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 ABSTRACT 

 Many small cetacean, sirenian, and pinniped species 

aggregate in groups of large or variable size. Accurate 

estimation of group sizes is essential for estimating the 

abundance and distribution of these species, but is challenging 

as individuals are highly mobile and only partially visible. We 

developed a Bayesian approach for estimating group sizes using 

wide-angle aerial photographic or video imagery. Our approach 

accounts for both availability and perception bias, including a 

new method (analogous to distance sampling) for estimating 

perception bias due to small image size in wide-angle images. We 

demonstrate our approach through an application to aerial survey 

data for an endangered population of beluga whales 

(Delphinapterus leucas) in Cook Inlet, Alaska. Our results 

strengthen understanding of variation in group size estimates 

and allow for probabilistic statements about the size of 

detected groups. Aerial surveys are a standard tool for 

estimating the abundance and distribution of various marine 

mammal species. The role of aerial photographic and video data 

in wildlife assessment is expected to increase substantially 
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with the widespread uptake of unmanned aerial vehicle 

technology. Key aspects of our approach are relevant to group 

size estimation for a broad range of marine mammal, seabird, 

other waterfowl, and terrestrial ungulate species. 

Key words: abundance, aerial photograph, aerial video, 

availability bias, beluga whale, Delphinapterus leucas, 

distribution, perception bias, UAV, visibility bias. 
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 Groups are a fundamental unit for many social species 

(Royle 2008). For species that aggregate in groups of large or 

highly variable size, including many species of small cetaceans, 

sirenians, pinnipeds, seabirds, and other waterfowl, accurate 

estimation of group sizes is essential for accurate estimation 

of abundance and density distribution patterns based on survey 

data. Estimates of group size and group size dynamics are also 

important for understanding various aspects of foraging, 

reproductive, and behavioral ecology, and responses to 

anthropogenic disturbance (e.g., Elgar 1989, Baird and Dill 

1996, Giraldeau and Caraco 2000, Heithaus and Dill 2002, Gowans 

et al. 2008, Orbach et al. 2014, Koper et al. 2016). Yet, 

estimating group size can be extremely challenging, especially 

for species that are highly mobile and often submerged or only 

partially visible (e.g., Gilpatrick 1993, Clement et al. 2017). 

 Two major sources of visibility bias can lead to 

underestimation of the size of detected groups (Marsh and 

Sinclair 1989, Laake and Borchers 2004): availability bias 

occurs when animals are missed because they are underwater, 

underground, or concealed by vegetation or other animals; 
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perception bias occurs when available animals are missed because 

they are not seen by observers due to factors such as distance, 

size, or coloration. 

 Availability bias is typically estimated by comparing the 

length of time that a location is observed with the proportion 

of time that animals are expected to be unavailable, estimated 

from ancillary behavior data (e.g., Williams et al. 2017). 

Diving animals, for example, may spend a large proportion of 

time underwater—information on diving patterns may be collected 

from a second survey platform (e.g., Laake et al. 1997, Hiby and 

Lovell 1998, Sucunza et al. 2018) or using time-depth recorders 

(e.g., Pollock et al. 2006, Thomson et al. 2012). 

 Substantial research effort has been dedicated to 

estimating and correcting perception bias in the group detection 

process, using distance sampling and mark-recapture methods 

(e.g., Alpizar-Jara and Pollock 1996, Buckland et al. 2001, 

Marques and Buckland 2003, Laake et al. 2008, Royle 2008, Barlow 

2015). However, much less attention has been focused on 

correcting for perception bias when estimating group sizes 

(Clement et al. 2017), despite the importance of accurate group 
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size estimates for estimating abundance and distribution 

patterns in species that occur in large or highly variable 

groups (see Hobbs et al. 2000, Clement et al. 2017, Gerrodette 

et al. 2018 for exceptions). 

 Our research objective was to develop a modeling approach 

for estimating group sizes from aerial survey data, including 

aerial photographic or video data. Aerial surveys are a standard 

tool for estimating the abundance and distribution of various 

marine and terrestrial vertebrate species, providing essential 

information for conservation, management, and ecological 

understanding (Caughley 1979, Garner et al. 1999, Gowans et al. 

2008). The role of aerial photographic and video data in 

wildlife assessment, monitoring, and research is expected to 

increase substantially with the widespread uptake of unmanned 

aerial vehicle (UAV) technology (Hodgson et al. 2016). 

 Our approach builds on previous methods for estimating 

availability bias developed by McLaren (1961), Laake et al. 

(1997), Hobbs et al. (2000), and others, but provides a new way 

to estimate perception bias due to small image size in aerial 

photographs or video that is analogous to distance sampling. 
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Variation in image size may reflect true variation in the 

physical size of individuals and/or apparent variation 

attributable to the exaggerated perspective in the wide-angle 

images used to capture large or dispersed groups within a single 

frame (i.e., distant objects appear much smaller in wide-angle 

images than in standard 50 mm images). Group sizes will be 

underestimated if the analysis does not account for individuals 

that are not detected because of their small image size. Our 

focus was on small coastal cetaceans, specifically beluga whales 

(Delphinapterus leucas; Pallas, 1776), but our approach is 

broadly applicable to aerial survey data and UAV imagery for 

marine and terrestrial wildlife. 

