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28 population ecology and conservation of natural populations. However, species distribution 

29 models and population dynamic models have rarely been integrated into a single modeling 
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30 framework. Consequently, fine-scale spatial heterogeneity is often ignored in resource 

31 assessments. We develop and test a novel spatiotemporal assessment framework to better address 

32 fine-scale spatial heterogeneities based on theories of fish population dynamic and 

33 spatiotemporal statistics. The spatiotemporal model links species distribution and population 

34 dynamic models within a single statistical framework that is flexible enough to permit inference 

35 for each state variable through space and time. We illustrate the model with a simulation-

36 estimation experiment tailored to two exploited marine species: snow crab (Chionoecetes opilio, 

37 Oregoniidae) in the Eastern Bering Sea and northern shrimp (Pandalus borealis, Pandalidae) in 

38 the Gulf of Maine. These two species have different types of life history. We compare the 

39 spatiotemporal model with a spatially-aggregated model and systematically evaluate the 

40 spatiotemporal model based on simulation experiments. We show that the spatiotemporal model 

41 can recover spatial patterns in population and exploitation pressure as well as provide unbiased 

42 estimates of spatially-aggregated population quantities.  The spatiotemporal model also 

43 implicitly accounts for individual movement rates, and can outperform spatially-aggregated 

44 models by accounting for time-and-size varying selectivity caused by spatial heterogeneity. We 

45 conclude that spatiotemporal modelling framework is a feasible and promising approach to 

46 address the spatial structure of natural resource populations, which is a major challenge in 

47 understanding population dynamics and conducting resource assessments and management. 

48
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76 1. INTRODUCTION

77 Characterizing population distribution and abundance over space and time using 

78 mathematical and statistical models is central to population ecology and the conservation of 

79 terrestrial and aquatic organisms (Ehrlén & Morris, 2015; Krebs, 1972). These models include 

80 species distribution models (e.g., Guisan et al. 2002, Elith and Leathwick 2009)  that account for 

81 abiotic and biotic covariates, and population dynamic models (Maunder & Piner, 2015) that 

82 estimate the amount of resource abundance and/or biomass (Adams, Stephenson, Dale, Ahgook, 

83 & Demma, 2008; Bieber & Ruf, 2005; Maunder & Piner, 2015). These two types of model have 

84 fundamentally different structure, so have rarely been integrated into a single modeling 
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85 framework. Consequently, natural resource management and conservation measures are often 

86 developed based on simplifying assumptions about, or implicit approximations to, population 

87 spatial structure, e.g., management of marine fisheries resources (Goethel & Berger, 2017; 

88 Goethel, Quinn, & Cadrin, 2011; Punt, Haddon, & Tuck, 2015) and terrestrial wildlife (Adams et 

89 al., 2008; Bieber & Ruf, 2005). On the other hand, studies predicting effects of environmental 

90 changes have focused primarily on species’ distributions (Ehrlén & Morris, 2015). A combined 

91 approach that simultaneously estimates abundance and fine-scale spatiotemporal distribution will 

92 increase our ability to model spatially structured populations, and therefore greatly improve 

93 natural resource management and conservation. 

94 The importance of considering population spatial structure has long been acknowledged 

95 by fisheries scientists (e.g., Beverton and Holt 1957, Berkeley et al. 2004) and terrestrial 

96 ecologists (Dunning et al., 1995; Turner et al., 1995). However, population ecology had 

97 primarily focused on developing quantitative approaches to assess resource abundance while 

98 approximating dynamics given the assumption that individuals are well mixed within the 

99 population spatial domain (i.e., spatial homogeneity), due in part to data and computational 

100 limitations. These approaches assume that population dynamics can be approximated by tracking 

101 total abundance across the entire stock, including the classical Malthusian model of exponential 

102 population growth, the Pearl-Verhulst model of logistic growth, and the Lotka-Volterra models 

103 of population interactions. Over the last two decades, investigations into population spatial 

104 structure have been at the forefront of population ecology (Ehrlén & Morris, 2015; Goethel et al., 

105 2011; Jongejans, Skarpaas, & Shea, 2008; Punt, Haddon, Little, & Tuck, 2016; Punt et al., 2015), 

106 due in part to the lessons learned from management failures resulting from ignoring fine-scale 

107 population spatial structure (Kerr, Cadrin, & Secor, 2010). There is extensive evidence 

108 suggesting that marine and terrestrial populations are spatially patchy and locally structured (e.g., 

109 Elith and Leathwick 2009, Ehrlén and Morris 2015, Boudreau et al. 2017). In marine systems, 

110 local population processes are obscured, e.g., local depletion of weaker subpopulation or 

111 persistent high fishing pressure on local concentrations, if fine-scale population spatial structure 

112 is overlooked (Benson, Cox, & Cleary, 2015; Boudreau et al., 2017), which may lead to 

113 overexploitation of local fish populations. Locally depleted populations may not be easily 

114 replenished by recolonization (Boudreau et al., 2017; Kuo, Mandal, Yamauchi, & Hsieh, 2015). 

115 Therefore, it is critical to understand spatial population structure and address the spatial 
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116 heterogeneity in population density, productivity, and fishing pressure to prevent overfishing 

117 more vulnerable local subpopulations.

118 Methods have been developed to include spatial structure in assessments, either implicitly 

119 or explicitly (Punt, 2019). Models that do and do not explicitly model spatial heterogeneity are 

120 hereinafter referred to as spatially-explicit and spatially-aggregated models, respectively. 

121 However, some spatial heterogeneity can be accounted for in a spatially-aggregated model, e.g., 

122 areas-as-fleets approach, which approximates spatial heterogeneity using selectivity in a 

123 spatially-aggregated model (Berger, Jones, Zhao, & Bence, 2012; Hurtado-Ferro, Punt, & Hill, 

124 2014). Such methods are considered as spatially-implicit. In principle, a spatially-aggregated 

125 model that matches the population biological boundaries can perform well when fishing intensity 

126 over the entire region is relatively homogeneous (Guan, Cao, Chen, & Cieri, 2013). However, 

127 this is rarely the case. Therefore, spatially-aggregated population models are likely to yield 

128 biased estimates of population quantities (Conroy, Cohen, James, Matsinos, & Maurer, 1995; 

129 Goethel, Legault, & Cadrin, 2015; Guan et al., 2013; Punt, 2019; Sampson & Scott, 2011; Turner 

130 et al., 1995), depending on the extent to which the underlying spatial structures of the population 

131 and fisheries are mis-specified (Punt et al., 2016). Spatially-explicit models have been 

132 increasingly developed to represent population spatial structure since the 1990s (Fournier, 

133 Hampton, & Sibert, 1998; Fu & Fanning, 2004; Goethel, Legault, & Cadrin, 2014; Goethel et al., 

134 2011; Hulson, Miller, Ianelli, & Quinn, 2011; Quinn, Deriso, & Neal, 1990; Vincent, Brenden, & 

135 Bence, 2016). These models address spatial heterogeneity by dividing the region to be assessed 

136 and managed into sub-areas/subpopulations (called “spatial strata” here), within which the 

137 biological and fishery characteristics of the subpopulations are considered homogeneous, and the 

138 connectivity among strata is modeled explicitly, i.e., random (diffusive) and directed (migratory) 

139 movement of individuals among strata. Such models are hereinafter referred to as spatially-

140 stratified models. Although these models address spatial heterogeneity to some degree, 

141 challenges and limitations remain. First, the selection of spatial strata is subject to uncertainty, 

142 depending on the understanding of the spatial population structure and data availability. Second, 

143 correlations in process errors (e.g., spatial patterns in juvenile survival) and fishing processes 

144 (e.g., spatial patterns in fishing pressure and selectivity) among spatial strata are often ignored. 

