium	0	0	0	0.01	0.01	0	0.06	0	0.61	0	0	0	0	0.02	0.01	0	0.26	
Low	0	0.02	0	0.08	0.03	0.05	0.01	0	0.67	0	0	0	0	0.07	0.01	0.04	0.03	
S5: M/T 1%	0.02	0.05	0	0.25	0.02	0.04	0.02	0.09	0.34	0	0	0	0	0.01	0	0.02	0.16	
3%	0	0.03	0	0.08	0.02	0.05	0.04	0	0.5	0	0	0	0	0.02	0.05	0.01	0.21	
7%	0	0	0	0.01	0.01	0	0.06	0	0.61	0	0	0	0	0.02	0.01	0	0.26	
11%	0	0	0	0	0	0	0	0	0.68	0	0	0	0	0	0.02	0	0.3	
15%	0	0.01	0	0	0	0.02	0	0	0.68	0	0	0	0	0.01	0.01	0	0.27	
S2: Good Vis.	0.2	0.1	0	0	0	0.09	0.07	0	0	0.19	0	0	0	0.34	0.01	0	0	
Mod.	0.25	0.03	0	0	0	0.09	0.08	0	0	0.24	0	0	0	0.3	0.01	0	0	
Poor	0.25	0.05	0	0	0	0.09	0.08	0	0	0.24	0	0	0	0.28	0	0	0	
S3: Neg. Cor.	0.47	0.25	0	0.05	0.02	0	0	0.02	0	0.02	0	0	0	0.08	0.05	0.04	0.01	
Pos.	0.31	0.23	0	0.17	0.05	0	0.01	0.03	0	0.01	0	0	0	0.09	0.03	0.05	0.03	
None	0.44	0.24	0	0.03	0.02	0	0.01	0.03	0	0.01	0	0	0	0.09	0.05	0.05	0.04	
S4: High Autocor.	0.16	0.05	0	0.04	0	0.06	0.25	0	0	0.05	0	0	0	0.18	0.18	0.01	0	
Medium	0.2	0.1	0	0	0	0.09	0.07	0	0	0.19	0	0	0	0.34	0.01	0	0	
Low	0.15	0.12	0	0.03	0	0.11	0.01	0.01	0	0.21	0	0.01	0	0.35	0	0.02	0	
S5: M/T 1%	0.45	0.08	0	0.04	0	0.06	0.01	0.01	0	0.14	0	0	0.03	0.15	0.04	0	0	
3%	0.25	0.15	0	0	0.01	0.12	0.06	0.02	0	0.15	0	0.01	0	0.21	0.01	0.01	0	
7%	0.2	0.1	0	0	0	0.09	0.07	0	0	0.19	0	0	0	0.34	0.01	0	0	
11%	0.11	0.16	0	0.01	0	0.09	0.13	0.02	0	0.16	0	0	0	0.25	0.05	0	0.01	
15%	0.11	0.12	0	0.05	0	0.15	0.19	0.01	0	0.08	0	0.01	0	0.18	0.1	0	0.01	
S2: Good Vis.	0.21	0.25	0	0.04	0.03	0	0.1	0.02	0.02	0	0	0	0	0.24	0.04	0.03	0.02	
Mod.	0.2	0.31	0	0.01	0	0.02	0.1	0	0.01	0	0	0	0	0.21	0.09	0.03	0.02	
Poor	0.19	0.23	0	0.04	0.02	0	0.11	0	0.01	0	0	0	0	0.3	0.03	0.03	0.04	
S3: Neg. Cor.	0.09	0.31	0	0.08	0.05	0	0.08	0.01	0.03	0	0	0.01	0	0.18	0.01	0.1	0.05	
Pos.	0	0.24	0	0.14	0.2	0	0	0.03	0.01	0	0	0	0	0.16	0	0.2	0.02	
None	0.04	0.32	0	0.11	0.05	0	0.08	0.01	0.03	0	0	0	0	0.16	0.04	0.12	0.04	
S4: High Autocor.	0.14	0.08	0	0.01	0.01	0	0.05	0.02	0.05	0	0	0	0	0.05	0.44	0.01	0.14	
Medium	0.21	0.25	0	0.04	0.03	0	0.1	0.02	0.02	0	0	0	0	0.24	0.04	0.03	0.02	
Low	0.31	0.26	0	0.11	0.02	0.04	0	0.01	0	0	0	0	0	0.17	0	0.07	0.01	
S5: M/T 1%	0.64	0.18	0.01	0.08	0.02	0.02	0	0	0.01	0	0	0	0	0.03	0	0.01	0	
3%	0.37	0.29	0	0.07	0.02	0	0.01	0	0	0	0	0	0	0.12	0.03	0.07	0.02	
7%	0.21	0.25	0	0.04	0.03	0	0.1	0.02	0.02	0	0	0	0	0.24	0.04	0.03	0.02	
11%	0.17	0.25	0	0.03	0.02	0	0.1	0.03	0.07	0	0	0	0	0.22	0.04	0	0.07	
15%	0.15	0.16	0	0.03	0.04	0	0.18	0.04	0.04	0	0	0	0	0.17	0.09	0.04	0.06	

