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ABSTRACT: The current study improvesreamflow forecast leatiime by coupling climate
informationsinsardata driven modeling framework. The spatiadporal correlation between
streamflowsand oceani@tmospheric variability represented by sea surface temperature (SST),
500-mbar.geopotentidieight (Zo0), 500mbar specific humidity (Skio), and 500mbar east

west wind (Wgg),of the Pacific and the Atlantic Oceanobtained througkingular value

decomposition (SVD). SVD significant regions are weighted using gpammetric methodnd
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utilized as input in a support vector machine (SVM) framework UpgperRio Grande River

Basin URGRB) is selected to test the applicability of the proposed model for the period of 1965-
2014. The April-August streamflow volume is forecasted using previousemte variability,
creating a lagged relationship oflLB monthsSVD resuls showed thetseamflow variability

was better explained by SST angbdhs compared tos8, and SHge. The SVM model showed
satisfactory forecasting ability withestresultsachieved using a 1-month lead to forecast the
following 4=month period. Overall, the SVM results showed excellent predictility akith

average correlation coefficienf 0.89 andNashSutcliffe efficiency 0f0.79. This study

contributes towards identifyg new SVD significant regions and improving streamflow forecast
leadtime of theURGRB.

(KEYWORDS: Oceanieatmospheric variabilitystreamflow forecast singular value
decomposition; support vector machine.)
INTRODUCTION

Waterhas become a majmatural commodity in the Western United States, where
limited water availability has been exacerbated by past frequent drgUghes and Graff,
1984; Rice.et al., 2009xtreme hydrologic events such as floods and droughts are associated
with hydre<limatic variability; improved knowledge of that variability in response to climatic
fluctuations is crucial to mitigating social and economic impacts (Redmond and 1881).
Several studies (e.g., Christensen e28l04; Stewart et al2004; Nijssen et gl2001) have
shown thatselimate change can result in increased uncertainty of water availability ramging fr
the watershed«to global scale.2016, the United States Army Corps of Engineers issued
Engineering and Construction Bulletin No. 2016-25 (ECB 2Papicorporated that climate
change should be considered for all federally funded projects in planning. &2 2016-25
provisioned. qualitative analysis of historical climate trends, as well as assessment of future
projectionsAs.the impacts of climate change to the hydrologic characteristics of a basin are
realized, streamflow forecasting can become difficult for hydrologists and climatologistt as pa
hydrologiceonditions are no longer representative of future condifidvakdli et al, 2016;
Pathak et al.2016; Tamaddun et al., 2011 is important to understand the relationship

between climate variability and the hydrologic response of a basin such thaatals and
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efficient management of water related systems camplemented (Middelkoop et aR001;
PahtWostl, 2007; Kundzewicz et al., 2009).

The dominant drivers of climatic variability affecting the hydrologic cycle all over the
world and _primarily in the U.S. include the El Nifilo Southern OscillgEMSO) Padfic
Decadal OscillatiofPDO), Atlantic Multi-decadal Oscillation (AMOMNorth Atlantic
Oscillation; Artic Oscillation, and Pacifidorth America Pattern. Throughout the U. S., these
teleconnectionpatterns are significant predictors of hydrologic respoattan{er et al., 1998;
McCabe et a).:2004).Sea surface temperatyf®ST), atmospheric pressure, humidity, and wind
are the major oceasmospheric variables that have wide influence in explaining the hydrologic
variability of asregionWoodruff et al., 1987). SST variability has been utilized to find
teleconnections between streamflow, precipitation, and snowpack. Traditionaineddedlices
have shown consistent results in specific areas such as El Nifio phase influences on the
southwest, southeast, and northwest U.S. regions (Kahya and Dracup, 1993). Although the
identfication of predefined SST regions in the Pacific and Atlantic aid in forecasting streamflow
in a certaipsbasin, it may not influence hydrology over all basins (Tootle andd®a, 2006).
Consideration=of the entire Pacific and Atlantic Ocean SST awegisnal biases and may lead
to improved,streamflow estimates (Tootle and Piechota 28@&Jies have associated 5®bar
geopotential'height (s80) anomalies with climate change (Wallace and Gutdle81). Zq is
the elevation above mean sea level kitcy atmospheric pressure is S@ar.Zsq0 has been
used as a significant predictor in climate forecasting models and has performed well (Grantz et
al., 2005; Soukup et al., 2009; Sagarika et al., 2@fcipitation is related to ocean evaporation
and the movement of clouds; these components of the hydrological cycle are piimmzeityed
by humidity, wind speed, and air temperature. In order to fully address these coraptent
additional climate data included in this analysis are: zonal wind $teg$ (i.e., eastwvest wind
force per unit.area parallel to the surface of water bodies correspondingrtba®@tmospheric
pressure) and.specific humidity (&), corresponding to 508bar pressure of both the Pacific
and AtlantiesOcearMunot and Kumar (200haveutilized the zonal wind at different pressure
level including,500 mbar pressure level to predict long range Indian summer monsaalh rainf
and found the zonal wind was as important predictor as the temperature in forebasting t
rainfall. Pathak et al(2018 have used the oceanic easist zonal wind at 500 mbar pressure to

find the association between western U.S. snowpack and zonal wind and the study showed
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significant relationship between wind speed and snow water equivalent of the cahsedgon.
Similarly, Bhandari et al. (2018}aveused both zonal wind and specific humidity to evaluate the
correlation between these ocestmospheric variables with the regional streamflow of the
continental United States and found that both wind speed and specific humidity areystrong|
correlated with the streamflow variability of the United States.

Principal component analysis, singular value decomposition (SVD), canonicdhtionre
analysis; and‘combined principal correlation analysis are sbthe techniques commonly used
to find interrelationship between two spatial and temporal fields (Wallace £98R).

Bretherton et al(1992) applied fare-mentioned statistical methods to find the coupled
relationship between two spati@mporal variables and opted for SVD for its simplicity and
robustnessWallace et al. (1992) also concludibatSVD extracts the most significantodes of
variability in comparison to other toolSeveral studies (Wallace et,d992; Tootle and

Piechota, 2006; Soukop et al., 2009) have been conducted to find the linkage and forecasting
ability between large scale climate data and streamflow, snowpack or precipitation using SVD
techniquegPopular predefined indices such as ENSO, PDO, and AMO are conventionally used as
predictors of streamflow while these predefined indices are the source of spatial biases.
Utilizationwef SVD subsides the use of these predefined indices by obtaining unitjaé spa
temporal.eorrelation pertinent tbe considered study arda.order to improve the forecasting
ability of a model, several data preprocessing techniques are avditatx®junction with data-
driven modeling, singular spectrum analysis (SSA) and discrete wavelet transform @pavT)
most commoenwpreprocessing tools and these are efficient in eliminating disdgrdf data and
reducing foreeasting errors (Marques et2006; Nourani et al., 200%Hlowever, ecent

research by Du et al. (2017) presented the incorrect usage of SSA and DWT in developing
hybrid models and showed that those models may cause significant forecastisig er

Various.conventional forecasting models such as conceptual and time seriéshmagde
been employed for streamflow prediction. Multiple Linear Regression, AutteBsge
Integrated.Moving Average are some of the conventional model extensivelfoupeediction
of hydrological time series. Howevehese models do not represent the liogar processes
involved in precipitatiorstreamflow transformation (Zealand et 4999).These time series
models utilize the concept of data stationarity anct@gmovide little applicabilityvhen dealing

with nonstationary dataArtific ial Neural Network (ANN) has emerged as a dynamic; self
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learning modetapable of utilizing noisy, nolrear data in predicting hydrological time series
without knowing the physical relationship between input and output data (Nourani et al., 2009).
ANNSs have been applied and performed well in hoear procsses involved in multivariable
conditions. Recgntly, support vector machines (SVM) have received growingpati@na novel
regression_ teechnique (Mukharjee et al., 1997; Pai and Lin, 280%8).uses a statistical machine
learning approach in which available data are trained to predict series of data (Liong and
Sivapragasam,2002). It can minimize prediction error and reduce model coynexnik,

1995, 1998)."SVMs evolve incorporating the noise andlmaarity in the training data without
assumingita stationarity proving it ideal while analyzing hydrologic parameters affected by
climate changeSVM uses the principal of structural risk minimization unlike the empirical risk
minimization principle used by ANNSVMs have been extensively applied in various
hydrological forecasting problenasd have outperformed ANNs approach (Dibike, 2000;
Babovic et al.2000; Cimen and Kisi, 2009). SVM has shown superior generalization ability and
it is successful in reducing the overfitting problem compared to ANN (Cimen ianB09).