 Cook Inlet beluga whales are a small population, resident 

year-round in Cook Inlet, Alaska (Fig. 1). The population is 

geographically and genetically isolated from the nearest 

neighboring populations in Bristol Bay and Yakutat Bay, Alaska 

(O’Corry-Crowe et al. 1997, 2015; Laidre et al. 2000). The best 

available estimates of historical abundance, based on aerial 

surveys in 1979 and 1991, indicate a population of more than a 

thousand (Shelden et al. 2015). This population suffered severe 
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declines due to unregulated and unsustainable hunting in the 

1990s. The hunt was reduced to 0–2 individuals per year from 

1999, following a comanagement agreement between the U.S. 

National Marine Fisheries Service (NMFS) and Alaska Native 

organizations (Mahoney and Shelden 2000), and there has been no 

documented hunt since 2005. The population was expected to start 

increasing within a few years of the reduction in hunting 

pressure, but there has been limited evidence of recovery to 

date (Hobbs et al. 2015). Consequently, the Cook Inlet 

population of beluga whales was listed as Critically Endangered 

on the IUCN Red List of Threatened Species in 2006 (Lowry et al. 

2012) and endangered under the U.S. Endangered Species Act (ESA) 

in 2008 (U.S. Federal Register 2008). 

 Group size estimates based on aerial survey data provide 

the foundation for estimates of abundance and distribution 

patterns for Cook Inlet beluga whales (e.g., Goetz et al. 2012, 

Hobbs et al. 2015). These estimates, in turn, play a key role in 

research and management decision-making. The status of the 

population under the ESA, identification of critical habitat, 

and management of anthropogenic activities that might jeopardize 
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the population (including the future of the subsistence hunt) 

all depend on estimates of abundance and distribution patterns.  

 METHODS 

Aerial Survey 

 Survey design—Since 1994, NMFS has conducted dedicated 

annual or biennial aerial surveys of the Cook Inlet beluga whale 

population (Hobbs et al. 2015). We focused our analysis on data 

collected from 2004 through 2016, as several changes were made 

to the survey design and data processing in 2004. 

 The survey was conducted in early June, when the population 

is usually highly aggregated in coastal areas near river mouths, 

foraging on anadromous salmon and eulachon (Moore et al. 2000). 

Group sizes are highly variable at this time, ranging from a few 

individuals to several hundred, with the majority of the 

population sometimes aggregated in a single group.  

In each survey year, the aerial survey encompassed the entire 

known range of Cook Inlet beluga whales. The survey was 

partitioned into two sectors: the Upper Inlet (Fig. 1) and the 

Lower Inlet, but no belugas have been sighted in the Lower Inlet 

during these surveys since 2001. The objective for the Upper 
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Inlet survey was to count the entire population on each of five 

or more survey days, by locating and estimating the size of all 

groups. (Note that this differs from a conventional line-

transect or strip-transect survey, in which the objective is to 

detect and count groups within a representative sampling area.) 

The survey design was strategic, rather than systematic, 

combining a comprehensive survey of coastal areas on each day, 

with relatively sparse north-south or sawtooth transects of 

offshore areas. The survey was also adaptive, with a gradual 

reduction in survey effort in areas where belugas were not found 

on previous days. Consequently, the pattern of survey effort 

varied among survey days and years. 

 The timing of surveys in relation to the tide is important. 

Cook Inlet is characterized by an extreme tidal range with 

extensive mudflats exposed at low tide in areas of the Upper 

Inlet such as the Susitna Delta (Moore et al. 2000). The ability 

to detect and count all beluga groups increases substantially 

with the reduction in effective survey area at low tide (Rugh et 

al. 2000). Each survey day was therefore scheduled, to the 

extent possible, so that the Susitna Delta was surveyed at low 
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tide, and other areas on the falling tide. 

 Aircraft and observer configuration—Aerial surveys were 

flown in twin-engine aircraft with high wings and bubble windows 

at 244 m (800 ft) and 185 km/h (100 kn). The aircraft model was 

changed periodically.2 On each Upper Inlet survey day, coastal 

areas were surveyed in a clockwise direction, using an 

inclinometer to maintain the shoreline 10º below the horizon 

(i.e., at a distance of 1.4 km from the shoreline). 

 Two observers were positioned on the shoreward-side of the 

aircraft behind the pilot, with one observer and a data recorder 

on the other side of the aircraft behind the copilot. In all 

survey aircraft, the two forward observers had a bubble window. 

In 2004–2006 and 2008–2010, the shoreward-rear observer also had 

a bubble window and similar field-of-view to the forward 

observer. In other years, the shoreward-rear observer had a flat 

window and more limited field-of-view. The data recorder used 

custom software on a laptop computer to record encounter data, 

viewing conditions, changes in effort, and comments. All data 

entries included date, time, and location information from a 

portable GPS system connected to the laptop. 
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 Count protocol—Belugas are usually found in dense clusters 

constituting distinct groups (Rugh et al. 2000). When whales 

were found in looser aggregations, groups were delineated for 

convenience of counting (Table S1). On some occasions, groups 

split or merged during the counting process. All such groups 

were included in the analysis, but data collected either before 

or after a group split or merger were excluded from the analysis 

to avoid double-counting. 

 When a beluga group was detected, the survey aircraft 

closed on the group and a series of counting passes was 

initiated based on an oval race-track pattern around the group 

(Fig. S1) and standardized counting protocols. On each pass, 

counts were made along the long axis of the oval, with two 

observers and a videographer on the same side of the aircraft. 

For medium-large groups (e.g., >20 individuals), around eight 

counting passes were typically implemented, with two observers 

estimating group size on each pass (i.e., up to 16 counts 

total). After several counting passes, observers switched roles 

with the recorder and videographer, so that a large group could 

be counted by four independent observers. Observers 
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independently rated each of their counts as excellent, good, 

fair, poor, or unusable depending on viewing conditions. Only 

counts rated good or excellent were used in this analysis. 

