
This is the author manuscript accepted for publication and has undergone full peer review but has 

not been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the Version of Record. Please cite this article as doi: 

10.1111/1752-1688.12733-18-0057 

This article is protected by copyright. All rights reserved 

 

 

 

Article type      : Technical Paper 

 

 

Streamflow Forecasting Using Singular Value Decomposition and Support Vector 

Machine for the Upper Rio Grande River Basin 

 

Swastik Bhandari, Balbhadra Thakur, Ajay Kalra, William P. Miller, Venkat Lakshmi, and Pratik 

Pathak 

 

Department of Civil and Environmental Engineering (Bhandari, Thakur, Kalra), Southern Illinois 

University Carbondale, Carbondale, Illinois, USA; Weather Forecast (Miller), NOAA Colorado Basin 

River Forecast Center, Salt Lake City, Utah, USA; Department of Engineering Systems and Environment 

(Lakshmi), University of Virginia, Charlottesville, Virginia, USA; and Water Resources (Pathak), FTN 

Associates, Ltd., Little Rock, Arkansas, USA (Correspondence to Kalra: kalraa@siu.edu). 

 

Research Impact Statement: Long-term streamflow forecasting utilizing climate information is 

useful for resource planning and management in water stressed regions. 

 

ABSTRACT: The current study improves streamflow forecast lead-time by coupling climate 

information in a data driven modeling framework. The spatial-temporal correlation between 

streamflow and oceanic-atmospheric variability represented by sea surface temperature (SST), 

500-mbar geopotential height (Z500), 500-mbar specific humidity (SH500), and 500-mbar east-

west wind (U500) of the Pacific and the Atlantic Ocean is obtained through singular value 

decomposition (SVD). SVD significant regions are weighted using a non-parametric method and 
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utili zed as input in a support vector machine (SVM) framework. The Upper Rio Grande River 

Basin (URGRB) is selected to test the applicability of the proposed model for the period of 1965-

2014. The April-August streamflow volume is forecasted using previous year climate variability, 

creating a lagged relationship of 1-13 months. SVD results showed the streamflow variability 

was better explained by SST and U500 as compared to Z500 and SH500

 

. The SVM model showed 

satisfactory forecasting ability with best results achieved using a 1-month lead to forecast the 

following 4-month period. Overall, the SVM results showed excellent predictive ability with 

average correlation coefficient of 0.89 and Nash-Sutcliffe efficiency of 0.79. This study 

contributes towards identifying new SVD significant regions and improving streamflow forecast 

lead-time of the URGRB. 

(KEYWORDS: Oceanic-atmospheric variability; streamflow; forecast; singular value 

decomposition; support vector machine.) 

INTRODUCTION 

Water has become a major natural commodity in the Western United States, where 

limited water availability has been exacerbated by past frequent droughts (Willey and Graff, 

1984; Rice et al., 2009). Extreme hydrologic events such as floods and droughts are associated 

with hydro-climatic variability; improved knowledge of that variability in response to climatic 

fluctuations is crucial to mitigating social and economic impacts (Redmond and Koch, 1991). 

Several studies (e.g., Christensen et al., 2004; Stewart et al., 2004; Nijssen et al., 2001) have 

shown that climate change can result in increased uncertainty of water availability ranging from 

the watershed to global scale. In 2016, the United States Army Corps of Engineers issued 

Engineering and Construction Bulletin No. 2016-25 (ECB 2016-25) incorporated that climate 

change should be considered for all federally funded projects in planning stages. ECB 2016-25 

provisioned qualitative analysis of historical climate trends, as well as assessment of future 

projections. As the impacts of climate change to the hydrologic characteristics of a basin are 

realized, streamflow forecasting can become difficult for hydrologists and climatologists as past 

hydrologic conditions are no longer representative of future conditions (Thakali et al., 2016; 

Pathak et al., 2016; Tamaddun et al., 2017). It is important to understand the relationship 

between climate variability and the hydrologic response of a basin such that sustainable and 
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efficient management of water related systems can be implemented (Middelkoop et al., 2001; 

Pahl-Wostl, 2007; Kundzewicz et al., 2009). 

The dominant drivers of climatic variability affecting the hydrologic cycle all over the 

world and primarily in the U.S. include the El Niño Southern Oscillation (ENSO), Pacific 

Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation (AMO), North Atlantic 

Oscillation, Artic Oscillation, and Pacific-North America Pattern. Throughout the U. S., these 

teleconnection patterns are significant predictors of hydrologic response (Dettinger et al., 1998; 

McCabe et al., 2004). Sea surface temperature (SST), atmospheric pressure, humidity, and wind 

are the major ocean-atmospheric variables that have wide influence in explaining the hydrologic 

variability of a region (Woodruff et al., 1987). SST variability has been utilized to find 

teleconnections between streamflow, precipitation, and snowpack. Traditional predefined indices 

have shown consistent results in specific areas such as El Niño phase influences on the 

southwest, southeast, and northwest U.S. regions (Kahya and Dracup, 1993). Although the 

identification of predefined SST regions in the Pacific and Atlantic aid in forecasting streamflow 

in a certain basin, it may not influence hydrology over all basins (Tootle and Piechota, 2006). 

Consideration of the entire Pacific and Atlantic Ocean SST avoids regional biases and may lead 

to improved streamflow estimates (Tootle and Piechota 2006). Studies have associated 500-mbar 

geopotential height (Z500) anomalies with climate change (Wallace and Gutzler, 1981). Z500 is 

the elevation above mean sea level at which atmospheric pressure is 500-mbar. Z500 has been 

used as a significant predictor in climate forecasting models and has performed well (Grantz et 

al., 2005; Soukup et al., 2009; Sagarika et al., 2015). Precipitation is related to ocean evaporation 

and the movement of clouds; these components of the hydrological cycle are primarily impacted 

by humidity, wind speed, and air temperature. In order to fully address these components, two 

additional climate data included in this analysis are: zonal wind stress (U500) (i.e., east-west wind 

force per unit area parallel to the surface of water bodies corresponding to 500-mbar atmospheric 

pressure) and specific humidity (SH500 ), corresponding to 500-mbar pressure of both the Pacific 

and Atlantic Ocean. Munot and Kumar (2007) have utilized the zonal wind at different pressure 

level including 500 mbar pressure level to predict long range Indian summer monsoon rainfall 

and found the zonal wind was as important predictor as the temperature in forecasting the 

rainfall. Pathak et al. (2018) have used the oceanic east-west zonal wind at 500 mbar pressure to 

find the association between western U.S. snowpack and zonal wind and the study showed 
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significant relationship between wind speed and snow water equivalent of the considered region. 

Similarly, Bhandari et al. (2018) have used both zonal wind and specific humidity to evaluate the 

correlation between these ocean-atmospheric variables with the regional streamflow of the 

continental United States and found that both wind speed and specific humidity are strongly 

correlated with the streamflow variability of the United States. 

Principal component analysis, singular value decomposition (SVD), canonical correlation 

analysis, and combined principal correlation analysis are some of the techniques commonly used 

to find interrelationship between two spatial and temporal fields (Wallace et al., 1992). 

