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41 Abstract

42 Spatially stratified integrated population models (IPMs) can account for fine-scale demographic 

43 processes and support spatial management for complex, heterogeneous populations. Although 

44 spatial IPMs may provide a more realistic representation of true population dynamics, few 

45 studies have evaluated the consequences associated with incorrect assumptions regarding 

46 population structure and connectivity. We utilized a simulation-estimation framework to explore 

47 how mismatches between the true population structure (i.e., uniform, single population with 

48 spatial heterogeneity, or metapopulation) and various parametrizations of an IPM (i.e., 

49 panmictic, fleets-as-areas, or a spatially explicit, tag-integrated model) impacted resultant fish 

50 population estimates. When population structure was incorrectly specified in the IPM, parameter 

51 estimates were generally unbiased at the system level, but were often biased for sub-areas. 

52 Correctly specifying population structure in spatial IPMs led to strong performance, while 

53 incorrectly specified spatial IPMs performed adequately (and better than spatially aggregated 

54 counterparts). Allowing for flexible parametrization of movement rates (e.g., estimating age-

55 varying values) was more important than correctly identifying the population structure, and 

56 incorporation of tag-recapture data helped movement estimation. Our results elucidate how 

57 incorrect population structure assumptions can influence the estimation of key parameters of 

58 spatial IPMs, while indicating that, even if incorrectly specified, spatial IPMs can adequately 

59 support spatial management decisions. 

60
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87 1 Introduction

88 Spatially heterogeneous environments influence almost every aspect of an organism’s 

89 behavior, ultimately influencing the resultant population dynamics and food-web interactions 

90 (Nathan et al., 2008). The impact of spatially dynamic landscapes results in complex population 

91 level responses including the formation of metapopulation structure, source-sink dynamics, 
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92 predator-prey interactions, heterogeneous life history parameters, and speciation (Keymer et al., 

93 2000; Aguilée et al., 2011; Trainor et al., 2014; Northfield et al., 2017). The discipline of 

94 landscape ecology coalesced to explicitly account for spatial heterogeneity in population 

95 structure (Pickett and Cadenasso, 1995; Hidalgo et al., 2016), which has resulted in a variety of 

96 population-scale spatially explicit ecological models including patch, diffusion, island, species 

97 distribution, and continuum models (Hastings, 1990; Kareiva, 1990; Elith and Leathwick, 2009; 

98 Trainor et al., 2014; DeAngelis and Yurek, 2017; Northfield et al., 2017). Concomitantly, there 

99 has been widespread acknowledgement that accounting for and protecting spatial population 

100 structure is critical to maintaining resilient populations, especially those that are directly 

101 harvested (e.g., marine fisheries; Ciannelli et al., 2013; Allen and Singh, 2016; Fraser et al., 

102 2018).

103  In the marine realm, spatial population structure and biocomplexity, as well as 

104 misspecification of that complexity, has implications for marine spatial planning and creation of 

105 marine protected areas (McGilliard et al., 2015), determination of appropriate management 

106 boundary definitions (Berger et al., 2020), and establishment of population status determination 

107 criteria (Smedbol and Stephenson, 2001; Cianneli et al., 2013; Goethel and Berger, 2017). For 

108 instance, ignoring spatial differences in North Sea Atlantic cod (Gadus morhua, Gadidae) 

109 populations has been proposed as a potential factor resulting in population collapses 

110 (Hutchinson, 2008). Similarly, simulations have shown that explicit spatial management of 

111 individual spawning populations was necessary to avoid localized depletion of more vulnerable 

112 population components of Atlantic cod off Nova Scotia (Fu and Fanning, 2004) and of small 

113 yellow croakers (Larimichthys polyactis, Sciaenidae) in China (Ying et al., 2011). Kerr et al. 

114 (2014) found that the Atlantic cod populations located off the northeastern United States 

115 appeared more robust to fishing pressure than when current management boundaries were used 

116 to assess the stock rather than the correct biological stock delineations, which could lead to 

117 overfishing. Spawning stock biomass and fishing mortality rate were also biased for Atlantic 

118 herring (Clupea harengus, Clupeidae) when management boundaries were used to assess 

119 population status rather than biological boundaries (Guan et al., 2013).  Incorrect spatial 

120 delineations can also lead to biased regional stock productivity, which has been shown for 

121 sardines (Sardinops sagax, Clupeidae) off South Africa (de Moor and Butterworth, 2015).  In the 

122 terrestrial realm, spatial population structure and biocomplexity has implications for persistence 
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123 given increased habitat fragmentation, predator-prey interactions, and disease transmission (Gu 

124 et al., 2002; Trainor et al., 2014; White et al., 2018).  For instance, landscape dynamics such as 

125 disturbances and successional changes reduced the viability of sharp-tailed grouse (Tympanuchus 

126 phasianellus, Phasianidae) populations when modeled with population demographics (Akçakaya 

127 et al., 2004).  Additionally, estimates of survival and reproduction in spatial capture-recapture 

128 models for grizzly bears (Ursus arctos, Ursidae) were less biased than in non-spatial capture-

129 recapture models (Whittington and Sawaya, 2015).   

130 Incorporating spatial complexity into population dynamics models that directly support 

131 management of harvested species remains difficult, because these models must directly estimate 

132 population status from limited and uncertain observed data (Struve et al., 2010; Berger et al., 

133 2017; Ogburn et al., 2017). Models of wildlife resource utilization commonly maintain 

134 assumptions that the modeled population unit is homogeneously distributed and harvested across 

135 the spatial domain, while no immigration or emigration is assumed to occur (Goethel et al., 2011; 

136 Chandler and Clark, 2014). In most instances these assumptions lead to model misspecification, 

137 because most species demonstrate complex spatial population structure, patchy distributions, 

138 connectivity among population or habitat components, spatial variation in life history 

139 characteristics, and unequal harvesting across a species’ range (Kerr et al., 2017; Zipkin and 

140 Saunders, 2018; Punt, 2019b). In the fisheries literature, a common method to implicitly address 

141 spatial dynamics in population estimation models is to use the fleets-as-areas (FAA) approach 

142 (Punt, 2019b). FAA models assume a single homogenous population unit, but with multiple 

143 harvest units (e.g., fishery fleets) that differentially cull segments of populations (i.e., through 

144 different size or age selection of individuals), which act as proxies for the spatial structure of the 

145 population (Cope and Punt, 2011; Waterhouse et al., 2014).  Although FAA models have been 

146 shown to outperform naïve spatially explicit models (e.g., Lee et al., 2017), they generally 

147 perform no better than spatially aggregated models when complex spatial structure exists (Punt 

148 et al., 2015, 2016, 2017; Punt, 2019b).

149 Application of spatially explicit estimation models often improve estimates of population 

150 productivity by simultaneously assessing individual spawning components, as well as 

151 connectivity dynamics among them instead of aggregating data and parameter estimates across 

152 multiple reproductive units (Chandler and Clark, 2014; Zipkin and Saunders, 2018; Berger et al., 

153 2017; Punt, 2019b). Over the last two decades, the increasing application of integrated 
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154 population models (IPMs) has allowed incorporation of new and novel data streams (e.g., bio-

155 logging and fine-scale demographic information), thereby increasing the quantity and spatial 

156 resolution of data inputs (Maunder and Punt, 2013; Zipkin and Saunders, 2018). IPMs are 

157 estimation models that can incorporate spatially and structurally diverse data sets into a unified 

158 framework by utilizing a single, combined objective function (Maunder and Punt, 2013). These 

159 models have the flexibility to include an array of data sources and multiscalar population 

160 processes, which has led to increased implementation of spatially explicit IPMs for both 

161 terrestrial and fisheries applications (Chandler and Clark, 2014; Berger et al., 2017; Zipkin and 

162 Saunders, 2018). By explicitly modeling spatial dynamics (e.g., spatial variation in demographics 

163 and connectivity among spawning populations), spatially explicit IPMs can match the local scale 

164 of each data set while identifying regional scale temporal changes in species distributions 

165 (Goethel et al., 2021). 