Astuti et al=(2014) used SVD for preprocessing and feature extraction andrédoteskdata

were used'to forecast location, time, and magnitude of earthquakes using SVM lappibac
concluded:that the proposed methods were relatively better than the other h@madtiag

models,

Several of the previous data driven modeling studies using climate infornation t
improve streamflow forecasts have focused ondef@ied oceanic indices rather than entire SST
regions that*de,not introduce spatial bias. To overcome this limitation, this repeaposes a
novel-modelingramework thatvould couple dargescale climate variability into a data driven
model and that wouldliminate the spatial bias at a regional scale. First, SVD istased
determine.a lagged spati@mporal correlation between ApAlugust streamflow and oceanic-
atmospheric variabilities represented by SSshe,SHs00, and Wsgo of the Pacific and the
Atlantic Oceans. SVD significant regions are weighted usingpaoametric approach
formulated.by'Piechota et al. (2001) and utilized as input in SVM framework. The study i
conductedin th&pperRio Grande River BasitJRGRB) for the period of 1965-2014 and the
lagged relationship is computed for 1-13 months.

This study is expectet investigatehe timelagged relationship of thdRGRB
streamflow variability with the oceastmospheric variability of the Pacific and the Atlantic
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Ocean. This research further aims to address the following research qué¢sjibtmvis
streamflow within theJRGRBassociated with oceaatmospheric variables? (2) What are the
dominant predictors among oceaaittnospheric variables that best describe the streamflow
variability of the basin? and (3) How does the proposed modeling framework imprdeadhe
time of the streamflow forecast? Previous studies on streamflow forecastingdR @B have
primarily focused on SST influence while the current research inclugesSHsoo, and U
data for'theanalysis. Including these additional variables broadens the stupéoécasting
ability presented here and identifies significant&®ldnd Usoo regions in Pacific and Atlantic

Ocean.

STUDY AREA AND DATA

Sudy area

The Rio Grande River is one of the major rivers in the UrStiades, which originates in
southwestern Colorado, flows through New Mexico and Texas in a southeasterlypialjraati
discharges.into’ithe Gulf of Mexico. The Rio Grande River, which is approxinga@s§
kilometersin length with a catchment area of 4820 squardilometers is a major source of
water in‘'sguthern states. More than three million people, agriculture, industries|difiel v
Colorado, New Mexico, and Texas have been supported by the Rio Grande water supply
(Michelsen and Wood, 2003; Bker et al. 2005). During drought conditions, the water
allocationtconflict among the users is considered among the most intense in the United States
(US Department of Interip2003). Increased demand, over-allocation of water, and vulnerability
to droudnt ‘and.climate change have created and added complexity in active water regulation and
allocation/in thdURGRB region(Booker et al.2005). The socio-economic importance of the

river motivates the need for improved streamflow prediction several moraksamce.

Data
The primary datsets used in analysis are streamflow data for six unimpaired gages in the
URGRBand oceani@mospheric climate data represented by SSd, Bs00, and SHo.
United States Geological Survey (USGS) Hy@ignatic Data Netwde 2009 (HCDN-2009)
provides the list of streamflow stations which have minimal impact from human activities such

as construction of diversion, artificial dams or any activities which cawctafie natural flow of
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streams. The streamflow data from these stations are suitable for the analysis of itydrolog
variations and trends for the present climatic context (Lins, 2012). Slack anddtand®92)
identified 1659 unimpaired streamflow stations in the United States (Lins, 2012)vétofce

the RGRB,it has beerfound thatonly six streamflow stations have minimal impact from human
activities whieh are located in the upper region of the Rio Grande River Basie. Siketations
from the upperregion of the basin are the reason for selection of the Upper Rie Gnaer

Bagn. The'mean monthly streamflow values from those streamflow stations are extracted from

USGS websitehttp://www.usgs.goy/for 1965 to 2014. Monthly streamflow volumes from

April through August are summed to develop seasonal streamflow volumes for fssanal
Figure 1 illustrates the location of six unimpaired streamflow statibisscommonly observed
that the daily streamflow has high uncertainty and it is difficult to find a time lagged relationship
between oceantatmospheric data and daily streamflow data. To have higher accuracy in the
prediction and to have a lump sum idea about the seasonal streamflow volumaugpst-
streamflow,volume is used since seasonal variation of streamflow is typsrabwied rivers of
the Uhited Sates Further, spring-summer streamflow accounts for the major flow volume of the
year and can‘help water managers to create balance between annual future water demand and
annual water availabilityAdditionally, ssasonal analysis streamflow with climate variability
is preferredto wateyear analysis because the watear analysis does not effectively capture
the seasonal interaction of streamflow and climatic variables (Sagarika2é#l).The
analysis, therefore, aims to capture the seasonal relationship of streamflow and climate
variability adequately.

Natienal Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division

(http://www.esrl.noaa.gov/psd/data/griddeid/the source of SST data for both the Pacific and

Atlantic Oceans, The mean monthly SST data is extracted ftéay 2 grid cells and the spatial
extent of SST data in the Pacific Ocean is°EO® 80W longitude and 3% to 70N latitude.

The extent for the Atlantic Ocean is®80to 20W longitude and 3 to 70N latitude. The

mean monthly SST data was divided into three periods: December to February ovithespre
year,September to November of the previous year,eckember to Haruary of the current
yearcovering a period of 50 years (1964-2013). For example, if streamflow is prbthct
April-August of 2010, monthly average SST data for December 2008 to February 2009,
September to November of 2009, and December 2009 to February 2010 are considered in the
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analysis for the thregeriods The leaetime in the analysis is defined as the time lag from the
last month of SST period to the first month of streamflow periadofith leaetime i.e.,
February to Aril, 4-month leaetime i.e., November to April, and 13-month |eiade i.e.,
previous year’s February to current year’s April are considered as the three forectistidead
this study.

In addition to SST, othatata representing the oceatmospherivariability are Zoo,
Usoo, and SHgg'and these data the product of National Centers for Environmental Prediction
/National Center for Atmospheric Research Reanalysis Project (Kelredy 1996)NOAA
Physical Science Centdrt{p://www.esrl.noaa.gov/psd/data/griddi@dovided the mean monthly
Z 500, Usoo, @nd=SHq data from 1964 to 2013. These data are obtained frohb@ .5 grid cell

for both oceans and the spatial extent and division of data is kept the same as thadahSST

METHODOLOGY

The methods used here are divided into four steps:

1. Establishing correlation between two variahleghg SVD

2. 'Screening of predictors

3...Predicting streamflowusing SVM

4. Maodel evaluation

The flowchart in Figur@ summarizes the model algorithm to forecast the streamflow
from theoceanatmospheriwvariables with different lead times. In first st&V/D is applied to
find the spatiatemporal correlations between the streamflow data andithatevariablesthat
resultsin the temporal expansion series (TES) of significant modes explained later. These TES
are screened in the second sfHe screened predictors are used as the ioptihé SVM model
of eachstreamflow statioindependentlylNext, the forecastedtreamflowis evaluatedy
comparing the forecastehd observed streamflow usisgtistical and graphical aspeads.
brief description of the methods abstracted from several sources is providedriauimg e
sections. Interested readers are referred to original references for detailed descriptions
(Brethertomwet al., 1992; Piechota et al., 2001; Vapnik, 1995

Establishing correlation between two variables using SVD
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SVD is a simple and robust statistical technique primarily useful for differentiating major
modes of variability out of extensive series of d&D evaluates a crog®variance matrix
between two fields and identifies the correlation between these fields (Brethertoi @d2).