Table 5: Proportion of runs with the least mean absolute error (MSE) for the five scenarios by type of estimators. See Table 2 for explanations of the notations.

Scenarios	S1: F1S<=0.5 & F1D<=0.5																	
	AUTO	M1G	M1L	M2G	M2L	Ra1G	Ra1L	Ra2G	Ra2L	O1G	O1L	O2G	O2L	Re1G	Re1L	Re2G	Re2L	
S2: Good Vis.	0.12	0	0	0	0	0.12	0.09	0.03	0.34	0.01	0	0.01	0.01	0.03	0.01	0.06	0.17	
Mod.	0.12	0	0	0	0	0.09	0.1	0.05	0.28	0.01	0	0	0.02	0.06	0	0.07	0.21	
Poor	0.12	0	0	0	0	0.11	0.1	0.03	0.3	0.02	0	0.02	0.03	0.04	0	0.07	0.17	
S3: Neg. Cor.	0.07	0	0	0.01	0	0	0.03	0.01	0.56	0	0	0	0	0.02	0	0.29		
Pos.	0.05	0.02	0	0.02	0	0	0	0	0.74	0	0	0	0	0	0.02	0.02	0.15	
None	0.06	0.02	0	0.02	0.01	0	0.01	0	0.52	0	0	0	0	0.02	0	0.01	0.35	
S4: High Autocor.	0.08	0	0	0	0	0.07	0.08	0	0.41	0.01	0	0.01	0	0.02	0	0.04	0.27	
Medium	0.12	0	0	0	0	0.12	0.09	0.03	0.34	0.01	0	0.01	0.01	0.03	0.01	0.06	0.17	
Low	0.14	0	0	0.02	0	0.12	0.02	0.05	0.3	0.03	0.01	0.02	0.03	0.08	0.01	0.13	0.03	
S5: M/T 1%	0.31	0	0	0	0	0.07	0.01	0.06	0.14	0.03	0	0.08	0.04	0.07	0.01	0.12	0.06	
3%	0.17	0.01	0	0	0	0.14	0.05	0.03	0.23	0.04	0	0.01	0.02	0.02	0	0.1	0.17	
7%	0.12	0	0	0	0	0.12	0.09	0.03	0.34	0.01	0	0.01	0.01	0.03	0.01	0.06	0.17	
11%	0.08	0	0	0	0	0.11	0.04	0.03	0.3	0.02	0	0.01	0.01	0.03	0	0.11	0.26	
15%	0.07	0	0	0.02	0	0.11	0.07	0.02	0.29	0.01	0	0.02	0.02	0	0.09	0.26		
S2: Good Vis.	0	0	0	0.01	0.01	0	0.07	0	0.63	0	0	0	0	0.01	0.02	0	0.24	
Mod.	0	0.01	0	0.01	0.01	0	0.05	0	0.7	0	0	0	0	0.02	0.01	0	0.19	
Poor	0	0.02	0	0.01	0	0	0.02	0	0.69	0	0	0	0	0.05	0.03	0.01	0.18	
S3: Neg. Cor.	0	0	0	0.01	0.03	0	0.01	0	0.6	0	0	0	0	0	0.01	0	0.35	
Pos.	0	0	0	0.09	0.05	0	0	0	0.6	0	0	0	0	0.01	0	0.1	0.15	
None	0	0	0	0.01	0.01	0	0.01	0	0.67	0	0	0	0	0.01	0.01	0	0.28	
S4: High Autocor.	0	0	0	0	0	0	0.01	0	0.57	0	0	0	0	0	0.01	0	0.41	
Medium	0	0	0	0.01	0.01	0	0.07	0	0.63	0	0	0	0	0.01	0.02	0	0.24	
Low	0	0.01	0	0.07	0.03	0.05	0.01	0	0.7	0	0	0	0	0.05	0.01	0.04	0.03	
S5: M/T 1%	0.01	0.08	0	0.25	0	0.03	0.02	0.09	0.35	0.01	0	0	0	0	0	0.05	0.12	
3%	0	0.04	0	0.05	0.03	0.04	0.05	0	0.53	0	0	0	0	0.02	0.04	0	0.22	
7%	0	0	0	0.01	0.01	0	0.07	0	0.63	0	0	0	0	0.01	0.02	0	0.24	