166 Although spatial IPMs can better account for biocomplexity compared to spatially 

167 aggregated, closed population models, there is a limit to the types of spatial population structure, 

168 number of population components, and complexity of connectivity dynamics that can be 

169 modeled (Punt, 2019b; Cadrin, 2020). Goethel et al. (2011) present a generalized spatially 

170 explicit IPM that can estimate movement rates and account for the three primary types of spatial 

171 population structure observed in marine populations: spatial heterogeneity, metapopulation 

172 structure, and natal homing. Despite more fine-scale dynamics being likely in many species (e.g., 

173 contingent structure; Petitgas et al., 2010), the parsimony-complexity tradeoff, as well as 

174 limitations to the spatial scale of fisheries data, limit the number of population components and 

175 spatial areas that can be modeled in an IPM (Punt et al., 2018; Goethel et al., 2021; although see 

176 Cao et al., 2020, for a spatiotemporal approach that uses spatial autocorrelation to model 

177 population dynamics at an extremely fine-scale). It has been widely demonstrated that assuming 

178 homogenous populations or applying spatially aggregated IPMs may be detrimental to achieving 

179 sustainable management of marine populations (e.g., Ying et al., 2011; McGilliard et al., 2015; 

180 Goethel et al., 2021). Yet, aside from assuming population homogeneity when metapopulation or 

181 natal homing structure is present (e.g., Ying et al., 2011; Li et al., 2015, 2018) few studies have 

182 explored the management consequences of misdiagnosing the form of the underlying spatial 

183 population structure in spatially explicit IPMs across the array of common population structures 

184 observed in marine species.
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185 We developed and applied a spatially explicit simulation-estimation framework to 

186 explore how misdiagnosis of spatial population structure in marine fish populations can influence 

187 estimates of population status when conducting IPMs. Our primary objectives sought to 1) 

188 determine the extent of bias in estimates of population status across an array of spatially 

189 aggregated, spatially implicit, and spatially explicit IPMs when misspecification of the true 

190 population structure exists; 2) establish which spatial IPM specifications are most robust to 

191 complex underlying spatial processes; and 3) to explore if more complex parameterizations of 

192 movement can help overcome misdiagnosed spatial structure. To improve the realism of the 

193 simulation experiment we emulated the spatial dynamics of Alaskan sablefish (Anoplopoma 

194 fimbria, Anoplopomatidae), which undertake long-distance ontogenetic migrations along the 

195 Alaskan coast (Hanselman et al., 2015), have complex management boundaries, and have 

196 undergone extensive tag-recapture experiments for over thirty years. The results of this study 

197 provide insight into the performance of spatially explicit IPMs when the underlying spatial 

198 population structure is poorly understood. This work also provides guidance on parameterization 

199 of spatially explicit IPMs for producing robust estimates of population status.

200 2 Methods

201 2.1 Overview

202

203 A simulation-estimation framework was developed to evaluate the performance of IPMs 

204 utilizing a range of assumptions regarding the underlying spatial population structure and 

205 movement dynamics. The operating model (OM), representing the true dynamics of the system, 

206 was conditioned using parameters that emulate the dynamics of Alaskan sablefish (hereafter 

207 referred to as sablefish). Sablefish are relatively long-lived, highly mobile, and inhabit three 

208 management areas off the Alaskan coast (See Supplemental Material Fig. B1). Three 

209 parametrizations of the OM were developed to represent varying degrees of spatial complexity: 

210 1) a single homogeneously distributed population in all three areas (Uniform; akin to a panmictic 

211 population), 2) a single heterogeneously distributed population in all three areas (Spatial 

212 Heterogeneous, SH), and 3) a metapopulation with a different subpopulation in each area 

213 (Metapopulation). The two spatial OMs included complex time- and age-varying movement 

214 patterns among population units among areas. These OMs were used to generate simulated 

215 pseudo-data that were fit within each of four separate IPMs, which varied in spatial complexity 
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216 (i.e., panmictic, FAA, spatially heterogeneous, and metapopulation). Spatially heterogeneous and 

217 metapopulation IPMs estimated different parameterizations of movement dynamics (i.e., 

218 movement was ignored, estimated as a time- and age-invariant rate, or estimated as time-

219 invariant and age-varying), and incorporation of alternate data (i.e., with or without fitting tag-

220 recapture data; Figure 1, Table 1). The robustness of each IPM to the various true spatial 

221 dynamics of the three OMs was demonstrated by calculating estimation bias and associated 

222 metrics for important conservation parameters used for providing management advice (e.g., 

223 spawning biomass, fishing mortality, and recruitment). The modeling framework is described 

224 below with a focus on spatial dynamics and population structure differences among OM and IPM 

225 parametrizations. A detailed description of the assumed life history dynamics, input population 

226 parameters, and rationale for the OM are provided in the Supplementary Material. All models 

227 were developed in AD Model Builder (Fournier et al., 2012) with visualization and performance 

228 metrics calculated in R (R core team, 2018). Each version of the OM and IPM can be 

229 downloaded from the GitHub repository (https://github.com/KateBoz/Spatial_IPM). 

230 2.2 Operating Model 

231 The OM structures were based on inputs and results from the most recent sablefish stock 

232 assessment (Hanselman et al., 2018), recent analysis of tag-recapture data (Hanselman et al., 

233 2015), and feedback from the development of a spatial IPM (Fenske, personal communication). 

234 Input parameters either came directly from the most recent stock assessment or were structured 

235 using hypotheses and ongoing research regarding the spatial population dynamics of sablefish. 

236 We first describe the common dynamics across model types then separately describe the 

237 population structure and parameterization of the three OMs (Uniform, Spatial Heterogeneity 

238 (SH), and Metapopulation).

239 2.2.1 Operating Model Dynamics

240 The sablefish OM consisted of three areas across which sablefish could be homogeneous 

241 or heterogeneously distributed, depending on assumed spatial structure and connectivity 

242 dynamics (Fig. 1). Population abundance by year (y) and age (a) was projected forward using 

243 population dynamics equations where the sequential order of events in a given yearly time step 

244 involved: (1) spawning; (2) recruitment; (3) release of tagged fish, if tagging takes place; (4) 

245 instantaneous movement of tagged and untagged fish between areas; and (5) continuous natural 

246 mortality and harvest throughout the year, including tag recaptures. Abundance (N) of fish in a 
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247 given area (p; commensurate with a subpopulation in the metapopulation models since fish 

248 immediately assume the biological parameters of a new subpopulation upon moving) was 

249 projected forward for 30 years starting from an assumed initial abundance-at-age. Initial 

250 abundance of age-1 individuals (i.e., recruits) was either equal to the area-specific average 

251 recruitment (Rave) parameter for the Metapopulation OM or the total system-wide average 

252 recruitment multiplied by the area-specific recruit apportionment parameter (ξ) for the Uniform 

253 and SH OMs (see Table 2 for parameter values). Initial abundance of ages 2 through the plus 

254 group (age 16+) was calculated as an exponential decay from initial age-1 abundance based on 

255 the natural mortality rate (M = 0.1 for all ages and areas). 

256 After the first year, abundance-at-age was calculated at the beginning of the year (y) 

257 before movement occurred (NBEF) based on the abundance after movement (NAFT) in the previous 

258 year and age and discounted for natural and fishing (F) mortality: 

259  .��,�,�,��� = ��,� ― 1,� ― 1,����[ ― (��,� ― 1,� ― 1 + �)]

260 Eqn. 1

261 Fully selected fishing mortality assumed a dome shape across the time series, where it increased 

262 linearly from a specified minimum (Fmin) in the first year to a specified maximum halfway 

263 through the time series (Fmax), then decreased linearly again through the end of the time series 

264 (see Table 2 for input values). Annual lognormal deviations by area, defined by an input variance 

265 term (σF), were applied to mimic random noise in the fishing process. Values for Fmin, Fmax, and 

266 σF were allowed to vary by area in the spatially explicit OMs (Tables 2 and 3). Fishery 

267 selectivity (vf ; susceptibility to the fishing gear) was modeled with a two-parameter logistic 

268 function (Fig. B2) and was area- and time-invariant. The total fishing mortality on a given age 

269 was the combination of selectivity-at-age and fully selected fishing mortality by year.

270 When connectivity occurred (i.e., all models except the Uniform OM) the box-transfer 

271 method was utilized, which assumed movement was a Markov process. The movement 

272 parameter, , represented the fraction of age a fish from area j in year y that moved to area p. ��→��,�
273 Abundance after movement was given by:

274  .��,�,�,��� = ∑�� = 1
[��→��,� ��,�,�,���]

275 Eqn. 2

276 The Uniform OM assumed no movement among areas whereas the SH and Metapopulation OMs 

277 included both age- and time-varying connectivity patterns. Age-specific movement rates were 
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278 derived from length-based estimates of sablefish movement within Alaskan waters determined 

279 from analysis of tag and recovery data (Hanselman et al., 2015). Simulated movement rates were 

280 binned into three age blocks (ages 1-4, 5-9, and 10-16), which differed by area (Table 4). Annual 

281 deviations that varied by area were applied to the age-specific movement rates to generate time-

282 varying movement. Annual movement deviations increased in 10-year time blocks to mimic 

283 increasing variability in movement over time (σT = 0.02, 0.04, 0.06 for each time block, 

284 respectively; see Fig. B4 for an example of the connectivity patterns simulated).  