Each matrix has spatial component represented by $&/BHBs00/Uspocells or streamflow
stations while,temporal component is represented by total number of yeata iof which
temporal dimension of each matrix must be eqgalthe SVD approach evaluates the
association‘of'streamflow data and climdéta in both space and time, the obtained correlation
is generally‘referred apatialtemporal correlatiom the study. First of all, standardized
SST/Zs00/SHs00/Usooanomalies matrix and standardized streamflow matrix are devedoypleal
crosscovarianece matriXA) is obtained by multiplyig SST/Zso0/ SHs00/Us00 Matrix with the

transpose of streamflow matriQ{) and divided by total number of years of data peridd (

SST x QT
A= —= 1
N 1)
The crosscovariance matrix ithendecomposed into three matridesSVD as:
SVD of A=USVT (2)

where UTU,=.| andV"V = | meaningU andV are orthogonal and normalized matricg®ereas
Sis a diagonamatrix with nonnegative values. A left singular vector and right singular vector
are derived.from the columns of those orthogonal and normalized matrices. finshs@nd

rows of these orthogonal matrices explain more of the correlation between variablessdaimpar
subsequent rows/columns. The diagonal matrix provides the singular value of therzrient

in non-increasing order and these values provide information about the properties i .a mat
SVD approach.to data unfolding. https://arxiv.org/pdf/hep-ph/9509307.pdf. Accessed 25

September1995isolation of the most important modes of data is calculated based on squared

covariance fraction (SCF). SCF value shows the degree of variability explained by SVD

analysis, which is defined as:

2
SCF; = — (3)

where Cis the singular value farth mode. The SCF values more than 10% only are considered
for the analysisSimilarly, normalized squared covarian(®SC) indicates the correlation
between two fields averaged over all the grid points (Wallace et al. I¥82)s defined as:
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CZ
Ng X Ny

where, wheré&?is the sum of singular values aNgd is the number of grid points whilé; is the

NSC =

(4)

number ofstreamflowstations. Th&SC value ranges from 0 to 1 with maximum value for
perfect correlation between two variablEgxt, temporal expansion series of left filldES) is
obtained by multiplied by left singular vectar) with SST/Zso0/SHs00/Us00 Matrix, and similar
proceduresis-fellowed for temporal expansion series of right fi€I&Y).
LTES = L X SST (5)

Finally, heterogeneous correlation map of left (ridiefd is developed by correlating
SST/Z 500/ SHs00lU s00 (Streamflow) matrix witlRTES (LTES) at 90% significance level using
Pearsorr cerrelation coefficient. The heterogeneous correlation map shows the influential
regions of the aceaatmospheric variables with streamflow for different kiate cases. Each
streamflow station can have either positive or negative correlation with climate variables which
is known as station significance. Station significance are obtained fronvbhar&lysis but
neither their.signs (station significance) nor streamflow staitawa shown in the heterogeneous
correlatiomimap. Only the signs of climate regions are shown in the map. Basediatidine
significance, positive or negative correlation of streamflow with the climate variables can be
known fromsthe heterogeneous ctateon map. If the station significance and a particular region
of climate variables are showing the same sign in the map, then the streamflow and the climate
variables af the region are positively correlated and if the station s@gmif and the region

have different.sign then there exists negative correlation between the variables

Screening of'predictors

The temporal expansion seriedadir different ocearatmospheric variables obtained
from SVD"analysis are the possible predictors of streamflow in the Rio Graordeadh climate
variable/predictgra continuous exceedance probability is developed using the procedures from
Piechota et al«(2001). First, temporal expamseries of each variable for each year is arranged
with corresponding streamflow value. For an observed streamflow @alaegreater than and
less than streamflow category are created and corresponding to thosaeestpgedictors are
separated it different subsets. Bayes probability theorem is then applied to find the forecast

probability of each category from the predictor values.
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pifi(x)

Prob(Q; / X) = SE ()

(6)
where, X = predictor value); = streamflow value of categoryp; = prior probability of
streamflow of category f;(x) = probability density function (PDF) of pridtvalue of category
i

Foreachssubset of predictors, a probability distribution is fitted to calchateRH;(x).
A nonparametric approach is employsdusing Kernel density estimator to calculate the PDF
where Kernel density estimation is associatét & histogram (Silverman, 199Biechota et al.,

1998). Kenel density estimation is defined iasequation (7).
n
1 X — X;
f(x)—EZK( =) @)
1=

where x; toX; = set ofn observationsK () = kernel functionh = bandwidth, which is

calculated as:

h{= 094" (8)

interquartile range)

1.34 ®)

Ai = min <O'i,

where,og; ='standard deviation of predictors in subset = number of observations in each

subset. Next, for each predictor value a unique probability is estimated andastfawgve is

developed by plotting probability value for all predictor values against correspondiagiBow

values. Affinal exceedance probability forecast is obtained by combining the exceedance forecast
of all variables:-Thakill of probability forecast is measured biypear Error in Probability Space
(LEPS),score.approach introduced by Ward and Folland (1991). The LEPS scorengstéeni
distance"hetween the forecasted and observed value over the cumulative prabsioibitytion,

which is defined as:

S=3(1-|P—PB|+P}—P+P?—B)—1 (10)

where,Ps andPy,are the cumulative probability of forecasted and observed value ligspe
climatology or neskill forecast is also developed through exceedance probability curve of
observed streamflow values. The valué€’pis obtained from exceedance probability curve

mentioned earlier whil@, is obtained from climatology exceedance curve. For a given predictor
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value and corresponding streamflow valeeandP, can be obtained and LEPS score is
calculated as in equation (1Dhe LEPS scoréor each years then calculated for all predictor
values and thaverage skill (SK) for ajears is calculated as:
¥ 1008
2 Sm

where, Sy is thesum of best or worst possible forecast depending wh8tisguositive or

LEPS SK = (11)

negative respectively. Best possible forecast occurs ®herP, while worst possible forecast
occurs wherPs=:1 or 0. Similar process is applied for different predictors anddch

streamflow statiorskillful variables/predictorsvhich give the highest LEPS SK score are then
finally selectedLEPS score gives more weightage to those forecasts which predict high or low
streamflow.ar extreme value in general while less weight is given to those forecasts which
predict average streamflow value skillful forecast has a 10% or higher LEPS SK score (Potts

et al., 1996). A flowchart for the predictor screening process is shown in Figure 3.

Predicting streamflow using SYM
The best combinations of predictors selected are then taken as input for SVM modeling.
Unlike traditional learning methods that use an empirical risk minimization principle, SVM uses
a machindearnng approach, and this formulation involves a structural risk minimization
principle. The application of support vector regression (SVR) is briefly deddndre. The
descriptions and equations are abstracted from Ahmad et al. (2010).
Suppose a training data set with input and output variable represerftedyas\ where
x; € R’ represents independent input variable, @reR represents dependent output variable. We
need to find-afunctiog = f(x) that provides the dependency relationship of these two variables.
The funetion=ean be written as in equation)(12
y=f@)=wx)+b (12)
where (w, x) is the dot product of weighting vectarand input vectox; b is a biasln addition,
the optimizatiomproblem and equality constraints are formulated and shown below in equation
(13).
Minimize > [lw|? + € 2L, (&; + &)

Subject to
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Vi— Xha Xawix —b<e+§;
Ko Ziawix; +b—e+¢& (13)
filfi* = 0

where,srepresents Vapnikinsensitive loss functiorC is the capacity parameter cost,and

&' are slack variables, anid is the number of support vectors are represented in the formulation.

The goal istterdetermine optimal parameters, which minimizes the forecasting error for the SVR
model. The'optimization of SVM is based on the selection of a kernel fuicibatilizes non

linear mapping in the feature space (Dibike et al., 20®4glial basigunction kernel is used in

the currentframwork which shows superior efficiency by minimizing test error (Scholkopf et

al., 1997)."For:the detail description of support vector machine, interested readsdsised to

go through Vapnik (1995, 1998).

The performance of the model is tested by trgjrthe data and validating to the
remaining-data set¥he training phasmtends to find the optimal values of the parameters and
attain the bestspossible generalization conditidhss research utilizes the leavae-out cross
validationappreach commay known as special case lefold cross validatiorthat overcomes
the data splitting problem when limited data sets are available for training and testing (Kalra et
al., 2012).In'this approach one data point is selected to test the model whalméiging data
points are used for training phase. This process is then applied to next data point aed fepeat

all data sets accordingly.

Model Evaluation

SVM performance is evaluated based on various statistical and graphical measures.
Time-series jots are used to depict the trend of observed and forecasted streamflow over the
years while scatter plots demonstrate the correlation between observed and predicted streamflow
values. Similarly, box plots show the statistical variation of streamflow y@né non-
exceedance_ probability plots are used to visualize the estimation errdegndiprobability
scenarioSwihe statistical measures utilize correlation coefficjegsh Sutcliffe model
efficiency (NSE), percent bias (PBIAS), and LEPS SK values to evaluate modieinefyi.
Collinearity between observed and predicted streamflow values are accesseddbraigtion
coefficient. Higher correlation depicts less variance in the data. NSE determines thdifgrecas
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ability of models by compargithe measured data variance with residual variance of observed
data and determines the accuracy of a model (Nash and Sutcliffe, 1970). The skitigof fit
predicted and measured data to a 1:1 line is explained by NSE. It is calculsieavasn

equatia 8:;

n (xmeas — xpredy’

NSE =1— Zn 1(Xmea5 _Xmean)z
1= 14

(14)

where X;™is themeasured quantity fafth item andX;"

is the corresponding predicted
amount bythesmodel and™"is the mean of measured quantity fiatumber of observations.
The range of'NSE i8o to 1with 1 as the ideal value. The recommended range of NSE values
indicating a satisfactory model is NSE >0.5 (Moriasi et al. 2007). The percens ianeasure
of the averagestendency of forecasted vaigeer or lower than observed value (Gupta et al.
1999). PBIASwvalue is calculated as shown in equation (9):
n L (xmeas — xPTedl) x 100

PBIAS =
1i1=1(XimeaS)

(15)

where, X;™is themeasured quantity forth item andX;"®

is thecorresponding predicted
amountibythesmodel and™"is the mean of measured quantity iatumber of observations.
The ideal value for PBAIS is 0 and smaller values show good model simulation whilew@ega
values show overestimation and positive values show underestimation (Gupta et. alfi€©99).
LEPSSK scoreis also utilized to evaluate the model performancddigrminng the distance
between measured and predicse@amflowwalues in the cumulative probabilidystribution

which has been alreadigscribed in the methodology section.