Bretherton et al. (1992) applied afore-mentioned statistical methods to find the coupled 

relationship between two spatial-temporal variables and opted for SVD for its simplicity and 

robustness. Wallace et al. (1992) also concluded that SVD extracts the most significant modes of 

variability in comparison to other tools. Several studies (Wallace et al., 1992; Tootle and 

Piechota, 2006; Soukop et al., 2009) have been conducted to find the linkage and forecasting 

ability between large scale climate data and streamflow, snowpack or precipitation using SVD 

technique. Popular predefined indices such as ENSO, PDO, and AMO are conventionally used as 

predictors of streamflow while these predefined indices are the source of spatial biases. 

Utilization of SVD subsides the use of these predefined indices by obtaining unique spatial-

temporal correlation pertinent to the considered study area. In order to improve the forecasting 

ability of a model, several data preprocessing techniques are available. In conjunction with data-

driven modeling, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are 

most common preprocessing tools and these are efficient in eliminating discontinuity of data and 

reducing forecasting errors (Marques et al., 2006; Nourani et al., 2009). However, recent 

research by Du et al. (2017) presented the incorrect usage of SSA and DWT in developing 

hybrid models and showed that those models may cause significant forecasting errors.  

Various conventional forecasting models such as conceptual and time series models have 

been employed for streamflow prediction. Multiple Linear Regression, Auto Regressive 

Integrated Moving Average are some of the conventional model extensively used for prediction 

of hydrological time series. However, these models do not represent the non-linear processes 

involved in precipitation-streamflow transformation (Zealand et al., 1999). These time series 

models utilize the concept of data stationarity and hence provide little applicability when dealing 

with non-stationary data. Artific ial Neural Network (ANN) has emerged as a dynamic, self-
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learning model capable of utilizing noisy, non-linear data in predicting hydrological time series 

without knowing the physical relationship between input and output data (Nourani et al., 2009). 

ANNs have been applied and performed well in non-linear processes involved in multivariable 

conditions. Recently, support vector machines (SVM) have received growing attention as a novel 

regression technique (Mukharjee et al., 1997; Pai and Lin, 2005). SVM uses a statistical machine 

learning approach in which available data are trained to predict series of data (Liong and 

Sivapragasam, 2002). It can minimize prediction error and reduce model complexity (Vapnik, 

1995, 1998). SVMs evolve incorporating the noise and non-linearity in the training data without 

assuming the stationarity proving it ideal while analyzing hydrologic parameters affected by 

climate change. SVM uses the principal of structural risk minimization unlike the empirical risk 

minimization principle used by ANNs. SVMs have been extensively applied in various 

hydrological forecasting problems and have outperformed ANNs approach (Dibike, 2000; 

Babovic et al., 2000; Cimen and Kisi, 2009). SVM has shown superior generalization ability and 

it is successful in reducing the overfitting problem compared to ANN (Cimen and Kisi, 2009). 

Astuti et al. (2014) used SVD for preprocessing and feature extraction and the extracted data 

were used to forecast location, time, and magnitude of earthquakes using SVM approach and 

concluded that the proposed methods were relatively better than the other hybrid forecasting 

models. 

Several of the previous data driven modeling studies using climate information to 

improve streamflow forecasts have focused on pre-defined oceanic indices rather than entire SST 

regions that do not introduce spatial bias. To overcome this limitation, this research proposes a 

novel-modeling framework that would couple a large-scale climate variability into a data driven 

model and that would eliminate the spatial bias at a regional scale. First, SVD is used to 

determine a lagged spatial-temporal correlation between April-August streamflow and oceanic-

atmospheric variabilities represented by SST, Z500, SH500, and U500

This study is expected to investigate the time-lagged relationship of the URGRB 

streamflow variability with the ocean-atmospheric variability of the Pacific and the Atlantic 

 of the Pacific and the 

Atlantic Oceans. SVD significant regions are weighted using non-parametric approach 

formulated by Piechota et al. (2001) and utilized as input in SVM framework. The study is 

conducted in the Upper Rio Grande River Basin (URGRB) for the period of 1965-2014 and the 

lagged relationship is computed for 1-13 months. 
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Ocean. This research further aims to address the following research questions: (1) How is 

streamflow within the URGRB associated with ocean-atmospheric variables? (2) What are the 

dominant predictors among oceanic-atmospheric variables that best describe the streamflow 

variability of the basin? and (3) How does the proposed modeling framework improve the lead-

time of the streamflow forecast? Previous studies on streamflow forecasting in the URGRB have 

primarily focused on SST influence while the current research includes Z500, SH500, and U500 

data for the analysis. Including these additional variables broadens the scope of the forecasting 

ability presented here and identifies significant SH500 and U500

STUDY AREA AND DATA 

 regions in Pacific and Atlantic 

Ocean. 

Study area 

The Rio Grande River is one of the major rivers in the United States, which originates in 

southwestern Colorado, flows through New Mexico and Texas in a southeasterly direction, and 

discharges into the Gulf of Mexico. The Rio Grande River, which is approximately 3,051 

kilometers in length with a catchment area of 472,000 square kilometers, is a major source of 

water in southern states. More than three million people, agriculture, industries, and wildlife in 

Colorado, New Mexico, and Texas have been supported by the Rio Grande water supply 

(Michelsen and Wood, 2003; Booker et al., 2005). During drought conditions, the water 

allocation conflict among the users is considered among the most intense in the United States 

(US Department of Interior, 2003). Increased demand, over-allocation of water, and vulnerability 

to drought and climate change have created and added complexity in active water regulation and 

allocation in the URGRB region (Booker et al., 2005). The socio-economic importance of the 

river motivates the need for improved streamflow prediction several months in advance.  

Data 

The primary datasets used in analysis are streamflow data for six unimpaired gages in the 

URGRB and oceanic-atmospheric climate data represented by SST, Z500, U500, and SH500. 

United States Geological Survey (USGS) Hydro-Climatic Data Network 2009 (HCDN-2009) 

provides the list of streamflow stations which have minimal impact from human activities such 

as construction of diversion, artificial dams or any activities which can affect the natural flow of 
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streams. The streamflow data from these stations are suitable for the analysis of hydrologic 

variations and trends for the present climatic context (Lins, 2012). Slack and Landwehr (1992) 

identified 1659 unimpaired streamflow stations in the United States (Lins, 2012). However, for 

the RGRB, it has been found that only six streamflow stations have minimal impact from human 

activities which are located in the upper region of the Rio Grande River Basin. These six stations 

from the upper region of the basin are the reason for selection of the Upper Rio Grande River 

Basin. The mean monthly streamflow values from those streamflow stations are extracted from 

USGS website (http://www.usgs.gov/) for 1965 to 2014. Monthly streamflow volumes from 

April through August are summed to develop seasonal streamflow volumes for the analysis. 

Figure 1 illustrates the location of six unimpaired streamflow stations. It is commonly observed 

that the daily streamflow has high uncertainty and it is difficult to find a time lagged relationship 

between oceanic-atmospheric data and daily streamflow data. To have higher accuracy in the 

prediction and to have a lump sum idea about the seasonal streamflow volume, April-August 

streamflow volume is used since seasonal variation of streamflow is typical in snow-fed rivers of 

the United States. Further, spring-summer streamflow accounts for the major flow volume of the 

year and can help water managers to create balance between annual future water demand and 

annual water availability. Additionally, seasonal analysis of streamflow with climate variability 

is preferred to water-year analysis because the water-year analysis does not effectively capture 

the seasonal interaction of streamflow and climatic variables (Sagarika et al., 2015). The 

analysis, therefore, aims to capture the seasonal relationship of streamflow and climate 

variability adequately.  

