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Abstract
Projecting the future distributions of commercially and ecologically important spe-
cies has become a critical approach for ecosystem managers to strategically antici-
pate change, but large uncertainties in projections limit climate adaptation planning. 
Although distribution projections are primarily used to understand the scope of po-
tential change— rather than accurately predict specific outcomes— it is nonetheless 
essential to understand where and why projections can give implausible results and to 
identify which processes contribute to uncertainty. Here, we use a series of simulated 
species distributions, an ensemble of 252 species distribution models, and an ensem-
ble of three regional ocean climate projections, to isolate the influences of uncertainty 
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1  |  INTRODUC TION

Climate variability and change is already drastically altering the struc-
ture and function of ecosystems globally (Scheffers et al., 2016; 
Walther et al., 2002). Many species have shifted their distributions 
in response to climate- driven changes in the environment, result-
ing in the largest redistribution of biodiversity since the Last Glacial 
Maximum (Lenoir et al., 2020; Pecl et al., 2017). These shifts are oc-
curring more rapidly in marine ecosystems compared to terrestrial 
domains (Lenoir et al., 2020; Pinsky et al., 2019), threatening critical 
habitat for many species, limiting services for millions of people, and 
introducing new challenges for ocean governance (Pinsky et al., 2018). 
With global fisheries revenues projected to decline by 7%– 10% over 
the next three decades (Lam et al., 2016), there is an urgent need for 
resource managers, fisheries, and communities to anticipate and pre-
pare for alternative future ecosystem states (IPCC, 2021).

Predicting when and where species will move is critical to sup-
porting flexible management frameworks that are capable of re-
sponding to climate- driven change (Pinsky et al., 2018; Tommasi 
et al., 2021). Developing a clear understanding of the range of 
potential future conditions can help ocean stakeholders prioritize 
management strategies (Holsman et al., 2020). For example, species  
distribution models (SDMs) have become a common tool for resource 
managers to describe and predict species distributions as a func-
tion of various biotic and abiotic factors, thereby providing critical  
insight into core habitats, range shifts, habitat connectivity, and po-
tential impacts of anthropogenic pressures (Elith & Leathwick, 2009; 

Guisan & Thuiller, 2005; Robinson et al., 2017). SDMs have been 
used extensively for predicting and projecting changes into the fu-
ture (Robinson et al., 2017), but not all models perform well when ap-
plied to novel conditions (Barnes et al., 2022; Muhling et al., 2020), 
which raises concerns about the realism of SDM projections. This 
is particularly pertinent as novel climate conditions emerge (Smith 
et al., 2022) because SDMs trained on historical conditions typically 
have less skill at predicting into novel environmental conditions 
(Muhling et al., 2020). While the goal of long- term projections is to 
quantify broad trends and the scope of potential change over time 
frames long enough for the externally forced climate change signal 
to emerge (e.g., 30- year time slices) (Drenkard et al., 2021) rather 
than predict actual distributions at fine spatial and temporal scales, 
it is still important to understand where, when, and why projections 
may become inaccurate or misleading. We address this need by 
quantifying how uncertainty can propagate through a species distri-
bution projection framework.

Uncertainty in species distribution projections may come from a 
number of sources (Reum et al., 2020; Thuiller et al., 2019; Tittensor 
et al., 2021). These include uncertainty associated with different 
earth system models, from different future scenarios of forcing 
variables— typically the Representative Concentration Pathway 
(RCP) emission scenarios (often called “scenario uncertainty”), 
and internal variability (Cheung et al., 2016; Morley et al., 2020). 
Similarly, ecological model uncertainty can arise from differences 
in model type, design, and parameterization. For instance, ecolog-
ical model uncertainty can stem from differences in the kinds of 

from earth system model spread and from ecological modeling. The simulations en-
compass marine species with different functional traits and ecological preferences to 
more broadly address resource manager and fishery stakeholder needs, and provide a 
simulated true state with which to evaluate projections. We present our results rela-
tive to the degree of environmental extrapolation from historical conditions, which 
helps facilitate interpretation by ecological modelers working in diverse systems. We 
found uncertainty associated with species distribution models can exceed uncer-
tainty generated from diverging earth system models (up to 70% of total uncertainty 
by 2100), and that this result was consistent across species traits. Species distribution 
model uncertainty increased through time and was primarily related to the degree to 
which models extrapolated into novel environmental conditions but moderated by 
how well models captured the underlying dynamics driving species distributions. The 
predictive power of simulated species distribution models remained relatively high in 
the first 30 years of projections, in alignment with the time period in which stakehold-
ers make strategic decisions based on climate information. By understanding sources 
of uncertainty, and how they change at different forecast horizons, we provide recom-
mendations for projecting species distribution models under global climate change.
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ecological processes being estimated, such as modeling “fundamen-
tal” and not “realized” niches (i.e., not accounting for the additional 
constraints on spatial distributions coming from population dynam-
ics, resource availability, and species interactions). Uncertainty can 
also arise from imperfect sampling of the ecosystem, which can 
introduce bias and inadequately capture the full environmental 
niche of a species (also called “observation uncertainty”) (Beaumont 
et al., 2008; Reum et al., 2020). Uncertainty among climate projec-
tions is typically characterized by examining model and scenario 
uncertainty and internal variability (i.e., uncertainty across earth 
system models or RCP scenarios, or within multiple realizations of 
the same model and scenario), whereas characterizing uncertainty 
across projected ecological SDMs has only gained recent attention 
(e.g., Morley et al., 2020; Santini et al., 2021; Thuiller et al., 2019; 
Tittensor et al., 2021). There remains a need for a more systematic 
approach to better understand how different sources of uncertainty 
from earth system models and ecological models influence the pre-
cision of species distribution projections to assess where resources 
should be focused to reduce uncertainty in such projections, and 
also to guide their use in planning and decision- making.