11%	0	0	0	0	0	0	0	0	0.77	0	0	0	0	0.01	0.01	0	0.21	
15%	0	0	0	0	0	0	0.04	0	0.74	0	0	0	0	0.02	0	0	0.21	
S2: Good Vis.	0.18	0.08	0	0	0	0.1	0.1	0.01	0	0.17	0	0	0	0.32	0.03	0	0	
Mod.	0.21	0.04	0	0	0	0.08	0.12	0	0	0.24	0	0	0	0.32	0	0	0	
Poor	0.21	0.08	0	0	0	0.11	0.08	0	0	0.2	0	0	0	0.31	0.01	0	0	
S3: Neg. Cor.	0.35	0.27	0	0.07	0.02	0	0.01	0.01	0.02	0.02	0	0	0	0.11	0.08	0.05	0	
Pos.	0.23	0.25	0	0.2	0.05	0	0	0.01	0.02	0.01	0	0.01	0	0.13	0.03	0.04	0.04	
None	0.37	0.23	0	0.05	0.02	0.01	0.01	0.02	0.02	0.03	0	0	0	0.15	0.05	0.04	0.02	
S4: High Autocor.	0.15	0.07	0	0.02	0	0.05	0.31	0	0	0.05	0	0.01	0	0.13	0.19	0.02	0	
Medium	0.18	0.08	0	0	0	0.1	0.1	0.01	0	0.17	0	0	0	0.32	0.03	0	0	
Low	0.11	0.17	0	0.03	0	0.14	0.01	0.01	0	0.19	0	0.01	0	0.32	0.02	0	0	
S5: M/T 1%	0.35	0.08	0	0.04	0	0.06	0.03	0.01	0	0.2	0	0.01	0.03	0.16	0.04	0	0	
3%	0.2	0.2	0	0.02	0	0.1	0.05	0.03	0	0.14	0	0	0	0.22	0.05	0.01	0	
7%	0.18	0.08	0	0	0.1	0.1	0.01	0	0.17	0	0	0	0	0.32	0.03	0	0	
11%	0.09	0.22	0	0.01	0	0.1	0.09	0.01	0	0.15	0	0	0	0.25	0.07	0	0.01	
15%	0.09	0.12	0	0.03	0	0.15	0.19	0.01	0	0.05	0	0.02	0	0.21	0.11	0.01	0.01	
S2: Good Vis.	0.14	0.24	0	0.02	0.03	0.01	0.1	0.02	0.02	0.01	0	0	0	0.28	0.07	0.02	0.03	
Mod.	0.12	0.37	0	0.06	0.02	0.01	0.09	0.01	0	0	0	0	0	0.23	0.07	0.01	0.01	
Poor	0.12	0.22	0	0.05	0.04	0.02	0.14	0	0.01	0	0	0	0	0.29	0.04	0.03	0.04	
S3: Neg. Cor.	0.08	0.26	0	0.09	0.04	0	0.06	0.03	0.05	0	0	0	0	0.23	0.02	0.1	0.04	
Pos.	0	0.2	0	0.12	0.21	0	0	0.03	0.01	0	0	0	0	0.17	0.01	0.19	0.06	
None	0.02	0.26	0	0.08	0.07	0.02	0.07	0	0.02	0	0	0	0	0.19	0.07	0.15	0.05	
S4: High Autocor.	0.11	0.06	0	0.01	0.02	0	0.03	0.01	0.07	0	0	0	0	0.06	0.44	0.04	0.15	
Medium	0.14	0.24	0	0.02	0.03	0.01	0.1	0.02	0.02	0.01	0	0	0	0.28	0.07	0.02	0.03	
Low	0.24	0.27	0	0.1	0.01	0.02	0	0.01	0	0	0	0	0	0.24	0	0.1	0.01	
S5: M/T 1%	0.5	0.25	0.01	0.11	0.02	0.02	0.01	0	0.01	0	0	0	0	0.06	0	0.01	0	
3%	0.31	0.23	0	0.09	0.03	0.02	0.03	0	0	0	0	0	0	0.13	0.05	0.08	0.03	
7%	0.14	0.24	0	0.02	0.03	0.01	0.1	0.02	0.02	0.01	0	0	0	0.28	0.07	0.02	0.03	
11%	0.14	0.24	0	0.04	0.03	0	0.11	0.01	0.06	0	0	0	0	0.2	0.05	0.06	0.06	
15%	0.13	0.14	0	0.03	0.06	0	0.18	0.01	0.03	0	0	0	0	0.17	0.12	0.04	0.09	