285 Spawning stock biomass (SSB), a measure of potential population productivity, at the 

286 beginning of the year was the product of abundance, input area-specific maturity (m; except for 

287 the Uniform OM, which used the Area 2 values for all areas; Fig. B3), and input area-invariant 

288 weight (w; Fig. A2):

289 ����,� =

�∑� = 1

��,�,�,�������,�
290 Eqn. 3

291 New births or recruitment were based on an area-specific input average recruitment term, Rave, 

292 multiplied by an area-specific recruitment apportionment with bias corrected lognormally 

293 distributed area-specific annual random deviations (εR) controlled by the area-invariant 

294 recruitment variance term (σR = 0.9):

295  .��,�,� = 1,��� = ������,��(���,� ― 0.5�2�)
;���,�~�(0,�2�)

296 Eqn. 4

297 In the SH and Uniform OMs, a single stock-recruit relationship and associated Rave value was 

298 utilized where recruitment deviations were applied at the global level (i.e., not area-specific) and 

299 were identical among these OMs. Area-specific recruitment was determined by applying the 

300 recruitment apportionment term with equivalent apportionment assumed for each area in the 

301 Uniform OM and spatially varying apportionment for the SH OM (Table 2). For the 

302 Metapopulation OM, each individual subpopulation was assumed to have its own stock-recruit 

303 relationship where the average recruitment parameters were subpopulation-specific and no 

304 apportionment occurred (i.e., the recruit apportionment term was set to 1.0 within each 

305 subpopulation). However, the population-specific average recruitment terms of the 

306 Metapopulation OM were scaled to the area-specific recruit apportionment terms of the SH OM 



Consequences of population structure misspecification

This article is protected by copyright. All rights reserved

307 to maintain relative consistency in recruit dynamics among these models (see Table 2 for input 

308 parameters). For the Metapopulation OM, the recruit deviations differed by area, but recruitment 

309 variance terms were area-invariant (identical to the other OMs). 

310 2.2.2 Operating Model Population Structures

311 Different OMs were constructed to represent a range of complexity in population 

312 structure, which emulated those most commonly observed for marine fish populations (see 

313 Goethel et al., 2011 and Cianelli et al., 2013). Specific dynamics for each of the three OM 

314 configurations are provided below.

315 Uniform OM

316 The Uniform OM emulated the dynamics of a homogeneous (i.e., panmictic) population 

317 distributed evenly across the three areas. By simulating the dynamics in three areas even though 

318 they were identical, it allowed pseudo-data to be provided by area (although the data were also 

319 identical) and enabled the application of both spatially aggregated (i.e., Panmictic) and spatially 

320 explicit IPMs. The Uniform OM assumed all parameters were identical across areas (the 

321 parameter values for each area matched those of Area 2 applied in the spatial models; Table 2), 

322 while movement did not occur among areas. The Uniform OM also assumed a single 

323 reproductive unit where annual population-level recruitment was apportioned equally among 

324 areas. Fishing mortality rates were assumed identical across areas (Table 2). Tagging data were 

325 not simulated, because movement did not occur and the role of tag-recapture data in this study 

326 was to help estimate movement rates. 

327 Spatial Heterogeneity (SH) OM

328 The Spatial Heterogeneity (SH) OM was configured to simulate a single population with 

329 spatial heterogeneity across each area, which was created through spatial variation in 

330 demographics, fishery dynamics, and connectivity. Similar to the Uniform OM, the population-

331 level recruitment was apportioned to each area, but varied among the areas (i.e., ξ = 0.44, 0.30, 

332 and 0.26 for Areas 1, 2, and 3, respectively). Additional heterogeneity was created by allowing 

333 maturity ogives to vary among areas (Fig. A3). The annual fishing mortality rate also varied 

334 spatially with differing specifications for Fmax, Fmin and σF (Tables 2 and 3). Connectivity 

335 dynamics were simulated as time and age-varying following the parameterization described 

336 below (Table 4). Yearly tagging data were simulated, but only fit in IPMs scenarios that included 

337 tagging data.
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338 Metapopulation OM

339 The Metapopulation OM was designed to simulate three subpopulations each occupying 

340 one of the three areas, which were connected through movement. A fish moving among areas 

341 was assumed to adopt the biological characteristics of the new subpopulation immediately upon 

342 entering a new area. Each subpopulation had its own stock-recruitment relationship with 

343 spatially varying Rave values and recruitment deviations. Subpopulation specific Rave values were 

344 specified such that the age-1 initial abundance in each subpopulation matched the respective 

345 area-specific values from the SH OM configuration. This allowed continuity in recruitment 

346 levels among the different OMs. Apart from the recruitment dynamics and population structure, 

347 all other parameters were assumed to be identical to those from the SH OM. Once again, yearly 

348 tagging data were simulated, but were only fit in IPM scenarios that included the tagging data.

349 2.2.3 Data Generation

350 Each OM generated simulated pseudo-data typical to IPMs used in fisheries applications. 

351 Simulated area-specific data sources included landings (i.e., total biomass of landed catch), age 

352 composition of the landed catch, a fishery independent survey of biomass, age composition of 

353 the survey biomass, and, for certain scenarios, tag-recapture data. The fishery was assumed to 

354 operate continuously for the entire yearly time step and area-specific catch was calculated using 

355 Baranov’s catch equation (Baranov, 1918) based on the area-specific fishing morality and 

356 abundance. The fishery-independent survey (s) was assumed to occur mid-year (ts = 0.5) where 

357 area-specific survey catch, discounted for mortality up to the time of the survey, was calculated 

358 using the same approach as the fishery catch. The survey assumed a time- and area-invariant 2-

359 parameter logistic survey selectivity function (vs; Fig. A2) and a time- and area-invariant survey 

360 catchability scalar. The SH and Metapopulation OMs also simulated tag release and recapture 

361 data using a multiyear Brownie tag-recovery model (Brownie et al., 1993). In each year of the 

362 simulation, a new tag cohort was released into the population, where a cohort (l) was defined by 

363 the combination of year, age, and area of release. The total number of tag releases in each year 

364 was based on a specified tag proportion parameter (ρ = 0.0005), which proportionally scaled tag 

365 releases by the total survey abundance. Annual tag releases were then distributed across areas 

366 based on relative survey abundance in each area and across ages based on survey selectivity. Tag 

367 abundance (n) by cohort was calculated similar to the main population (i.e., following Equations 

368 1-2), but with recruitment replaced by tag release events. Cohort specific recaptures (r) were 
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369 calculated using Baranov’s catch equation assuming 100% tag reporting (β = 1.0; 100% tag 

370 reporting was assumed for model simplification):

371  .���,�,� =  ���,�,�,�����,�,�(1 ― �[ ― (��,�,� + �)])��,�,� + �
372 Eqn. 5

373 Measurement error for each data source was simulated using stochastic processes based on an 

374 assumed underlying probability distribution (Table B1), which resulted in the final ‘observed’ 

375 pseudo-data that were eventually fit within each IPM. For each simulation scenario, 150 

376 stochastic simulations were conducted where each iteration generated a unique 30-year time 

377 series of pseudo-data from the OM. All scenarios used the same vector of randomly generated 

378 seeds for the 150 simulations. The assumed probability distribution (lognormal or multinomial) 

379 and associated error level (input variance or effective sample size, ESS) are provided in Table 3. 

380 The error levels and number of runs were chosen to adequately encapsulate stochasticity and 

381 represent average variation often assumed for marine data collection programs. A multinomial 

382 probability distribution was utilized for the tagging data, but the ESS was set at 200, which was 

383 lower than the actual number of tags released per cohort. The lower ESS increased uncertainty 

384 (i.e., allowed for implicit overdispersion) in the tagging data. Otherwise, the tagging data would 

385 have been overly informative compared to real-world data collection. 2.3 Integrated Population 

386 Models

387 Four versions of an IPM were developed to evaluate the impact of incorrect assumptions 

388 regarding population structure and movement dynamics (Table 1). The suite of IPMs tested 

389 included Panmictic, Fleets-as-areas (FAA), Spatial Heterogeneity (SH), and Metapopulation 

390 models. The underlying population dynamics equations and specifications for the IPMs matched 

391 the corresponding OMs, except for the spatially aggregated models (i.e., the Panmictic and FAA 

392 IPMs; specific differences are outlined in the following sections on IPM spatial structure). 

393 2.3.1 IPM Spatial Structure

394 Panmictic IPM

395 The Panmictic IPM assumed a single homogenous population across the entire model 

396 domain (i.e., a one area model with no movement), which likely represents the most common 

397 approach to fisheries stock assessment (i.e., assuming a closed unit population; Punt, 2019a, b) 

398 and the current method applied in IPMs for sablefish. In the Panmictic IPM, parameters were 
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399 estimated as a unit population (i.e., area-specific values were not estimated). Area-specific data 

400 sources and inputs from the OMs were additively combined (e.g., fishery yield and survey 

401 biomass) or aggregated as abundance-weighted averages (i.e., fishery and survey age 

402 compositions, weight-at-age, and maturity-at-age) and fit in the IPM at the aggregated scale. 