National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division 

(http://www.esrl.noaa.gov/psd/data/gridded/) is the source of SST data for both the Pacific and 

Atlantic Oceans. The mean monthly SST data is extracted from 2o by 2o grid cells and the spatial 

extent of SST data in the Pacific Ocean is 100oE to 80oW longitude and 30oS to 70oN latitude. 

The extent for the Atlantic Ocean is 80oW to 20oW longitude and 30oS to 70oN latitude. The 

mean monthly SST data was divided into three periods: December to February of the previous 

year, September to November of the previous year, and December to February of the current 

year covering a period of 50 years (1964-2013). For example, if streamflow is predicted for 

April -August of 2010, monthly average SST data for December 2008 to February 2009, 

September to November of 2009, and December 2009 to February 2010 are considered in the 
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analysis for the three periods. The lead-time in the analysis is defined as the time lag from the 

last month of SST period to the first month of streamflow period. 1-month lead-time i.e., 

February to April, 4-month lead-time i.e., November to April, and 13-month lead-time i.e., 

previous year’s February to current year’s April are considered as the three forecast lead-times in 

this study. 

In addition to SST, other data representing the ocean-atmospheric variability are Z500, 

U500, and SH500 and these data the product of National Centers for Environmental Prediction 

/National Center for Atmospheric Research Reanalysis Project (Kalnay et al., 1996). NOAA 

Physical Science Center (http://www.esrl.noaa.gov/psd/data/gridded) provided the mean monthly 

Z500, U500, and SH500 data from 1964 to 2013. These data are obtained from 2.5o by 2.5o

METHODOLOGY 

 grid cell 

for both oceans and the spatial extent and division of data is kept the same as that of SST data.  

The methods used here are divided into four steps:  

1. Establishing correlation between two variables using SVD 

2. Screening of predictors 

3. Predicting streamflow using SVM 

4. Model evaluation 

The flowchart in Figure 2 summarizes the model algorithm to forecast the streamflow 

from the ocean-atmospheric variables with different lead times. In first step, SVD is applied to 

find the spatial-temporal correlations between the streamflow data and the climate variables that 

results in the temporal expansion series (TES) of significant modes explained later. These TES 

are screened in the second step. The screened predictors are used as the input for the SVM model 

of each streamflow station independently. Next, the forecasted streamflow is evaluated by 

comparing the forecasted and observed streamflow using statistical and graphical aspects. A 

brief description of the methods abstracted from several sources is provided in the ensuing 

sections. Interested readers are referred to original references for detailed descriptions 

(Bretherton et al., 1992; Piechota et al., 2001; Vapnik, 1995). 

Establishing correlation between two variables using SVD  
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SVD is a simple and robust statistical technique primarily useful for differentiating major 

modes of variability out of extensive series of data. SVD evaluates a cross-covariance matrix 

between two fields and identifies the correlation between these fields (Bretherton et al., 1992). 

Each matrix has spatial component represented by SST/Z500/SH500/U500 cells or streamflow 

stations while temporal component is represented by total number of years of data in which 

temporal dimension of each matrix must be equal. As the SVD approach evaluates the 

association of streamflow data and climate data in both space and time, the obtained correlation 

is generally referred as spatial-temporal correlation in the study. First of all, standardized 

SST/Z500/SH500/U500 anomalies matrix and standardized streamflow matrix are developed and a 

cross-covariance matrix (A) is obtained by multiplying SST/Z500/SH500/U500  matrix with the 

transpose of streamflow matrix (QT

� =
��� × ���  

) and divided by total number of years of data period (N).  

(1) 

The cross-covariance matrix is then decomposed into three matrices by SVD as : ��� �� � = ���� (2) 

where, UT U = I and VT V = I meaning U and V are orthogonal and normalized matrices whereas 

S is a diagonal matrix with non-negative values. A left singular vector and right singular vector 

are derived from the columns of those orthogonal and normalized matrices. First columns and 

rows of these orthogonal matrices explain more of the correlation between variables compared to 

subsequent rows/columns. The diagonal matrix provides the singular value of the parent matrix 

in non-increasing order and these values provide information about the properties of a matrix. 

SVD approach to data unfolding. https://arxiv.org/pdf/hep-ph/9509307.pdf. Accessed 25 

September 1995). Isolation of the most important modes of data is calculated based on squared 

covariance fraction (SCF). SCF value shows the degree of variability explained by SVD 

analysis, which is defined as: ���� =
��2∑�2 (3) 

where, C is the singular value for i-th mode. The SCF values more than 10% only are considered 

for the analysis. Similarly, normalized squared covariance (NSC) indicates the correlation 

between two fields averaged over all the grid points (Wallace et al. 1992). NSC is defined as: 
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��� =
�2�� × �� (4) 

where, where C2 is the sum of singular values and NS is the number of grid points while NZ is the 

number of streamflow stations. The NSC value ranges from 0 to 1 with maximum value for 

perfect correlation between two variables. Next, temporal expansion series of left field (LTES) is 

obtained by multiplied by left singular vector (L) with SST/Z50 0/SH500/U500  

���� = � × ��� 

matrix, and similar 

procedure is followed for temporal expansion series of right field (RTES). 

(5) 

Finally, heterogeneous correlation map of left (right) field is developed by correlating 

SST/Z500/SH500/U500

Screening of predictors 

 (streamflow) matrix with RTES (LTES) at 90% significance level using 

Pearson-r correlation coefficient. The heterogeneous correlation map shows the influential 

regions of the ocean-atmospheric variables with streamflow for different lead-time cases. Each 

streamflow station can have either positive or negative correlation with climate variables which 

is known as station significance. Station significance are obtained from the SVD analysis but 

neither their signs (station significance) nor streamflow stations are shown in the heterogeneous 

correlation map. Only the signs of climate regions are shown in the map. Based on the station 

significance, positive or negative correlation of streamflow with the climate variables can be 

known from the heterogeneous correlation map. If the station significance and a particular region 

of climate variables are showing the same sign in the map, then the streamflow and the climate 

variables of the region are positively correlated and if the station significance and the region 

have different sign then there exists negative correlation between the variables. 

The temporal expansion series of four different ocean-atmospheric variables obtained 

from SVD analysis are the possible predictors of streamflow in the Rio Grande. For each climate 

variable/predictor, a continuous exceedance probability is developed using the procedures from 

Piechota et al. (2001). First, temporal expansion series of each variable for each year is arranged 

with corresponding streamflow value. For an observed streamflow value Qi, a greater than and 

less than streamflow category are created and corresponding to those categories, predictors are 

separated into different subsets. Bayes probability theorem is then applied to find the forecast 

probability of each category from the predictor values. 
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����(�� ∕ �) =
����(�)∑ ����(�)��=1  (6) 

where, X = predictor value; Qi = streamflow value of category i; pi = prior probability of 

streamflow of category i; fi

For each subset of predictors, a probability distribution is fitted to calculate the PDF f

(x) = probability density function (PDF) of prior X value of category 

i. 

i

�(�) =
1ℎ����� − ��ℎ ��

�=1  

(x). 

A nonparametric approach is employed by using Kernel density estimator to calculate the PDF 

where Kernel density estimation is associated with a histogram (Silverman, 1998; Piechota et al., 

1998). Kernel density estimation is defined as in equation (7). 