Counts were not shared among observers until the end of the 

survey season to maintain the independence of each observer’s 

counting process. 

 Video data were also collected for medium-large groups, 

using two parallel-mounted identical video cameras held in fixed 

position on a hand-held board. Video cameras were upgraded 

periodically, with a switch to high-definition video in 2011.3 

The “zoom” video camera was set to maximum zoom to ensure that 

all belugas within the narrow frame of view were detected. In 

contrast, the “wide-angle” video camera was set to a wide angle 

designed to ensure that the entire group was captured within the 

video frame. The specific focal length varied depending on the 

group size and spread and the aircraft altitude and distance. 

During video analysis, each video clip was rated as excellent, 

good, fair, poor, or unusable. Only video clips rated good or 

excellent were used in this study. 

 Digital video data were analyzed using a customized 
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computer program, “Beluga Dots,” that enabled analysts to mark 

and track individual whales in video clips and measure their 

maximum size (in terms of pixels) and velocity (in terms of 

lines-of-resolution moved per unit of time). Size measurements 

were generally made by two analysts independently, then 

averaged. The program also allowed analysts to identify 

individuals detected in matched wide-angle and zoom video clips 

(i.e., clips recorded simultaneously at different magnifications 

by the paired zoom and wide-angle cameras) and take image size 

measurements of the same individual in wide-angle and zoom video 

clips at exactly the same point in time. 

Modeling Approach 

 Group sizes for Cook Inlet belugas have previously been 

estimated using point estimation methods to obtain a series of 

correction factors to correct video and observer count data for 

various types of visibility bias. Correction factors were then 

applied sequentially to calculate an average estimated group 

size for each group (Hobbs et al. 2000, 2015). 

 We developed a Bayesian approach to group size estimation. 

Bayesian methods are better suited for multistep analyses, in 
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which estimates from one step are used as inputs in a subsequent 

step, because uncertainty is automatically propagated from one 

step to another. Our approach was designed to address the same 

four types of bias as previous methods (Hobbs et al. 2000, 

2015): (1) availability bias due to diving behavior (individuals 

unavailable because submerged, hereafter “availability bias”); 

(2) availability bias due to proximity (individuals unavailable 

because concealed by another animal, hereafter “proximity 

bias”); (3) perception bias (individuals not detected because of 

small image size) in video data; and (4) individual observer 

bias (i.e., the tendency for individual observers to under- or 

over-count whales) in visual observer data. 

Model Overview 

 Ecological processes—The model is configured to estimate 

independent group sizes, sampled as follows: 

 
 ~ (  ), ,n g d g dPoisson λ  (1a) 

where n  is the true unobserved (or latent) group size, g is an 

index for group, and d is an index for day, and  ,λg d  conveys a 
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vague prior on the expected size of each group. The sum of group 

sizes (or total group size) for all detected groups on each day, 

N d  , is calculated as follows: 

 


,N nd g dg

G d=
=∑ 1

 (1b) 

where Gd is the total number of groups detected on each survey 

day. 

 Observation processes—The observation processes are 

summarized by two likelihood equations (Eq. 2, 3). The 

likelihood for the count data in each wide-angle video clip was 

estimated using a standard N-mixture model structure (Royle 

2004), in which group size is a latent variable that can be 

estimated from a series of imperfect counts. A basic assumption 

underpinning the binomial distribution in this model structure 

is that individuals cannot be over-counted. (An advantage of 

video over still photography is that object movement patterns 

can reduce the potential for false positives. In this case 

study, for example, belugas can be readily distinguished from 

whitecaps or birds by their distinctive movement patterns.) 
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Here, the likelihood of the number of individuals counted in a 

wide-angle video clip, nv, depends on the group size, n , and the 

probability that individuals are available at the surface, pa 

(availability bias), the probability that they are not 

concealed, 1 − pc (proximity bias), and the average detection 

probability for available individuals given the image size 

distribution in the video clip, pd (perception bias): 

 nv pa pc pd np g d p g d p g d p g d g d, , , , , , , , ,~ [ ( )  ]binomial ∗ − ∗1
 (2) 

where p is an index for video or counting pass (see further 

model details below). 

 Video data were not available for all groups and passes, so 

group size estimation for some groups depends on counts by 

visual observers. Even experienced observers may have inherent 

biases in how they count—most observers tend to underestimate 

group sizes, but some tend to overestimate (cf., Gerrodette et 

al. 2018). The potential for over-estimation implies that an N-

mixture model with binomial likelihood cannot be used here. The 

likelihood of the observer count data in each pass was therefore 

assumed to follow a negative binomial distribution: 

 
This article is protected by copyright. All rights reserved.



 
[4676]-18 

 
no ni p g d i g d i, , , ,~ (  )negative.binomialδ ϑ∗  (3) 

where no is the number of whales counted by an individual 

observer during a counting pass; i is an index for individual 

observer; δi is a correction factor for the tendency of each 

individual observer to over- or undercount group sizes; and ϑi 

captures the dispersion of each individual observer’s counts 

around the expected value. The model gains information on 

individual observer bias (i.e., δi and ϑi) from groups and passes 

for which both video and observer counts are available (cf., 

Gerrodette and Forcada 2005). (See Appendix S1 Section A for an 

alternative version of Eq. 3 to account for a flat observation 

window.)  

 Figure 2 provides a graphical summary of the model. 