145 Third, spatially-stratified models have typically not included any spatial correlation among strata 

146 (either based on adjacency or distance).  Therefore, the amount of data per stratum decreases and 
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147 the number of parameters increases as the number of strata increases, such that spatially-

148 stratified models have typically included a small (2-10) number of spatial strata. However, the 

149 Spatial Population Model (SPM) approach of Dunn, Rasmussen, & Mormede, (2014) attempts to 

150 model populations using a large number of areas. 

151 Most population models that attempt to capture spatial structure in fished populations, 

152 including spatially-stratified models, underuse the available spatial information because they are 

153 fit to abundance index, fisheries catch, and size- or age-compositions that are aggregated 

154 spatially. By doing so, population and fishery processes (e.g., density-dependence, fishing 

155 pressure and selectivity) and productivity are approximated as being homogeneous across the 

156 population spatial domain in spatially-aggregated models or within a stratum in spatially-

157 stratified models. Therefore, variation in survey data among sampling locations is typically 

158 attributed to sampling error, while some portion of this variation actually represents predictable 

159 spatial heterogeneity (e.g., Thorson and Haltuch 2018). Statistical methods and computational 

160 approaches for spatiotemporal models have seen tremendous advances in recent years (Cressie, 

161 Calder, Clark, Hoef, & Wikle, 2009). It is increasingly possible to fit a spatiotemporal population 

162 model directly to available fishery and survey data at the scale they were collected (Boudreau et 

163 al., 2017; Kristensen, Thygesen, Andersen, & Beyer, 2014; Thorson, Ianelli, Munch, Ono, & 

164 Spencer, 2015). Spatiotemporal models define how population variables, e.g., density, vary 

165 continuously across space (Kristensen et al., 2014), or in practice at hundreds of small-scale 

166 strata, while estimating spatial variation as a random effect (Thorson et al., 2015). It would be 

167 very difficult to fit spatially-stratified models with hundreds of spatial strata because each 

168 individual stratum would have very little data. By contrast, the spatiotemporal approach specifies 

169 that a population variable at a given location is shrunk towards estimates at a set of locations that 

170 are in its neighborhood. The population variable at all locations can then be jointly estimated 

171 (Kristensen et al., 2014; Thorson et al., 2015). 

172 Our objective was to link species distribution and population dynamic models within a 

173 single statistical framework that is flexible enough to permit inference for each state variable 

174 (e.g., abundance and fishing mortality) through space and time. To do this, we build upon recent 

175 research combining fish population dynamics and spatiotemporal statistics (Kristensen et al., 

176 2014; Thorson et al., 2015). In our spatiotemporal population model, we structure the population 

177 by size bins because most exploited species are size-truncated, and they tend to have different 
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178 spatial distributions among size/age classes (Lee, Piner, Maunder, Taylor, & Methot, 2017), and 

179 because these size-structured models are capable of discriminating between spatial heterogeneity 

180 in recruitment and growth and survival (Thorson et al. 2015). Our model addresses the fine-scale 

181 spatial structure of fish population and fisheries, which is an important challenge in 

182 understanding fish population dynamics and conducting stock assessment and management. 

183 We first describe the general elements of the modeling framework mathematically and 

184 show how, with straightforward modifications to the population dynamic component, it can 

185 accommodate a wide range of species with various types of life history. We illustrate the model 

186 with a simulation-estimation experiment tailored to two exploited marine species: snow crab 

187 (Chionoecetes opilio, Oregoniidae) in the Eastern Bering Sea and northern shrimp (Pandalus 

188 borealis, Pandalidae) in the Gulf of Maine, which have different types of life history, i.e., snow 

189 crab cease growth when they reach sexual maturity whereas northern shrimp do not experience 

190 terminal molt. We then use theoretical and simulation examples to demonstrate model 

191 performance. This includes showing that the model: 1) can recover spatial patterns in population 

192 and fishing pressure and provide unbiased estimates of spatially-aggregated population quantities, 

193 2) implicitly accounts for movement processes, and 3) outperforms spatially-aggregated models 

194 when population density and fishing pressure are spatially heterogenous. 

195 2. METHODS 

196 2.1. Overview of methods 

197 We organize our methods in two main parts, i.e., model development and simulation 

198 experiments. First, we describe the estimation model (EM), including general model structure.  

199 Second, we illustrate the model validation and evaluation based on simulations using the two 

200 case example species. 

201 2.2. Model development

202 We present a size-structured spatiotemporal model, which estimates spatiotemporal 

203 dynamics of size-structured populations and fisheries. To do so, we develop a model that tracks 

204 variation in population density for multiple life-stages and their expected dynamics across space 

205 and time. We first outline process models describing the underlying population and fishery 

206 processes and illustrate the process model using the two case example species. We then specify a 

207 process linking observed survey data and its associated variation to variation in population 
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208 density and fishery processes. The data model combines inference on encounter probability and 

209 abundance. We also summarize the data that are fit and the spatial scale on which they can be fit. 

210 Finally, we outline the parameters of the proposed models, and how the estimation of these 

211 parameters and other derived quantities is conducted. We represent matrices with bold uppercase 

212 notation, and vectors with bold lowercase notation. Indices used in model descriptions, data used 

213 during parameter estimation and simulation, and all parameters are listed in Table 1.  

214 2.2.1. Size-structured population dynamics including spatial heterogeneity

215 We assume that population dynamics are determined by local growth and survival rates, 

216 where individuals grow from one life-stage to larger life-stages over time.  Therefore, we specify  

217 a spatiotemporal size-structured population model of abundance, where  is the density ��,�(�)
218 (abundance, i.e. numbers per area) at location , time , and size-class , and we define � � � ��,�=

219 . In general, we express the density  as a product of a function (��,�(1),��,�(2),…, ��,�(�))� ��,�+ 1

220  and a process error term :�(��,�) ���,�
221 (1)��,�+ 1 = �(��,�) ∘ ���,�
222 where  is a vector of densities for each of  size classes, and we use  to indicate the ��,� � ∘
223 elementwise product of two vectors.  is a potentially nonlinear function of the previous �(��,�)
224 density and model parameters that describe the population dynamics. This function is general 

225 and can be chosen to match the life history of the species concerned. We demonstrate this 

226 function in detail below.   is a vector of random effects that implicitly accounts for unmodeled ��
227 spatial and temporal processes, e.g., movement, and spatial variation in biological parameters 

228 such as growth and natural mortality. Process errors are assumed to follow a multivariate normal 

229 distribution:

230 (2)�� ~ MVN(0,�������� ⊗  ��)
231 where  denotes the Kronecker operator,   is a  by  matrix of the pairwise variance-⊗ �� � �
232 covariance between any two size classes, and  is a Matérn correlation matrix, where the ��������
233 pairwise correlation between two locations  and  is:�� ��+ℎ
234 (3)��������(��,��+ ℎ) =

1
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235 where () is the gamma function,  is the modified Bessel function,  is the parameter Γ �� �
236 governing the distance  at which two locations are effectively uncorrelated, and  is the Matérn ℎ �
237 smoothness parameter which we fix at  (Thorson & Haltuch, 2018).  �= 1

238 2.2.2. Demonstration of population dynamic using two species

239 We consider two population dynamics models: one for invertebrates that exhibit an 

240 effective cessation of growth at some stage in the life history, and a general model that can be 

241 used for fish and invertebrate which do not exhibit cessation of growth. Eastern Bering sea snow 

242 crab and Gulf of Marine northern shrimp are the examples of the two population dynamic types, 

243 respectively. 