403 Tagging data were not fit in the Panmictic IPM and movement rates were not estimated, because 

404 only one spatial area was assumed to exist. 

405 Fleets-as-Areas (FAA) IPM

406 The FAA IPM assumed a single population with no explicit spatial structure, but spatially 

407 varying fishery parameters were estimated (by fitting spatially disaggregated data from these 

408 fleets) to implicitly account for spatial dynamics. FAA IPMs are often implemented when little or 

409 no information on spatial structure exists, but spatially disaggregated fishery data are available. 

410 Modeling the spatial variability in the fishing fleets serves as a proxy for the actual spatial 

411 structure without needing to make assumptions about the underlying population structure and 

412 avoiding the need to explicitly model connectivity. For our study, the FAA IPM had fixed 

413 recruitment apportionment that was equal among areas (i.e., set at 0.33 per area), identical 

414 biological parameters across areas (akin to the Panmictic IPM), and assumed no movement 

415 occurred among areas. Fishery selectivity and fishing mortality were estimated by area. One 

416 survey selectivity and one catchability were estimated. Tagging data were not fit in the FAA 

417 IPM. The FAA IPM was utilized to determine if underlying spatial variation in the population 

418 could be effectively captured through area-specific fishery parameter estimates without needing 

419 to implement a spatially explicit IPM. 

420 Spatial Heterogeneity (SH) IPM

421 The Spatial Heterogeneity (SH) IPM mirrored the parameterization of the SH OM 

422 allowing spatial heterogeneity within a single population unit by explicitly accounting for spatial 

423 variation by area. A single stock recruitment function (i.e., one Rave parameter) was estimated 

424 with unequal recruitment apportionment fixed at the values from the SH OM. Fishery selectivity, 

425 fishing mortality, and movement rates were estimated as area-specific. One survey selectivity 

426 and one catchability were estimated. Depending on the model scenario, movement rates were 

427 estimated to be either constant values (i.e., age- and time- invariant) or, if tagging data were fit, 

428 age-varying. Tagging data were fit in the SH IPM for several scenarios, but not all (see Table 1 

429 for all scenarios and model parameterizations). We considered the performance of the SH IPM to 
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430 represent a best-case representation example for most scenarios, because the apportionment 

431 parameters were either fixed at the true value (when applied to outputs from the SH OM) or 

432 directly matched the spatial distribution of Rave (when applied to the outputs from the 

433 Metapopulation OM). We also fit the SH IPM with no movement estimated and fixed at 100% 

434 residency to the SH and Metapopulation OMs. This approach is used when regional population 

435 structure is identified, but there is limited knowledge of connectivity among population units. 

436 Metapopulation IPM

437 The Metapopulation IPM matched the structural assumptions of the Metapopulation OM 

438 assuming three subpopulations connected through post-settlement movement. The 

439 Metapopulation IPM estimated area-specific values for average recruitment, recruitment 

440 deviations, fishing mortality, fishery and survey selectivity, and survey catchability. In addition, 

441 movement was estimated between areas. Depending on the model scenario, movement rates were 

442 assumed to be either constant (i.e., age- and time-invariant) or, if tagging data were included, 

443 age-varying. Tagging data were fit in the Metapopulation IPM for several scenarios, but not all 

444 (see Table 1). The Metapopulation IPM is the most spatially complex IPM tested, and it 

445 emulates the population structure most widely hypothesized for marine species (Smedbol and 

446 Stephenson, 2001; Goethel et al., 2011). 

447 We also explored a closed population parametrization of the Metapopulation IPM where 

448 movement was not allowed among populations (and was not estimated) and no tagging data were 

449 fit in the IPM. This approach is often suggested as the first step towards developing fully spatial 

450 IPMs (Cadrin, 2020). Each area assumed a unit population with a unique stock recruit 

451 relationship. The three independent, closed populations were modeled simultaneously with 

452 spatially varying parameters estimated for each population. All parameters were estimated as 

453 area-specific including average recruitment, recruitment deviations, fishing mortality, selectivity, 

454 and catchability. 

455 2.3.2  Integrated Population Model Estimation

456 Estimated parameters for each IPM included survey catchability, annual fishing mortality 

457 rates, average recruitment (Rave), annual recruitment deviations, and logistic parameters for 

458 survey and fishery selectivity. For some IPMs, these quantities were also estimated as area 

459 specific. In addition, connectivity among areas was directly estimated for the SH and 

460 Metapopulation IPMs depending on the scenario being tested. A multinomial logit 
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461 transformation was utilized for movement parameters to naturally bound parameters between 

462 zero and one and to ensure that the summation of emigration and residency equaled unity for a 

463 given population. Only the off-diagonal elements (i.e., emigration rate from an area) of the 

464 movement matrix were estimated to ensure identifiability of the model, while the diagonal 

465 elements (i.e., residency) were calculated as one minus the sum of emigration from a population. 

466 Movement was treated as time-invariant resulting in a total of 6 emigration parameters (two per 

467 area) to be estimated. Depending on the scenario, age-varying movement could also be 

468 estimated, which resulted in a total of 96 estimated movement parameters. Natural mortality and 

469 recruit apportionment (where applicable), as well as growth and maturity were fixed at the true 

470 values from the OM. These values (e.g., natural mortality) were fixed at the true values to reduce 

471 the number of estimated parameters, and because they are commonly fixed in fishery IPMs. 

472 Parameters in the IPMs were treated as fixed effects and estimated with a maximum 

473 likelihood (MLE) framework, which integrates numerous data sources, through an objective 

474 function, and allows each data source to assume a specified underlying error structure (Maunder 

475 and Punt, 2013). The IPMs minimized differences between model predicted observations and the 

476 pseudo-data generated from the OM for each data source. The total likelihood was determined by 

477 summing the negative logarithm of each likelihood component, which was then minimized to 

478 derive best fit parameter estimates. Data used to calculate the individual likelihood components 

479 and associated assumed distributions were fishery landings (lognormal); survey biomass 

480 (lognormal); fishery age compositions (multinomial); and survey biomass age compositions 

481 (multinomial). Tag recapture proportions (multinomial) were also included for scenarios that 

482 estimated movement using tagging data.

483 .―��(������) =  ― ln (��_�����) ― ln (��_���) ― ln (��_����) ― ln (��_����) ― ln (����_���)
484 Eqn. 6

485  MLE variance terms for each likelihood component were taken directly from the 

486 operating model except for the recruitment variance where the IPM assumed a larger variance 

487 than was used for data generation. Similarly, the effective sample size for multinomial 

488 distributions was reduced by 100 for each data source to avoid overfitting age composition and 

489 tagging data (see Table B1 for input error terms). Penalty functions were used to stabilize 

490 estimates and prevent unfeasible parameter values (e.g., zero values of average recruitment; 

491 extremely high large movement, fishing mortality, or recruitment deviations).
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492 2.4 Evaluation of Model Performance

493 Model performance was evaluated by calculating the bias and precision of estimated 

494 parameters from converged model runs, with primary focus on spawning biomass, recruitment, 

495 and fishing mortality rates. Convergence criteria included the ability to calculate a positive-

496 definite Hessian matrix and having a maximum objective function gradient less than 0.001. The 

497 convergence rate across the 150 simulated iterations within a scenario provided a measure of 

498 model stability. Relative error level of a specific parameter for a given year (y), area (a) and 

499 scenario (k) was evaluated based on the relative percent difference (RPD) between the estimated 

500 parameter ( ) for a given model iteration (z) and the true value used in the OM ( ), such that: � �
501 ����,�,�,� =  (

  ��,�,�� ―  ��,�,����,�,�,� ) ∙ 100

502

503 The  was then calculated per year (y) and area(a) across iterations for a given ���������
504 scenario (k).

505  ����������,�,� =  ������(����,�,�,1…����,�,�,150)

506 Eqn. 7

507 An aggregated relative error metric, the scaled cumulative absolute percent error (which 

508 we termed sCAPE), was developed to evaluate the overall bias and precision of a parameter for 

509 each scenario and to compare performance of the IPMs when provided data from different 

510 underlying spatial population structures. The sCAPE metric first calculates the cumulative sum 

511 of the medianRPD absolute values across a time series for a given area. The cumulative absolute 

512 percent error, CAPE, is then scaled to the maximum CAPE value across all scenarios for a given 

513 quantity to produce an area specific sCAPE.