There are several ongoing initiatives on the U.S. West Coast to 
evaluate how climate change might affect the future of a wide array of 
commercial and recreational fisheries, and to develop action plans in 
response to anticipated change (Busch et al., 2016; Crozier et al., 2019; 
Link et al., 2015). Understanding how climate change will affect the 
distribution of fish stocks and their availability to fishing communities 
is critical to planning for a range of contingencies. Three example spe-
cies archetypes that are important to U.S. West Coast fisheries and 
resource managers include coastal pelagic species (CPS; e.g., Pacific 
sardine Sardinops sagax caerulea, northern anchovy Engraulis mordax), 
groundfish species (GFS; e.g., Pacific hake Merluccius productus, sa-
blefish Anoplopoma fimbria), and highly migratory species (HMS; e.g., 
albacore tuna Thunnus alalunga, swordfish Xiphias gladius). Different 
species are often modeled using different approaches by different 
modeling communities, which can make interspecies and intermodel 
comparison difficult and hinder our ability to move toward a unified 
understanding of how species occurrence and fisheries biomass avail-
ability are likely to shift under climate change.

There is a large body of literature on projecting species distribu-
tions and abundance under climate change, but comparatively few 
simulation studies (but see Santini et al., 2021). Thus, we do not have 
a precise understanding of how accurate or uncertain projections 
can be without waiting decades for validation. Simulations, however, 
enable a systematic evaluation of SDM performance over climate 
timescales. We simulate species distributions from 2011 to 2100 
to evaluate how well a suite of estimation models (SDMs) captures 
the true state of the simulated system. Based on predefined rela-
tionships with environmental covariates, our simulations of virtual 
species provide a known truth for validation and experimental test-
ing and provide a framework for developing best practice principles 
(e.g., Meynard et al., 2019; Zurell et al., 2016). We use the California 
Current System (CCS) and CPS, GFS, and HMS archetypes for the 
U.S. West Coast to parameterize our simulations, an approach that 

is consistent with the need to manage diverse fisheries and species 
in complex, rapidly changing ocean ecosystems. Importantly, we use 
regionally downscaled earth system models (ESM) for the CCS to 
represent relatively fine- scale environmental variability and import-
ant subsurface processes. We designed our simulation experiment 
to answer four questions:

a. How does the use of environmental and spatiotemporal covari-
ates influence SDM projection accuracy?

b. How does SDM performance degrade over the projection 
period?

c. How do SDMs perform when predicting to novel environmental 
conditions?

d. What are the dominant sources of uncertainty and how do they 
change over the projection period?

2  |  METHODS

2.1  |  Summary

We used a combination of regional ocean climate projections and 
simulated species distributions (Leroy et al., 2016) to quantify 
sources of uncertainty in projections of spatially explicit biomass for 
three species archetypes in the CCS (1985– 2100; Figure 1). Species 
archetypes were simplified representations of three general groups 
of marine finfish found in the CCS that comprise ecologically and/
or economically important fisheries and that might be expected to 
show variable patterns of redistribution under climate change based 
on their habitat preferences, population dynamics, and mobility 
characteristics: (1) a highly migratory species (HMS) that was de-
signed to resemble north Pacific albacore; (2) a coastal pelagic spe-
cies (CPS) that was designed to resemble northern anchovy (CPS); 
and (3) a groundfish species (GFS) that was designed to resemble 
sablefish. SDMs (n = 15; Figure 1) were then fitted to simulated 
biomass data for each archetype (training period 1985– 2010) and 
projected from 2011 to 2100 using each of the three regional ocean 
climate models. Our framework resulted in 252 SDMs (15 SDM 
types, three species archetypes, three ESMs, and two environmen-
tal parameter simulations; Figure 1). To address our study goal of 
assessing SDM performance and understanding sources of uncer-
tainty in species distribution projections, we compared the output 
of SDM projections against simulated “observations” for 2011– 2100 
and quantified the uncertainty introduced by the climate projection 
(ESM uncertainty) versus the uncertainty introduced by the SDM 
structure (SDM uncertainty).

2.2  |  Environmental covariates from regional ocean 
projections

Environmental covariates used in species distribution simula-
tions were obtained from regional ocean projections (Pozo Buil 
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et al., 2021) forced by three ESMs from phase 5 of the Coupled 
Model Intercomparison Project (CMIP5) archive: Geophysical Fluid 
Dynamics Laboratory (GFDL) ESM2M, Hadley Center HadGEM2- ES 
(HAD), and Institut Pierre Simon Laplace (IPSL) CM5A- MR. These 
ESMs, hereafter referred to as GFDL, HAD, and IPSL, span the ap-
proximate range of potential changes in physical and biogeochemi-
cal conditions across all CMIP5 models (Pozo Buil et al., 2021). 
ESMs were downscaled using the Regional Ocean Modelling 
System (ROMS) coupled with a biogeochemical model (NEMUCSC) 
(Fiechter et al., 2018, 2021) based on the North Pacific Ecosystem 
Model for Understanding Regional Oceanography (NEMURO) 
(Kishi et al., 2007). The ROMS domain spans the CCS from 30 to 
48°N and from the coast to 134°W at 0.1° horizontal resolution 
with 42 terrain- following vertical layers (Figure 2). Each down-
scaled ESM used the Representative Concentration Pathway (RCP) 
8.5 climate change scenario. While we only examined RCP 8.5, it 
should be noted that using RCPs 2.6 and 4.5 would result in only 
minor differences in the spread of future environmental change for 
the variables and ESMs examined here. Specifically, uncertainty in 
biogeochemical change among the chosen ESMs in RCP8.5 envel-
ops the uncertainty among RCPs 2.6 and 4.5; while for temperature 
GFDL and HAD represent opposite ends of the spectrum for the 
projected magnitude of warming in the CMIP5 ensemble (Drenkard 