Model Details 

 Availability bias—Cook Inlet waters are extremely turbid, 

such that individual belugas in a group are only visible from 

the air when a portion of the body is above the water surface 

(Hobbs et al. 2000). The model component for estimating 

availability bias builds on previous work by McLaren (1961), 

Laake et al. (1997), and Hobbs et al. (2000). The probability of 
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availability, pa, is estimated for each pass, p, as follows (see 

Appendix S1 Section B for derivation): 

 

pa
s

s b
w

s bp
p

p p

p

p p
p=

+
+

+
+ε  (4) 

where ( )ε σεp ~ ,normal 0 2  and s  is the measured mean time spent 

visible at the surface; b  is the unknown mean time spent 

invisible underwater; and w is the measured video clip duration. 

Each clip is indexed by group and day, but group and day indices 

have been suppressed in Equation 4 and subsequent equations for 

clarity. The probability of availability, pa, is constrained to 

be ≤1 in the model. 

 Most of the variables in Equation 4 could be measured 

directly from the video data for each video clip. The exception 

was time spent invisible underwater, b , as it is not generally 

possible to track consecutive surfacings of individual belugas 

using aerial video data. Data on surface-dive intervals (i.e., s 

+ b) from a single Cook Inlet beluga radiotracked in early June 

by Lerczak et al. (2000) were therefore used to construct an 
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informative prior for the mean surface-dive interval (i.e., 

s bp p+ ). 

 Proximity bias—In the case of belugas, an individual at the 

surface may also be unavailable because it surfaced close to 

another individual and was concealed from view in the wide-angle 

video. In the Cook Inlet beluga survey, proximity bias was 

estimated by comparing matched zoom and wide-angle video clips 

(Fig. 3a, b). Individuals that were detected in the zoom video 

but missed in the wide-angle video because it was not possible 

to distinguish two distinct individuals were identified. The 

probability that an available individual was concealed in the 

wide-angle video, pc, was then calculated as follows: 

 
pc nc

nz
=  (5) 

where nz is the number of individuals detected in zoom video 

clips; and nc is the number of individuals that were detected in 

zoom video clips, but missed in matched wide-angle video clips 

because it was not possible to distinguish two individuals. A 

single probability was calculated for each survey year (i.e., 
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pcp,g,d = pc), as this occurred rarely in the Cook Inlet beluga 

data set. 

 Perception bias—In aerial photographic or video surveys 

based on wide-angle imagery, accounting for perception bias due 

to small image size can be a major challenge. Perception bias 

occurs because the probability of detection declines as image 

size approaches zero, such that individuals with smaller image 

sizes (e.g. <4 pixels long) are less likely to be detected by 

analysts (Fig. 3c, d). Perception bias is thus a function of (1) 

the distribution of image sizes in an aerial photograph or video 

clip, and (2) the detectability of objects given their image 

size. Specifically, for each aerial photograph or video clip, 

the average detection probability for available individuals in a 

video clip, pdp in Equation 2, depends on the probability that 

individuals fall into each image size class, πk,p, and the 

probability that individuals in each size class are detected, ψk: 

 pd p
k k pk

K

k pk

K=
∗

=

=

∑
∑

ψ π

π

,

,

1

1

 (6) 

where k is in index for size class. The denominator in Eqation 6 
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serves to scale the estimate of detection probability so that it 

would equal 1 in the case of perfect detection of individuals in 

all size classes. 

 We developed an approach for estimating perception bias 

(i.e., detection probability as a function of image size; Fig. 

4a) that is analogous to standard distance sampling methods for 

estimating detection probability as a function of distance 

(Buckland et al. 2001; see also Kéry and Royle 2016 Chapter 8 

for a Bayesian approach).  

 The main difference between distance sampling and the 

method developed here is that distance sampling makes use of the 

simplifying assumption that the underlying distances of all 

objects (detected and not detected) are homogenously 

distributed, simplifying estimation of πk. In contrast, we assume 

a nonhomogenous distribution of underlying image sizes, which 

must be estimated. This is facilitated by ancillary data on ψk. 

Detection Function 

 The first step in estimating the average detection 

probability (Eq. 6) is to estimate the probability that 

individuals in each size class are detected, ψk. In the case of 
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the Cook Inlet beluga survey, information on this detection 

function can be gained from matched zoom/wide-angle video clips 

(Fig. 3c, d). It is assumed that all animals in the zoom video 

frame were detected, but the same individuals were either 

detected or not in the matched wide-angle video (qj,p = 1 or qj,p 

= 0 for the jth individual), depending on image size. 

(Individuals concealed because of their close proximity to 

another were excluded from this analysis.) The detection 

function can then be estimated from the image sizes in matched 

wide-angle video clips, 𝑠𝑠� : 

 
logit( ) , ,pv ssj p j p= + ∗α α0 1   (7a) 

 
q pvj p j p, ,~ ( )Bernoulli  (7b) 

where pv is the probability of detecting the jth individual in a 

matched wide-angle video clip given its image size in the wide-

angle video clip, and  and  are parameters. The image sizes of 

individuals that were not detected in the wide-angle video are 

unknown and must be estimated (see Appendix S1 Section C).  

The detection probability for each image size class, ψk (see Eq. 

6), can be estimated using the parameters estimated in Eqation 
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7a: 

 logit(ψk) = α0 + α1 * skk (7c) 

where skk is the midpoint of the kth size class (see below). 