244 Example 1: Eastern Bering sea snow crab

245 As a first example, we model abundance of snow crab in the Eastern Bering Sea. Snow 

246 crab are distributed on the continental shelf of the Bering Sea and are common at depths less 

247 than 200 m. The U.S pot fishery began in the 1970s after the Japanese started harvesting snow 

248 crab in the 1960s (but were subsequently excluded from the fishery in the early 1980s). The 

249 fishery peaked in the 1990s and crashed in the 2000s. This species is one of the most important 

250 crab species in terms of volume landed and value (Abbott, Garber-Yonts, & Wilen, 2010). 

251 Research has shown that spatial dynamics of the snow crab is likely affected by water 

252 temperature, sea ice extent, and other environmental factors (Mueter & Litzow, 2008; Parada, 

253 Armstrong, Ernst, Hinckley, & Orensanz, 2010). 

254 We model the population dynamics by sex and maturity state because males and females 

255 experience different fishing mortality rates ( ) (only males are retained by the fishery) and they �
256 cease growth when they reach sexual maturity. The size-specific abundance density over time is 

257 controlled by recruitment ( , a vector of length  representing the number of juveniles per area ��,� �
258 recruiting into each size class of the modelled population), growth ( , a sex-specific matrix �
259 describing the proportion of individuals staying in the same size class or growing into other size 

260 classes), natural mortality ( ), and fishing mortality ( ). We express  by sex indicated by � � �(��,�)
261 superscripts  and  as:male femaleA
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262 �(�male�,� ) =  

263 {  ��,��male +  �male(�male�,� ― 1 ∘ exp (―��,� ― 1― ��male�,� ― 1)) ∘ (1―�male),                                  �= �� �male(�male�,� ― 1 ∘ exp (―��,� ― 1― ��male�,� ― 1)) ∘ �male + �male�,� ― 1 ∘ exp (―��,� ― 1― ��male�,� ― 1),  �= ��
264 (4)

265 �(�female�,� ) =  

266 (5){ ��,�(1― �male) +  �female(�female�,� ― 1 ∘ exp(―��,� ― 1)) ∘ (1―�female),                  �= ���female(�female�,� ― 1 ∘ exp(―��,� ― 1)) ∘ �female + �female�,� ― 1 ∘ exp(―��,� ― 1),                  �= ��
267 where superscripts  and  indicate immaturity and maturity, respectively,  is a vector � � �
268 representing the proportion  of immature individuals at length  that mature,  is the sex �� � �male

269 ratio of the recruits,  is a vector of natural mortality,  is fully selected fishing mortality, and  � � �
270 is a vector of selectivity coefficients. 

271 We complete this dynamical model by specifying how male and female abundance is 

272 initialized in the first modeled year:

273 (6)�(�male�,1 ) =  ��,1�male ∘ exp (�male )

274 (7)�(�female�,1 ) =  ��,1(1― �male) ∘ exp (�female) 

275 where  and are vectors representing abundance per area at size of the first modeled �male �female 

276 year for males and females, respectively. These densities at size are assumed constant across the 

277 study area. This model assumes that females are not fished (i.e., ) given that discard �female�,� ― 1 = 0

278 mortality of females is very low (Szuwalski & Punt, 2015).

279 The predicted harvest per area removed by the fishery, , for snow crab is calculated as:��,�
280 (8)��,�= (1― exp(―��male�,� )) ∘ �male�,� ∘  exp(― 0.5��,�)
281 This catch equation implicitly assumes that fishing during year  takes place rapidly at the �
282 middle of the year because the fishery for male snow crab is considered to take place as a pulse. 

283 Example 2: Gulf of Maine northern shrimp

284 As a second example, we model abundance of northern shrimp in the Gulf of Maine. The 

285 Gulf of Maine marks the southern-most extent of the species’ range. Therefore, this population is 

286 sensitive to ocean temperature changes. The population is estimated at the lowest level ever and 

287 has experienced failed recruitment for the past several years (Cao, Chen, & Richards, 2017b). 

288 Consequently, the fishery has been closed since the 2014 fishing season. 
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289 Here sex is not distinguished because northern shrimp are hermaphroditic, so we specify 

290  for both males and females as:�(��,�)
291 (9)�(��,�) = �(��,� ― 1 ∘ exp (―��,� ― 1― ���,� ― 1)) + ��,�
292 and initialize density using

293 (10)�(��,1) = ��,� ∘ exp (�)
294 These densities at size are assumed constant across the study area.

295 The predicted catch per area, , for northern shrimp is calculated using the Baranov ��,�
296 catch equation assuming fishing mortality takes place continuously over a modeled time unit, 

297 which matches the characteristic of the fishery:

298 (11)��,�=
���,����,�+��,� ∘ (1― exp(―��,�― ���,�)) ∘ ��,�

299 2.2.3. Observation models 

300 Understanding species population dynamics usually requires ecologists to collect data 

301 using biological surveys, where sampling occurs at pre-defined sites, the amount of each species 

302 (counts or biomass) is recorded, and the sampled animals are subsampled to collect more 

303 biological information (e.g., maturity, sex, age and size). We let  represent ith observed �(��,��)
304 count or biomass of a species sampled at a site indexed by the spatial location  within a study ��
305 area , during time , and seek to specify a model relating  to predicted � �� ∈ {1, …, �} �(��,��)
306 population density at that location and time (i.e.,  in Eq. 1). The sampling locations are ��,�
307 sometimes outside species’ occupied habitat, so we account for encounter probability in the 

308 observation model. When fitting to samples of biomass, we represent the relationships among 

309 observed biomass at location  at time , , predicted local density of individuals, , �� �� �(��,��) �(��,��)
310 and encounter probability, , using a “Poisson-link” delta-model  (Thorson, 2017). The �(��,��)
311 encounter probability is a function of local density:

312 (12)��= 1― exp (― ���(��,��))

313 where  is the area swept for sample i, which is taken at location  and time  , where the �� �� ��
314 number of observed individuals follows a Poisson process with expectation . Predicted �(��,��)
315 positive biomass at location  at time , , is then calculated as: �� �� �(��,��)
316 (13)�(��,��) =

���(��,��) ×  �(��,��)��
317 where  is the predicted average weight of individuals.  �(��,��)
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318 The probability density function for biomass sample  is defined as:�(��,��)
319 (14)Pr(�= �(��,��)) = {1― ��                                                     if �(��,��) = 0�� × �(�;�(��,��), �2�)                      if �(��,��) > 0

320 where  and  are the mean and variance of  and the probability density function  �(��,��) �2� � �(�)
321 can be lognormal or gamma. This Poisson-link model ensures that biomass-sampling data can be 

322 explained via a log-linked model for population abundance  for multiple locations and �(�,�)
323 times.  