et al., 2021; Pozo Buil et al., 2021). As such, we do not explore sce-
nario uncertainty. Environmental covariates used in species distri-
bution simulations were sea surface temperature (SST; C), bottom 
temperature (BT; C), bottom oxygen (BO; mmol m−3), mixed layer 
depth (MLD; m), surface chlorophyll a (Chl- a; mg m−3), and zoo-
plankton concentration integrated over 50 m (zoo_50; mmol N m−2) 
and 200 m (zoo_200; mmol N m−2). These environmental covariates 
were averaged over spring months (March– May) annually (1985– 
2100) to encompass the seasonal period when ocean productivity 
is most influential on the long- term population dynamics of most 
marine fishes in the CCS.

2.3  |  Operating models: Simulated species biomass

Biomass distributions for three species archetypes were simulated 
on the ROMS grid for each year and each ESM from 1985 to 2100. 
Simulations were run using the “virtualspecies” R package (Leroy 
et al., 2016) that is specifically designed to reflect real- world eco-
logical properties and species– environment relationships (Meynard 
et al., 2019). We refer to these simulated species distributions as 
“operating models.” Species simulations used a two- step process. 
First, habitat suitability was calculated based on environmental data 

F I G U R E  1  Stepwise conceptual outline of the modeling approach. In step 1, three downscaled earth system models are used as 
environmental forcing. In step 2, operating models are created for three species archetypes, with a breakout table indicating the ecological 
and environmental drivers used for each species. In step 3, 15 species distribution models are built for each species archetype, with 
environmental covariates corresponding to those in step 2. In step 4, three performance metrics are used to compare models (n = 252 
models) and answer our four study questions. Acronyms in step 2 correspond to sea surface temperature (SST), mixed layer depth (MLD), 
zooplankton (zoo), bottom temperature (BT), and chlorophyll a (Chl- a); and in step 3 correspond to generalized additive model (GAM), 
generalized linear mixed model (GLMM), boosted regression tree (BRT), and multilayer perceptron (MLP).
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and specified species' habitat preferences (Table S1). Environmental 
preferences used to force species distributions varied among species 
archetypes based on representative life histories (see Supplementary 
Material). The domain for the HMS archetype was set to the entire 
CCS, whereas the CPS and GFS archetypes were reduced to inshore 
waters to reflect the CPS archetype's preference for pelagic waters 
over the continental shelf and slope, and the GFS archetype's pref-
erence for demersal shelf and slope habitats (Leeuwis et al., 2019; 
Stierhoff et al., 2020).

Second, total habitat suitability was calculated and converted to 
presence– absence using a logistic function (which specifies at what 
suitability value the species becomes present). When species were 
present, biomass was estimated from a log- normal distribution, and 
when species were absent, biomass was set to zero. Biomass at each 
grid cell was multiplied by habitat suitability of that same grid cell 
to provide habitat- informed biomass. For CPS and GFS archetypes, 
an additional biomass multiplier was used to encompass population- 
level dynamics (Figure S1; see Supplementary Methods) (Punt 
et al., 2016). Specifically, CPS biomass was made to reflect boom- 
bust population dynamics that are common in CPS species in the 
CCS, while GFS biomass integrated a 20- year phase shift between 

low and high recruitment, as has been observed for sablefish 
(Haltuch et al., 2019). Simulated data were generated for each grid 
cell (HMS = 21,912 grid cells; CPS & GFC = 4012 grid cells) once per 
year for 116 years (1985– 2100). Detailed methods for the simulation 
are provided in the Supplementary Material, and R code is provided 
on github (https://github.com/steph brodi e1/Proje cting_SDMs).

2.4  |  Estimation models: Species distribution  
models

We parameterized a series of SDMs to estimate the relationship be-
tween simulated species biomass and covariates (Figure 1). Because 
these are fitted to data from an operating model, we refer to these 
SDMs as “estimation models.” Multiple approaches were tested 
to explore how decisions about model type and parameteriza-
tion influence model accuracy and predictive performance (Brodie 
et al., 2020). We used four types of SDMs: generalized additive mod-
els (GAM), generalized linear mixed models (GLMM), boosted regres-
sion trees (BRT), and multilayer perceptron models (MLP; a type of 
artificial neural network model) (Table S2). Parameterization options 

F I G U R E  2  Maps and time series of dynamically downscaled environmental covariates projected to 2100. Maps (~10 km resolution) show 
the average historical spring conditions from 1985 to 2010 averaged across the downscaled HAD, GFDL, and IPSL earth system models 
(RCP8.5). Time series show the spatially averaged annual spring conditions (1985– 2100) for each earth system model. The domain for  
(a, b) mixed layer depth, (e, f) sea surface temperature, and (i, j) 200 m integrated zooplankton reflects the ROMS extent, whereas the 
domain for (c, d) bottom oxygen, (g, h) bottom temperature, and (k, l) 50 m integrated zooplankton is limited to the inshore area to match 
species operating model domain. An 11- year running mean is applied to the time series.

https://github.com/stephbrodie1/Projecting_SDMs
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included various combinations of environmental (E), spatial (S), and 
temporal (T) covariates (Figure 1; see Supplementary Methods). 
Spatial and temporal covariates can act as proxies for unobserved 
or unmeasured processes that drive species distributions and were 
included here given their common use in SDMs (typically called spa-
tiotemporal models) (Brodie et al., 2020). We expect spatiotemporal 
SDMs with no environmental covariates to perform poorly over the 
projection period. We constructed all SDMs as delta (hurdle) models, 
where the probability of occurrence (binomial) and positive biomass 
(log- normal) was estimated as separate processes. All SDMs were 
trained on data from 1985 to 2010, where only 500 random samples 
per year (2% of available data) were used for fitting (n = 13,000). 
Random samples included both presence and absence sampled 
across the entire domain. No SDM validation or model selection was 
required as our simulation experiment is designed to explore a range 
of model parameterizations.