Image Size Distribution 

 The second step in estimating the average detection 

probability (Eq. 6) is to estimate the distribution of image 

sizes for all individuals (detected and not detected) in each 

wide-angle video clip (i.e., πk,p). For each survey year, we 

fitted models based on the assumption that the distribution of 

images sizes followed either a lognormal distribution or a zero-

truncated normal distribution. (The Weibull distribution was 

also considered but rejected following preliminary analysis.) We 

used a hierarchical framework to combine information on the size 

distribution parameters from video clips with more data (cf., 

Schaub and Kery 2012; Appendix S1 Section D), as the number of 

individuals detected and measured in wide-angle video clips 

ranged from <10 to >100. 

 Based on the parameters μp and σp
2
, the probability that an 

individual in a video clip falls into the kth size class is: 
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( )π φ µ σk p k k p pu l, , | ,= 2  (8a) 

where φ µ α( , | , )u lk k
2  specifies the cumulative density of the 

lognormal or zero-truncated normal distribution with mean, μ, 

and variance, σ2, between the upper limit, uk, and lower limit, 

lk, of the kth size class. (Measured sizes for detected 

individuals in standard wide-angle images are the average of two 

measurements by independent analysts for all years except 2004, 

so naturally fall into half-pixel size classes. Whole-pixel size 

classes were used for 2004.) 

 The mean and variance of the image size distribution (i.e., 

μp and σp
2
) cannot be estimated directly because the distribution 

of image sizes is only partially observed—the sizes of 

undetected individuals are unknown (Fig. 4a). The parameters μp 

and σp
2  must therefore be inferred from the image sizes of 

detected individuals. This is achieved using a construction 

analogous to binned distance sampling, with size classes 

replacing distance classes. The likelihood of the video counts 

of detected individuals in each size class, yk,p:, is estimated 
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based on a multinomial distribution: 

 yp ~ multinomial(ϕp,nvp) (8b) 

where nvp is the total number of individuals counted in each 

video clip. The vector ϕ gives the multinomial cell 

probabilities based on the expected distribution of detected 

individuals among the various size classes, i.e., ϕk,p is the 

joint probability that an individual occurs in the kth size 

class and is detected: 

 
ϕ ψ πk p k k p, ,= ∗  (8c) 

Model Implementation 

 The posterior distributions of model parameters were 

approximated using Markov chain Monte Carlo (MCMC) sampling, 

implemented in JAGS (Plummer 2003). (See Appendix S2 for model 

code.) Priors were generally vague (Table S2), with the 

exception of the prior for the surface-dive interval, as noted 

above. For each survey year, two separate chains were run for 

1,000,000 iterations with an initial burn-in of 500,000 and a 

thinning rate of 1,000 to generate 1,000 saved parameter sets. 

Convergence was assessed by visual inspection of trace plots for 
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detected group sizes (  ,n g d ), total group size (
N d ), and key 

parameters (i.e., the detection function parameters, α0 and α1, 

the grand mean, Μ, and grand variance for the size 

distributions, Σ2, and the individual observer parameters, δi and 

ϑi), and the Gelman-Rubin diagnostic test (Gelman and Rubin 

1992). Model fit was assessed using posterior predictive checks 

(Gelman et al. 2004). 

 RESULTS 

 For the 11 survey years from 2004 to 2016, there were 5–8 

Upper Inlet survey days per year. The total number of groups 

observed per survey year ranged from 13 (2008; 7 survey days) to 

44 (2006; 7 survey days). Observers made an average of 12.1 good 

or excellent counts per group (range: 1–27). In addition, video 

data were processed for 3–7 survey days per year, and for an 

average of 17.8 groups per year (range: 9–31), with an average 

of 4.0 (range: 1–10) good or excellent wide-angle video clips 

per group. The total number of individuals counted in video 

passes per year averaged 2,396 (range: 1,495–3,476).  

 All models converged, as indicated by visual inspection of 
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trace plots, posterior predictive checks, and the Gelman-Rubin 

statistic (Table S3), with the exception of the model for the 

2009 survey data with a zero-truncated normal distribution for 

image sizes. Multivariate proportional scale reduction factors 

(PRSF, Brooks and Gelman 1998) were <1.06 for all sets of 

observed population sizes ( N d ), and less than or equal to 1.12 

for all sets of detected group sizes (  ,n g d ) after removing groups 

for which all observer counts were 0. Higher PRSFs were 

generally associated with very small groups, reflecting the 

generic difficulties of estimating discrete variables close to 

the limit. 

 The deviance information criterion (DIC; Spiegelhalter et 

al. 2002, Gelman et al. 2003) indicated substantially greater 

support for the lognormal model for image size distributions in 

some years (2005–2006, 2008–2009, 2011) and the zero-truncated 

normal model in others (2004, 2007, 2010, 2012–2016) (Table S4). 

For the five years in which the shoreward-rear observer had a 

flat window, DIC indicated greater support for models that 

included an estimated correction factor for a flat window in 
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2007, 2011, 2012, 2016, but not 2014. 

Bias Correction Factors 

 First, we present the results for a single group to 

demonstrate how the model combines data on video counts, 

availability bias, and perception bias to estimate a single 

group size. Next, we review the estimated correction factors 

over all groups using standardized plots to check for temporal 

pattern. 