324 The observation model assumed for discrete count data is the overdispersed lognormal 

325 Poisson process: 

326 (15)Pr(�= ���,��) = Poisson(�; �(��,��) × exp (��))

327 where  in this case is an observed count, and  is an observation-level random effect, which ���,�� ��
328 follows a normal distribution representing lognormal overdispersion. 

329 Spatially-referenced fisheries-dependent data, i.e., total amount of fish by size class 

330 removed from the ocean, which are collected directly from the commercial and recreational 

331 fisheries are used to estimate the spatial pattern of fisheries. The total catch by area/size is 

332 assumed to be lognormally distributed. 

333 2.2.4. Model parameters and estimation

334 The spatial variation of recruitment density, , is confounded with spatial process error ��,�
335 (i.e., spatial variation in the density of each of the  size classes) if modeled separately (e.g., � ��,�
336  where  is the average recruitment density at each location), because the ~MVN(��,��������) ��
337 size classes used to define recruitment are included in . We therefore allow spatial process error �
338 to account for spatial variation in recruitment and estimate the annual average recruitment (i.e., 

339 ). In this case,  is equal to  for all locations . �� ��,� �� �
340 For fishery processes, log-fishing mortality at each location in each year  is log (��,�)
341 modeled as a random walk process given fishing mortality the previous year:

342 (16)log (��,�)|log (��,� ― 1)~N(log (��,� ― 1),�2�)
343 Size-specific selectivity is modeled using a logistic function of individual size, allowing the 

344 probability of capture to vary with fish size:

345  (17)��= 1

1 + �―�(�� ― �50)
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346 where  and  are the parameters of the logistic function and  is the midpoint of size-class . � �50 �� �
347 The parameters that are treated as fixed effects include process error covariance ( ), the ��
348 parameter controlling the distance at which spatial correlations reach 10% ( ), average �
349 recruitment density for each time ( ), initial density at size ( ), the selectivity parameters (  and �� � �
350 ), and the standard deviations of fishing mortality and observations (  and ). We assume �50 �� ��
351 the growth transition matrices , the proportion male at recruitment , the proportion � �male

352 achieving maturity at each size , and natural mortality rate for each size class  are specified � �
353 based on external information (values used in the two case studies are listed in Table A1 and A2). 

354 Future work could explore estimating these parameters using additional data or meta-analytic 

355 information.

356 We treat the fully-selected fishing mortality at each location over time ( ), and the ��
357 density for each size class and time ( ) as random effects. We treat density as a random effect, �
358 rather than process error ( ), because this state-space parameterization leads to faster parameter ��
359 estimation in a similarly structured model (Thorson, Munch, & Swain, 2017). To estimate the 

360 fixed effects, we maximize the marginal likelihood function after integrating across the random 

361 effects. We use Template Model Builder, TMB (Kristensen, Nielsen, Berg, Skaug, & Bell, 2015) 

362 called from within the R statistical environment (R Core Team, 2019) to do so. The detailed 

363 procedure of estimating parameters and uncertainty using TMB is described in (Thorson, Jannot, 

364 & Somers, 2017). 

365 Computational issues arise when modeling spatiotemporal population dynamics as 

366 Gaussian Fields (GFs). Consequently, we use a stochastic partial differential equation 

367 approximation to the GF (i.e., ) based on a Gaussian Markov random field (GMRF) ��
368 (Kristensen et al., 2015). This approach is based on a triangulation of the spatial domain, where a 

369 mesh is created based on a predefined number of nodes (‘knots’). The number of knots 

370 determines the spatial resolution of the model, and is chosen as a trade-off between the accuracy 

371 of the GMRF representation and computational cost. The scale at which survey data were 

372 collected is not likely to coincide with the spatial scale of the model, i.e., the knots. Therefore, 

373 we model the abundance densities and use a “predictive process” formulation wherein we 

374 assume these function-valued variables are piecewise constant in the neighborhood of the knots. 
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375 When calculating total abundance for year t, , the densities at the modeled spatial locations are ��
376 scaled up by the total area associated with the knots: 

377 (18)��= ∑��= 1
��∑��= 1

��,�,�
378 where  is the local density at knot j for each size class,  is the total area associated with knot ��,� ��
379 j, and J is the number of knots specified. Fishery catch for each size class is aggregated at knot-

380 level as input data. Therefore, total catch of year t, , is calculated as:��
381  (19)��= ∑��= 1

∑��= 1
��,�,�

382 In summary, the input data for the model are fishery-independent survey data, i.e., 

383 number of individuals or biomass by size bin, on the spatial scale which they were collected, and 

384 fishery catch for each size class aggregated at knot-level.

385 2.3. Simulation experiments

386 2.3.1. Simulation overview

387 We illustrate the model validation and evaluation using simulations tailored to snow crab 

388 and northern shrimp. Specifically, we conducted three simulation experiments to (1) explore how 

389 the spatiotemporal model performs when individual movement processes are modeled explicitly 

390 in the operating model (OM), (2) compare estimation performance for spatially-aggregated and 

391 spatiotemporal models, and (3) evaluate the impact of changing sample size. To do so, we 

392 developed two OMs to simulate snow crab and northern shrimp populations, respectively. The 

393 OMs have a fine spatial scale, i.e., 2 km by 2 km grid. The snow crab OM has 36,140 grid cells 

394 that represent the area surveyed in the eastern Bering Sea bottom trawl survey, and the northern 

395 shrimp OM has 4,997 grid cells over the sampling domain of the shrimp summer survey in the 

396 western Gulf of Maine. We use snow crab example to explore movement, northern shrimp 

397 example to compare models, and both species to quantify the effect of sample size.

398 The process model in the OM is the same as the estimation model (i.e., Eq. 1) except 

399 movement is explicitly accounted for: 

400  (20)��+ 1 = �(���) ∘ ���
401 where M is a movement matrix (number of grid cells by number of grid cells) representing 

402 proportions of individuals that stay at their current location or move to other locations during a 

403 given time unit t,  is an OM abundance matrix (number of grid cells by number of size classes). ��
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404 Movement is assumed to occur at the start of each model time step. We derive annual M from 

405 instantaneous movement rates (Appendix 1). There is no movement when M is an identity 

406 matrix.  

407 In general, simulating the population and fishery dynamics involves the following steps: 

408 (1) specifying the information used in the OMs (summarized in Tables A1 and A2 for snow crab 

409 and northern shrimp, respectively); (2) simulating recruitment and fishing mortality on the grids 

410 over time,  and  (see Appendix 2 for detailed description); (3) calculating the abundance of ��,� ��,�
411 each size class   (using Eq. 20). Thus, within one model time step, the OMs track both ��,�
412 dynamics occurring within a single grid cell (i.e., survival, size transition and reproduction) and 

413 dynamics occurring among grid cells (i.e., movement). 