Fitted SDMs were then used to predict species biomass on pro-
jected environmental data, for every year and grid cell in the do-
main. Only 500 randomly sampled grid cells per year (2011– 2100) 
were used for testing purposes (n = 45,000), to match the resolu-
tion of samples used to train models. Importantly, not all environ-
mental covariates used to simulate species biomass (see 2.3 above) 
were included in the fitted SDMs. Specifically, we used chlorophyll 
a as a proxy for prey fields (zooplankton) to approximate real- world 
conditions where imperfect information is available for estimating 
species' habitat preferences. In addition to the 15 SDM parameter-
izations listed in Figure 1, we examined SDMs that only contained a 
single covariate of temperature (either surface or bottom tempera-
ture depending on the archetype). This experiment was done to 
test how underparameterized models that miss key environmental 
drivers of species distributions performs, and the degree to which 
this approach decreases model fit and increases projection un-
certainty. We refer to these SDMs as “temperature- only” models 
(Figure 1).

2.5  |  Model evaluation and uncertainty 
partitioning

We analyzed the SDMs using three metrics. First, we evaluated SDM 
performance using Spearman correlation coefficients between ob-
served and estimated species biomass at each grid cell for each year. 
Second, we compared SDM performance to the level of environ-
mental novelty experienced across each species' study domain. That 
is, over the projected period, we assessed the percent to which the 
multivariate environmental niche extrapolates relative to the niche 
defined in the historical fitting period (1985– 2010). The multivari-
ate environmental niche was calculated from every grid cell using 
the “compute_extrapolation” function in the dsmextra R package 
(Bouchet et al., 2020) based on the covariates used in SDMs, namely 
SST and MLD for the HMS archetype; SST, Chl- a, and bathymetry for 
the CPS archetype; and BT, BO, and bathymetry for the GFS arche-
type. Novel habitat includes both single variable extrapolation and 

multivariate extrapolation (referred to as combinatorial extrapola-
tion). We note that this method can provide a conservative estimate 
of novelty (Smith et al., 2022). This consideration of environmental 
novelty allows our results to be based on the relative degree of envi-
ronmental extrapolation from historical conditions.

Finally, we partitioned the influence of uncertainty in species 
biomass predictions among ESMs, SDM type, and SDM parameter-
ization. We do this using a dominance analysis, where we fit a lin-
ear model with annual species biomass predictions as the response 
variable, with ESMs (n = 3 factor levels), model type (n = 4 factor 
levels), and parameterization (n = 6 factor levels) as predictor covari-
ates. We then apply the fitted linear model to the “dominanceAnal-
ysis” function in the dominanceanalysis R package (version 2.0.0) 
(Navarrete & Soares, 2020) to determine the relative importance of 
each predictor covariate. We apply this approach for species bio-
mass predictions across three regions in the CCS: north (>40°), cen-
tral (34.5– 40°), and south (<34.5°). We also apply this approach for 
the species biomass predictions across the whole domain and for the 
temperature- only SDMs.

3  |  RESULTS

3.1  |  Environmental variability and simulated 
species distributions

Environmental variables showed strong spatial structure under fu-
ture change scenarios, with coastal areas in particular having greater 
differences among ESMs (Figure 2). In general, surface and bot-
tom temperature increased over the projection time period, while 
mixed layer depth, bottom oxygen, and zooplankton concentration 
decreased, with the latter two variables diverging substantially 
across earth system models (Figure 2d,j,l). Mixed layer depth and 
zooplankton concentration also showed strong decadal variability 
(Figure 2b,j,l). Simulated species biomass, which integrates these 
environmental covariates based on species habitat preferences (i.e., 
the operating models), also showed strong spatial patterns. The 
HMS archetype was more abundant in southern and offshore wa-
ters, CPS was largely restricted to inshore coastal waters, and GFS 
was more abundant in bottom shelf habitats (Figure 3a– c). When 
biomass distributions of each species were projected under the 
three ESMs, the HMS and CPS lost biomass in the southern area 
and gained biomass in the northern area of the domain, while the 
GFS lost biomass along the shelf break across the entire coastline 
(Figure 3d– f). Time series of biomass trends across the whole do-
main showed no clear trend in directionality (Figure S2), with trends 
reflecting the divergence among ESMs (Figure 2). For example, dec-
adal trends in HMS biomass (Figure S2) relate to decadal variability 
in zooplankton concentration; CPS biomass under HAD declines 
(Figure S2) which aligns with the decrease in HAD zooplankton 
concentration (Figure 2l); while cyclical trends in GFS relate to the 
recruitment dynamics integrated in the species operating model 
(Figure S2).
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3.2  |  How does the use of environmental and 
spatiotemporal covariates influence SDM projection 
accuracy?

