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Major oil spills immensely impact the environment and society. Coastal fishery-dependent communities are especially at risk as their fishing
grounds are susceptible to closure because of seafood contamination threat. During the Deepwater Horizon (DWH) disaster for example, vast
areas of the Gulf of Mexico (GoM) were closed for fishing, resulting in coastal states losing up to a half of their fishery revenues. To predict
the effect of future oil spills on fishery-dependent communities in the GoM, we develop a novel framework that combines a state-of-the-art
three-dimensional oil-transport model with high-resolution spatial and temporal data for two fishing fleets—bottom longline and bandit-
reel—along with data on the social vulnerability of coastal communities. We demonstrate our approach by simulating spills in the eastern
and western GoM, calibrated to characteristics of the DWH spill. We find that the impacts of the eastern and western spills are strongest in
the Florida and Texas Gulf coast counties respectively both for the bandit-reel and the bottom longline fleets. We conclude that this multi-
modal spatially explicit quantitative framework is a valuable management tool for predicting the consequences of oil spills at locations
throughout the Gulf, facilitating preparedness and efficient resource allocation for future oil-spill events.
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Introduction

The growth in global energy demands is leading to a consistent
increase in offshore gas and oil exploration and extraction in
deeper waters. Deeper waters are in turn more complicated for
containment of a spill or an uncontrolled blowout, similar to the
Deepwater Horizon disaster (DWH; Lubchenco et al, 2012).
During the DWH, ~795 million litres of oil gushed into the Gulf
of Mexico (GoM) with oil slicks covering a cumulative estimated
area of 149000km? (MacDonald et al., 2015). As a result, vast
areas of the GoM were closed to fishing, totalling an area greater

than a third of the US exclusive economic zone (Ylitalo et al.,
2012). Consequently, commercial and recreational landings de-
creased by 23 and 13% respectively (Murawski et al., 2016), with
losses estimated at US$4.9 and US$3.5 billion (Sumaila et al,
2012). In Florida’s western counties, fishers resorted to travelling
longer distances or relocating to ports adjacent to alternative fish-
ing grounds. Overall, fishery landings declined by 25.3% from
2009 to 2010 (Murawski et al.,, 2016).

Although engineering and monitoring efforts are under way to
prevent another DWH, a fundamental challenge facing oil-spill
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management is to accurately estimate the extent of a given oil
spill before, during, and after it occurs, in order to evaluate trade-
offs between the economic returns of the oil against the risk asso-
ciated with a possible oil spill (Boehm and Page, 2007; Beyer
et al, 2016; Deepwater Horizon Natural Resource Damage
Assessment Trustees, 2016; Nelson and Grubesic, 2018a). Most
research into developing risk assessments of potential spills
(Fingas, 2011; Nelson and Grubesic, 2018a) builds off of ex post
damage assessments and outcomes of past events, e.g. area of
coastline contamination, number of organisms killed, and resto-
ration costs (Nelson et al., 2015; Deepwater Horizon Natural
Resource Damage Assessment Trustees, 2016; Nelson and
Grubesic, 2018b). We contribute to this literature by developing
an ex ante methodology to measure the potential impact on com-
munities from such disasters by combining spatial dynamic
modelling of a hypothetical spill with data on fishing fleet dynam-
ics and social vulnerability of communities (Figure 1). Spatially
explicit mapping of economic impacts will deepen our under-
standing of spills’ impacts, facilitating rapid, and efficient alloca-
tion of resources to threatened communities (Jepson, 2007).
Furthermore, although our focus in this paper is on the economic
losses stemming from fishing, our methodology can easily be
combined with other measures of economic damages (e.g. loss in
tourism, biodiversity) to develop a full benefit—cost analysis that
can aid in the assessment of future permitting decisions.

Methodological and technological advances allow better track-
ing and prediction of both oil spills and fishing fleet dynamics.
The use of fishery tracking systems has rapidly increased (Deng
et al., 2005) and the availability of large, detailed datasets on fish-
ing vessel movement and behaviour has provided the basis for a
tool-driven revolution in fishery analytics. Artificial neural net-
works, random forests, hidden Markov models, and a range of
other analytical tools have been successfully deployed within and
across data types to understand fishing behaviour at regional and
even global scales (Bastardie et al, 2010; Russo et al, 2011;
Lambert et al., 2012; Joo et al, 2013; O’Farrell et al., 2017;
Kroodsma et al, 2018), providing unprecedented insight to
coastal and deep-water fishery with ever-increasing accuracy and
precision.