414 Sampling processes were simulated on the grid spatial scale. For each size class, the 

415 observed catch of a randomly selected survey location and fishery removal for each grid were 

416 simulated from lognormal distribution with standard deviation of 0.3 for both species (see 

417 Appendix 3 for detailed description). 

418 2.3.2. Experiment #1:  Exploring movement

419 This simulation experiment uses snow crab as the example species and is designed to 

420 examine how model performance is affected by movement processes that are modeled explicitly 

421 in the OM. Additionally, we evaluated whether the spatiotemporal population model (1) captures 

422 the spatial structure and pattern in population abundance and fishing mortality of each size class 

423 over time, and (2) provides unbiased estimates of spatially-aggregated abundance and model 

424 parameters, such as fishery selectivity. We examined three scenarios: (1) the data are generated 

425 without measurement error and there is no movement in the OM; (2) same as scenario 1, except 

426 there is movement; and (3) the data have measurement error and there is movement in the OM. 

427 We only consider diffusive movement here. The instantaneous movement rate applied in OM is 

428 0.4yr-1, i.e. about 35% of crabs within a given grid in the OM move out every year. Scenarios 

429 without measurement error are designed to check whether model is unbiased when correctly 

430 specified.

431 More details of the snow crab OM could be found in Appendix 1. To generate the 

432 fishery-independent survey data from the OM, 200 sites (grid cells) in the OM were randomly 

433 sampled each year. For each site, total abundance by size class and the total area of the sampled 
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434 site were recorded. Fishery catch-at-size was calculated at each grid (using Eq. 8) and then 

435 aggregated to the knot level as data for the EM. Therefore, the input data of fishery-independent 

436 and -dependent data have different spatial resolutions, i.e., grid cell and knot, respectively. For 

437 the scenarios with measurement error, we generated 100 replicated data sets with sampling errors, 

438 i.e., grid-based survey abundance and fishery catch data were assumed to be lognormally 

439 distributed. We specified 100 knots in the EM (each one representing local densities simulated 

440 within 361 grid cells on average in the OM) to approximate the fine-scale spatial processes 

441 simulated in the OM. Real-world applications would likely explore sensitivity to the number of 

442 knots, although we do not do so here.

443 2.3.3. Experiment #2:  Comparison of spatiotemporal and spatially-aggregated models

444 This experiment is based on northern shrimp in the Gulf of Maine. The intent of this 

445 experiment is to demonstrate the importance of accounting for spatial processes when modeling 

446 the population dynamics of marine species. Therefore, we compare the performance of our 

447 spatiotemporal model with a spatially-aggregated model designed for northern shrimp (Cao, 

448 Chen, & Richards, 2017a). The spatially-aggregated model uses the same equations to describe 

449 the size-structured population dynamics as the spatiotemporal model. However, it can only track 

450 the spatially-aggregated size-structured population over time. Thus, it ignores all the spatial 

451 heterogeneities (i.e., all model variables are assumed to be constant across space). The technical 

452 details of the spatially-aggregated model can be found in (Cao et al., 2017a). 

453 We simulate the size-structured population dynamics over 20 years. The simulation 

454 procedure is similar to the snow crab example, except  is calculated for both sexes ��,�
455 simultaneously and movement is not considered. The shrimp population and fishery are 

456 simulated to mimic the real world where the stock size experienced a boom-and-bust circle 

457 (Table A2; Cao et al., 2017b). The fisheries mainly occur in inshore waters. Therefore, we 

458 simulate the fishing mortality with the spatial structure so that inshore areas have consistently 

459 higher fishing mortality over years (see Appendix 2). 

460 Fifty simulated data sets are analyzed using the spatiotemporal and spatially-aggregated 

461 models, where spatially explicit sampling is aggregated prior to fitting in the spatially-aggregated 

462 model (following the process in Appendix 3). Each simulated data set includes survey catch rates 

463 by size, with an intensity of 1,200 sampling tows (60 sampling locations per year) and catch-at-
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464 size in all the grid cells for 20 years. To make a fair comparison, we ensure that, for each model 

465 iteration, the data used in both estimation models are the same at the grid spatial scale (the input 

466 data for spatially-aggregated model are aggregated across grids, see Appendix 3 for details), and 

467 the values of the pre-specified life history parameters (natural mortality and growth) are the same 

468 for the spatiotemporal and spatially-aggregated estimation models. We use 50 knots for the 

469 spatiotemporal model.  To assess model performance in this simulation experiment, we keep the 

470 replicates where both estimation models converged (i.e., final gradient of the likelihood <0.001 

471 and the Hessian of fixed effects was positive definite). For converged replicates, we record all 

472 parameter estimates as well as model predictions. We also record the number of non-converged 

473 runs.   

474 The spatiotemporal model estimates population density for each of 50 knots, while the 

475 spatially-aggregated model estimates population abundance for the entire area.  Therefore, to 

476 compare results we convert results from the spatiotemporal model to a metric that is directly 

477 comparable with the spatially-aggregated model.  To do so, we compare the estimates of 

478 abundance-at-size, fishing mortality at size and spawning stock biomass aggregated over the 

479 spatial domain from both models. The population-level fishing mortality  and aggregate ��
480 selectivity-at-length  for each size class is determined by solving:��,�
481 (21)��,�= (1― exp(― ��,���))��,� exp(―��)
482 for a given value of catch , abundance , and natural mortality rate , where ��,� ��,� �� ��,�=

483  and  are aggregated total catch and abundance for size class l and year t, ∑��= 1
��,�,� ��,�= ∑��= 1

��,�,�
484 respectively.  After solving for  for each year  and size , we separately identify fishing ��,��� � �
485 mortality  and selectivity-at-length  by defining  for each year : this �� ��,� �������(��,�) = 1 �
486 definition of selectivity is common in fisheries stock assessment modelling (Sampson, Scott, & 

487 Quinn, 2011).  Aggregate selectivity-at-length  in the spatial operating or estimation model is ��,�
488 not constrained to follow any parametric shape, even though local selectivity at length  follows ��
489 a logistic function.  In particular, aggregate selectivity-at-length  will differ from local ��,�
490 selectivity  whenever  fishing mortality varies strongly among spatial locations (Sampson & ��
491 Scott, 2012; Sampson et al., 2011). 

492 We finally compare the estimates with the true values and calculate the relative error in 

493 percentage for each year:
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494 (22)��,�=  (
����,�― �����,������,� ) × 100%

495 where  and  are estimated and true values of ith model and kth replicate. We also ����,� �����,�
496 calculate root-mean-square error (RMSE) and relative bias (RB) in percentage of estimated 

497 abundance at size across years:

498 (23)RMSE�=  
∑�(�����,� ― ������,� ������,� )

2

� × 100%

499 (24)RB�=  

∑�(�����,� ― ������,� ������,� )� × 100%

500 where  and  are the estimated and OM abundance of size class l in year t, and  is the �����,� ������,� �
501 number of years. 