We tested 15 SDMs to evaluate the relative performance of 
model type and parameterization in projecting future biomass. 
Most SDMs accurately fit training data (1985– 2010; correlations 
>0.77; Figure S3) and showed no spatiotemporal biases in fit 
(Figure S5), the sole exception was the spatial- only GAM (GAM_S). 
Similar patterns were seen for the probability of the presence 
component of the delta SDMs, as measured by area under the re-
ceiver operating curve (AUC) values (Figure S4). Model projection 

performance varied with the covariates included and the SDM 
structure, generally decreasing over the projection period and 
with greater spread among SDMs (Figure 4). Including spatial co-
variates in addition to environmental covariates when projecting 
SDMs helped to improve performance over the projection period, 
particularly when the species had a strong and persistent spa-
tial structure to their distribution (CPS and GFS archetypes) or 
when the SDM did not capture the dominant mechanisms driving 
distributions (e.g., temperature- only SDM) (Figure 5). SDMs that 
included spatial covariates but did not include environmental co-
variates (GAM_S and GLMM_ST) had poor performance over the 
projection period and were removed from subsequent analyses 

F I G U R E  3  Simulated biomass distributions for highly migratory (HMS), coastal pelagic (CPS), and groundfish (GFS) species archetypes 
averaged from 1985 to 2010 (a– c) and the spatially explicit difference (future minus historical) in biomass averaged from projections for 
2075– 2100 (d– f). All results are averaged across earth system models.
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(Figures S3 and S4). Including temporal covariates when project-
ing SDMs did not inhibit performance over the projection period, 
except for the spatiotemporal GAM in which the temporal com-
ponent was extrapolated and led to poor predictive performance 
(Figures S3 and S4) and high within- model error (Figure S6; GAM_
EST was removed from subsequent analyses). Semiparametric 
(GAM) and mixed- effects (GLMM) SDMs required appropriate 
specification of temporal correlation in spatial effects to perform 
well, whereas machine learning techniques (BRTs and MLPs) per-
formed well without explicit incorporation of temporal and spa-
tial interactions (Figures S3 and S4).

3.3  |  How does SDM performance degrade 
over the projection period?

Prediction performance of SDMs degraded progressively over the 
forecast period (Figure 4). Decreased prediction performance was 
more pronounced in the GFS and CPS archetypes, likely reflecting 
the increased uncertainty introduced from the underlying popula-
tion dynamics (i.e., boom- bust dynamics for CPS, and recruitment 
feedback for GFS) integrated into the operating model that were 

not captured in the SDMs. Despite the long- term trend of decreas-
ing model performance, there was substantial decadal variability in 
SDM performance for the HMS and CPS archetypes (Figure 4a– e), 
which reflects similar decadal patterns seen in mixed layer depth and 
zooplankton concentration (Figure 2a,j,l).

3.4  |  How do SDMs perform when predicting 
to novel environmental conditions?

Multivariate environmental conditions became increasingly novel 
over the projection period, where by 2100, 21% of the modeled do-
main (mean across ESMs and species) had environmental conditions 
not previously experienced in data used to fit each species SDM 
(1985– 2010) (Figure 4; Figure S7). This degree of environmental 
extrapolation experienced by SDMs varied among species arche-
types, with limited extrapolation seen for GFS (4% of the data used 
to project SDMs was extrapolated by 2100) compared with HMS 
(28%) and CPS (32%) by 2100 (Figure 4; Figure S7). Across species 
archetypes and ESMs, we found that SDM performance generally 
decreased as extrapolation increases—  that is, SDMs perform worse 
in more novel climates (Figure 4). We also found that the spread of 

F I G U R E  4  Annual correlation coefficient between simulated and estimated biomass (red line is ensemble mean) for three species 
archetypes (HMS: highly migratory species (a– c); CPS: coastal pelagic species (d– f); GFS: groundfish species (g- i)) and three earth system 
models (HAD, GFDL, IPSL). Blue line shows the percent of environmental extrapolation experienced by SDMs, with extrapolation relative 
to the 1985– 2010 training period. The ensemble mean of 12 estimation models is shown in red (ensemble mean does not include three 
SDMs that were considered to have poor performance over the projection period: GAM_S, GAM_EST, GLMM_ST). Grey shading indicates 
the maximum and minimum correlations from the 12 estimation models, and an 11- year running mean was applied to the correlation and 
extrapolation time series. Note y- axes differ among plots.
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projected biomass estimates became increasingly wider as environ-
mental novelty increased (Figure 4). Interestingly, there was limited 
decadal variability evident in environmental novelty (Figure S7), 
yet decadal variability was evident in the environmental covariates 
(Figure 2) and in the model performance (Figure 4).

3.5  |  What are the dominant sources of  
uncertainty and how do they change over the 
projection period?

We found that uncertainty in SDM biomass projections increased 
over the 90- year projection period and could exceed uncertainty 
among ESMs (Figures 6 and 7). The contribution of SDM uncer-
tainty to total uncertainty is highest in the northern region of the 
CCS across all species (Figure 6). This reflects an environmental sig-
nal, where projected conditions increasingly diverge in the central 

and southern regions compared to the northern region (Figure S8). 
SDM uncertainty has the capacity to dwarf ESM uncertainty when 
SDMs have incomplete information or are mis- specified (Figure 7), 
highlighting the important contribution SDM structure makes to un-
certainty in long- term projections. The relative importance of each 
type of uncertainty is influenced by the ecological processes under-
lying our species archetypes. For instance, HMS distributions were 
simulated to respond primarily to the environment, and therefore 
uncertainty was driven by oceanographic variables from the ESM 
which results in HMS having higher ESM uncertainty compared to 
other archetypes (Figure 6a). GFS and CPS were simulated to have 
distributions constrained by bathymetry and population dynamics, 
where SDM type and parameterization tended to drive uncertainty, 
particularly over the long term (Figure 6b,c). In general, the dynamics 
in uncertainty partitioning appear to relate primarily to divergence 
among ESM projections and the magnitude of extrapolation to novel 
environmental conditions experienced by SDMs.