RESULTSAND DISCUSSION
The'results and discussion are described in three different se@ienSVD and SVM
analysis are presented in three differentsedtions for each leatne scenario whil@redictor
screening analysis is discussed in a single sedlmmfirst section discusses the SVD spatial
temporal.correlation of streamflow with oceaaitnospheric variables. Next, resufspredictor

screening are presented followed by the SVM aimlys

SVD analysis

This article is protected by copyright. All rights reserved



1-month lead-time. The SVD analysis of the Rio Grande streamflow with
Pacific/Atlantic SST, Zyo, SHUsoo and W resulted in the identification significantly
correlatedegions.Most of the variability of the streamflow in the URGRBswexplained by the
first mode_of SVD and thereforenlky the first mode SVD results are reported throughout the

section.Table.lpresents the SCF and NSC values obtained for differentireadscenarios.

Figuredarepresents the relationship between Pacific Ocean ateavspheric
variability with URGRB streamflow through heterogeneous correlation map at the 90%
significance level for the-inonth lead-time period. Resulting significant SST regions are shown
in red and blue’color. The red and blue color in the map indicates positive or negaéiatioar
of streamflow with climatic variables in the significant regions. One of the two key significant
regions identified for that period are the regions off the coast of Japan, Indonesiastiadiad
which has a horseshoe shape, is negatively correlated with theAdprikt streamflow in
URGRB. Thisidentified region is similar tNSOincluding the popular Nifio 3.4 region
previously‘identified by Trenberth (1997he identified region also include ribwestern US
coastal regionsirepresenting PDO. Previously, Khedun et al. (2012) has alsceismtiflar
results—indicating ENSQGand PDO being positively correlated with winter and spring
precipitation which is the source of spring summer streamflow. The obtained @&Tsre
mostly ENSO-are affirmed by previous literatures signifyingdR&RBbeing wetter and
colder during El Nifio yearsdlgsause of the modifications in the mid latitude jet stredims.
reason of ENSO being positively correlated with tihheashflow can be attributed to the feeding
of moisture to the Jet streams moving towards east from the Pacificsagtaf@above normal
SST in ENSO regions during El Nifio years. Another dominant region of SST that hagga st
positive correlation is the region extending from West to Central PaciGarOgounded in
between:9BW:t6 183 W latitude, and this region shows conformity with Nifio Index as
demonstrated by other researchers (Rajagopalan 20a0).Figure5a shows a heterogeneous
correlation'map of Atlantic SST significant regions for thmdnth lead-time period. The
identified’significant area is separated into two zones,®near the east coast of Canada and
USresembling the AMO regioand the other is near the north shore of Brazil. These regions
have a negative correlation with streamflow variabilltiyis is also verified by previous
literature that cold north AtlamtiSSTin winter and spring favors tlepring summer streamflow
(Trenberth et al., 1998 ascoliriCampbellet al., 2017).
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The second columof Figure4a andrFigure5a show the heterogeneous correlation map
of significant Zgo regions forboth oceans. Thagnificant regions for Pacific are more
concentrated in equatorial regions of the Pacific Ocean and southeastern Asia. The altitude of
Zsop IS approximately 18000 feet above the sea level, and this has been associatedrsih di
weather phenomena (Soykat al, 2009). The jet stream formation is related to locations where
the Zsop contour lines are concentratedogs found to be more influential during wintertime.
The shortwave train as shown in the second column of Figuwetd red arrow head as a result
of warming of' SST in ENSO regiaignifies the fueling oetstreanwith moisture also
responsible for the precipitation and streamfloldBGRB region. This physically explains the
reliability of obtained teleconnectioretween £q, regions and the streamflow 0RGRB. For
the Atlantie®Ocean, the significant regions identified are clusteredsais Canada and north to
mid-South America. All those identified regions show the positive correlation with the
streamflow of tk URGRB.

Fivesignificant SHooregions were prominent in the Pacific OcealmreéEregions with
positive carrelation are identified at the equatorial region and above thgmitet States while
two negatively=correlated specific humidity regions weretifled at the eastern side of China,
Indonestapand Japafiss mentioned earlier, the warmer than average ENSO regiontffiggjst
streamwithsmoistureover Pacific moving in east directions responsibld fBIGRB streamflow
With the extra fuel and pressuthe Jetstream shift eastward with higher than normal
precipitation iINURGRB region. This can be verified in Figure 4a third column, the specific
humidity in"ENSO region being positively correlated with streamfloWRGRB region.

Positive correlated S4d, regions are found near the basin area that may be linked to the direct
relationship of distance with humidity influence making further regions less influential in
streamflow variation. For the Atlantic Ocean, the significant regions were identifiestatrea
Canada and.northern South America. These regions have shown the positive correlatios wi
streamflow,of the basin.

Several significant kho regions are established in the Pacific Ocean as probable
predictors of streamflowl he Usgp regions signifies below/above normal wind in east west
directions which are the key cause of circulation of moisture from the oceanw@tersheds.
Here, these complexdgh regionsare the result ofomplex interactions of pressure, geographic

features, temperature gradients and other climate vari@messignificant region in the Atlantic

This article is protected by copyright. All rights reserved



is found near the northeast coast of Canada, which has shown the negative correlatimallThe s
spatial extent of the region indicates a little influence of Atlantig th the streamflow
variability.

4-month lead-time. The SCF and NSC values are both comparaiplé- and 4-month
leadtime scenaos. The first plot ofFigure4bandFigure5b show the heterogeneous correlation
map for Septembddovember SST of Pacific ante Atlantic Ocean respectively. The
significant'Pacific SST regions are almost the same-fopath leadime when compared to 1
month lead-time. However, for the Atlantic, SST regions are continuously edtendeyreater
area in 4month leadime, unlike month leadime where the significant regions are widely
separated.in two zoneBhe SCF and NSC values also dropped slightly in comparison to 1-
month lead=time. Significant regions are located in the west to the east regiemofthern
Pacific Ocean in smaller groups. Furthermore, the spatial extent of signifigarégions also
decreases lIthis period compared with a previous period in the Pacific Ocean while the spatial
extent slightly increases for the Atlantic Ocean. It can be noted that SCF/NSC valuesfilor Paci
are smallerthan that of Atlantic in this periddhe identified indices fo4-month leadime were
similar to the‘identified indices forhonth leadime but the signals were weaker with the
expenseoflead times. As observediguFe5b, the indices like ENS@nd the climatic
phenomenon like short wave terrain and impactsidflatitude jet stream are still evident like 1

month leadime.

Compared to 1-month lead-time, the SCF and N8 GHsq decrease for the Pacific
while increases for the Atlantic Ocean imbnth leaetime. The third plot bFigure4b and
Figure5b showheterogeneous correlation map for Pacific and the Atlantic Ocean respectively.
Similar to 'SST and &y, significant SHgo regions become separated from each other and smaller
in areal extent.in this period as compared to 1-monthties&lperiod. NeareBHsqo regions to
the basin show,positive correlation as in the previom®hth led time cas@he SCF and NSC
values were higher in-thonth leadime in comparison to-tnonth lead-time. Furthermore, the
majoritysof positively correlated associated regiomespevalent both in Pacific and in Atlantic
regions that are“clear fromigure4b andrigure5b. All other predictors, with the exception of
Usoo, have shown comparatively better results for 1-month lead-time when compdred wit

month leadime

This article is protected by copyright. All rights reserved



13-month lead-time. The first plot ofFigure4c andFigure5c show the heterogeneous
correlation map of SST for Pacific and the Atlantic Ocean respectively. Fronfithees it is
clear that the significant SST areas become smaller and sparser when compared to smaller lead
time cases. It may be due to the influence of longertieael SST period is less effective than
that of a shorter leatime period. A similar drop of SCF and NSC values were obtained for SVD
analysis of.Zq0<The number of significamegions decreases and these regions move farther
away from'the"ocean as compared to 4-month leaelds clearly seen Fgure4c andFigure
5c. For the"Atlantic, only one significant region near the northeast coast of Camdelaified,
with negativecorrelation with streamflowAs seen in Figure 4c and Figure, fespatial extent
of significantysteleconnectedegionsfor 13- month leadime was smaller thapther lead times
however these13nonth long leadpatialtemporal associatiortan alschdp water managers

by providinglonger time window for planning and mitigation measures

The'heterogeneous correlation map for Pacific and Atlantic C8Egja are showa in
third plot ofFigtre4c andFigure5c. The spatial extent of the significant regions decrease
considerably for 13-month ledane case in comparison te 4nd 4month leaetime cases;
furthermore, the drop in SCF and NSC values also suggest thatahé 4month leadime
period can have ler forecasting abilities as compared terd8nth lead-time period.he forth
plot of Rigurede-and Figure Bshow the heterogeneous correlation map fax for the Pacific
and the Atlantic Ocean, respectively. In this period, number and spatial ebdegnificant
regions decrease considerably similar to SSfs, AndSHso0. All the predictor variables have
shown better results for smaller letathe cases than longer letithe cases.