502 2.3.4. Experiment #3:  Effect of sample size

503 We finally conduct a systematic simulation experiment to evaluate model performance 

504 given different sample sizes and provide some insight on the data requirements for the 

505 spatiotemporal model to have acceptable performance. We use both snow crab and northern 

506 shrimp as example species and examine three levels of sampling intensity: 50, 100, and 200 

507 locations per year, representing data poor, moderate level, and data rich scenarios. For each 

508 scenario, we repeated the sampling process 50 times, so each iteration has different sampling 

509 locations. We examine the model convergence rate (final gradient of the likelihood <0.001) and 

510 root-mean-square error (RMSE) and relative bias (RB) in percentage of estimated abundance at 

511 size across years for each scenario. 

512 3. RESULTS

513 3.1. Experiment #1:  Exploring movement

514 The spatiotemporal model can generate unbiased and precise estimates of abundance and 

515 fishing mortality spatially when data are not subject to measurement error and no movement 

516 occurs.  This confirms that the model is unbiased when correctly specified and when data are 

517 highly informative as expected from maximum likelihood theory. A comparison between 

518 simulated and estimated abundance illustrates how the spatiotemporal population model is able 

519 to reconstruct spatial variation in abundance over time (Fig. 1). The general spatial pattern of 
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520 each size class is recovered by the EM (Fig. 1). However, the estimated spatial distribution 

521 misses some fine-scale patterns, e.g., size class 3 in year 1 (Fig. 1). This is because the EM has a 

522 much coarser spatial resolution than the OM (i.e., 100 knots to approximate 36,140 grid cells) 

523 and integrates over fine-scale variation. As the number of knots increases, the estimated 

524 distribution would become smoother. The estimated spatial distribution has lower total variation 

525 (reflected by the contrast in color) than the true distribution. This is due to shrinkage, i.e., the 

526 estimate of abundance at a given location is shrunk towards the average of its neighboring 

527 locations. The spatiotemporal model is able to perfectly recover the spatial variation when the 

528 spatial scale at which data were collected and the EM operates matches (i.e., fishery catch data 

529 are aggregated to a knot-level, which matches the model spatial scale). As a result, fully-selected 

530 fishing mortality at the knot level is unbiased through space and time (Fig. A2), and selectivity is 

531 also accurately estimated (i.e., estimated  = 0.05;  = 75.15mm; simulated  = 0.05;  = � �50 � �50

532 75mm). Accurate and precise estimates of abundance and catch are also obtained when model 

533 outputs are aggregated spatially (Fig. 2). 

534 The model accounts for movement implicitly via its estimates of process error when the 

535 spatiotemporal model fits to data without measurement error but generated given unmodeled (in 

536 the EM) individual movement. This unmodeled spatial process did not lead to poorer model 

537 performance. The model recovers the spatial variation in abundance and fishing mortality over 

538 time (Figs. A3 and A4), and the total abundance is estimated accurately (Fig. A5). Finally, the 

539 spatiotemporal model converges (maximum gradient of the likelihood <0.001) for all 100 

540 simulation replicates when fitted to data given process error and individual movement. The 

541 model is able to recover the spatial variation and accurately estimate the spatially-aggregated 

542 abundance and catch with lower precision (Fig. 3), when the sampling errors are present. 

543 3.2. Experiment #2:  Comparing spatially-aggregated and spatiotemporal models

544 The relative errors of estimated abundance-at-size suggest that the spatiotemporal model 

545 has lower bias and therefore lower errors than the spatially-aggregated model (Fig. 4). The 

546 relative errors of the spatiotemporal model fluctuate around zero across years, where some of the 

547 years have relative errors centered around zero and others have the median relative error below 

548 and above zero (Fig. 4; the median RMSE across years are about 4% for all five size classes, and 

549 the median RB are negative for the first three size classes (-1.99%, -0.99%, -0.19%) and positive 
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550 for the other two, i.e., 1.77%, 0.26%).  The spatiotemporal model always underestimates the 

551 abundance of all size-classes for years 9 and 18. However, the spatially-aggregated model 

552 produced biased estimates of abundance for all size classes as none of the relative errors are 

553 centered around zero (the median RB are -5.93%, -5.65%, -5.35%, -5.98%, and -11.27% for the 

554 five size classes, respectively). Almost all of the relative errors are below zero, suggesting that 

555 the spatially-aggregated model consistently underestimates abundance-at-size. Consequently, the 

556 spatially-aggregated model underestimates the total abundance and spawning stock biomass for 

557 all years by about 10 to 20% (Fig. 5). The spatiotemporal model was able to estimate the total 

558 abundance and spawning stock biomass relatively well for all years except year 18. 

559 The comparison between estimated size-specific selectivity from the spatially-aggregated 

560 model and true population-level selectivity suggests that the underestimation of abundance is 

561 likely due to biased estimates of aggregate selectivity (Fig. 6). The fishing mortality for size 

562 class 4 is frequently underestimated. However, the spatiotemporal model was able to estimate the 

563 population-level selectivity well (Fig. 6). Although selectivity in the OM is asymptotic (i.e., a 

564 logistic curve), selectivity for some years suggests the spatially-aggregated population selection 

565 from the spatial OM can be dome-shaped, e.g., years 8 and 16. This could be captured by 

566 spatiotemporal model, but not the spatially-aggregated model (Fig. 6).    

567 3.3. Experiment #3:  Impact of changing sample sizes on model performance

568 As the number of sampled locations increases from 50, 100, or 200 per year (Fig 7 for the 

569 two species), the convergence rate increases, the average relative error decreases, and the relative 

570 bias approaches zero. The convergence rates for northern shrimp are 68%, 72%, and 82% for the 

571 data poor, data moderate and data rich scenarios, respectively. The corresponding convergence 

572 rates for snow crab case are lower, i.e., 54%, 64%, and 74%. The RMSE appears to decrease as 

573 the square-root of annual sample sizes as predicted by maximum likelihood asymptotic theory 

574 (RMSE for northern shrimp: 6.1%, 3.9%, and 2.8%; RMSEs for snow crab: 3.8%, 2.8%, and 

575 2.1%).  The model performs worse for northern shrimp than for snow crab (Table 2; Fig. 7). Also, 

576 the model slightly overestimated the abundance of size classes 4 and 5 for northern shrimp (Fig. 

577 7). 

578 4. DISCUSSION
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579 Managed populations exhibit heterogeneous and complex spatial structure, which is often 

580 overlooked in modeling their population dynamics for management and conservation (Crone, 

581 2016; Goethel et al., 2011; Turner et al., 1995). We developed a size-structured spatiotemporal 

582 model for estimating fine spatial scale population dynamics and anthropogenic impacts, i.e., 

583 fishery dynamics, and used two marine invertebrates with different types of life history to 

584 demonstrate our modeling approach. This spatiotemporal model produced unbiased estimates of 

585 abundance and fishing mortality spatially and outperformed a spatially-aggregated model when 

586 time-varying selectivity caused by spatial heterogeneity in fishing pressure is ignored. To our 

587 knowledge, this is the first study to use a simulation experiment to compare the performance of 

588 spatiotemporal and spatially-aggregated models that include fishery harvest. Our modeling 

589 approach bridges the gap between species distribution and population dynamic models and 

590 provides the opportunity to improve natural resource management and conservation by explicitly 

591 modeling species’ spatiotemporal population and anthropogenic dynamics. 