F I G U R E  5  Correlation coefficients between simulated and estimated biomass for each species distribution model (a), showing loss of 
performance in the temperature- only experiment (b). Correlations were calculated for projection period only (2011– 2100). Colors represent 
the three earth system models, while symbols representing the three species archetypes. The ensemble mean across SDMs is shown. See 
Table S2 for description of SDMs. Note different y- axis in each plot.
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4  |  DISCUSSION

Climate change has already caused the geographic redistribution 
of many marine species, resulting in conflicts across jurisdictional 
boundaries and creating challenges for resource managers (Holsman 
et al., 2019; Liu & Molina, 2021; Palacios- Abrantes et al., 2022; 

Pinsky et al., 2018). Realistic projections of potential future eco-
logical states can help prepare resource managers for different 
scenarios of climate change and ecological redistribution (Hollowed 
et al., 2020). However, there is a need to quantify uncertainty across 
SDMs and ESMs, and how uncertainty within these models propa-
gates over time. By quantifying the performance and uncertainty 

F I G U R E  6  Relative uncertainty in biomass predictions for each region (north, central, south) and species archetype: (a) HMS, (b) CPS,  
(c) GFS. Uncertainty is partitioned across earth systems models, SDM type, and SDM parameterization. Dashed vertical line indicates when 
projections start. An 11- year running mean was applied. Map on the right shows regions of the California current system.

F I G U R E  7  Relative uncertainty in biomass predictions for each species archetype (integrating the three regions in Figure 6), for SDMs 
parameterized with all environmental variables (a– c), and with temperature only (d– f). Uncertainty is partitioned across earth systems 
models, SDM type, and SDM parameterization. Dashed vertical line indicates when projections start. An 11- year running mean was applied.
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of SDMs when projected over climate forecast horizons, we iden-
tify relationships between environmental novelty and ecological 
model performance, as well as quantify the contribution of SDM 
uncertainty to climate projection uncertainty. Below we discuss our 
findings and provide recommendations for projecting SDMs, and 
summarize our discussion in Box 1.

4.1  |  Characterizing uncertainty

Quantifying uncertainty is critical to ensuring appropriate communi-
cation of climate scenarios and anticipated impacts for marine eco-
systems to better prepare stakeholders and communities for change 
(Tittensor et al., 2021). Furthermore, comparing the magnitude of 
multiple sources of uncertainty can help determine where to invest 
effort to increase the precision of projections most efficiently. We 
found that uncertainty among a series of well- fit and similarly per-
forming SDMs can exceed uncertainty generated across ESMs, and 
that this result was consistent across the archetypal species explored. 
Notably, while the differences in performance among SDMs were rel-
atively minor, SDM model type (i.e., BRTs, GAMs, MLPs, and GLMMs) 

was the major source of uncertainty in projections, particularly at 
longer time horizons (>40 years). The increases in SDM uncertainty 
over time are partly due to the emergence of no- analog climates 
which force model extrapolation. Our results validate the findings of 
other studies that have explored the relative contribution of SDM un-
certainty to projections (e.g., Morley et al., 2020; Reum et al., 2020; 
Thuiller et al., 2019)— but importantly, the consistency in results oc-
curs despite our SDMs having a much better model fit and predictive 
performance than typical empirical SDMs. This suggests that simply 
improving the fit and performance of correlative models may not help 
to reduce SDM projection uncertainty, especially when extrapolation 
is likely. Future work could test the performance of additional model 
types and response variables, such as species presence models like 
Maxent (Phillips & Dudík, 2008). Indeed, next- generation modeling 
techniques, such as shape- constrained models (Citores et al., 2020), 
hybrid SDMs that explicitly integrate mechanistic or process- explicit 
responses (Briscoe et al., 2019; Evans et al., 2016), or approaches that 
account for non- stationarity in ecological responses may be required 
(Bueno de Mesquita et al., 2021; Malick et al., 2020) but first need to 
be tested as to whether that can improve extrapolative performance. 
These next- generation techniques can require subjective choices or 
large amounts of data, posing challenges and trade- offs for modelers 
interested in projecting species distribution dynamics (e.g., Briscoe 
et al., 2019; Fordham et al., 2018).

Our simulation study is able to explicitly identify some of the 
main mechanisms that lead to increased projection uncertainty— 
particularly model extrapolation into novel environmental space and 
differences in habitat preferences across species archetypes. While 
our analysis provides valuable insight into the contribution of SDM 
uncertainty, it is an overly simplistic assessment (by design) that 
likely underestimates the true total uncertainty that would be seen 
with empirical data. Interestingly, our approach attributed more un-
certainty to SDMs than what has been shown in empirical studies 
(Morley et al., 2020; Thuiller et al., 2019) despite our models being 
better fit than typical empirical SDMs. However, we anticipate that 
decreased model fit and predictive performance associated with 
empirical data would act to increase the uncertainty within and 
among SDMs, and decrease the time horizon when SDM uncertainty 
exceeds ESM uncertainty (and we show this with the temperature- 
only simulation). We also show that SDM uncertainty was more 
dominant for the GFS and CPS archetypes whose distribution was 
additionally constrained by nondynamic variables and whose overall 
biomass trend had some imposed temporal structure independent of 
environmental drivers. As we begin to build multispecies projections 
of ecosystem response to future climate change (Fulton et al., 2011; 
Tittensor et al., 2021), we may need to explore several axes of un-
certainty based on the characteristics of the projected species. We 
note that projected environmental change in the study region was 
not sufficient to drive any of our species archetypes to a biomass 
approaching zero (Figure S2). In studies where future conditions are 
likely to exceed environmental tolerance limits of a species, and lead 
to local extirpation, model uncertainty can decrease through time as 
environmental conditions become increasingly unfavorable.

BOX 1 Recommendations for quantifying and 
reducing uncertainty in climate projections of 
species distributions. See the discussion section for 
full details and justification

Quantifying Uncertainty
1. Studies projecting species distribution models (SDM) 

should pay increased attention to quantifying and com-
municating uncertainty to assist end users in scenario 
planning.