 Variation in correction factors for a single group—For many 

groups, there was substantial variation in the number of 

individuals counted in video passes. The model is based on the 

assumption that group size does not change between passes, so 

variation in video counts must be attributable to variation in 

availability or perception bias. Close inspection of results for 

one group provides an example of how the model translates 

divergent video counts into a single group size estimate. In 

Figure 5a, the lowest layer shows the number of individuals 

counted in each video clip (i.e., 66, 66, 103). The median 

estimated availability in clip 1 was substantially lower than 

for clip 2 or 3 (i.e., 0.32, 0.50, 0.53, respectively), due, in 
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part, to a shorter video clip duration (w in Eq. 4). This 

variation in estimated availability accounts for a large part of 

the difference in video counts between clip 1 and clip 3; 

whereas the difference in video counts between clip 2 and clip 3 

is mostly attributed to variation in perception bias. 

 Figure 4b shows the image size distribution of individuals 

detected in each of the three passes represented in Figure 5. 

The model estimates that the mean image size was smaller in clip 

2 than in clips 1 and 3 (i.e., 5.9, 4.9, 5.8, respectively), 

which may be attributable to shorter surface intervals in clip 

2. Consequently, the model estimates a lower detection 

probability for available individuals in clip 2 than in clips 1 

and 3 (i.e., 0.85, 0.54, 0.78, respectively), as indicated by 

the gap between the inferred distributions of image sizes for 

all individuals (dotted line) and detected individuals (dashed 

line). 

 The limited remaining variation in the video counts is 

attributed to sampling variation (Fig. 5a). Posterior predictive 

checks indicate that the divergent counts in the three video 

clips are well-estimated by the model (Fig. 5b). 
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 Availability bias—Figure 6a shows the median estimated 

correction factors for availability, proximity, and perception 

bias for each survey year from 2004 to 2016. Results have been 

standardized to facilitate comparison, based on 100 individuals 

counted in a hypothetical wide-angle video clip in each year. 

The results reveal considerable interannual variation in 

availability bias. The median estimate of the percentage of 

individuals available at the surface during video clips was 

54.8% (range: 48.6%-72.3%). This median estimate is consistent 

with median availability calculated from prior information for 

each year. 

 Proximity bias—Estimates of proximity bias (i.e., the 

percentage of whales at the surface that were concealed by other 

animals) were calculated from matched video clips (Eq. 5) and 

were not estimated in the model. Proximity bias was fairly minor 

in all years except 2014, with a median of 1.9% of available 

whales concealed by other animals (range: 0.0%–10.9%; or 0.0%–

3.9% excluding 2014; Fig. 6a). 

 Perception bias—Figure 6a also indicates considerable 

interannual variation in estimated perception bias. In 
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particular, there was a reduction in median perception bias from 

2011 onwards, corresponding to the introduction of high-

definition video. The median estimate of perception bias 

indicates that, on average, 74.8% of available individuals were 

detected in video clips in years prior to 2011 (range: 70.3%–

80.9%) and 83.3% (range: 79.6%–87.4%) thereafter. The 

introduction of high-definition video in 2011 increased the 

image size of belugas in wide-angle video. This effectively 

shifted the observed image size distribution to the right. 

Consequently, a greater proportion of belugas were detectable 

than in earlier years, and the distribution of observed image 

sizes provides more information about the shape of the 

underlying image size distribution, leading to a reduction in 

uncertainty about the parameters μ and σ (Eq. 8a). For each 

year, the median estimate of perception bias falls within the 

range of perception bias calculated from matched clips for all 

years (i.e., the scale of estimated perception bias is 

consistent with the scale of perception bias calculated from 

observed data). 

 Observer bias—Figure 6b shows observer counts compared to a 
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standardized 100 individuals counted in a hypothetical wide-

angle video clip in each year. The figure shows considerable 

interannual variation in the ratio of observer counts to video 

counts. (Note that both observer counts and video counts are 

data, not model estimates.) This may reflect turnover in the 

observer team or interannual variation in the dispersion and 

behavior of beluga groups that makes it easier or harder for 

observers to count in some years. For example, only one member 

of the observer team changed between 2008 and 2009; for each of 

the four observers who participated in both years, the 

observer:video count ratio was 16% to 42% lower in 2008 than in 

2009, but the reasons for this remain unclear. 

 There was an apparent increase in the observer:video count 

ratio from 2011 onwards: the median observer:video count ratio 

was 1.41:1 (range: 0.91:1–1.83:1) prior to 2011 and 1.83:1 

(range: 1.67:1–2.03:1) for 2011 onwards. The aircraft and video 

cameras were upgraded in 2011. The combination of larger cameras 

and a smaller window for the videographer required the aircraft 

to fly at a greater distance from groups during counting passes. 

The most plausible explanation for the increased observer:video 
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count ratio is the associated expansion in the forward 

observer’s field-of-view relative to the wide-angle video frame. 

 Figure 6b also shows how the median estimated correction 

factor for observer bias across all observers varies among 

years. The median estimated correction factor (1/δ) was 2.56 for 

2008, when the observer:video count ratio was exceptionally low, 

and 1.74 in the following year. Consequently, the standardized 

corrected observer estimates are similar for 2008 and 2009 

despite the much lower observer:video count ratio in 2008. 

Similarly, the observer correction factor is generally lower for 

2011 onwards, following the change in video cameras and 

aircraft. 

Group Size Distribution 

 Overall, group sizes for Cook Inlet belugas were highly 

variable, ranging from single digits to the low hundreds (Fig. 

S2). The number and size of groups varied substantially among 

years (Fig. 7), with just a few large groups in some years 

(e.g., 2008) and a larger number of small groups in others 

(e.g., 2007). There was also considerable variation in estimated 

group sizes among survey days in each survey year (e.g., Fig. 
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8), which may reflect group splits and mergers or individuals 

moving between groups. 