(7) 

where, x1 to xi 

ℎ� = 0.9����−1 5⁄  

= set of n observations; K ( ) = kernel function; h = bandwidth, which is 

calculated as:  

(8) 

�� = ��� ���, ������������� �����
1.34

� (9) 

where, �� = standard deviation of predictors in subset i; ni

 � = 3�1 − ��� − ��� + ��2 − �� + ��2 − ��� − 1 (10) 

 = number of observations in each 

subset. Next, for each predictor value a unique probability is estimated and a forecast curve is 

developed by plotting probability value for all predictor values against corresponding streamflow 

values. A final exceedance probability forecast is obtained by combining the exceedance forecast 

of all variables. The skill of probability forecast is measured by Linear Error in Probability Space 

(LEPS) score approach introduced by Ward and Folland (1991). The LEPS score determines the 

distance between the forecasted and observed value over the cumulative probability distribution, 

which is defined as:  

where, Pf and Pv are the cumulative probability of forecasted and observed value respectively. A 

climatology or no-skill forecast is also developed through exceedance probability curve of 

observed streamflow values. The value of Pf is obtained from exceedance probability curve 

mentioned earlier while Pv is obtained from climatology exceedance curve. For a given predictor 
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value and corresponding streamflow value, Pf and Pv

���� �� =
∑100�∑��  

 can be obtained and LEPS score is 

calculated as in equation (10).The LEPS score for each year is then calculated for all predictor 

values and the average skill (SK) for all years is calculated as: 

(11) 

where, Sm is the sum of best or worst possible forecast depending whether S is positive or 

negative respectively. Best possible forecast occurs when Pf = Pv while worst possible forecast 

occurs when Pf =

Predicting streamflow using SVM 

 1 or 0. Similar process is applied for different predictors and for each 

streamflow station, skillful variables/predictors which give the highest LEPS SK score are then 

finally selected. LEPS score gives more weightage to those forecasts which predict high or low 

streamflow or extreme value in general while less weight is given to those forecasts which 

predict average streamflow value. A skillful forecast has a 10% or higher LEPS SK score (Potts 

et al., 1996). A flowchart for the predictor screening process is shown in Figure 3. 

The best combinations of predictors selected are then taken as input for SVM modeling. 

Unlike traditional learning methods that use an empirical risk minimization principle, SVM uses 

a machine-learning approach, and this formulation involves a structural risk minimization 

principle. The application of support vector regression (SVR) is briefly described here. The 

descriptions and equations are abstracted from Ahmad et al. (2010).  

Suppose a training data set with input and output variable represented as, {xi, yi}
N where 

xi ϵ Rp represents independent input variable, and yi 

� = �(�) = 〈�, �〉 + � 

ϵ R represents dependent output variable. We 

need to find a function y = f(x) that provides the dependency relationship of these two variables. 

The function can be written as in equation (12): 

(12) 

where, 〈�, �〉 is the dot product of weighting vector w and input vector x; b is a bias. In addition, 

the optimization problem and equality constraints are formulated and shown below in equation 

(13).  

Minimize 
12 ‖�‖2 + � ∑ (�� + ��∗)��=1   

Subject to: 
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��� − ∑ ∑ ����� − � ≤ � + ����=1��=1∑ ∑ ����� + � − � + ��∗��=1��=1 �� , ��∗ ≥ 0

� (13)  

where, ε represents Vapnik’s insensitive loss function. C is the capacity parameter cost, iξ and

∗
iξ  are slack variables, and K is the number of support vectors are represented in the formulation. 

The goal is to determine optimal parameters, which minimizes the forecasting error for the SVR 

model. The optimization of SVM is based on the selection of a kernel function that utilizes non-

linear mapping in the feature space (Dibike et al., 2001). Radial basis function kernel is used in 

the current framework which shows superior efficiency by minimizing test error (Scholkopf et 

al., 1997). For the detail description of support vector machine, interested readers are advised to 

go through Vapnik (1995, 1998). 

The performance of the model is tested by training the data and validating to the 

remaining data sets. The training phase intends to find the optimal values of the parameters and 

attain the best possible generalization conditions. This research utilizes the leave-one-out cross 

validation approach commonly known as special case of k-fold cross validation that overcomes 

the data splitting problem when limited data sets are available for training and testing (Kalra et 

al., 2012). In this approach one data point is selected to test the model while the remaining data 

points are used for training phase. This process is then applied to next data point and repeated for 

all data sets accordingly.  

Model Evaluation 

SVM performance is evaluated based on various statistical and graphical measures. 

Time-series plots are used to depict the trend of observed and forecasted streamflow over the 

years while scatter plots demonstrate the correlation between observed and predicted streamflow 

values. Similarly, box plots show the statistical variation of streamflow values and non-

exceedance probability plots are used to visualize the estimation error at different probability 

scenarios. The statistical measures utilize correlation coefficient (r), Nash Sutcliffe model 

efficiency (NSE), percent bias (PBIAS), and LEPS SK values to evaluate model efficiency. 

Collinearity between observed and predicted streamflow values are accessed through correlation 

coefficient. Higher correlation depicts less variance in the data. NSE determines the forecasting 
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ability of models by comparing the measured data variance with residual variance of observed 

data and determines the accuracy of a model (Nash and Sutcliffe, 1970). The skill of fitting 

predicted and measured data to a 1:1 line is explained by NSE. It is calculated as shown in 

equation 8: 

��� = 1 − �∑ ������� − ��������2��=1∑ (������ − �����)2��=1 � (14) 

where, Xi
meas is the measured quantity for i-th item and Xi

predi is the corresponding predicted 

amount by the model and Xmean 

����� = �∑ ������� − �������� × 100��=1 ∑ (������)��=1 � 

is the mean of measured quantity for n number of observations. 

The range of NSE is -∞ to 1with 1 as the ideal value. The recommended range of NSE values 

indicating a satisfactory model is NSE >0.5 (Moriasi et al. 2007). The percent bias is a measure 

of the average tendency of forecasted value higher or lower than observed value (Gupta et al. 

1999). PBIAS value is calculated as shown in equation (9): 

(15) 

where, Xi
meas is the measured quantity for i-th item and Xi

predi is the corresponding predicted 

amount by the model and Xmean 

RESULTS AND DISCUSSION 

is the mean of measured quantity for n number of observations. 

The ideal value for PBAIS is 0 and smaller values show good model simulation while negative 

values show overestimation and positive values show underestimation (Gupta et. al. 1999). The 

LEPS SK score is also utilized to evaluate the model performance by determining the distance 

between measured and predicted streamflow values in the cumulative probability distribution, 

which has been already described in the methodology section. 

The results and discussion are described in three different sections. The SVD and SVM 

analysis are presented in three different sub-sections for each lead-time scenario while predictor 

screening analysis is discussed in a single section. The first section discusses the SVD spatial-

temporal correlation of streamflow with oceanic-atmospheric variables. Next, results of predictor 

screening are presented followed by the SVM analysis.  