2. Using a combination of multiple diverging earth sys-
tem models and multiple types or parameterizations of 
SDMs will effectively capture uncertainty.

3. Quantify uncertainty over time, as SDM uncertainty 
can dominate at longer time horizons (>40 years), and 
decadal variability can drive nondirectional trends in 
uncertainty.

Reducing Uncertainty
1. Spend effort on reducing SDM extrapolation rather 

than improving model fit (e.g., fitting species data over a 
broader range of environmental conditions).

2. Consider including spatial covariates (e.g., latitude), es-
pecially for species with strong spatial structure to their 
distributions or when SDMs do not capture dominant 
mechanisms driving distributions.

3. Carefully explore the addition of temporal covariates 
(e.g., year) to SDMs, and suggest they be integrated 
within artificial intelligence models, or within models 
that can incorporate spatiotemporal variation.
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4.2  |  Recommendations for SDM projection 
studies and practitioners

Our simulation framework was designed to test the accuracy of pro-
jected SDMs. Our results inform the following recommendations 
for SDM projection studies, including recommendations for how 
to reduce and communicate uncertainty in future studies (see also 
Box 1). Our first recommendation is to carefully consider the inclu-
sion of spatial covariates in SDMs and the underlying mechanistic 
processes they represent. Including spatial covariates improved 
predictive performance for all three species archetypes, and for all 
four model types (GAM, GLMM, BRT, and MLP). In particular, adding 
spatial covariates was particularly useful when species had strong 
spatial structure to their distributions and environmental covariates 
were not able to capture the dominant mechanisms driving distribu-
tion (e.g., temperature- only models for CPS and GFS archetypes). 
However, for many mobile species, there may be a point at which his-
torical spatial relationships begin to break down and no longer accu-
rately predict species distributions, thus care should be taken when 
interpreting projected SDMs that contain these spatial structures 
and perhaps supplement model evaluations with expert opinion 
and guidance (e.g., Warren et al., 2020). Indeed, Barnes et al. (2022), 
showed more complex SDMs improved model fit but failed to skill-
fully forecast species distributions. Furthermore, our results indi-
cated that not capturing the appropriate mechanisms driving species 
distributions can lead to poor model performance when projecting. 
However, we did see decadal variability in SDM performance which 
related to cyclical trends in projected zooplankton concentration, as 
compared to the directional trend in temperature typically seen in 
climate projections. This leads to a need to think more creatively 
about which other covariates or processes could be derived or meas-
ured that are currently beyond what our standard instrumentation 
and ocean models allow, such as subsurface environmental data or 
prey fields (e.g., Brodie, Jacox, et al., 2018; Goodman et al., 2022; 
Tolimieri et al., 2018).

Our second recommendation is to consider ways to reduce the 
extent to which models extrapolate, so as to help reduce model un-
certainty over the projection period. Our results indicate that simply 
improving the fit of correlative models may not reduce SDM projec-
tion uncertainty, but rather effort would be better spent trying to 
sample data and understand species responses over a broader range 
of environmental conditions. This could be achieved by collect-
ing more empirical data, particularly at the range edges of species 
distributions or beyond historical boundaries of sampling surveys, 
conducting lab- based experiments to better understand species 
thresholds, or explicitly integrating mechanistic or process- explicit 
species responses. For highly mobile species in particular, building 
SDMs with data from a larger geographic range than the region of in-
terest for projections may help to avoid truncating species response 
curves and improve SDM performance over the projection period 
(Brodie, Litherland, et al., 2018; Guisan & Thuiller, 2005).

Each model we tested differs in how it is fit to historical data and 
how it extrapolates on novel data. BRTs extrapolate by predicting 

a constant biomass at the value of the “nearest” terminal node 
(i.e., biomass remains largely static in novel environments). MLPs 
can extrapolate beyond the training data, but this is often not rec-
ommended by practitioners due to potentially unrealistic results 
(Gardner & Dorling, 1998). GAMs use a spline to fit data, and will 
extrapolate from data under a specified derivative penalty (typi-
cally penalizing a non- linear shape) (e.g., Riutort- Mayol et al., 2020). 
Conversely, GLMMs extrapolate based on a linear combination of 
fixed- effect terms and the estimated temporal correlation of spatial 
fields (when such effects are included). The GLMMs in this study 
were more parametrically structured than the other model types, 
yet did not provide any additional inference or predictive perfor-
mance. We primarily attribute this to the lesser flexibility of covari-
ate responses, compared to the nonlinear splines, trees, or neural 
networks seen in other model types, and potential effects of spatial 
fields and spatially autocorrelated covariates. We acknowledge that 
the simulation framework may have unfairly considered GLMMs 
given that more flexible responses (e.g., splines) can be incorporated 
into such models and additional model structure can better help to 
resolve complex ecological processes (Barnes et al., 2022; Barnett 
et al., 2021). Our results indicate that the impact of extrapolation 
on model performance is difficult to predict, and more research is 
needed on methods for measuring and improving extrapolation, and 
the trade- offs between resolving ecological processes and more ac-
curately defining response curves (e.g., Brodie et al., 2020).

We note that adding annual temporal covariates did not pro-
vide any additional improvements in SDM predictive capacity, 
but rather was capable of significantly degrading performance 
(e.g., GAM_EST). In the case of GAM_EST, the annual trend in the 
spatial components is extrapolated for 90 years, which unsurpris-
ingly becomes inaccurate. There are many ways to include and 
constrain (see Supplementary Material) temporal covariates, and 
our simulation framework only examined annual time steps. For 
species with strong subannual phenological patterns, or that re-
spond to an unknown spatiotemporal process, parameterization 
of a temporal covariate may be beneficial (Brodie et al., 2020; 
Tolimieri et al., 2018). Also, if temporal covariates are important 
for improving model fits to observations, then there is a strong 
case for including or constraining them in projections. We rec-
ommend careful exploration of temporal covariates and suggest 
they be integrated within an artificial intelligence model, or within 
models that can incorporate spatiotemporal variation with appro-
priate assumptions regarding the nature of temporal correlation of 
spatial patterns.