592 We have demonstrated that our modeling framework can be adapted to populations with 

593 different types of life history through straightforward modifications to the population dynamic 

594 component, i.e., . Although we presented a size-structured model, it is fairly easy to �(��,�)
595 modify  to an age-structured model. The modeling framework is also flexible enough to �(��,�)
596 accommodate varying degrees of model complexity. In the simplest scenario, the number of 

597 size/age classes can be reduced to one and the population dynamic component can be modified 

598 to be a delay-difference (Thorson et al., 2015) or biomass dynamic model (Thorson, Jannot, & 

599 Somers, 2017). Furthermore, environmental covariates, e.g., sea surface/bottom temperature, 

600 salinity, and etc., can be easily incorporated in the model. For example, covariates can be added 

601 to Eq. 1 as predictors of density or added in the observation model that relates observations to 

602 predicted catch rate, assuming they affect catchability. With additional environmental data, we 

603 hypothesize that the model would produce more precise estimates and/or more parameters can be 

604 estimated. Therefore, hypotheses such as environmentally-driven recruitment, impact of habitat 

605 loss and climate change, and climate change-related distribution shifts can be examined directly 

606 within the modeling framework at a fine spatial scale, which may be more useful than 

607 approaches that treat model estimates as data for subsequent analysis and rely upon spatially-

608 aggregated data. For example, recruitment and spawning stock biomass estimates from a stock 

609 assessment model were used to examine the impacts of environmental variables (Cooper, Rogers, 
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610 & Wilderbuer, 2019). Finally, movement can be explicitly incorporated to the model as we did in 

611 the OM (Eq. 20). The movement function in the OM accounts for both diffusive and advective 

612 movement patterns. However, the simulation scenarios we tested in this study only had diffusive 

613 movement. Future research could seek to evaluate different movement patterns, e.g., ontogenic 

614 movement, which would also impact the selectivity.  It is common for aquatic and terrestrial 

615 animals to have movement patterns varying with ontogeny. For example, older birds with more 

616 experience are more likely to innovate new migration patterns in response to global change 

617 (Teitelbaum et al., 2016). 

618 Integral projection models (IPMs), which predict vital rates from state variables (e.g., size, 

619 weight, or age) and covariates (e.g., environment) using regression models, have been 

620 increasingly applied to animal and plant populations (e.g., Coulson et al. 2010, Jongejans et al. 

621 2011, Coulson 2012, Merow et al. 2014). These models are considered to have strengths 

622 compared to traditional matrix population models (Merow et al., 2014). However, spatial 

623 heterogeneity, as one of the most important factors influencing population dynamics, is much 

624 less often incorporated into IPMs. Crone (2016) found that spatial heterogeneity increased 

625 population growth rates of pasqueflower and suggested that it is important to consider spatial 

626 heterogeneity when modeling plant population dynamics. Research efforts have been made to 

627 link IPMs with dispersal to model spatial spread (Jongejans et al., 2011). We envision that the 

628 similar spatiotemporal modelling approach as we proposed here could be an interesting avenue 

629 for future research of IPMs. 

630 Spatially-explicit population dynamics models are increasingly structured using multiple 

631 spatial strata (Goethel & Berger, 2017; Goethel et al., 2011). However, this approach requires 

632 extensive data to allow a fine spatial scale because (1) each stratum needs sufficient data so that 

633 model is tractable, and (2) additional data are often needed to estimate or predefine the 

634 connectivity among strata, e.g., movement. However, our modeling framework relies upon 

635 totally different structure and assumption, i.e., population density is continuous across the whole 

636 area, and estimates the density fields based on geostatistical theory. Therefore, spatial-referenced 

637 data from fishery-independent and -dependent survey can be directly used in the model. Our 

638 experiment involving different sample sizes shows that the spatiotemporal model can perform 

639 well with as few as 100 samples per year. Few studies have been conducted to investigate this 

640 approach (Kristensen et al., 2014; Thorson et al., 2015). Kristensen et al. (2014) demonstrates 
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641 that it is feasible to combine stock assessment and spatiotemporal dynamics. However, they did 

642 not include fisheries in their model. Thorson et al. (2015) used a similar modeling approach to 

643 estimate a spatially-explicit delay-difference dynamic of a fish population. Our study is an 

644 extension of these two and provides a more general modeling framework and rigorous model 

645 evaluation. Spatiotemporal models can also be used as operating models for conducting 

646 management strategy evaluation (Boyd, Roy, Sibly, Thorpe, & Hyder, 2018), evaluating the 

647 performance of stock assessment models, and optimizing sampling design. 

648 Spatially-stratified models do not always outperform spatially-implicit/spatially-

649 aggregated models (Szuwalski & Punt, 2015). We suspect that, when there is uncertainty in 

650 population spatial structure and movement, incorrect assumption of boundaries between sub-

651 stocks (e.g., mis-specified spatial strata) would lead to poorer estimation. However, the 

652 spatiotemporal model of this paper does not rely on spatial strata and accounts for movement 

653 implicitly without requiring additional data. Based on our simulation study, we also found that 

654 when there is no complex spatial structure, the spatially-aggregated model had similar 

655 performance to the spatiotemporal model in estimating spatially-aggregated population and 

656 fishery quantities. The comparison scenario we show here represents the situation where a strong 

657 and persistent gradient of fishing pressure occurs over space and time. In this case, a spatially-

658 aggregated model could not accurately estimate the population-level fishing mortality. Similar 

659 results have been found in Sampson et al. (2011) where an age-structured model was used. 

660 Therefore, we envision that our spatiotemporal modeling approach would be especially useful 

661 for species that have protected areas or where population pressures vary substantially across 

662 space. For instance, spatially-explicit population models have been used to evaluate habitat 

663 restoration for cactus wren (Campylorhynchus brunneicapillus sandiegensis) (Conlisk, Motheral, 

664 Chung, Wisinski, & Endress, 2014). Also, spatiotemporal models can be used to determine the 

665 abundance and spatial pattern for endangered species such as amur tiger (Panthera tigris altaica) 

666 and leopard (Panthera pardus orientalis) (Wang et al., 2016) so that effective conservation plans 

667 can be developed. 

668 We showed that the spatiotemporal model outperforms spatially-aggregated model 

669 because of its ability to attribute changes in selectivity to spatial patterns in fishery exploitation. 

670 Specifically, the spatially-aggregated model assumed that fishery selectivity was constant over 

671 time and space, and this specification was a poor approximation to fishery removals. It is well 
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672 known that misspecification of selectivity would lead to biased estimates of population quantities 

673 (Linton & Bence, 2011; Stewart & Martell, 2014), and some fishery stock assessments specify 

674 time-varying selectivity (Martell & Stewart, 2014). Therefore, spatially-aggregated models that 

675 estimate time-varying selectivity may produce less biased results e.g., using time-varying 

676 selectivity and accounting for autocorrelation among size and time (Xu, Thorson, Methot, & 

677 Taylor, 2018). However, this approach to time-varying selectivity requires estimating a process 

678 (aggregate fishery selectivity) that cannot be corroborated through any field sampling, whereas 

679 the spatio-temporal model used here approximates the same process by estimating spatial 

680 variation in population density, and we argue that the latter is superior because (1) it is more 

681 biologically interpretable and (2) could be corroborated by other field sampling.  