514 �����,� =

30∑� = 1

(| ����������,�,� |)  

515 Eqn. 8

516 ������ = �����,� ∙  1/ ���(�����)

517 Eqn. 9

518 The sCAPE metric provides a measure of IPM performance, with values closest to zero 

519 indicating greater accuracy in an estimated parameter relative to all other scenarios. The sCAPE 

520 metric was used to compare across IPM types whereas a cumulative sCAPE was used to compare 
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521 performance within IPM types given different underlying spatial population structures and model 

522 parameterizations. The cumulative sCAPE summed all area specific values into a single error 

523 metric with values closest to zero indicating improved model performance. 

524 cumulative sCAPE =    

3∑� = 1

������
525 Eqn. 10

526 Figures showing the distribution of parameter estimates and RPD values for all model iterations 

527 across the time series were used to evaluate the magnitude and direction of parameter bias within 

528 a given scenario. In addition, the distribution of RPD values associated with terminal year F and 

529 SSB for all scenarios was examined, because these values represent important quantities used to 

530 inform fisheries management. Where possible, parameter estimates were provided by area and 

531 for the entire system (except for fishing mortality, because it is not straightforward to aggregate 

532 area-specific instantaneous rates to a system level rate when different estimates of selectivity 

533 exist for each area). Additionally, the sCAPE values were used to evaluate performance of 

534 spatially explicit IPM across the entire complement of simulated spatially explicit OM 

535 population structures. Given that the Panmictic and FAA IPMs could not estimate area-specific 

536 parameter values for all parameters, these IPMs were compared using only the system level 

537 sCAPE metric for each parameter. The best performing IPMs were those with configurations that 

538 had the smallest sCAPE values across all OMs. The cumulative sCAPE solution provided 

539 guidance on which population structure parametrization of a given IPM was most robust to 

540 uncertainty in true underlying population structure. 

541 2.5 Scenarios and Sensitivity Runs

542 We simulated three OM parametrizations (i.e., Uniform, SH, and Metapopulation) and 

543 used four spatial structure assumptions in the IPMs (Panmictic, FAA, SH, and Metapopulation). 

544 We also used three configurations for the spatially explicit IPMs to account for movement 

545 dynamics (i.e., estimating time- and age-invariant movement, estimating age-varying movement, 

546 or a closed population [no movement]) and two data configurations for the spatially explicit OMs 

547 to account for data availability (i.e., assuming no tagging data were available or directly fitting 

548 tagging data in the objective function). A full factorial design was implemented where each 

549 parametrization of the spatial structure in the IPM was applied to the data generated from each of 

550 the potential spatial structures in the OM (see Table 1 for a complete list and associated scenario 
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551 names). Each scenario is referred to by the following convention:  OM:IPM:Movement:Tags. 

552 The combinations allowed for a relatively complete comparison of how the most widely applied 

553 spatial population assumptions in IPMs performed with no a priori knowledge of the underlying 

554 true spatial population structure. Exploration of bias in these IPMs provides a demonstration of 

555 how well they might be expected to perform in real-world applications when developing 

556 management advice, whereas the cumulative sCAPE solution provides initial evidence for which 

557 IPM parametrizations could be the most robust given population structure uncertainty.

558 3 Results

559 Most IPMs achieved near 100% convergence (Table 1). The lowest convergence rate was 

560 91% for the SH IPM applied to the SH OM with age-based movement estimated and tagging data 

561 included. These high convergence rates generally indicate that the models were relatively stable 

562 with limited overparameterization and no extreme parameter correlation. 

563 Overall IPM performance differed based on the spatial structure of the OM and 

564 parameterization. Generally, IPM models that estimated movement and included tagging data 

565 were robust to mismatch in assumed spatial structure (Table 3; Figure 2). Generally, when the 

566 IPM structure matched that of the OM, the matching IPM tended to provide the lowest sCAPE 

567 values for all parameters compared to mismatched IPMs. Similarly, terminal year estimates of 

568 fishing mortality and SSB were generally more accurate and precise when the IPM and OM 

569 structures matched (Figure 3), as would be expected. At the system level, most of the 

570 combinations of IPM and OM provided unbiased estimates of the terminal year SSB even when 

571 population structure assumptions were mismatched; however, the individual estimates by area 

572 were biased in some scenarios (Figures 2 and 3). The terminal year system level F and SSB were 

573 unbiased for the Panmictic IPM for all OMs except the Metapopulation IPM and for the FAA 

574 IPM with the Uniform OM (Figure 3). In general, the estimation of SSB was more accurate than 

575 the estimation of F. The largest bias in the spatially explicit IPMs occurred when a constant 

576 movement rate was estimated with or without tagging data or when no movement was estimated 

577 (Figure 2 and 3). The best performing spatial models were those that allowed for the estimation 

578 of age-based movement and incorporated tagging data (Figures 2 and 3).

579 3.1 Panmictic IPM

580 The Panmictic IPM was relatively robust to the underlying population structure for 

581 estimating system level parameters. The Panmictic IPM had low cumulative sCAPE values 
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582 across the OM population structures with values ranging between 0.002 and 0.119 (Table 3). The 

583 Panmictic IPM performed best for the Uniform OM and demonstrated only slight bias in system 

584 level estimates of terminal year SSB yet had increased bias in the estimates of terminal year 

585 fishing mortality rate when mismatched to the SH and Metapopulation OMs. When mismatched 

586 to the underlying population structure, the Panmictic IPM demonstrated strong directional bias at 

587 the beginning of the time series, but with decreasing, yet variable, bias towards the end of the 

588 time series (Figure 4). 

589 3.2 Fleets-as-Areas IPM

590 Overall, the FAA IPM performed well when the underlying population was uniform, but 

591 performed poorly when underlying spatial dynamics were present. The FAA IPM had low 

592 cumulative sCAPE values for the Uniform OM with values ranging between 0.003 and 0.036 

593 (Table 3) and was able to estimate terminal year SSB and area specific fishing mortality rates 

594 with no bias for this OM (Figures 2, 3, and 4). In contrast, the FAA IPM had higher cumulative 

595 sCAPE values for the SH and Metapopulation OMs with values ranging from 0.023 to 1.124 

596 (Table 3) with highly biased estimates for the terminal year SSB and area specific fishing 

597 mortality rates (Figures 2 and 3). Although the FAA IPM demonstrated limited bias in SSB at the 

598 beginning of the time series when the OM assumed a spatially explicit population structure, bias 

599 increased dramatically and unidirectionally as time progressed (Figure 4).  

600 3.3 Spatial Heterogeneity IPM

601 The SH IPM was generally robust to underlying population structure but performed best 

602 when allowed to estimate age-based movement or when the underlying population structure was 

603 uniform (Table 3). On both a system level and for each population unit, estimating age-based 

604 movement with tagging data gave the least biased results for both the SH and Metapopulation 

605 OMs (Figures 5 and 6). When the SH IPM was matched to the SH OM but estimated a constant 

606 movement rate without including tagging data, it led to a lower cumulative sCAPE value for SSB 

607 and recruitment estimation compared to the same configuration with tagging data included 

608 (Table 3; Figure 2). Conversely, not including tagging data led to higher cumulative sCAPE 

609 values for F and movement estimation. Not estimating movement had higher sCAPE values and 

610 biased estimates of terminal year SSB and fishing mortality rate (Figures 2 and 3). For the 

611 Metapopulation OM, estimation of constant movement with and without tagging data did not 

612 cause much difference in the cumulative sCAPE values, yet not estimating movement at all 
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613 resulted in much higher cumulative sCAPE values (Table 3). Although the SH IPM mismatched 

614 to the Metapopulation OM performed well for most parameters when age-based movement was 

615 estimated, it was unable to accurately estimate recruitment due to the fixed recruit apportionment 

616 parameters and a single set of recruit deviations (i.e., compared to area-specific stock-

617 recruitment curves and area-specific recruitment deviations assumed in the Metapopulation 

618 OM). Overall, incorrectly specifying movement was more detrimental than incorrectly 

619 specifying the underlying population structure.