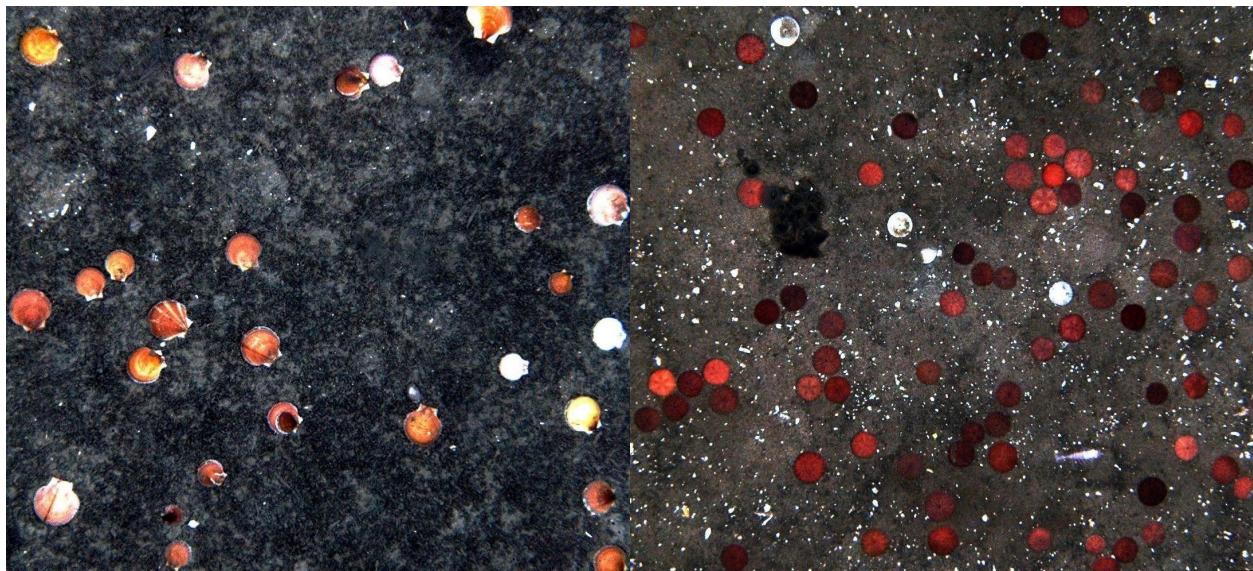


Figure 1: HabCam Images with scallops (left) and its common distractor sand dollars (right).