682 The convergence rates of the model are not ideal, i.e., 82% and 74% for data rich 

683 scenarios (i.e., 200 sampling locations per year) for northern shrimp and snow crab, respectively. 

684 This implies that the model requires high-quality and -quantity data. For each iteration, the 

685 survey data were re-drawn from the spatial domain. Therefore, the spatial coverage and locations 

686 of samples might have an impact on the model convergence rate. As the number of sampling 

687 locations decreases, the spatial coverage of samples decreases. This might also be the reason why 

688 the convergence rates for snow crab case are lower.  The total number of grids used for snow 

689 crab simulation is about an order of magnitude greater than that used in northern shrimp. 

690 Therefore, with the same number of sampling locations randomly selected from the grids, the 

691 samples for northern shrimp are more likely to have a better spatial coverage and be more 

692 informative. We also found that the model was much easier to converge when selectivity 

693 parameters were fixed.

694 We conclude that spatially-explicit population models can provide valuable insights into 

695 population dynamics and spatial distribution that are not possible with either spatially-aggregated 

696 models or species distribution models in isolation, and are useful tools for population ecologists, 

697 conservation biologists, and land managers. This advance comes at the expense of greater data 

698 requirements. Challenges remain when it comes to application because the model is complex and 

699 requires detailed spatially-referenced fishery-dependent and -independent data. Furthermore, it is 

700 challenging to define and calculate biological reference points and hence determine associated 

701 catch quotas in a spatial context. Spatial harvest strategies can be evaluated using projections 

702 (Bosley et al., 2019), which we intend to do using our spatiotemporal model in future work. 
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703 Although we argue that when there are survey demographic data available, it can be 

704 advantageous to investigate size-structured spatiotemporal models, the spatially-aggregated 

705 models can perform similarly as the spatially-explicit models in terms of tracking the whole 

706 population.
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932  

933 SUPPORTING INFORMATION

934 Additional supporting information may be found online in the Supporting Information section.

935 Table 1. List of indices used in model descriptions, data used during parameter estimation and 

936 simulation, and all parameters (the type of each parameter is listed as estimated (“fixed”, 

937 “random”), or calculated from estimated parameters (“derived quantity”)).

938

Name Symbol Type

Sample i Index

Location s Index

Year t Index

Maximum time step T Index
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Size bin l Index

Immaturity � index

Maturity � index

Knot j Index

Number of years � Index

Data of ith sample at location s and time t �(��,��) Data

Area swept for sample i ai Data

Total area associated with knot j Aj Data

Maturity at size � Data

Sex ratio of the recruits (male) �male Data

Growth transition matrix � Data

Natural mortality at size � Data

Movement matrix � Data

Biomass per group of individuals �(��,��) Data/derived quantity

Biomass b Data/derived quantity

Number of animals per area n Data/derived quantity

Encounter probability p Derived quantity

Recruitment at size for location s and year t ��,� Derived quantity

Selectivity at size � Derived quantity

Catch at size for location s and year t ��,� Derived quantity

Aggregate selectivity for size class l and year t ��,� Derived quantity

Variance of positive catch rate �2� Parameter (fixed)

Initial abundance at size � Parameter (fixed)

Variance of fishing mortality �2� Parameter (fixed)

Logistic selectivity parameter � Parameter (fixed)

Logistic selectivity parameter �50 Parameter (fixed)

Average recruitment of year t �� Parameter (fixed)

Pairwise covariance between any two size classes �� Parameter (fixed)

Decorrelation distance � Parameter (fixed)

Matérn smoothness parameter � Parameter (fixed)
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Process error for year t �� Parameter (random)

Observation-level random effect �� Parameter (random)

Fully-selected fishing mortality at location s �� Parameter (random)

Abundance at size over time � Parameter (random)

939

940

941 Table 2. The average Root-Mean-Square Error (RMSE) and average Relative Bias (RB) across 

942 all years of estimated aggregate abundance-at-size for northern shrimp and snow crab in data 

943 poor, moderate and rich scenarios.

944

Northern shrimp Snow crab

size class sample size RMSE (%) RB (%) RMSE (%) RB (%)

1 50 6.13 -0.9077 4.08 -1.0498

1 100 3.95 -0.6968 3.21 -1.2290

1 200 2.67 -0.5925 2.24 -0.7661

2 50 5.87 -0.1665 4.02 -0.7559

2 100 3.65 -0.3300 2.94 -0.5656

2 200 2.58 -0.2433 2.17 -0.5143

3 50 6.13 0.3595 3.51 -0.3060

3 100 3.77 0.0082 2.48 -0.2885

3 200 2.56 -0.0809 2.02 -0.2478

4 50 6.31 3.0897 3.61 0.5006

4 100 3.84 1.6495 2.59 0.1132

4 200 2.61 0.8710 1.92 0.0059

5 50 6.19 2.4945 3.58 0.4051

5 100 4.26 1.4511 2.53 0.1206

5 200 3.40 0.9986 2.00 0.0917

945

946

947 FIGURES 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

948

949 Figure 1. Comparison of simulated and estimated distribution of size classes 1, 3 and 5 in 

950 selected years using data without measurement error and movement (experiment 1). 

951

952 Figure 2. Comparison of simulated (red line) and estimated (black dot) spatially-aggregated total 

953 abundance (a) and total removals (b) by size class over time for the scenario with no 

954 measurement error nor movement (experiment 1). 

955

956 Figure 3. Comparison of simulated (red line) and estimated (black dot) spatially-aggregated total 

957 abundance (a) and total removals (b) by size class over time for the stochastic data scenario with 

958 movement (a randomly selected replicate) (experiment 1). 95% confidence intervals ( 1.96SE, ±

959 where SE is the estimated standard error) are shown by error bars. Standard deviations used 

960 when generating data are 0.5 for both survey and fishery catches. 

961

962 Figure 4. The relative errors (percentages) of aggregate abundance-at-size estimated from 

963 spatially-aggregated and spatiotemporal models (experiment 2). Median Root-mean-square error 

964 (RMSE) and relative bias (RB) in percentage across years are listed in each panel for comparison.  

965

966 Figure 5. The relative errors (percentages) of aggregate total abundance and spawning stock 

967 biomass from the spatially-aggregated and spatiotemporal models (experiment 2). Median Root-

968 mean-square error (RMSE) and relative bias (RB) in percentage across years are listed in each 

969 panel for comparison.  

970

971 Figure 6. The true population-level selectivity at size  (defined in Eq. 21, black dotted line) ��,�
972 and 95 percentiles of the estimated selectivity at size from the spatially-aggregated model (red) 

973 and spatiotemporal model (yellow) over 50 replicates (experiment 2). 

974

975 Figure 7. Boxplot of Root-Mean-Square Error (RMSE) and Relative Bias (RB) of abundance-at-

976 size across replicates for data poor, moderate and rich scenarios, for northern shrimp and snow 

977 crab (experiment 3). 
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