The SVD results depict the identification of significant regionS®T, Zoo, SHso0, and
Usoo in the \Pacific and the Atlantic Ocean, which are teleconnegtédhe streamflow stations
in the Rie Grande River. The identification of various significant regions of ttippaameters
in this study indicate a dominant influence of these regions on the streamflohiligrgad can
provide better predictive capabilities than other regions. Moreover, thesei@terggions were
found tesbe similar with results conducted by previous researchers. The lagged S\d analy
clearly showed'that smaller lesiche analysis has better forecasting ability as compared to
longer leaetime analysisThe inclusion of entire Pacific and Atlantic Ocean for SShe,4Js00
and SHgo data has elimmated the regional biases and the dependence on the existing indices to
explain the hydrologic variability has reduced.
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Predictor screening analysis

The abovementioned SVD analysis presented all the possible correlations ofi@tveam
with the oceanikatmospheric climate variables whereas this predictor screening analysis focuses
on best carrelation for each of the stations leading to screen the best prediatdesant of the
eight climate.variableS.able 2shows two best streamflow predictors focleatreambw
station for'each scenario. The result shows that each variable is one of the best predictors at least
once. Itfis‘clearfrom the table that different predictors are dominant at differestithesd For
1-month |leadime, AtlanticSHsoowas bund to be the best overall predictor while PacifigoU
was found to be the best overall predictor for both 4- and 13-monthimeadcenario.

Similarly, Atlantic Zsoo was the least dominant variable followed by PacifjgZPrevious
researchers haveiprarily focused on SST andsg as the important variables in explaining
various hydrologic processes. However, this resdaastincluded two more climatic variables
i.e. Usgp and SHppapart from SST andsg, for broader scope. Theseluded variables have
shown valuable predictive information. For example, for stations 4 andsg; &HPacific Ocean
could playsarkey role in forecasting streamflow at those locations, while Atlantic Ocegn SH
could be an important predictor of streamflow for station 1. The inclusion of these \&agable
be justified.and supported as botkpdand SHooexplain the majority of streamflow variability

in theURGRB. Results also suggest that the U wind over the Pacific Ocean is one of the major
climatic factors that drivéhe variability of streamflow in theRGRB. Satisfactory performance
of Usgp and, SHgpindicate that these climate variables have greater potential in providing finer
results if they"are extensively studied and understood. Thus, these variables bidyobs
drawing research attention from climatologists and hydrologists in coming days.

The positive skill shown by continuous exceedance probability forecast depicts the
improvement of prediction skill compared against a climatological forecast Wigetenhporal
aspect of historical data is taken into account. The continuous exceedance prdbedulyt
labeled as.good, fair, and poor compares climatology forecast, modeled foretadisarved
streamflow.value and gives an idea about the avathabil streamflow at different risk levels in
a simple and efficient way.he continuous exceedangmbability forecasts labeled as good,
fair, and poor forecast are showrFigure6. For good forecast, the difference between observed
and predicted streaflow value at certain probability is minimum while for poor forecast the

differencebecomes larger. Frofigure6g, it is clear that when streamflow was predicted for

This article is protected by copyright. All rights reserved



2014 at 50% exceedance probability, the model predicts 12 million cubic meters (M@®) w

the climatology predicts 18 MCM and the observed value is 11 MCM. However, for poor

forecasts certain amount of risk is also present as the forecasted value deviates from the observed
value.For majority of years higher number of good forecasts were observed eoimpadne

poor forecasts. In addition, most of the stations showed higher LEPS SK for 1-namiimke

implying greater confidence in forecasting with smaller .

SVM Analysis

SVM analysis was used to predict streamflow volumes using input variables fieem thr
leadtime cases for all the six stations for ayg@r periodThe predicted streamflow is then
comparedwith/observed streamflow, and the performance of the SVM model ibedguri
coming sections.

1-month lead-time. Figure 7ashows timeseries graphs showing the voluofe
simulated'and observed streamflow tioe 2month leadime scenarioTable 3 presents the
values of various model performance parameters obtained for differenineadases. The
dotted linewepresents observed streamflow values, and the solid line represkciisdore
streamflow values. It can be seen that the observed and predicted streamflow volume are fitted
well, but some small discrepancies are also present. In additeopredicted and measured
streamflow have similarolumes Simulated streamflow is found to be in almost perfect
correlation with the measured streamflow for the year 2000 for all thenst&&imilarly, Figure
7b shows thesscatter plots for the 1-mde#ttime scenario. The points lying above the bisector
line indicate,the prediction is overestimated, while those lying below the line indicate the
predictions are underestimated, and points along the line represent perfediopsediatan be
seen thlimost points lie along the 48iagonal showing perfect correlation. This indicates that
the forecasted and observed streamflow are in good correlation with each other. Better
performance at'low flows compared to high flows is apparent on the plots. It canrbeditiiet
model applicability is best achieved during low flow events, which may indicdtththenodel

is well suited for drought conditions.

The scatter plot also illustrates the PBIAS value and correlation coeffitientlear
from theFigure 7b that each of the stations has a PBIAS value less than 10%. For the 1-month

leadtime period PBIAS valuehasan average value of 2.1dr all streamflow stations. The
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average correlation coefficient for observed and simulated streamflow fetatiens wa$®.89.
The higher correlation coefficient further strengthens the forecasting capabihiy ViV
model. It implies that the model performs well with less error variatoe effectiveness of
SVM model is also evaluated through interpretation of the NSE Viilgiere 7b shows the NSE
values for all.the six stations ftre Xmonth leadtime caseThe average NSE value for all the
stations was 0.79. These higher values of NSE statistics indicate thatNhpr&dicted
streamflow'was satisfactpr

The'box'plot of observed and simulated streamflow volume of the model for the
Decembeir-ebruaryperiod is illustrated irFigure7c. The horizontal line is the median
streamflowswhile the interquartile range in between 25th percentile and 75th pelisent
indicated bythe box height. The whiskers in the plot represent extreme 5th and 95thlpgrcenti
The median value for both obsedvand simulated streamflow values are similar at all sites.
Although the interquartile range of estimated streamflow is slightly smaller than observed value,
the fifth percentile of both datasets has a closer méitch clear from thdiguresthatthe
interquartilegrange of measured streamflow is wider as compared to that of predicted streamflow
This illustratessthe uncertainty farecasting ability for high flow range. Furthermore, the model
underestimated the high flow, as most of the predicted high flows are smalldnalaserved
high flow.

Figure7d shows the non-exceedance probability plotHfer:month leadime scenario
The yaxis represents the percentage of cumulative estimation error andxigix the
percentageofpredicted datargde which is less than or equal to the value on thgrix- The
dotted line‘insthe plot represents the cumulative modeling error value of 10%. Based o the pl
it is clear that at 60% estimate of streamflow, the probabilistic absolute error is arodiod 2%
almost all sitesAs per the nomxceedance probability platite 3 gives bestesult,as the
absolute error.is just 10% at 80% estimate while other sites have more than diOfidr &0%
sample estimateBased on the plot, it is clear that smallezdiction error is achieved at higher
estimation percentage, which in turns implies the greater confidence in redicstreamflow
for the water manager$he plot also tells the average skill score to evaluate the performance of
the model forecast using LEPS approach. All the stations have LEPS SK more tharm60%
averagd EPS SK scorealue wasr2.2% for the streamflow stations. These higher value of

LEPS SK score further support good forecasting capability of the model.
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4-month lead-time. Figure8a andFigure8b showthe timeseries ploand scatter plabf
simulated and observed streamflow values for September to November periodivegpect
Similar to Emonth leadime the time series plot for this period show similar trends. Scatter plots
for this period are also similar to those shown at the 1-month lead-time period. Most of the point
lie over the.bisector line while high flow points are below the line implying high vigiwes are
underestimated by the modki.the SeptembeXovember case, averaG8IAS valuewas2.29
at all stationsCompared to the 1-month leatinde, the PBIAS value has slightly increased at
the 4monthleackime. The correlation coefficient for the statsddrasan average value of 0.89.
The average value of correlationefficient for tmonth leadime is equal to that of-shonth
leadtime. JFour stations have NSE values higher than 0.8. The average NSE value was 0.78,
which is slightly lower than the-ehonth lead-time NSE average. In this period, high flows were
also umerestimated by the model asrsé&®m the box plot oFigure8c. The interquartile range
of forecasted streamflow for station 6 was the smallest among the stations while the ranges were
comparable to one another for rest of the stations. Thexceedance probability plot fdris
period is shewn ifrigure8d. The averagéEPS SK scorevas74% that is slightly higher than
the Emonth leadime case.