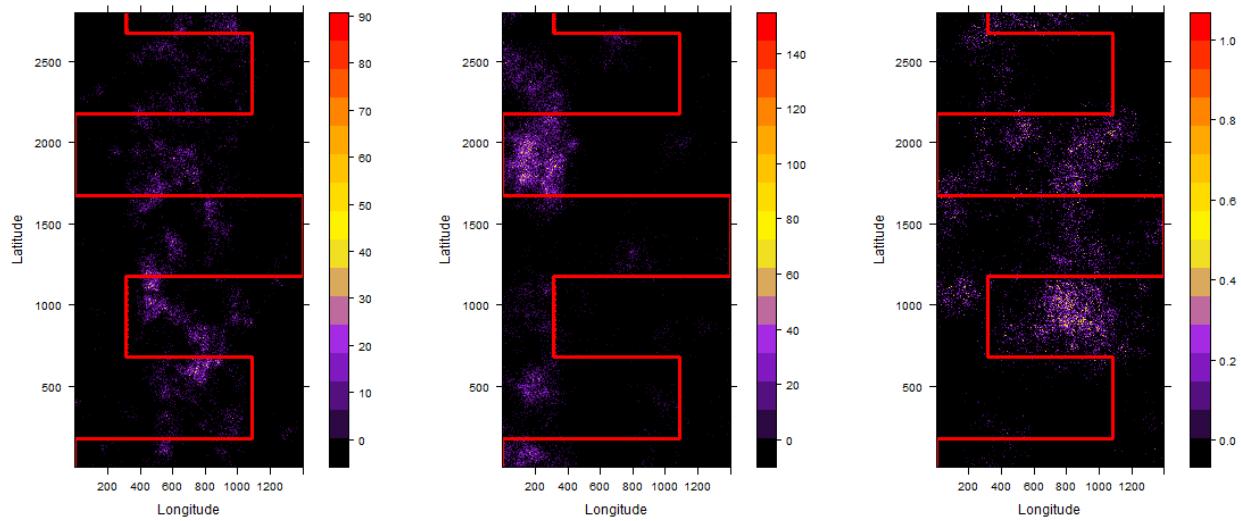


Figure 2: Example simulated distributions of scallops (left), distractors (center; moderate autocorrelation and negatively correlated with scallop distribution), and water visibility (right; poor) with an over-layered sampling track (red line). The colors represent counts per m^2 for scallops and distractors and the reduced probabilities of detecting scallops and distractors due to poor water visibility.