620 3.4 Metapopulation IPM

621 The Metapopulation IPM performed very similarly to the SH IPM with the best 

622 performance occurring when age-based movement was estimated or when the underlying 

623 population structure was uniform, as indicated by the lowest cumulative sCAPE values for these 

624 scenarios (Table 3). When the SH OM was used, the Metapopulation IPM that estimated a 

625 constant movement rate while including tagging data had lower sCAPE values for SSB, F, and 

626 movement compared to the same configuration without tagging data (Figure 2). On both a 

627 system level and for each population unit, estimating age-based movement with tagging data 

628 gave the least biased results for both the Metapopulation and SH OMs (Figures 7 and 8). Bias 

629 increased for both the system-level estimates and for each area when a constant movement rate 

630 was estimated or movement was not estimated when both the Metapopulation and SH OMs were 

631 applied. The Metapopulation IPM generally had relatively high sCAPE values in estimating 

632 area-specific recruitment, likely due to the added parameters that needed to be estimated for 

633 area-specific stock-recruitment curves and associated deviations (Figure 2).

634 4 Discussion

635 By developing a spatially explicit simulation-estimation framework and exploring a 

636 variety of population structure and movement assumptions, we were able to demonstrate the 

637 general robustness of spatially explicit IPMs using Alaskan sablefish as a case study. Regardless 

638 of the underlying population structure (including an essentially homogeneous stock with no 

639 movement, i.e., the Uniform OM), each of the spatially explicit IPMs were able to accurately 

640 estimate area-specific parameter values and increase precision when flexible parameterizations 

641 of movement were utilized (i.e., age-based) and auxiliary tagging data were applied (See Table 

642 B3 in the Supplementary Material). The Panmictic IPM was generally robust to underlying 

643 spatial structure when estimating system level parameters but would provide no support for 
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644 developing area-specific management advice. Conversely, spatially implicit IPMs (i.e., FAA 

645 IPM) provided area-specific fishing mortality, but estimates were generally biased when 

646 confronted with underlying spatial population structure. Therefore, the results of this study 

647 indicate that when underlying population structure is likely to be present and spatial management 

648 is needed (i.e., to protect subpopulation or spawning components or to control spatially variable 

649 harvesting or fleet structure), then spatially explicit IPMs should be utilized that incorporate 

650 enough estimation flexibility to emulate important drivers of spatial dynamics. 

651 Our results provide further support for the general findings that suggest that spatial IPMs 

652 are likely to be more robust than spatially aggregated or panmictic IPMs even when limited 

653 understanding of underlying spatial dynamics exist (e.g., Ying et al., 2011; Goethel et al., 2015a, 

654 2021; Punt, 2019a,b). Although assuming a unit population provided unbiased estimates of 

655 system level parameters, the potential for localized depletion when subpopulation structure is 

656 ignored has been widely acknowledged (Fu and Fanning, 2004; Ying et al., 2011). On the other 

657 hand, Punt et al. (2018) demonstrated that assuming highly complex spatial dynamics was less 

658 detrimental than implementing simplified models. Our results support this conclusion and 

659 demonstrate that allowing for spatial population structure is likely to be less detrimental than 

660 ignoring it completely. Furthermore, our study clearly illustrates that allowing for flexibility in 

661 the parametrization of movement is more important than correctly specifying spatial population 

662 structure. When the SH and Metapopulation IPMs estimated age-varying movement, the outputs 

663 were essentially unbiased despite the potential for incorrect assumptions regarding population 

664 structure. Ignoring age-based movement in the spatially explicit IPMs led to biased area-specific 

665 parameter estimates. These results support previous research (Ying et al., 2011; Goethel et al., 

666 2015b; Lee et al., 2017; Cadrin et al., 2019; Goethel et al., 2021), which suggests that simplified 

667 movement dynamics can be as detrimental to spatial IPM performance as ignoring movement 

668 altogether. Estimating the full complexity of movement is intractable and movement dynamics 

669 are often as uncertain as population structure. Goethel et al. (2021) suggest using flexible 

670 movement parameterizations that balance parsimony and complexity, while focusing on 

671 estimating along the axis that is most likely to drive spatial dynamics for the given species. 

672 Combined with the use of random effects to help estimate time-variation in recruitment and 

673 movement parameters (Thorson et al., 2015), flexible movement parametrizations implemented 



Consequences of population structure misspecification

This article is protected by copyright. All rights reserved

674 within spatially explicit IPMs are likely to allow these models to provide robust outputs that can 

675 adequately support spatial management measures.

676 When little is known regarding spatial dynamics in marine resources, the first step should 

677 always be to perform a holistic stock identification study (e.g., Cadrin et al., 2014; Cadrin, 2020) 

678 to identify the spatial scale of important population components that require monitoring and 

679 independent management. The management and stock assessment boundaries should then be 

680 adjusted to match these units (Kerr et al., 2017; Cadrin, 2020). Although implementing closed 

681 population IPMs on these units is often touted as the next step towards developing full spatial 

682 IPMs and is sometimes adequate when limited movement exists (e.g., Cadrin et al., 2019; 

683 Goethel et al., 2015a,b), our results suggest that there is limited cost to implementing a full 

684 spatial model even if population structure and movement are not fully understood. Conversely, 

685 ignoring movement in the closed population models led to high levels of bias, which supports the 

686 findings of Ying et al., (2011) where closed population models were shown to lead to 

687 overexploitation of subpopulations within a metapopulation. 

688 Accurate estimation of movement parameters or mixing among populations often 

689 requires additional data sources, such as tagging or genetic data (Vincent et al., 2017; Goethel et 

690 al., 2019, 2021). For our model, tagging data improved the estimation of movement with 

691 increased precision and accuracy in parameter estimates, even when population structure was 

692 mis-specified. When tagging data were not available, spatial IPMs are still able to estimate 

693 movement (e.g., Hulson et al., 2011, 2013; McGilliard et al., 2015). However, imprecision in 

694 parameter estimates often increases drastically, confounding with recruitment parameters may 

695 occur, and estimation of more complex movement patterns becomes difficult (Goethel et al., 

696 2019). Incorporating traditional tagging data may also be problematic if information on tag 

697 reporting rate, tag mixing, or the age or length structure of the released and recaptured tags is not 

698 well known (Goethel et al., 2019). We assumed 100% tag reporting and no tag loss, which would 

699 not be the case for empirical tagging data and likely produced optimistic estimates of parameter 

700 bias. In data limited situations when no additional information is available to inform movement 

701 rates or when tagging data are likely to be unreliable, closed population IPMs applied at the scale 

702 of important subpopulation components should be considered (Goethel et al., 2015b; Cadrin et 

703 al., 2019). Several approaches are available to deal with the assumptions of traditional tagging 

704 data (Goethel et al., 2019). Advances in electronic tagging, genetic methods, and remote sensing 
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705 technology (e.g., drones and satellite imaging) have led to a proliferation of data that has 

706 identified migration corridors, movement patterns, and mixing rates among population units for a 

707 wide variety of species (Bravington et al., 2016; Lowerre-Barbieri et al., 2019). New and 

708 evolving data types combined with the power of integrated analyses allow spatially disparate 

709 data sets to be combined into a single spatially explicit IPM to estimate shared or spatially 

710 distinct parameters, suggests that spatial IPMs should be more widely applied (Berger et al., 

711 2017; Zipkin and Saunders, 2018; Goethel et al., 2021).  

712 Alternate spatially explicit data sources can also aid in the estimation of area or 

713 population specific recruitment in spatial IPMs. Movement and recruitment estimates are often 

714 highly correlated in spatial IPMs (Cadrin et al., 2019), and our results demonstrated that the 

715 addition of tagging data reduced bias in recruitment estimates for the spatially explicit IPMs. 

716 However, results from the SH IPM are likely to be optimistic, given that the recruit 

717 apportionment parameters were fixed. Because the fixed values matched the relative split of 

718 average recruitment across subpopulations in the Metapopulation OM, it is likely that the SH 

719 IPM performed excessively well when confronted with the Metapopulation OM. Although 

720 exploratory runs attempted to estimate recruit apportionment, most runs failed to converge and 

721 were excluded from the full analysis. Recruit apportionment models are widely applied (e.g., 

722 generalized assessment framework Stock Synthesis 3 uses the SH IPM approach described in this 

723 paper; Methot and Wetzel, 2013) and a variety of methods exist for implementation (e.g., fixing 

724 apportionment parameters, estimating time-invariant values, or estimating time-varying values; 

725 Punt, 2019a). Although similar spatial simulation studies have shown limited bias when 

726 apportionment has been estimated (e.g., Punt et al., 2015, 2019a; Denson et al., 2017), these 

727 models rarely combine the estimation of complex movement and recruit apportionment. Other 

728 studies have taken a similar approach to our study and fixed the recruit apportionment parameter 

729 when complex spatial dynamics were modeled (Little et al., 2017), acknowledging that the actual 

730 bias is likely to be much higher in real-world applications when recruit apportionment is fixed. 