13-month lead-time. Figure & shows thdime-series plobf simulated and observed
streamflowvalues forthe 13-month leatime case. This graph also tells the higher prediction
skill of the model. Despite the longest leade scenario, the 13-month letiche scenario
shows satisfactorfprecasting resultgzigure9bis the scatter plot for thisgpiod. Theaverage
PBAIS value for this periodvas2.87. When PBIAS values are compared, the 1-month lead
yields the best results followed by 4- and 13-month teads respectivelyEven though the
smallest leadime forecast demonstrates the best fotaogsbility, the 13month leadime
forecasting-ability of the model is still comparatively satisfactdhe correlation coefficient
also follows the same trend. The average R-value in this period was 0.87, sligiikty man 1-
and 4-month leatime scenariosWhen the model capability was measured based on NSE value,
the 13-month leatime case gave the smallest average value at 0.74, a NSE value that is
considered satisfactorit.was observed that the NSE value improves as thetileadperiod
deceases, further supporting anticipated better forecasting ability for the lowesintead

scenario.
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Figure9c shows the box plot at the 13-month |lg¢ade depicting the comparison of
modeled and observed streamflow for six streamflow stations. The boxplot fpetiud
showed similar results from previous lead-time periods becausal foree scenarios, the
interquartilerange of measured streamflowbigiger as compared to that of predicted
streamflow.Fhis signifies that all the three scenariosucagtboth high and low flows, but
underestimated high flow, as most of the predicted high flows are smaller trebsdreed. It
can be inferredfrom the box plot that the model is efficient at predicting the low flow of
URGRBas compared to high floandmaybe effective for water management during drought
seasongrigure9d shows the noaxceedance probability plot for the-rf®nth leadime case.
Theaveragd ERS SK score value was 69.8%. The average values for thirieadcenario
were the lowest among the three Kimdle scenariosThe anticipated higher LEPS SK score for
smallest leadime is not seehere because themonth leadime case has highest average value
followed by 1-month leadime caseThe LEPS SK score at all the three lead times indicates the
satisfactory forecasting capability of the model.

ThesSVIM model incorporates important oceaaiicrospheric climate variables for
improving prediction oURGRB streamflow. The SVM model evaluation by different graphical
and statistical analysiresulted in satisfactory results. Scatter plots clearly indicate improved
forecast ability. The higher R and NSE values derived between measured artegredic
streamflow with consistently smaller PBIAS values further support model forecasting capability.
NSE, PBIAS, and R values all indicate that the best forecasting could be ddoiethe
smallest leadime while LEPS SK value showed better forecasting ability at-tinedth lead-
time followed:by month leadime. Box plots, scatter plot, and tirseies plots also suggest
the adequate predictability of the model. These plots indicate SVM analysis was able to perform
well in capturing low flowand intermediate flow asompared to high flonOverall, the SVM
model performance for high flows is not much impressive as compared to the l@w flow
However, low flow is more critical in comparison to high flow considering therwate
managementprospect because water resources scarcity is not a seriemns guoiolg high flow
period (Sharma et al., 2015). One of the reasons for underperformance of SVM model in
predicting some streamflow value, extreme value in general, is may be due to the presence of
outliers and erroneous data in the training phase. It is found that the associatoniraf ttata

and output data is instrumental in the model performance and longer period of data may show

This article is protected by copyright. All rights reserved



higher generalization ability (Ahmad et al., 2010). Another reason of underperfermia®YM
model could be due to the input variables used in the model that might noteguaizly
represented the physical system governing the generation of streamfloiblePossre research
may further investigate in improving forecasting of high flow by exploring uyidg hydro-

climatic processes.

CONCLUSION

Theprimary goal of thetudy was to develop a modeling framework for improving
streamflow leadime in the URGRB using larggcale climate information of the Pacific and
Atlantic Oceans. Spatiémporal relationship of streamflow with each climate variable
represented by SSTgeb, Usgo, and SHoo was analyzed by SVD approach for three laace
cases. SVD temporal expansion series for each variable was weighted and screened by a non
parametric approach. These screened variables were used as input in SVM model to predict
streamfow. at sixunimpairedstreamflow stations within the URGRBverallthe proposed
research framework of combining several statistical approaches coupled with climate
informationsto,improve streamflow forecast lead time provides useful insighagional
hydrology.

The first research question was answered by the SVD analysis as it showed the
association of URGRB streamflow with oceaimospheric variables of the Pacific and the
Atlantic OcearSVD analysis resulted in new significant Skland Wooregionsin the Pacific
and Atlantic:Oceans addition to SST andséyregions. Th&VD analysispresented an
extensive ideasabout all the possible associations between streamflow of the basin and ocean
atmospherivariability. Predictor screening analysis showldt Pacific SST and Pacificskd
are the two most dominant predictors for streamflow forecasting in the URGR®) were the
answer for the second research quesiitie. teleconnection of streamflow with climate
variables was sufficiently captured the SVD study. The inclusion &Hsoo and W climate
variables led.to"identify associated significant regions for URGRB and shauetiye
competentipotential for explaining streamflow variability of the basin. Thegbles have
received little attemdn in previous research efforts. Moreover, the higher correlation of

streamflow with Wog and SHooshows that several other climate variables can be considered
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together and studied extensively to fully understand the streamflow variabiitigasin leding
to better water resource management.

The study has shown that SVM model can be a useful method in streamflow forecasting
by coupling an extensive range of climate variability with different-teads. SVM model
showed satisfactory forecast results for all the threetieslcases. The best streamflow
forecasting.was achieved at thenbnth leadtime followed by 4month leadime scenario. The
capability to"improve long leatime prediction can be helpful in efficient decision making
process andvarious water management issues when the context of climate change are considered
in the basin where snowmelt is the primary source of water. The model showedtingeca
ability overthesentire flow range, whereas forecasts at the low flow range were exdékent
third researchquestion regarding the performance of proposed modeling framasalso
answered as the SVM model satisfactopitgdicted streamflow as supported by various
performance parameteiBhe Rio Grande River heavily supports domestic use, agriculture, and
industry. This river is highly utilized for water supply, and downstream suppliesgaiécantly
decreasing-over the yeailhe basin has experienced low flows since 2000, and frequent
droughts havesbeen reported over the years. dih@all pattern and water demand also differ
considerably as more precipitation is observed in summer while the peak demandnoccurs i
spring. The-ability to capture low flows efficiently aids in water management during drought
seasons and below averageiqas. Better forecasting of low flow events several months ahead
may aid in'the better allocation of water to competing users during dry periods.

Thesstudy doesn’t assume stationary climate system and makes the assumption that
stationarityrissnot valid. Relying on the appraisal of past climate by inferring from extreme
events or/changes in mean is not beneficial as the climate is constantly chanhgiigy
moment, based.on the results we obtained, conclusions can be drawn about the magnitude of
change irstreamflow in the futuraVhile viewing theseesults, it must be looked at wighrange
of uncertainties as it is a statistical analysis., Bwgse uncertainties need to be looked at while
making infrastructural investments as these decisions are irreversible. The streamflow
predictions‘that the present study has made in terms of volume should be utilized hgthe wa
managers by making decis®so that these infrastructures can effectively respond to conditions
that are changing and completely unknoetecting changes in past and future is not sufficient

to make policy decisions and is the subject that needs more research on. Futureayork, m
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explore extended leatme scenarios. Additionally, the application of paleo data may provide

promising results as data-driven models show higher efficiency for wide ramgribdata.

ACKNOWLEDGMENTS
Theauthors would like to thartkreeanonymous raewers for providing valuable comments
that helpedin improving the overall quality of the manuscfTipe authorsre grateful to the Office of
the Vice Chancellor:for Research at Southern Illinois University Carlefatgproviding support for the

current research.