SVD analysis 
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1-month lead-time. The SVD analysis of the Rio Grande streamflow with 

Pacific/Atlantic SST, Z500, SHU500 and U500

Figure 4a represents the relationship between Pacific Ocean ocean-atmospheric 

variability with URGRB streamflow through heterogeneous correlation map at the 90% 

significance level for the 1-month lead-time period. Resulting significant SST regions are shown 

in red and blue color. The red and blue color in the map indicates positive or negative correlation 

of streamflow with climatic variables in the significant regions. One of the two key significant 

regions identified for that period are the regions off the coast of Japan, Indonesia and Australia, 

which has a horseshoe shape, is negatively correlated with the April-August streamflow in 

URGRB. This identified region is similar to ENSO including the popular Niño 3.4 region 

previously identified by Trenberth (1997). The identified region also include northwestern US 

coastal regions representing PDO. Previously, Khedun et al. (2012) has also identified similar 

results – indicating ENSO and PDO being positively correlated with winter and spring 

precipitation which is the source of spring summer streamflow. The obtained SST regions-

mostly ENSO are affirmed by previous literatures signifying the URGRB being wetter and 

colder during El Niño years because of the modifications in the mid latitude jet streams. The 

reason of ENSO being positively correlated with the streamflow can be attributed to the feeding 

of moisture to the Jet streams moving towards east from the Pacific as a result of above normal 

SST in ENSO regions during El Niño years. Another dominant region of SST that has a strong 

positive correlation is the region extending from West to Central Pacific Ocean bounded in 

between 90

 resulted in the identification of significantly 

correlated regions. Most of the variability of the streamflow in the URGRB was explained by the 

first mode of SVD and therefore, only the first mode SVD results are reported throughout the 

section. Table 1 presents the SCF and NSC values obtained for different lead-time scenarios. 

0 W to 1800 W latitude, and this region shows conformity with Niño Index as 

demonstrated by other researchers (Rajagopalan et al., 2000). Figure 5a shows a heterogeneous 

correlation map of Atlantic SST significant regions for the 1-month lead-time period. The 

identified significant area is separated into two zones, one is near the east coast of Canada and 

US resembling the AMO region and the other is near the north shore of Brazil. These regions 

have a negative correlation with streamflow variability. This is also verified by previous 

literature that cold north Atlantic SST in winter and spring favors the spring summer streamflow. 

(Trenberth et al., 1998; Pascolini-Campbell et al., 2017). 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

The second column of Figure 4a and Figure 5a show the heterogeneous correlation map 

of significant Z500 regions for both oceans. The significant regions for Pacific are more 

concentrated in equatorial regions of the Pacific Ocean and southeastern Asia. The altitude of 

Z500 is approximately 18000 feet above the sea level, and this has been associated with diverse 

weather phenomena (Soukup et al., 2009). The jet stream formation is related to locations where 

the Z500 contour lines are concentrated. Z500 is found to be more influential during wintertime. 

The shortwave train as shown in the second column of Figure 4a with red arrow head as a result 

of warming of SST in ENSO region signifies the fueling of Jetstream with moisture also 

responsible for the precipitation and streamflow of URGRB region. This physically explains the 

reliability of obtained teleconnection between Z500

Five significant SH

 regions and the streamflow of URGRB. For 

the Atlantic Ocean, the significant regions identified are clustered at Eastern Canada and north to 

mid-South America. All those identified regions show the positive correlation with the 

streamflow of the URGRB. 

500 regions were prominent in the Pacific Ocean. Three regions with 

positive correlation are identified at the equatorial region and above the mid-United States while 

two negatively correlated specific humidity regions were identified at the eastern side of China, 

Indonesia, and Japan. As mentioned earlier, the warmer than average ENSO region fuels the jet 

stream with moisture over Pacific moving in east directions responsible for URGRB streamflow. 

With the extra fuel and pressure the Jetstream shift eastward with higher than normal 

precipitation in URGRB region. This can be verified in Figure 4a third column, the specific 

humidity in ENSO region being positively correlated with streamflow of URGRB region. 

Positive correlated SH500

Several significant U

 regions are found near the basin area that may be linked to the direct 

relationship of distance with humidity influence making further regions less influential in 

streamflow variation. For the Atlantic Ocean, the significant regions were identified at eastern 

Canada and northern South America. These regions have shown the positive correlation with the 

streamflow of the basin.  

500 regions are established in the Pacific Ocean as probable 

predictors of streamflow. The U500 regions signifies below/above normal wind in east west 

directions which are the key cause of circulation of moisture from the ocean to any watersheds. 

Here, these complex U500 regions are the result of complex interactions of pressure, geographic 

features, temperature gradients and other climate variables. One significant region in the Atlantic 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

is found near the northeast coast of Canada, which has shown the negative correlation. The small 

spatial extent of the region indicates a little influence of Atlantic U500 

4-month lead-time. The SCF and NSC values are both comparable for 1- and 4-month 

lead-time scenarios. The first plot of Figure 4b and Figure 5b show the heterogeneous correlation 

map for September-November SST of Pacific and the Atlantic Ocean respectively. The 

significant Pacific SST regions are almost the same for 4-month lead-time when compared to 1-

month lead-time. However, for the Atlantic, SST regions are continuously extended in a greater 

area in 4-month lead-time, unlike 1-month lead-time where the significant regions are widely 

separated in two zones. The SCF and NSC values also dropped slightly in comparison to 1-

month lead-time. Significant regions are located in the west to the east region of the northern 

Pacific Ocean in smaller groups. Furthermore, the spatial extent of significant Z

on the streamflow 

variability. 

500 

Compared to 1-month lead-time, the SCF and NSC for SH

regions also 

decreases in this period compared with a previous period in the Pacific Ocean while the spatial 

extent slightly increases for the Atlantic Ocean. It can be noted that SCF/NSC values for Pacific 

are smaller than that of Atlantic in this period. The identified indices for 4-month lead-time were 

similar to the identified indices for 1-month lead-time but the signals were weaker with the 

expense of lead times. As observed in Figure 5b, the indices like ENSO and the climatic 

phenomenon like short wave terrain and impacts of mid latitude jet stream are still evident like 1-

month lead-time. 

500 decrease for the Pacific 

while increases for the Atlantic Ocean in 4-month lead-time. The third plot of Figure 4b and 

Figure 5b show heterogeneous correlation map for Pacific and the Atlantic Ocean respectively. 

Similar to SST and Z500, significant SH500 regions become separated from each other and smaller 

in areal extent in this period as compared to 1-month lead-time period. Nearer SH500 regions to 

the basin show positive correlation as in the previous 1-month led time case. The SCF and NSC 

values were higher in 4-month lead-time in comparison to 1-month lead-time. Furthermore, the 

majority of positively correlated associated regions are prevalent both in Pacific and in Atlantic 

regions that are clear from Figure 4b and Figure 5b. All other predictors, with the exception of 

U500, have shown comparatively better results for 1-month lead-time when compared with 4-

month lead-time.  
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13-month lead-time. The first plot of Figure 4c and Figure 5c show the heterogeneous 

correlation map of SST for Pacific and the Atlantic Ocean respectively. From these figures, it is 

clear that the significant SST areas become smaller and sparser when compared to smaller lead-

time cases. It may be due to the influence of longer lead-time SST period is less effective than 

that of a shorter lead-time period. A similar drop of SCF and NSC values were obtained for SVD 

analysis of Z500

The heterogeneous correlation map for Pacific and Atlantic Ocean SH

. The number of significant regions decreases and these regions move farther 

away from the ocean as compared to 4-month lead-time as clearly seen in Figure 4c and Figure 

5c. For the Atlantic, only one significant region near the northeast coast of Canada is identified, 

with negative correlation with streamflow. As seen in Figure 4c and Figure 5c, the spatial extent 

of significantly teleconnected regions for 13-month lead-time was smaller than other lead times 

however, these 13-month long lead spatial-temporal associations can also help water managers 

by providing longer time window for planning and mitigation measures. 