731 Future studies should consider further exploration of the performance of the SH IPM framework, 

732 especially when combined with complex movement estimation. 

733 Although all IPM configurations tested demonstrated relatively poor performance when 

734 confronted with certain OM configurations, the FAA IPM performed consistently poorly when 

735 confronted with spatially explicit OMs. Bias was limited at the beginning of the timeseries but 
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736 accumulated over time. In particular, when the FAA IPM was supplied data from the SH OM, the 

737 mismatch in parameterization of recruitment apportionment and movement caused bias in annual 

738 recruitment (which was over-estimated) and fishing mortality (which was underestimated). 

739 Given that the sole purpose of implementing a FAA IPM is to implicitly account for spatial 

740 structure by modeling unique fishing fleets in each spatial area, our results suggest that the FAA 

741 IPM should not be utilized. Again, this supports recent suggestions that FAA approaches are 

742 generally not advisable (Hurtado-Ferro et al., 2014; Punt et al., 2016; Punt, 2019b). However, 

743 FAA IPMs can sometimes outperform spatially naïve IPMs (Lee et al., 2017), and thus may be 

744 useful when no additional spatial data are available, little is known about the spatial dynamics 

745 present, and complex fleet structure exists. Depending on the management need and complexity 

746 of available data, a FAA model may provide perform adequately and produce outputs at the 

747 desired spatial scale. Before implementing a FAA IPM, though, thorough vetting and simulation 

748 testing should be undertaken to ensure that a spatially implicit model is indeed likely to 

749 outperform a Panmictic, SH, or Metapopulation IPM. 

750 The operating models developed for this study represent some of the most spatially complex 

751 OMs that have been used to simulation test IPMs, because they were meant to emulate the 

752 complex real-world spatial dynamics of sablefish. Despite the multiple spatial complexities 

753 included (e.g., complex population structure, recruitment dynamics, and age- and time-varying 

754 movement), the simulation models were still relatively simplified compared to what would be 

755 expected in a real-world application. In particular, the level of misspecification for some 

756 processes in the applied IPMs is much lower than would be expected given that many parameters 

757 (e.g., M, weight, and maturity) were fixed at their true values. Additionally, it was assumed that 

758 the system was completely closed to immigration or emigration and that the area boundaries 

759 were accurately represented (i.e., the boundaries correspond exactly with subpopulation 

760 components and the extent of the associated fishery). Therefore, these results are expected to be 

761 extremely optimistic. If increased misspecification were present or individuals were migrating 

762 outside of the system boundary, increased bias would be expected (Berger et al., 2020).

763 Many aspects of spatial IPM performance remain to be explored before these modeling 

764 approaches are more generally adopted as the basis of fisheries management advice worldwide 

765 (Berger et al., 2017; Punt, 2019b). We have demonstrated that the assumption of spatial 

766 heterogeneity and metapopulation spatial structure appears to be relatively robust to incorrect 
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767 specification in a spatial IPM. However, our analysis did not explore whether these assumptions 

768 are robust to natal homing, another widely observed spatial populations structure with unique 

769 spatial dynamics (e.g., strong natal fidelity, directed spawning migrations, and potential spatial 

770 overlap, but limited straying, among spawning populations throughout the year; Porch et al., 

771 2001; Goethel and Berger, 2017). Natal homing models need to account for relatively more 

772 complex dynamics and may require additional data (e.g., natal origin of catch and surveys when 

773 populations overlap during fishing seasons), which has limited their application (Li et al., 2015; 

774 2018; Vincent et al., 2017). Thus, it is likely that incorrect assumptions about natal homing in a 

775 spatial IPM (i.e., assuming it is occurring when it is not or ignoring it when it does occur) may 

776 lead to large estimation bias and has been shown to lead to different interpretation of sustainable 

777 harvest levels (Francis and McKenzie, 2015; Goethel and Berger, 2017). 

778 The tradeoff between parsimony and complexity is a recurring issue within all types of 

779 spatial models, especially regarding assumptions and parameterizations of population structure, 

780 movement, recruit apportionment, and the number of spatial units to model. As model flexibility 

781 and complexity increases, models are better able to emulate real world dynamics and reduce bias, 

782 but there is a limit to the added complexity that can be adequately estimated in a spatial IPM, 

783 especially as the number of units modeled increases and sample sizes decrease (Cope and Punt, 

784 2011; Punt, 2019b). We demonstrated that with the SH IPM, estimation of recruit apportionment 

785 can be problematic. Goethel et al. (2021) suggests using flexible, but adequately constrained 

786 movement parameterizations, and that theory can likely be applied to other parameters (e.g., 

787 apportionment), while Punt (2019b) further supports parameter sharing across areas where such 

788 an approach might be logical. Spatiotemporal IPMs (e.g., Cao et al., 2020), as opposed to the 

789 spatially stratified approaches explored here, also demonstrate promise for reducing the number 

790 of parameters and maximizing information content from observed data by directly accounting for 

791 spatial correlation among fine-scale units. Future work to meld these two spatial IPM approaches 

792 could help identify more robust methods to support spatial fisheries management.

793 Relatively little is known about the influence of spatial dynamics on levels of sustainable 

794 harvest. Bosley et al. (2019) demonstrated that when movement was present, a broad range of 

795 harvest rate combinations across areas led to maximum yield from the system. Similarly, Goethel 

796 and Berger (2017) demonstrated that sustainable yield varied substantially depending on the 

797 assumed population structure, movement patterns and rates, and the distribution of effort. Thus, 
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798 better understanding of spatial dynamics may lead to a rethinking of how target and limit 

799 biological reference points are developed and applied. Dynamic, time-varying connectivity 

800 across space and population components impedes the ability to achieve any single equilibrium 

801 rebuilding target and essentially spreads the impact of fishing across the entire spatial domain. 

802 Accounting for the multiscalar nature of spatial dynamics (e.g., local and regional interactions 

803 within and across metapopulation components) may not be fully tractable within the current 

804 reference point paradigm. Further development of spatial OMs that can be used to test alternate 

805 harvest control rules that account for desired spatial utilization of the resource, as well as the 

806 spatial dynamics of the species is required to determine truly sustainable management regimes.

807 5 Conclusions

808 Our results provide further evidence that spatial IPMs are generally robust to the diversity 

809 of spatial dynamics observed for marine resources and should be more widely applied when 

810 spatial structure is suspected. It also contributes to the growing body of work to support 

811 development of the “next generation’ of fishery stock assessments (Punt et al., 2020). In the 

812 absence of knowledge on underlying population structure, assumptions of spatial heterogeneity 

813 or metapopulation structure within spatial IPMs are likely to provide relatively unbiased 

814 parameter estimates in most situations. However, it is important to maintain flexible 

815 parameterization of movement dynamics or the risk of parameter bias may be similar to ignoring 

816 spatial structure altogether. Panmictic IPMs may be able to accurately estimate system level 

817 population trends but rely on potentially poor performing catch allocation methods to assign 

818 quota to management sub-units when spatial management is required (Bosley et al., 2019). 

819 Fleets-as-areas models provide limited benefit and can be highly biased, suggesting that spatial 

820 IPMs or individual closed population models that match the scale of important population units 

821 (when data are limited to inform movement dynamics) should be preferred over FAA 

822 approaches. As the performance of spatial IPMs continues to be explored and better understood, 

823 we believe that the management of harvested natural resources will benefit from the increased 

824 application of spatially explicit modeling approaches.  
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Table 1: Study design with scenario descriptions and estimation model convergence rates. SH: Spatial heterogeneity, Metapop: Metapopulation, 