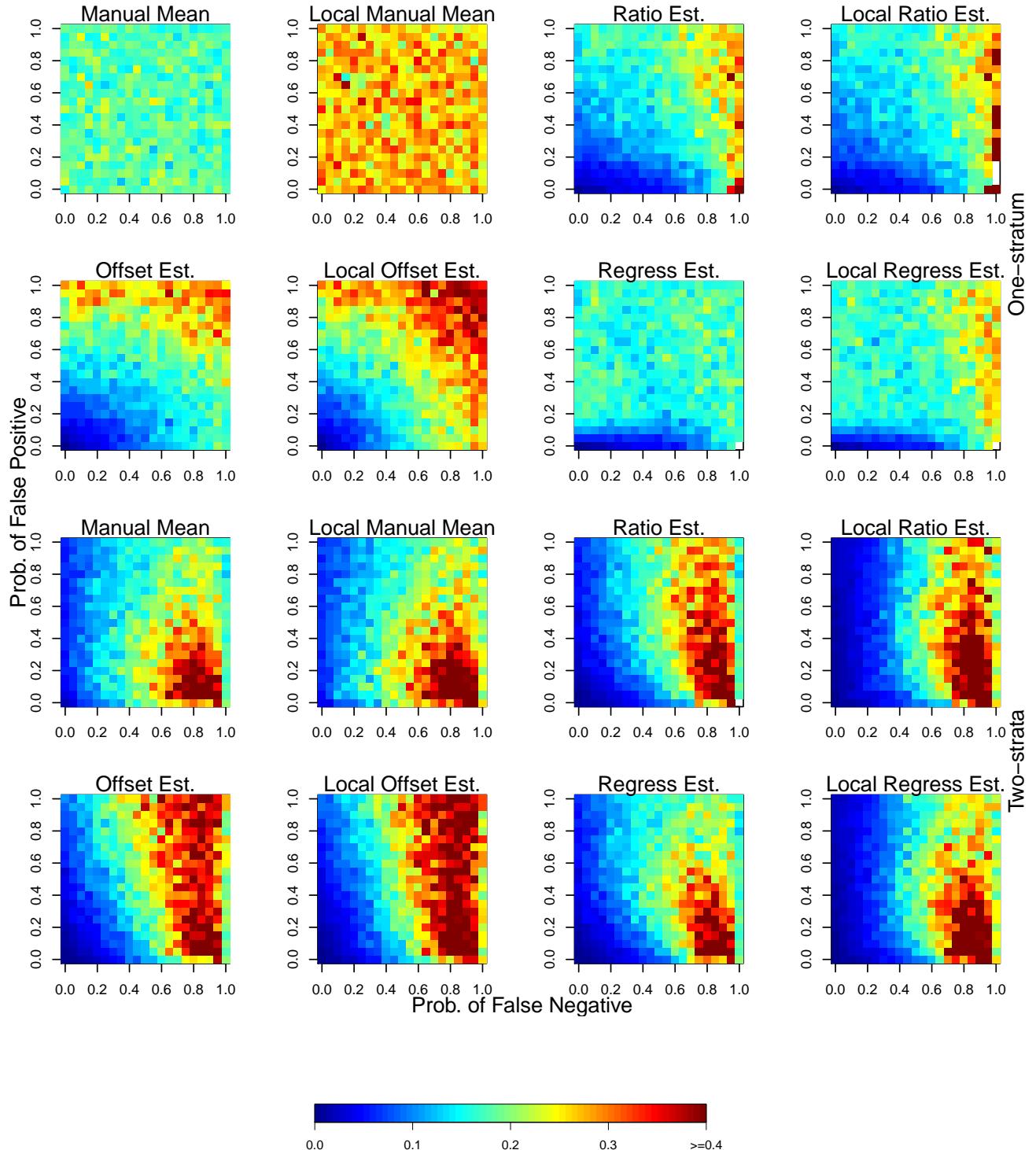


Figure 3: Mean squared error (MSE, indicated by color) at various false negative and false positive rates in the base case scenario, by estimator type, global or local estimation, and unstratified (one-stratum) or two-strata estimation.