Total Group Size Estimates 

 Total group size estimates (i.e., the sum of detected group 

sizes) for each survey day, Nd, is shown in Figure 9. (See Fig. 

S3 for a comparison of total group size estimates based on the 

lognormal and zero-truncated normal model for image size 

distributions.) 

 Total group size estimates vary considerably among survey 

days in each survey year (Fig. 9). This could be attributable to 

(1) uncertainty in group size estimates or (2) imperfect group 

detection. Bayesian methods provide useful information on 

uncertainty in group size estimates. In 2016, for example, the 

posterior distributions for the daily sums of detected group 

sizes overlap (Fig. 10), but none of the 1,000 saved posterior 

samples gives the same or similar estimates for all survey days, 

indicating that this variation is more likely attributable to 

imperfect group detection. The median difference between the 

highest and lowest daily estimate over the 1,000 saved posterior 

samples was 118 whales (range: 67–196) or 36.6% of the highest 
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daily estimate (range: 21.7%–48.3%). 

 For 2016, the median of the posterior distribution of total 

group size on the day with the highest median was 314 (mean: 

317; 95% credible interval: 284–370). This is consistent with 

the previous point estimate of 328 whales (95% confidence 

interval: 279–386), which includes a correction factor of 1.022 

for missed groups (Shelden et al. 2017). 

 DISCUSSION 

 Visibility bias can vary substantially due to variation in 

animal behavior, environmental conditions, and other factors 

despite standardized survey protocols (Anderson 2001). Accurate 

estimation of abundance and distribution patterns depends on 

recognition of spatiotemporal variation in visibility bias. 

Failure to recognize spatiotemporal variation in detectability 

and the application of constant correction factors can result in 

misleading estimates of abundance and distribution patterns (see 

Anderson 2001, Royle 2008 for further discussion). Our results 

highlighted substantial interannual variation in correction 

factors for availability, perception, and individual observer 

bias in the Cook Inlet beluga aerial survey. A weak point in 
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group size estimation for Cook Inlet belugas is the limited 

ancillary data on dive behavior to support estimation of 

availability bias. In particular, if dive patterns are 

characterized by systematic spatial variation, then interannual 

variation in the spatial distribution of belugas could 

contribute to interannual variation in total group size 

estimates (see Ashford et al. 2013). Further research on Cook 

Inlet beluga diving behavior is therefore needed to strengthen 

understanding of possible variation in availability bias across 

habitats (see Thomson et al. 2012). 

 Belugas are highly social throughout their global range but 

are not known to associate in stable or semistable groups 

(O’Corry-Crowe 2017). The interdiel variation in beluga group 

sizes shown here is thus consistent with our current 

understanding of beluga behavior, although further research on 

association patterns based on individual photographic 

identification data may provide new information on group 

structure. 

 The predictable aggregation of Cook Inlet belugas in river 

mouths in early June is associated with foraging on anadromous 
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salmon and eulachon (Moore et al. 2000). Interannual variation 

in the group size distribution likely reflects interannual 

variation in the distribution of prey resources, with belugas 

aggregated in a few large groups when prey is concentrated and 

dispersed among a larger number of smaller groups when prey is 

more dispersed. In some cases, aggregation in large groups may 

also be a response to predation risk (e.g., by mammal-eating 

killer whales, Orcinus orca; Shelden et al. 2003). 

 Cook Inlet beluga whales are geographically isolated 

(Laidre et al. 2000), so variation in population size cannot be 

attributed to immigration or emigration. Belugas are long-lived 

(O’Corry-Crowe 2017), and the population size is assumed to be 

effectively constant during each survey period. Interdiel 

variation in total group size estimates must therefore be 

attributable to either uncertainty in group size estimates or 

variation in the group detection process. Bayesian methods 

provide a clear representation of uncertainty in group size 

estimates and allow for probabilistic statements about variation 

in group sizes. Posterior distributions indicate a very low 

probability that interdiel variation in total group size 
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estimates is attributable solely to uncertainty in the group 

size estimation process, and hence, a high probability that it 

is attributable to variation in the group detection process. 

 Previous analysis of the group detection process in the 

Cook Inlet beluga aerial survey assumed that all groups were 

available to the observers and that group detection is a 

function of group size only, resulting in very small correction 

factors for missed groups (e.g., 1.022 for 2016; Shelden et al. 

2017). However, such small correction factors are inconsistent 

with the interdiel variation in total group size estimates shown 

here, which indicate that a much higher percentage of 

individuals is missed on some days. 

 Interannual variation in the total group sizes may be 

attributable to variation in population size. However, 

comparison of total group size estimates on the survey day with 

the highest estimates in each survey year suggests that 

imperfect group detection contributes, at least in part, to 

interannual variation in the total size of detected groups. In 

particular, it is not plausible that the population nearly 

doubled between 2006 and 2010 or between 2011 and 2012 through 
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demographic growth alone (Fig. 9). The low total group size 

estimates for all survey days in 2011 are most likely 

attributable to tidal cycles that prevented the team from 

surveying the Susitna Delta at low tide, leading to an increase 

in the effective survey area that made it harder to detect 

groups. (See Reilly and Barlow [1986] for estimates of maximum 

plausible demographic growth rates for small cetaceans.) 