500 are shown in 

third plot of Figure 4c and Figure 5c. The spatial extent of the significant regions decrease 

considerably for 13-month lead-time case in comparison to 1- and 4-month lead-time cases; 

furthermore, the drop in SCF and NSC values also suggest that the 1- and 4-month lead-time 

period can have better forecasting abilities as compared to 13-month lead-time period. The forth 

plot of Figure 4c and Figure 5c show the heterogeneous correlation map for U500 for the Pacific 

and the Atlantic Ocean, respectively. In this period, number and spatial extent of significant 

regions decrease considerably similar to SST, Z500, and SH500

The SVD results depict the identification of significant regions of SST, Z

. All the predictor variables have 

shown better results for smaller lead-time cases than longer lead-time cases.  

500, SH500, and 

U500 in the Pacific and the Atlantic Ocean, which are teleconnected with the streamflow stations 

in the Rio Grande River. The identification of various significant regions of climatic parameters 

in this study indicate a dominant influence of these regions on the streamflow variability and can 

provide better predictive capabilities than other regions. Moreover, these identified regions were 

found to be similar with results conducted by previous researchers. The lagged SVD analysis 

clearly showed that smaller lead-time analysis has better forecasting ability as compared to 

longer lead-time analysis. The inclusion of entire Pacific and Atlantic Ocean for SST, Z500, U500 

and SH500 data has eliminated the regional biases and the dependence on the existing indices to 

explain the hydrologic variability has reduced. 
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Predictor screening analysis 

The abovementioned SVD analysis presented all the possible correlations of streamflow 

with the oceanic-atmospheric climate variables whereas this predictor screening analysis focuses 

on best correlation for each of the stations leading to screen the best predictor variables out of the 

eight climate variables. Table 2 shows two best streamflow predictors for each streamflow 

station for each scenario. The result shows that each variable is one of the best predictors at least 

once. It is clear from the table that different predictors are dominant at different lead-times. For 

1-month lead-time, Atlantic SH500 was found to be the best overall predictor while Pacific U500 

was found to be the best overall predictor for both 4- and 13-month lead-time scenario. 

Similarly, Atlantic Z500 was the least dominant variable followed by Pacific Z500. Previous 

researchers have primarily focused on SST and Z500 as the important variables in explaining 

various hydrologic processes. However, this research has included two more climatic variables 

i.e. U500 and SH500 apart from SST and Z500 for broader scope. These included variables have 

shown valuable predictive information. For example, for stations 4 and 6, SH500 of Pacific Ocean 

could play a key role in forecasting streamflow at those locations, while Atlantic Ocean SH500 

could be an important predictor of streamflow for station 1. The inclusion of these variables can 

be justified and supported as both U500 and SH500 explain the majority of streamflow variability 

in the URGRB. Results also suggest that the U wind over the Pacific Ocean is one of the major 

climatic factors that drive the variability of streamflow in the URGRB. Satisfactory performance 

of U500 and SH500 

The positive skill shown by continuous exceedance probability forecast depicts the 

improvement of prediction skill compared against a climatological forecast where the temporal 

aspect of historical data is taken into account. The continuous exceedance probability forecast 

labeled as good, fair, and poor compares climatology forecast, modeled forecast, and observed 

streamflow value and gives an idea about the availability of streamflow at different risk levels in 

a simple and efficient way. The continuous exceedance probability forecasts labeled as good, 

fair, and poor forecast are shown in Figure 6. For good forecast, the difference between observed 

and predicted streamflow value at certain probability is minimum while for poor forecast the 

difference becomes larger. From Figure 6c, it is clear that when streamflow was predicted for 

indicate that these climate variables have greater potential in providing finer 

results if they are extensively studied and understood. Thus, these variables have possibility of 

drawing research attention from climatologists and hydrologists in coming days.  
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2014 at 50% exceedance probability, the model predicts 12 million cubic meters (MCM) while 

the climatology predicts 18 MCM and the observed value is 11 MCM. However, for poor 

forecasts certain amount of risk is also present as the forecasted value deviates from the observed 

value. For majority of years higher number of good forecasts were observed compared to the 

poor forecasts. In addition, most of the stations showed higher LEPS SK for 1-month lead-time 

implying greater confidence in forecasting with smaller lead-time.  

SVM Analysis 

SVM analysis was used to predict streamflow volumes using input variables from three 

lead-time cases for all the six stations for a 50-year period. The predicted streamflow is then 

compared with observed streamflow, and the performance of the SVM model is described in 

coming sections. 

1-month lead-time. Figure 7a shows time-series graphs showing the volume of 

simulated and observed streamflow for the 1-month lead-time scenario. Table 3 presents the 

values of various model performance parameters obtained for different lead-time cases. The 

dotted line represents observed streamflow values, and the solid line represents predicted 

streamflow values. It can be seen that the observed and predicted streamflow volume are fitted 

well, but some small discrepancies are also present. In addition, the predicted and measured 

streamflow have similar volumes. Simulated streamflow is found to be in almost perfect 

correlation with the measured streamflow for the year 2000 for all the stations. Similarly, Figure 

7b shows the scatter plots for the 1-month lead-time scenario. The points lying above the bisector 

line indicate the prediction is overestimated, while those lying below the line indicate the 

predictions are underestimated, and points along the line represent perfect predictions. It can be 

seen that most points lie along the 45o

The scatter plot also illustrates the PBIAS value and correlation coefficient. It is clear 

from the Figure 7b that each of the stations has a PBIAS value less than 10%. For the 1-month 

lead-time period, PBIAS value has an average value of 2.11 for all streamflow stations. The 

 diagonal showing perfect correlation. This indicates that 

the forecasted and observed streamflow are in good correlation with each other. Better 

performance at low flows compared to high flows is apparent on the plots. It can be inferred that 

model applicability is best achieved during low flow events, which may indicate that the model 

is well suited for drought conditions. A
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average correlation coefficient for observed and simulated streamflow for the stations was 0.89. 

The higher correlation coefficient further strengthens the forecasting capability of the SVM 

model. It implies that the model performs well with less error variance. The effectiveness of 

SVM model is also evaluated through interpretation of the NSE value. Figure 7b shows the NSE 

values for all the six stations for the 1-month lead-time case. The average NSE value for all the 

stations was 0.79. These higher values of NSE statistics indicate that the SVM predicted 

streamflow was satisfactory. 

The box plot of observed and simulated streamflow volume of the model for the 

December-February period is illustrated in Figure 7c. The horizontal line is the median 

streamflow while the interquartile range in between 25th percentile and 75th percentile is 

indicated by the box height. The whiskers in the plot represent extreme 5th and 95th percentiles. 

The median value for both observed and simulated streamflow values are similar at all sites. 

Although the interquartile range of estimated streamflow is slightly smaller than observed value, 

the fifth percentile of both datasets has a closer match. It is clear from the figures that the 

interquartile range of measured streamflow is wider as compared to that of predicted streamflow. 