Our final recommendation is to ensure that future studies pro-
jecting SDMs pay increased attention to quantifying and commu-
nicating uncertainty. SDM projection studies present a range of 
plausible futures to assist ocean stakeholders and resource man-
agers with scenario planning and adaptation strategies. Inherent to 
this exercise is capturing and communicating realistic uncertainty to 
assist end users in scenario planning. Future work could focus on 
examining uncertainty derived from observation uncertainty (e.g., 
imperfect sampling of the system), or process error variability arising 
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from fitting SDMs. Our results highlight that using a combination of 
both ESMs and SDMs is an effective approach to capturing realistic 
uncertainty, and we recommend that future studies consider a sim-
ilar approach.

Our recommendations are based on a simplified simulation 
framework, designed to test the accuracy of projected SDMs. 
Our SDMs fit the simulation data well, and in general were better 
fit than studies using empirical data. Specifically, mean R2 for the 
HMS archetype was .63 while Muhling et al. (2019) published an 
albacore CPUE SDM with an R2 of .31. The same pattern was seen 
for occurrence in the anchovy CPS archetype (AUC of 0.99 vs. 
0.83) (Muhling et al., 2019) and sablefish groundfish archetype 
(AUC 0.79 vs. 0.71– 0.73 in the Gulf of Alaska) (Pirtle et al., 2019). 
There are many ecological processes that we have not captured in 
our simulation that are known to influence species distributions 
(e.g., density dependence, interspecific interactions, life history, 
population structure, endothermy, recruitment dynamics, etc.), 
and further work could focus on integrating such structuring 
processes into simulations (Grimmett et al., 2021) or empirical 
studies (Jaatinen et al., 2021). Additionally, ecological impacts 
due to climate change will not just limited to species movements. 
Climate- induced changes to trophic structure, animal physiol-
ogy, and species interactions will all increase the uncertainty 
and unpredictability of projections, and has not been captured in 
this analysis. Comparison of residuals between simulated SDMs 
and empirical SDMs would be helpful to make inference on how 
to better build operating models with real- life data generating 
processes. Overall, our results likely underestimate absolute un-
certainty, but still provide informative results based on a best- 
case scenario, and highlight trends in partitioned uncertainty. 
Because our simulations were based on empirical species with 
real environmental variability and our results presented on a rel-
ative scale, our recommendations are generalizable to empirical 
data of mobile marine species and to other regions outside of 
the CCS.

This study arose from a workshop in support of the Western 
Regional Action Plan of the NOAA Fisheries Climate Science Strategy 
(Busch et al., 2016; Link et al., 2015). The workshop highlighted ad-
ditional next steps and areas of high priority research to prepare 
for and mitigate climate impacts on eastern North Pacific fisheries, 
managed and protected species, and habitats. These next priority 
steps include testing the utility of various SDM performance metrics 
(e.g., range edges, climate velocity, habitat displacement) as a means 
to accurately quantify and communicate climate impacts on species 
distributions; test the performance of hybrid SDMs that incorporate 
mechanistic and process- explicit responses (Briscoe et al., 2019); 
compare the near- term projections of simulations to those based on 
empirical data for specific species (e.g., albacore, anchovy, and sa-
blefish) as a means to explicitly prepare regional resource managers 
for climate impacts to key fisheries species; explore the role of inter-
specific interactions (predation, competition) on projections (Tekwa 
et al., 2022); and examine the changes in fishing and other human 
responses to changes in species availability (Selden et al., 2020; 

Smith et al., 2021). On the US West Coast, these efforts will in-
form scenario planning activities conducted by the Pacific Fisheries 
Management Council (PFMC) under its Climate and Communities 
Initiative (https://www.pcoun cil.org/docum ents/2020/11/scenarios- 
 for- west- coast - fishe ries- clima te- and- commu nitie s- initi ative.pdf/), 
and the PFMC scenarios can be aligned to assumptions about bio-
physical dynamics to inform additional evaluation of SDM perfor-
mance. Future research that addresses these priority next steps 
will help to increase the production, delivery, and use of climate- 
related information required by resource managers and other ocean 
stakeholders.

5  |  CONCLUSION

Understanding species distributions is a key aspect of developing 
climate- resilient fisheries, and SDMs can capture some of the drivers 
of ecological change to help inform robust management strategies 
(Karp et al., 2019). Ecological projections of species distributions 
can be used in scenario planning exercises for resource managers, 
and our results highlight the important role SDM modeling deci-
sions have in contributing to projection uncertainty. Specifically, we 
find that uncertainty from ESMs will dominate over the next several 
decades, but that will eventually be exceeded by uncertainty from 
SDMs. Results were consistent across species archetypes, but nota-
bly were moderated depending on the underlying dynamics driving 
species distributions (i.e., environmental variability and population 
dynamics) and the extent to which novel environmental conditions 
forced SDMs to extrapolate. Climate- resilient fisheries management 
benefits from qualitative perspectives, for instance in risk assess-
ment, and from quantitative dynamic and adaptive approaches that 
forecast and manage for ecosystem shifts over a range of timescales 
(Holsman et al., 2019). Our results are able to accurately capture 
SDM performance over climate projections and communicate the 
contribution of SDM uncertainty to ecological projections. This is 
a critical result that can help resource managers understand the 
“known unknowns,” and that increased uncertainty is likely under 
empirical scenarios.
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