LITERATURE CITED
Ahmad, S., A¥Kalra, and H. Stephen, 2010. Estimating soil moisture using remote seieiny

machine learning approachdvances in Water Resources 33(1): 69-80.

Astuti, W.,'R7"Akmeliawati, W. Sediono, and M.J.E.Salami, 2014. Hybrid technique ursiyules value
decompesition (SVD) and support vector machine (SVM) approach for earthprediction] EEE
Journal’ of Selected Topicsin Applied Earth Observations and Remote Sensing, 7(5), 1719-1728.

Babovic, V., M. Keijzer, and M. Bundzel, 2000. From global to local modelling: a azdbgisterror

correction of deterministic models. Rroceedings of Hydroinformatics 2Q0%ol. 4, No. 5.

Bhandari;sS., A. Kalra, K. Tamaddun, and S. Ahmad, 2018. Relationship between/@oesapheric
Climate Variables and Regional Streamflow of the Conterminous United $tgwslogy, 52), 1-
24.

Booker, J.F., A.M. Michelsen, and F.A. Ward, 2005. Economic impact of alternative psjmynses to
prolongedsand severe drought in the Rio GeaBdsinWater Resources Research 41(2).

Bretherton, €:S7, C. Smith, and J.M. Wallace, 1992. An intercomparison of methaddslifoy €oupled
patterns in climate datdournal of Climate 5(6): 541-560.

Cimen, M.pand Q. Kisi, 2009. Comparison of two diéfiet datadriven techniques in modeling lake level
fluctuatioenssin TurkeyJournal of hydrology, 3783), 253262.

Christensen,"N'S., A.W. Wood, N. Voisin, D.P. Lettenmaier, and R.N. Palmer, 2004. The affect
climatechange on the hydrology and wateoueses of the Colorado River bas@iimatic change
62(1-3): 337-363.

Dettinger, M.D., D.R. Cayan, H.F. Diaz, and D.M. Meko, 1998. North-south precipitation pattern

western North America on interannuetdecadal timescaledournal of Climate 11(12): 3095-3111.

Dibike, Y. B., 2000. Machine learning paradigms for rainfall-runoff modellihgir oinformatics 2000.

This article is protected by copyright. All rights reserved



Dibike, Y. B., S. Velickov, D. Solomatine, and M. B. Abbott, 2001. Model induction with suppeidrve
machines: introduction and dfmations.Journal of Computing in Civil Engineering, 153), 208216.

Du, K., Y. Zhao, and J. Lei, 2017. The incorrect usage of singular spectral analysiscrete wavelet

transform in hybrid models to predict hydrological time sedestnal of Hydrology, 552 44-51.

Grantz, K.,.B7"Rajagopalan, M. Clark, and E. Zagona, 2005. A technique for incorpaaegmschle

climate.information in basiscale ensemble streamflow foreca®tater Resources Research 41(10).

Gupta, H.\V4, S. Sorooshian, and P.O. Yapo, 1999. Status of automatic calibration for lyanoldejs:
Comparison with multilevel expert calibratialournal of Hydrologic Engineering 4(2): 135-143.

Kahya, E., andvA. Dracup, 1993. US streamflow patterns in relation to the El Nifio/Southern
Oscillation.Water Resources Research, 298), 24912503.

Kalra, A., leslsipX1 Li, X., and S. Ahmad, 2012. Improving streamflow forecast leadusimg oceanic-
atmospherie‘oscillations for Kaidu River Basin, Xinjiang, Chiloarnal of Hydrologic
Engineering, 18(8), 1031-1040.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, L., ... and Y. Zhu, 1996. The
NCEP/NCAR 40year reanalysis projedsulletin of the American meteorological Society, 77(3),
437-472.

Khedun, C. P.AXK. Mishra, J.D. Bolten, H.K. Beaudoing, R.Kaiser,J.R. Giardinoand V.P.Singh,
2012.'Understanding changes in water availability in the Rio Grande/Rio BiaNortkebasin under
the influence of largscale circulation indies using the Noah land surface modelirnal of

Geophysical Research: Atmospheres, 117(D5).

Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Doll, B. Jimenez, K. Miller, and |. Shildnov, 2008.
The implieations of projected climate change for freshwateuress and their management.
Hydrological Sciences Journal 53:1, 2-10

Lins, H.F., 2012. USGS hydmdimatic data network 2009 (HCDRO09) (No. 2012-3047). US

Geological Survey.

Liong, S.Y., and"C. Sivapragasam, 2002. Flood stage forecasting with sugortwachinesJournal
of the /American Water Resources Association (JAWRA) 38(1): 173186.

Marques, C. A. F., J. A. Ferreira, A. Rocha, J. M. Castanheira, P.G&gloalves, N. Vazand J. M.
Dias, 2006. Singular spectrum analysis and forecasting of logilcal time serie?hysics and
Chemistry of the Earth, Parts A/B/C 31(18), 11721179.

This article is protected by copyright. All rights reserved



McCabe, G.J., M.A. Palecki, and J.L. Betancourt, 2004. Pacific and Atlantic Odkeemces on
multidecadal drought frequency in the United States. ProceedingsiNétiomal Academy of
Sciences 101(12): 4136141.

Michelsen, A.M., and K. Wood, 2003. Water demand in the Paso del Notre region. Rspatqut at
Weather and Water on the Border: A Forum on Drought, Paso del Notre WatemnfeskE Paso,

Tex.

Middelkoop, H.; K. Daamen, D. Gellens, W. Grabs, J.C. Kwadijk, H. Lang, and K. Wilke, R@pact
of climate*ehange on hydrological regimes and water resources management in the Rhine basin.
Climati¢ change 49(1-2): 105-128.

Moriasi, D.N.,4°G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, and T.L. Veith, 28@del
evaluation guidelines for systematic quantification of accuracy in watershed simulations.
Transactions of the ASABE 50(3): 885-900.

Mukherjee, S«:E: Osuna, and F. Girosi, 1997. Nonlinear predlictiohaotic time series using support
vector machines. INeural Networks for Sgnal Processing [1997] VII. Proceedings of the 1997
| EEE Werkshop (pp. 511-520).

Munot, A.A., and K.K. Kumar, 2007. Long range prediction of Indian summer monsoon raiodiatial
of earth'system science, 116(1), 7379.

Nash, J/E.;-and.J.V. Sutcliffe, 1970. River flow forecasting through conceptudkrpade—A
discussion of principleslournal of hydrology 10(3): 282-290.

Nijssen, BJ"G'MO'Donnell, A.F. Hamlet, and D.P. Lettenmaier, 2001. Hydrologiciginsit global
rivers t0 climate chang€limatic change 50(1-2): 143-175.

Nourani, V,M<Komasi, and A. Mano, 2009. A multivariate AMMdvelet approach for rainfalunoff

modeling.Water resources management, 23(14), 2877-2894.

PahtWostl; C., 2007. Transitions towards adaptive management of water fimiatecand global

changeWateriresources management 21(1): 49-62.

PascoliniCampbell, M.R. SeagerA. Pinson, and B.I. Cook, 2017. Covariability of climate and
streamflow in the Upper Rio Grande from interannual to interdecadal timeslcaie®l of
Hydrology: Regional Studies, 13, 5871.

Pathak, P., A. Kalra, S. Ahmad, and M. Bernardez, 2016. Waaidled-analysis tostimate seasonal
variability and dominant periodicities in temperature, precipitation, and streamflow in the dttduave
United StatesWater resources management, 30(13), 46494665.

This article is protected by copyright. All rights reserved



Pathak, P., A. Kalra, K.W. Lamb, W.P. Miller, S. Ahmad, R. Amerineni,[aiRd Ponugoti, 2018.
Climatic variability of the Pacific and Atlantic Oceans and western US snowjpi@iational
Journal of Climatology, 38(3), 1257-1269.

Pai, P. F. and C.S. Lin, 2005. A hybrid ARIMA and support vector machines model in sta&ck pric
forecastingOmega, 336), 497505.

Piechota, TaCwFE:H. Chiew, J.A. Dracup, and T.A. McMahon, 1998. Seasonal streaméicastiog in
eastern Australia and the El Niffdouthern Oscillation\Vater Resources Research, 34(11), 3035-
3044.

Piechota, T.C., F.H. Chiew, J.A. Dracup, and T.A. McMahon, 2001. Development of exceedance
probabilitysstreamflow forecaslournal of Hydrologic Engineering 6(1): 20-28.

Potts, J.M., C.K. Folland, I.T. Jolliffe, and D. Sexton, 1996. Revised “LEPS” soorassessing climate

model simulations and loAgnge forecastdournal of Climate 9(1): 34-53.