This illustrates the uncertainty in forecasting ability for high flow range. Furthermore, the model 

underestimated the high flow, as most of the predicted high flows are smaller than the observed 

high flow. 

Figure 7d shows the non-exceedance probability plot for the 1-month lead-time scenario. 

The y-axis represents the percentage of cumulative estimation error and the x-axis is the 

percentage of predicted data sample which is less than or equal to the value on the x-axis. The 

dotted line in the plot represents the cumulative modeling error value of 10%. Based on the plot 

it is clear that at 60% estimate of streamflow, the probabilistic absolute error is around 2% for 

almost all sites. As per the non-exceedance probability plot, site 3 gives best result, as the 

absolute error is just 10% at 80% estimate while other sites have more than 10% error for 80% 

sample estimates. Based on the plot, it is clear that smaller prediction error is achieved at higher 

estimation percentage, which in turns implies the greater confidence in prediction of streamflow 

for the water managers. The plot also tells the average skill score to evaluate the performance of 

the model forecast using LEPS approach. All the stations have LEPS SK more than 60%. The 

average LEPS SK score value was 72.2% for the streamflow stations. These higher value of 

LEPS SK score further support good forecasting capability of the model. 
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4-month lead-time. Figure 8a and Figure 8b show the time-series plot and scatter plot of 

simulated and observed streamflow values for September to November period, respectively. 

Similar to 1-month lead-time the time series plot for this period show similar trends. Scatter plots 

for this period are also similar to those shown at the 1-month lead-time period. Most of the points 

lie over the bisector line while high flow points are below the line implying high flow values are 

underestimated by the model. In the September-November case, average PBIAS value was 2.29 

at all stations. Compared to the 1-month lead-0time, the PBIAS value has slightly increased at 

the 4-month lead-time. The correlation coefficient for the stations has an average value of 0.89. 

The average value of correlation coefficient for 1-month lead-time is equal to that of 4-month 

lead-time. . Four stations have NSE values higher than 0.8. The average NSE value was 0.78, 

which is slightly lower than the 4-month lead-time NSE average. In this period, high flows were 

also underestimated by the model as seen from the box plot of Figure 8c. The interquartile range 

of forecasted streamflow for station 6 was the smallest among the stations while the ranges were 

comparable to one another for rest of the stations. The non-exceedance probability plot for this 

period is shown in Figure 8d. The average LEPS SK score was 74% that is slightly higher than 

the 1-month lead-time case. 

13-month lead-time. Figure 9a shows the time-series plot of simulated and observed 

streamflow values for the 13-month lead-time case. This graph also tells the higher prediction 

skill of the model. Despite the longest lead-time scenario, the 13-month lead-time scenario 

shows satisfactory forecasting results. Figure 9b is the scatter plot for this period. The average 

PBAIS value for this period was 2.87. When PBIAS values are compared, the 1-month lead 

yields the best results followed by 4- and 13-month lead-times respectively. Even though the 

smallest lead-time forecast demonstrates the best forecasting ability, the 13-month lead-time 

forecasting ability of the model is still comparatively satisfactory. The correlation coefficient 

also follows the same trend. The average R-value in this period was 0.87, slightly smaller than 1- 

and 4-month lead-time scenarios. When the model capability was measured based on NSE value, 

the 13-month lead-time case gave the smallest average value at 0.74, a NSE value that is 

considered satisfactory. It was observed that the NSE value improves as the lead-time period 

decreases, further supporting anticipated better forecasting ability for the lowest lead-time 

scenario.  
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Figure 9c shows the box plot at the 13-month lead-time depicting the comparison of 

modeled and observed streamflow for six streamflow stations. The boxplot for this period 

showed similar results from previous lead-time periods because, for all three scenarios, the 

interquartile range of measured streamflow is bigger as compared to that of predicted 

streamflow. This signifies that all the three scenarios captured both high and low flows, but 

underestimated high flow, as most of the predicted high flows are smaller than the observed. It 

can be inferred from the box plot that the model is efficient at predicting the low flow of 

URGRB as compared to high flow and may be effective for water management during drought 

seasons. Figure 9d shows the non-exceedance probability plot for the 13-month lead-time case. 

The average LEPS SK score value was 69.8%. The average values for this lead-time scenario 

were the lowest among the three lead-time scenarios. The anticipated higher LEPS SK score for 

smallest lead-time is not seen here because the 4-month lead-time case has highest average value 

followed by 1-month lead-time case. The LEPS SK score at all the three lead times indicates the 

satisfactory forecasting capability of the model.  

The SVM model incorporates important oceanic-atmospheric climate variables for 

improving prediction of URGRB streamflow. The SVM model evaluation by different graphical 

and statistical analysis resulted in satisfactory results. Scatter plots clearly indicate improved 

forecast ability. The higher R and NSE values derived between measured and predicted 

streamflow with consistently smaller PBIAS values further support model forecasting capability. 

NSE, PBIAS, and R values all indicate that the best forecasting could be achieved for the 

smallest lead-time while LEPS SK value showed better forecasting ability at the 4-month lead-

time followed by 1-month lead-time. Box plots, scatter plot, and time-series plots also suggest 

the adequate predictability of the model. These plots indicate SVM analysis was able to perform 

well in capturing low flow and intermediate flow as compared to high flow. Overall, the SVM 

model performance for high flows is not much impressive as compared to the low flows. 

However, low flow is more critical in comparison to high flow considering the water 

management prospect because water resources scarcity is not a serious problem during high flow 

period (Sharma et al., 2015). One of the reasons for underperformance of SVM model in 

predicting some streamflow value, extreme value in general, is may be due to the presence of 

outliers and erroneous data in the training phase. It is found that the association of training data 

and output data is instrumental in the model performance and longer period of data may show 
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higher generalization ability (Ahmad et al., 2010). Another reason of underperformance of SVM 

model could be due to the input variables used in the model that might not have adequately 

represented the physical system governing the generation of streamflow. Possible future research 

may further investigate in improving forecasting of high flow by exploring underlying hydro-

climatic processes. 

CONCLUSION 

The primary goal of the study was to develop a modeling framework for improving 

streamflow lead-time in the URGRB using large-scale climate information of the Pacific and 

Atlantic Oceans. Spatial-temporal relationship of streamflow with each climate variable 

represented by SST, Z500, U500, and SH500

The first research question was answered by the SVD analysis as it showed the 

association of URGRB streamflow with ocean-atmospheric variables of the Pacific and the 

Atlantic Ocean SVD analysis resulted in new significant SH

 was analyzed by SVD approach for three lead-time 

cases. SVD temporal expansion series for each variable was weighted and screened by a non-

parametric approach. These screened variables were used as input in SVM model to predict 

streamflow at six unimpaired streamflow stations within the URGRB. Overall the proposed 

research framework of combining several statistical approaches coupled with climate 

information to improve streamflow forecast lead time provides useful insights in regional 

hydrology.   

500 and U500 regions in the Pacific 

and Atlantic Oceans in addition to SST and Z500 regions. The SVD analysis presented an 

extensive idea about all the possible associations between streamflow of the basin and ocean-

atmospheric variability. Predictor screening analysis showed that Pacific SST and Pacific U500 

are the two most dominant predictors for streamflow forecasting in the URGRB, which were the 

answer for the second research question. The teleconnection of streamflow with climate 

variables was sufficiently captured by the SVD study. The inclusion of SH500 and U500 climate 

variables led to identify associated significant regions for URGRB and showed equally 

competent potential for explaining streamflow variability of the basin. These variables have 

received little attention in previous research efforts. Moreover, the higher correlation of 

streamflow with U500 and SH500 shows that several other climate variables can be considered 
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together and studied extensively to fully understand the streamflow variability in a basin leading 

to better water resource management. 