FAA: Fleets-as-Areas. Scenarios are denoted by IPM:OM:Movement:Tags

Scenario Name

Integrated 

Population 

Model

Estimated

Movement

Recruitment 

Apportionment 

in IPM

Operating Model

Recruitment 

Apportionment 

in OM

Convergence

 Rate

Panmictic:Uniform None - Uniform Fixed - equal 100%

Panmictic:SH None - SH Fixed - unequal 100%

Panmictic:Metapop

Panmictic

None - Metapop - 100%

FAA:Uniform None Fixed - equal SH Fixed - equal 100%

FAA:SH None Fixed - equal SH Fixed - unequal 100%

FAA:Metapop

Fleets-as-Areas

None Fixed - equal Metapop - 100%

SH:Uniform:NM None Fixed - unequal Uniform Fixed - equal 100%

SH:SH:NM None Fixed - unequal SH Fixed - unequal 100%

SH:SH:Const Constant Fixed - unequal SH Fixed - unequal 100%

SH:SH:Const:Tags Constant Fixed - unequal SH w/tags Fixed - unequal 100%

SH:SH:Age:Tags Age-varying Fixed - unequal SH w/tags Fixed - unequal 91%

SH:Metapop:NM None Fixed - unequal Metapop - 100%

SH:Metapop:Const Constant Fixed - unequal Metapop - 100%

SH:Metapop:Const:Tags Constant Fixed - unequal Metapop w/tags - 100%

SH:Metapop:Age:Tags

Spatial 

Heterogeneity

Age-varying Fixed - unequal Metapop w/tags - 97%

Metapop:Uniform None - Uniform Fixed - equal 100%

Metapop:SH:NM None - SH Fixed - unequal 100%

Metpop:SH:Const Constant - SH Fixed - unequal 97%

Metpop:SH:Const:Tags Constant - SH w/tags Fixed - unequal 100%

Metpop:SH:Age:Tags Age-varying - SH w/tags Fixed - unequal 95%

Metapop:Metapop:NM

Metapopulation

None - Metapop - 100%
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Metapop:Metapop:Const Constant - Metapop - 100%

Metapop:Metapop:Const:Tags Constant - Metapop w/tags - 100%

Metapop:Metapop:Age:Tags Age-varying - Metapop w/tags - 99%
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Table 2: Table of parameter values used in the operating models. Note that the same total average system-wide recruitment is used for all three 

OM configurations, but each model assumes slightly different recruitment dynamics by area. Recruitment is the number of recruits entering the 

system and mortality terms are instantaneous rates (yr-1). Recruit apportionment is the proportion of system-wide average recruitment that is 

assigned to each area.

Area Parameters Uniform
Spatial 

Heterogeneity
Metapopulation

Average System Recruitment (Rave) 15,543,790 15,543,790 15,543,790Entire Spatial 

Domain Natural Mortality (M) 0.1 0.1 0.1

Minimum Fishing Mortality (Fmin) 0.05 0.02 0.02

Maximum Fishing Mortality (Fmax) 0.40 0.40 0.40

Average Area-Specific 

Recruitment (Rave)
-- -- 6,838,830

Area 1

Recruit Apportionment (ξ) 0.33 0.44 --

Minimum Fishing Mortality (Fmin) 0.05 0.05 0.05

Maximum Fishing Mortality (Fmax) 0.40 0.40 0.40

Average Area-Specific 

Recruitment (Rave)
-- -- 4,662,840

Area 2

Recruit Apportionment (ξ) 0.33 0.30 --

Minimum Fishing Mortality (Fmin) 0.05 0.05 0.05

Maximum Fishing Mortality (Fmax) 0.40 0.40 0.40Area 3

Average Area-Specific -- -- 4,041,130
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Recruitment (Rave)

Recruit Apportionment (ξ) 0.33 0.26 --
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Table 3. Table of cumulative sCAPE values for each model scenario. Scenarios are denoted by 

IPM:OM:Movement:Tags. Parameters for the Panmictic and FAA IPMs show only the system level 

sCAPE except for F in the FAA model where area specific parameters are estimated. Cells are shaded 

to error represent overall error level for a given parameter within each IPM scenario (e.g. only 

Panmictic IPMs are compared to each other and only Spatial Heterogeneity (SH) models are compared 

to each other). Bold cells represent the scenario with minimum error level within an IPM 

parameterization.

Scenario SSB Recruitment F Movement

Panmictic:Uniform 0.002 0.012 0.008 -

Panmictic:SH 0.045 0.022 0.093 -

Panmictic:Metapop 0.023 0.018 0.119 -

FAA:Uniform 0.003 0.017 0.036 -

FAA:SH 0.191 0.049 1.124 -

FAA:Metapop 0.107 0.023 0.848 -

SH:Uniform 0.008 0.041 0.040 -

SH:SH:NM 1.271 0.156 1.751 -

SH:SH:Const 0.344 0.048 0.487 0.687 

SH:SH:Const:Tags 0.357 0.054 0.360 0.150 

SH:SH:Age:Tags 0.113 0.053 0.144 0.097 

SH:Metapop:NM 1.646 1.608 1.418 -

SH:Metapop:Const 0.294 1.436 0.417 0.325 

SH:Metapop:Const:Tags 0.301 1.433 0.309 0.144 

SH:Metapop:Age:Tags 0.096 1.429 0.155 0.095 

Metapop:Uniform 0.019 0.047 0.047 -

Metapop:SH:NM 0.770 0.416 1.328 -

Metapop:SH:Const 0.758 0.389 1.704 0.908 

Metapop:SH:Const:Tags 0.381 1.210 0.448 0.693 

Metapop:SH:Age:Tags 0.120 0.616 0.149 0.608 

Metapop:Metapop:NM 0.527 1.496 0.915 -

Metapop:Metapop:Const 0.388 1.338 0.839 2.674 

Metapop:Metapop:Const:Tags 0.396 1.808 0.514 0.348 

Metapop:Metapop:Age:Tags 0.098 0.947 0.153 0.118 
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Figure 1. Schematic illustrating the study design and demonstrating how the operating models (OM) 

were paired with the different integrated population models. Different shades represent spatial variation in 

fishery and biological parameters across areas in the Spatial Heterogeneity (SH) spatial structure (vertical 

dark lines delineate areas) or subpopulations (spaces between areas denote different subpopulations with 

varying demographic characteristics) for the Metapopulation spatial structure. Arrows indicate whether 

movement was modeled between areas (for the operating models) or estimated (in the IPM). The fleets-

as-areas IPM was modeled as a uniform population with different fishery selectivity curves estimated for 

each area (pseudo-areas are delineated by dashed lines). 

Figure 2: Scaled Cumulative Absolute Percent Error (sCAPE) for each model scenario. The sCAPE 

metric is scaled to the maximum value across all the scenarios and all the areas for each parameter. Note 

that no system level estimates of fishing mortality are available for spatial models because it is not 

straightforward to aggregate area-specific estimates to a system level total when different selectivity 

estimates exist for each area. Similarly, movement is only estimated by area and sCAPE values for 

movement represent the residency rate (i.e., one minus the total emigration from that area). Scenarios are 

denoted by IPM:OM:Movement:Tags.

Figure 3: Relative percent difference (RPD) between true and estimated values for F and SSB in the 

terminal year. Medians are represented by the solid points with 25th and 75th quartiles demarked by the 

solid lines within each violin plot. Zero bias is demonstrated by the dashed line. Note that no system level 

estimates of fishing mortality are available for spatial models because it is not possible to aggregate area-

specific estimates to a system level total when there are different selectivity estimates for each area. 

Scenarios are denoted by IPM:OM:Movement:Tags.

Figure 4: Relative percent difference (RPD) between true and estimated values of SSB for the panmictic 

and fleets-as-areas IPMs applied to all three operating models. Open points represent medians. Ribbons 

show the 100%, 90%, and 50% interquartile ranges. Zero bias is denoted by the dashed line. These IPMs 

are not spatially explicit, thus, no area-specific values are presented.

Figure 5: Relative percent difference (RPD) between true and estimated values of SSB for the Spatial 

Heterogeneity (SH) IPM with data from the SH OM. Open points represent medians. Ribbons show the 

100%, 90%, and 50% interquartile ranges. Area is denoted by the right-hand panel titles. Zero bias is 

denoted by the dashed line.

Figure 6: Relative percent difference (RPD) between true and estimated values of SSB for the Spatial 

Heterogeneity (SH) IPM with data from the Metapopulation (Metapop) OM with different 

parameterizations. Open points represent medians. Ribbons show the 100%, 90%, and 50% interquartile 

ranges. Area is denoted by the right-hand panel titles. Zero bias is denoted by the dashed line.
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Figure 7: Relative percent difference (RPD) between true and estimated values for SSB for the 

Metapopulation (Metapop) IPM applied to the Spatial Heterogeneity (SH) OM with different 

parameterizations. Open points represent medians. Ribbons show the 100%, 90%, and 50% interquartile 

ranges. Area is denoted by the right-hand panel titles. Zero bias is denoted by the dashed line.

Figure 8: Relative percent difference (RPD) between true and estimated values for SSB for the 

Metapopulation (Metapop) IPM applied to the Metapopulation OM with different parameterizations. 

Open points represent medians. Ribbons show the 100%, 90%, and 50% interquartile ranges. Area is 

denoted by the right-hand panel titles. Zero bias is denoted by the dashed line. 
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