Rajagopalan, B., E. Cook, U. Lall, and B.K. Ray, 2000. Spatiotemporal variability®OEnd SST
teleconnections to summer drought over the United States during thesttveetituryJournal of
Climate 13(24): 4244-4255.

Redmond, K.T.,.and R.W. Koch, 1BSSurface climate and streamflow variability in the western United
States and‘their relationship to laigmale circulation indice§Vater Resources Research 27(9): 2381
2399

Rice, J.L., C.A. Woodhouse, and J.J. Lukas, 2009. Science and Decision MeiitegManagement and
TreeRing Data in the Western United StatedAWRA Journal of the American Water Resources
Association, 45(5), 1248-1259.

Sagarika, Ss-A=Kalra, and S. Ahmad, 2015. Interconnections between oatmaipheric indices and
variability.in.the US streamflowdournal of Hydrology 525: 724-736.

Scholkopf,’B., K. K. Sung, C. J. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik, 1997.
Comparing support vector machines with Gaussian kernels to radial basis function cla¢dfiers.
transactions on Sgnal Processing, 45(11), 2758-2765.

Sharma, Sy, P. Srivastava, X. Fang, X., and L. Kalin, 2015. Long-range hydrologic fogeceEl Nifio
Southern Oscillatiomffected coastal watersheds: Comparison of climate model and weather

generator approachournal of Hydrologic Engineering, 20(12), 06015006.

This article is protected by copyright. All rights reserved



Silverman, B.W., 1998. Density Estimation for Statistics and Data AnaGts@man and Hall, New
York: Routledge.

Slack, J.R., and J.M. Landwehr, 1992. Hydlimatic data network (HCDN); a 8. Geological Survey
streamflow data set for the United States for the study of climate variations19834U.S.

Geological Survey, Opehile Report 92-129.

Soukup, T.LyOfAAZiZ, G.A. Tootle, T.C. Piechota, and S.S. Wulff, 2009. Longileadstrearflow
fore€asting of the North Platte River incorporating oceatiaespheric climate variabilityournal
of Hydrolegy'368(1): 131-142.

Stewart, I.T., D.R. Cayan, and M.D. Dettinger, 2004. Changes in snowmelt runoff timiegtermw
North Ameriea under alsiness as usual‘climate change scen@limatic Change 62(1-3): 217-232.

Tamaddun, K.A., A. Kalra, M. Bernardez, and S. Ahmad, 2017. Nahlile Correlation between the
Western US Snow Water Equivalent and ENSO/PDO Using Wavelet Analysies.Resources
Management,31(9): 2745-2759.

Thakali, R5"ArKalra, and S. Ahmad, 2016. Understanding the Effects of Climate Gitabjgban
Stormwater Infrastructures in the Las Vegas Valtéydrology, 3(4), 34.

Tootle, G.A.,.and T.C. Piechota, 2006. Relationshipadet Pacific and Atlantic Ocean sea surface

temperatures, and US streamflow variabilityater Resources Research 42(7).

U.S. Department of Interior, 2003. Water 2025: Preventing crises and conflict. BReclaim.,
Washington, D. C.

Vapnik, V., 1995. Theature of statistical learning theoSpringer, New York.
Vapnik, V.,72998. Statistical learning theodghn Wiley, New York.

Wallace, JIM., and D.S. Gutzler, 1981. Teleconnections in the geopotergtatl firdd during the
Northern Hemisphere wintevlonthly Weather Review 109(4): 784-812.

Wallace, JIM7*Cs Smith, and C.S. Bretherton, 1992. Singular value decompositiomesfimne sea
surfacestemperature and 50 height anomaliedournal of climate 5(6): 561576.

Ward, M:N., and C.K. Folland, 1991. Prediction of seasonal rainfall in the nothsterof Brazil using

eigenvectorsiof sesurface temperaturbnternational Journal of Climatology 11(7): 711-743.

Willey, Z and T. Graff, 1984. Water is a commodity, so let’s treat it alayeAngeles Times (February
5): PartIV, 5

This article is protected by copyright. All rights reserved



Woodruff, S. D., R.J. Slutz, R.L. Jenne, and P.M. Steurer, 1987. A comprehensivaimesphere data
set.Bulletin of the American meteorological society, 68(10), 1239-1250.

Zealand, C.M., D.H. Burn, and S.P. Simonovic,4.9hortterm streamflow forecasting using artificial
neural networksJournal of hydrology 214(1): 32-48.

Table 1. SVD results for different leaime cases

TABLES

Leadtime SST Z500 SH500 U5oo
Climate
o SCF NSC SCF NSC SCF NSC SCF NSC
variability
Months (%) (%) (%) (%) (%) (%) (%) (%)
1 97.3 6.9 96.4 4.0 96.3 4.6 95.3 4.6
Pacific Ocean 4 97.4 5.1 91.4 2.5 95.6 4.3 95.4 3.9
13 92.4 2.2 89.1 1.6 88.6 2.1 90.5 2.4
96.9 45 96.0 25 92.5 3.7 90.5 3.0
Atlantic Ocean 4 96.2 4.4 95.4 3.1 95.1 3.8 94.5 34
13 94.6 1.9 92.0 1.5 87.1 2.2 89.5 1.7

Table 2. Bestsstreamflow predictor variables for different keade scenarios

Best streamflow predictors

Station 1-month leadime 4-month leadime 13-month leadime
Atlantic SST Pacific Usgg Pacific SST
! Atlantic SH;oo Atlantic Usgg Atlantic Usgg
Pacific SST Pacific SST Pacific SST
2 Atlantic Zsg Pacific Usgg Pacific Usgg
Atlantic SST Pacific SST Atlantic SST
3 Atlantic Usgg Pacific Usgg Pacific Usgg
Atlantic SHsq Pacific Zsqo Pacific SHo
4 Atlantic Usgg Pacific Usgg Pacific Usgg
. Atlantic SHsoo Pacific Zsoo Pacific SHo
Atlantic Usgg Pacific Usgg Pacific Usgg
Pacific SHo Pacific SST Pacific SST
° Atlantic SH;po Pacific Usgg Pacific SHo
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Table 3. SVM modelperformance for different stations for different ldades

Lead

Streamflow  time Model performance parameter
Station ~ Months r PBIAS (%) NSE LEPS SK (%)

1 0.87 0.79 0.72 64.1

1 4 0.95 -0.53 0.87 78.3

13 0.85 3.84 0.71 69.8

0.83 2.02 0.67 63.1

2 4 0.93 2.32 0.83 75.0

13 0.85 4.72 0.69 68.4

0.91 1.8 0.81 78.9

3 4 0.93 3.07 0.86 79.6

13 0.81 1.26 0.63 61.8

0.94 -1.48 0.87 75.9

4 4 0.87 2.05 0.73 68.7

13 0.86 2.98 0.72 67.9

0.92 -2.72 0.84 75.8

5 4 0.91 0.84 0.80 76.0

13 0.94 -0.36 0.86 73.6

0.90 3.87 0.79 75.6

6 4 0.80 5.54 0.60 67.3

13 0.92 4.11 0.84 77.4
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Figure 1. Map.showing six unimpaired streamflow stations in the Upper Rio Grande Risier Ba

Figure 2. The SVDSVM model flowchart showing the steps involved in predicting streamflow
with the oceaniatmospheric variables.

Figure 3zA"flowchart showing the predictor screening process

Figure 4. Heterogeneous correlation map for Pacific Ocean-fapath leadime (b) 4month
leadtime (c) 13month leadime SST, Zoo, SHs00, andUsg With April-August

streamflow.
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Figure 5. Heterogeneous correlation map for Atlantic Ocean {@phth leadkime (b 4-month
leadtime (c) 13month leadime SST, Zoo, SHs00, andUsg With April-August

streamflow.

Figure 6.Map.showing examples of the poor, fair, and good continuous exceedance probability

forecast for (a) dmonth leadime (b) 4month leadime (c) 13month leadime

Figure 7 (a)-Lime series plot where dotted line represents measured streamflow and solid line
represents the predicted streamflow (b) Scatter plot (c) Box plot (dekmeedance
probability plot for 1month leaetime depicting the comparison between measured

andforecasted streamflow for six streamflow stations.

Figure 8. (a) Time series plot where dotted line represents measured streamflow and solid line
represents the predicted streamflow (b) Scatter plot (c) Box plot (dekmeedance
probability plot for 4month leadtime depicting the comparison between measured

and.forecasted streamflow for six streamflow stations.

Figure9. (a) Time series plot where dotted line represents measured streamflow and solid line
represents the predicted streamflow (b) Scattar(p) Box plot (d) Norexceedance
probability plot for 13-month leatime depicting the comparison between measured

andforecasted streamflow for six streamflow stations
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