 For species that occur in large or highly variable group 

sizes, accurate estimation of group sizes is essential for 

estimating both abundance and distribution patterns. Total group 

size estimates could be used as a direct measure of abundance if 

it could be assumed that all groups are detected, or as an index 

of abundance if consistent survey design ensures consistent 

group detection probabilities (Anderson 2001). Neither of those 

conditions applies to Cook Inlet belugas. We therefore urge 

caution in interpreting total group size estimates as a measure 

or index of abundance, and recommend a more systematic survey 

design to maximize survey consistency in the future. For other 

species or populations, abundance could be estimated by 

combining group size estimates, based on the model presented 
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here, with estimates of group detection probabilities, based on 

surveys designed to support estimation of the group detection 

process, such as replicated counts (Royle 2004) or distance 

sampling surveys (Buckland et al. 2001). Aerial photography and 

video are expected to play an increasing role in wildlife 

research, assessment, and monitoring with the widespread uptake 

of UAV technology. Key aspects of the methods developed here, 

especially estimation of perception bias, are relevant for other 

species for which group size estimates are based on aerial video 

or photography, including small cetaceans, sirenians, pinnipeds, 

seabirds and other waterfowl. 
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 SUPPORTING INFORMATION 

 The following supporting information is available for this 

article online at http:// 

 Appendix S1. Additional model details. 

 Appendix S2. Model code. 

 Table S1. Beluga groups detected in NOAA Cook Inlet beluga 

aerial surveys, June 2004–2016. 

 Table S2. Prior distributions. 

 Table S3. Multivariate proportional scale reduction factors 

(PSRF) for group size, n and total group size N. 

 Table S4. Model comparison based on differences in the 

deviance information criterion (ΔDIC). 

 Figure S1. Schematic of the racetrack pattern used to count 

beluga whale groups in Cook Inlet. 

 Figure S2. Histogram of the median of the posterior 
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distribution of group sizes for detected groups on the survey 

day with the highest total group size estimate in each survey 

year. 

 Figure S3. Comparison of total group size estimates on the 

survey day with the highest estimates in each survey year, based 

on the lognormal model (pale gray) and zero-truncated normal 

model (dark gray) for image size distributions. Points indicate 

the median of the posterior distribution; filled points indicate 

the model with the greater support from the data. Error bars 

indicate the 20th and 80th percentiles. Dashed lines indicate 

video camera upgrades. 
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 Figure 1. Upper Cook Inlet, Alaska. Since 2001, all groups 

encountered during NMFS June aerial survey were located in the 

Upper Inlet. 

 Figure 2. Graphical summary of the model structure. 

Elements in shaded boxes represent data; elements in circles 

represent parameters to be estimated; a cloud represents a 

latent variable. Arrows indicate the dependence of parameters 

and variables on data. 

 Figure 3. Example of proximity bias: two whales can be 

clearly distinguished inside the circle in the zoom video (a) 

but not in the matched wide-angle video (b). Example of 

perception bias due to image size: two whales can be clearly 

distinguished inside the circle in the zoom video (c) but not in 

the matched wide-angle video (d). (Numbers shown in images are 

used to track surfaced whales in video analysis.) 

 Figure 4. (a) Combining information on the underlying 

distribution of image sizes (πk,p, dotted line) and the detection 

function (ψk, dashed line) to estimate the average detection 

probability for available individuals in each video pass (gray 

shaded bars). (b) Histograms of the image sizes of detected 
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individuals in three wide-angle video clips for one group (the 

same group as shown in Fig. 5). The dotted line shows the 

inferred underlying distribution of image sizes (detected and 

nondetected) (πk,p); the dashed line shows the expected 

distribution of images sizes of detected individuals given the 

estimated detection function (ψk). 

 Figure 5. (a) Representation of median correction factors 

for video counts for one group in 2010, based on video counts 

(nv) in three wide-angle video clips. 1/pa is the correction 

factor for availability due to diving behavior; and 1/pd is the 

correction factor for perception bias; the correction factor for 

proximity bias was 0 in 2010 and is not shown. (b) Posterior 

predictive checks for video counts for the same group. Filled 

points indicate the observed video count; boxplots summarize the 

posterior predictive distribution for video counts.  

 Figure 6. (a) Standardized representation of median 

correction factors for video counts by survey year, based on 100 

hypothetical individuals detected in a wide-angle video clip 

(nv) in each survey year. (b) Standardized representation of the 

median correction factor for observer bias by survey year, based 
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on 100 hypothetical individuals detected in a wide-angle video 

clip (nv) in each survey year. no/nv is the ratio of observer 

counts to video counts; and 1/δ is the median correction factor 

for observer bias.  

 Figure 7. Interannual variation in the number and size of 

detected groups. Results are shown for the survey day with the 

highest total group size estimate in each survey year. Point 

sizes are proportional to the log of the median posterior 

prediction of group size. Variation in gray tone serves only to 

differentiate between survey years. 

 Figure 8. Interdiel variation in estimated sizes of 

detected groups (i.e., the posterior distribution of group sizes 

for detected groups) on five complete survey days in 2016. For 

each day, groups have been sorted in descending of size. 

 Figure 9. Interdiel variation in total group size 

estimates. For each year, days have been sorted by total group 

size estimate; the model represented (i.e., lognormal or 

truncated normal model for image size distributions) is the one 

with greater support from the data; variation in gray tone 

simply serves to differentiate between survey years. Points 
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indicate the median of the posterior distribution; open points 

indicate survey days that were considered incomplete due to 

weather or other factors. Error bars indicate the 20th and 80th 

percentiles. Dashed lines indicate video camera upgrades.  

 Figure 10. Interdiel variation in total group size 

estimates for detected groups on five complete survey days in 

2016. Each histogram summarizes the posterior distribution. 
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