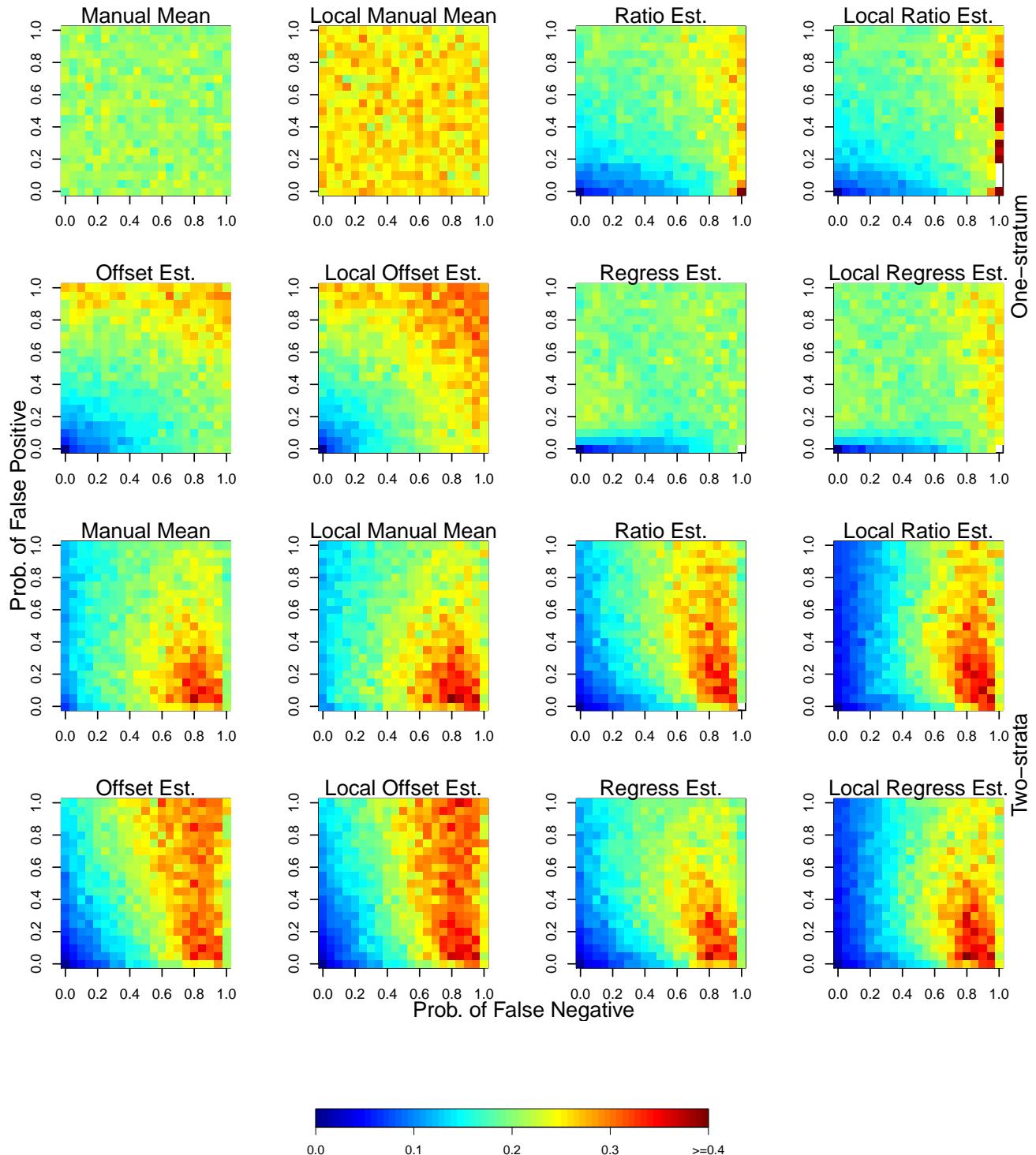


Figure 4: Mean absolute error (MAE, indicated by color) at various false negative and false positive rates in the base case scenario, by estimator type, global or local estimation, and unstratified (one-stratum) or two-strata estimation.

515 **Appendix - Analytic derivation of properties of the ratio estimator**

516 Let Y_i be the number of targets in the i th randomly chosen image; it will be assumed that
 517 manual processing is perfect, so that Y_i is also the number of targets that were detected
 518 manually. Let X_i be the number of targets detected by the automated software in the i th
 519 image. We will consider the following ratio estimator for the mean number of targets:

$$T = \mu_X \frac{Y_1 + Y_2 + \dots + Y_n}{X_1 + X_2 + \dots + X_n} = \mu_X \frac{\bar{Y}}{\bar{X}} \quad (15)$$

520 where μ_X is the mean of the automated counts over all photographs, and \bar{X} and \bar{Y} are the
 521 sample means for the automated and manual counts for a randomly chosen sample of n
 522 images. Let $\mu_X = E(X_i)$ and $\mu_Y = E(Y_i)$, σ_X and σ_Y be the standard deviations of X_i and
 523 Y_i , respectively, and let ρ be the correlation between X_i and Y_i . Assuming for simplicity
 524 that the finite population correction factor is negligible (i.e., that the total number of images
 525 is large relative to n ; this does not affect the main results below), using the approximate
 526 variance for a ratio (Cochran, 1977),

$$\text{Var}(T) = \mu_X^2 \text{Var} \frac{\bar{Y}}{\bar{X}} \simeq \mu_X^2 \frac{1}{\mu_X^2} \left[\sigma_Y^2 + \frac{\sigma_X^2 \mu_Y^2}{\mu_X^2} - 2\rho \sigma_X \sigma_Y \frac{\mu_Y}{\mu_X} \right] / n \quad (16)$$

$$= \left[\sigma_Y^2 + \sigma_X \frac{\mu_Y}{\mu_X} \left(\sigma_X \frac{\mu_Y}{\mu_X} - 2\rho \sigma_Y \right) \right] / n. \quad (17)$$

527 Hence, $\text{Var}(T)$ decreases linearly with ρ . If $\mu_X = \mu_Y$ and $\sigma_X = \sigma_Y$, this reduces to $\text{Var}(T) \simeq$
 528 $2\sigma_Y^2(1 - \rho)/n$.

529 By comparison, a simple random sample of n manual images has variance $\text{Var}(\bar{Y}) = \sigma_Y^2/n$,
 530 which is the first term of equation (17). Thus, the ratio estimator T has lower variance than
 531 simply using the manual images (i.e., $\text{Var}(T) < \text{Var}(\bar{Y})$) if and only if $\sigma_X \frac{\mu_Y}{\mu_X} - 2\rho \sigma_Y < 0$,
 532 i.e.,

$$\rho > \frac{\sigma_X \mu_Y}{2\sigma_Y \mu_X}. \quad (18)$$

533 In particular, if the X_i s and Y_i s have the same means and variances, then the ratio estimator
 534 is an improvement over simple random sampling of the manual images if and only if $\rho > 1/2$.