The study has shown that SVM model can be a useful method in streamflow forecasting 

by coupling an extensive range of climate variability with different lead-times. SVM model 

showed satisfactory forecast results for all the three lead-time cases. The best streamflow 

forecasting was achieved at the 1-month lead-time followed by 4-month lead-time scenario. The 

capability to improve long lead-time prediction can be helpful in efficient decision making 

process and various water management issues when the context of climate change are considered 

in the basin where snowmelt is the primary source of water. The model showed forecasting 

ability over the entire flow range, whereas forecasts at the low flow range were excellent. The 

third research question regarding the performance of proposed modeling framework was also 

answered as the SVM model satisfactorily predicted streamflow as supported by various 

performance parameters. The Rio Grande River heavily supports domestic use, agriculture, and 

industry. This river is highly utilized for water supply, and downstream supplies are significantly 

decreasing over the years. The basin has experienced low flows since 2000, and frequent 

droughts have been reported over the years. The rainfall pattern and water demand also differ 

considerably as more precipitation is observed in summer while the peak demand occurs in 

spring. The ability to capture low flows efficiently aids in water management during drought 

seasons and below average periods. Better forecasting of low flow events several months ahead 

may aid in the better allocation of water to competing users during dry periods.  

The study doesn’t assume stationary climate system and makes the assumption that 

stationarity is not valid. Relying on the appraisal of past climate by inferring from extreme 

events or changes in mean is not beneficial as the climate is constantly changing. At this 

moment, based on the results we obtained, conclusions can be drawn about the magnitude of 

change in streamflow in the future. While viewing these results, it must be looked at with a range 

of uncertainties as it is a statistical analysis. But, these uncertainties need to be looked at while 

making infrastructural investments as these decisions are irreversible. The streamflow 

predictions that the present study has made in terms of volume should be utilized by the water 

managers by making decisions so that these infrastructures can effectively respond to conditions 

that are changing and completely unknown. Detecting changes in past and future is not sufficient 

to make policy decisions and is the subject that needs more research on. Future work, may 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

explore extended lead-time scenarios. Additionally, the application of paleo data may provide 

promising results as data-driven models show higher efficiency for wide range of input data. 
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TABLES 

Table 1. SVD results for different lead-time cases. 

Climate 

variability 

Lead-time SST Z SH500 U500 500 

Months 

SCF 

(%) 

NSC 

(%) 

SCF 

(%) 

NSC 

(%) 

SCF 

(%) 

NSC 

(%) 

SCF 

(%) 

NSC 

(%) 

  

1 97.3 6.9 96.4 4.0 96.3 4.6 95.3 4.6 

Pacific Ocean 4 97.4 5.1 91.4 2.5 95.6 4.3 95.4 3.9 

    13 92.4 2.2 89.1 1.6 88.6 2.1 90.5 2.4 

  

1 96.9 4.5 96.0 2.5 92.5 3.7 90.5 3.0 

Atlantic Ocean 4 96.2 4.4 95.4 3.1 95.1 3.8 94.5 3.4 

    13 94.6 1.9 92.0 1.5 87.1 2.2 89.5 1.7 

 

Table 2. Best streamflow predictor variables for different lead-time scenarios . 

  Best streamflow predictors 

Station 1-month lead-time 4-month lead-time 13-month lead-time 

1 
Atlantic SST Pacific U Pacific SST 500 

Atlantic SH Atlantic U500 Atlantic U500 

2 

500 

Pacific SST Pacific SST Pacific SST 

Atlantic Z Pacific U500 Pacific U500 

3 

500 

Atlantic SST Pacific SST Atlantic SST 

Atlantic U Pacific U500 Pacific U500 

4 

500 

Atlantic SH Pacific Z500 Pacific SH500 500 

Atlantic U Pacific U500 Pacific U500 

5 

500 

Atlantic SH Pacific Z500 Pacific SH500 500 

Atlantic U Pacific U500 Pacific U500 

6 

500 

Pacific SH Pacific SST 500 Pacific SST 

Atlantic SH Pacific U500 Pacific SH500 500 
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Table 3. SVM model performance for different stations for different lead-times. 

Streamflow 

Lead- 

time Model performance parameter 

Station Months r PBIAS (%) NSE LEPS SK (%) 

 

1 0.87 0.79 0.72 64.1 

1 4 0.95 -0.53 0.87 78.3 

  13 0.85 3.84 0.71 69.8 

 

1 0.83 2.02 0.67 63.1 

2 4 0.93 2.32 0.83 75.0 

  13 0.85 4.72 0.69 68.4 

 

1 0.91 1.8 0.81 78.9 

3 4 0.93 3.07 0.86 79.6 

  13 0.81 1.26 0.63 61.8 

 

1 0.94 -1.48 0.87 75.9 

4 4 0.87 2.05 0.73 68.7 

  13 0.86 2.98 0.72 67.9 

 

1 0.92 -2.72 0.84 75.8 

5 4 0.91 0.84 0.80 76.0 

  13 0.94 -0.36 0.86 73.6 

 

1 0.90 3.87 0.79 75.6 

6 4 0.80 5.54 0.60 67.3 

  13 0.92 4.11 0.84 77.4 

LIST OF FIGURES 

Figure 1. Map showing six unimpaired streamflow stations in the Upper Rio Grande River Basin 

Figure 2. The SVD-SVM model flowchart showing the steps involved in predicting streamflow 

with the oceanic-atmospheric variables. 

Figure 3. A flowchart showing the predictor screening process 

Figure 4. Heterogeneous correlation map for Pacific Ocean (a) 1-month lead-time (b) 4-month 

lead-time (c) 13-month lead-time SST, Z500, SH500, and U500 with April-August 

streamflow. 
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Figure 5. Heterogeneous correlation map for Atlantic Ocean (a) 1-month lead-time (b) 4-month 

lead-time (c) 13-month lead-time SST, Z500, SH500, and U500

Figure 6. Map showing examples of the poor, fair, and good continuous exceedance probability 

forecast for (a) 1-month lead-time (b) 4-month lead-time (c) 13-month lead-time 

 with April-August 

streamflow. 

Figure 7. (a) Time series plot where dotted line represents measured streamflow and solid line 

represents the predicted streamflow (b) Scatter plot (c) Box plot (d) Non-exceedance 

probability plot for 1-month lead-time depicting the comparison between measured 

and forecasted streamflow for six streamflow stations. 

Figure 8. (a) Time series plot where dotted line represents measured streamflow and solid line 

represents the predicted streamflow (b) Scatter plot (c) Box plot (d) Non-exceedance 

probability plot for 4-month lead-time depicting the comparison between measured 

and forecasted streamflow for six streamflow stations. 

Figure 9. (a) Time series plot where dotted line represents measured streamflow and solid line 

represents the predicted streamflow (b) Scatter plot (c) Box plot (d) Non-exceedance 

probability plot for 13-month lead-time depicting the comparison between measured 

and forecasted streamflow for six streamflow stations 
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