Concurrently, advances in oil-transport simulations include
implementation of key processes such as biodegradation, oil-
partitioning, and evaporation into a three-dimensional
Lagrangian tracking framework, which considers elements such
as oceanic currents, droplet buoyancy, and wind drift (Barker,
2011; Le Hénaff et al, 2012; Paris et al., 2012, 2013; Boufadel
et al., 2014; North et al., 2015; Lindo-Atichati et al., 2016). Such
frameworks have successfully reconstructed various aspects in the
DWH oil spill, namely satellite footprint (Le Hénaff et al., 2012;
Olascoaga and Haller, 2012), shoreline contamination (Le Hénaff
et al., 2012; Boufadel et al., 2014), evaporation (De Gouw et al.,
2011), sedimentation (Paris et al., 2012; North et al., 2015), and
the formation of a deep plume (Paris et al., 2012). Oil-transport
models are increasingly used to estimate potential impacts of pos-
sible oil spills on the environment and economy (Nelson and
Grubesic, 2018a). Most of these efforts, however, are focused on
effects resulting from the direct contact of oil, considering habi-
tats and sediment types with variable oil-retainment characteris-
tics (Cai et al., 2015; Azevedo et al., 2017; Nelson and Grubesic,
2018a), and direct impacts on economic activities such as tourism
(Nelson and Grubesic, 2018b). However effects such as revenue
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Figure 1. Multimodal spatially explicit quantitative approach
composed of oil-transport, commercial fishing analysis, and social
vulnerability components, and used to estimate the impact on
fishing revenue losses in the aftermath of simulated oil spills and
mapped to the vulnerability of the fishing communities.

loss because of fishery closures are rarely considered in such
analyses.

Lastly, advances in social sciences introduced the social vulner-
ability indices (SOVIs; Cutter et al., 2003)—a quantitative mea-
sure of the vulnerability of different groups given their social and
economic attributes (Cutter et al, 2003). These indices allow a
robust evaluation of the impact of a disastrous event on a com-
munity such that more-vulnerable communities are expected to
suffer a greater impact compared with more-resilient communi-
ties (Schmidtlein et al., 2008). It is of policy concern not only that
oil spill impacts are distributed unequally among GoM counties
but also that counties may vary in their social vulnerability to en-
vironmental hazards (Cutter ef al, 2003). The ability to identify
counties, which stand to lose larger proportions of their fishing
revenue and which also have higher social vulnerability would al-
low the pre-emptive development of policy instruments to miti-
gate hardship in the event of future oil spills. We use a
multimodal approach to demonstrate how the aforementioned
advances can be integrated into a spatially explicit framework to
predict the impact of future oil spills on fishery revenues
(Figure 1). First, we deploy a three-dimensional Lagrangian oil-
spill model to simulate two large spills, one each in the eastern
and western GoM. We use these simulations to define closed-area
boundaries based on toxic concentrations of polycyclic aromatic
hydrocarbons (PAH) in the water, and allow these boundaries to
change over time in response to the evolution of the plume.
Second, we use data on the movement and revenue of GoM com-
mercial reef-fish fishery vessels to estimate how compliance with
the closed areas would impact fishing revenues at the county
level, using a maximum loss scenario to locate the upper bound-
ary of economic impacts. Finally, we analyse our results to iden-
tify instances where socially vulnerable counties were also heavily
impacted by the loss of fishing revenue resulting from the
closures.
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Table 1. Simulation details, which vary between the scenarios.

Scenario Location Leasing block Start date
E_GoM 27°000'N 85°168'W The elbow 20 April 2010
W_GoM 26°660'N93°190'W  Keathley canyon 20 April 2010
Methods

Overview

We employ a multidisciplinary approach to predict the potential
impact of large oil spills on GoM fishery-dependent counties by
coupling oil-transport modelling, commercial fishing analyses,
and SOVIs (Figure 1).

Oil-CMS: connectivity modelling system use for oil-spill
simulations

Our study implements the existing oil application (Paris et al,
2012) of the connectivity modelling system (CMS; Paris et al,
2013) to compute the transport and fate of the oil spilled in two
hypothetical scenarios (Table 1), with blowout characteristics
similar to DWH. DWH-like characteristics were applied because
the duration and extent of the DWH spill were large enough to
result in extensive fishery closures in the GoM.

The 0il-CMS performs Lagrangian particle tracking of multi-
fractional oil droplets released at the trap-height, i.e. the height of
the first intrusion where the droplets in the buoyant jet flow lose
their initial buoyancy and become neutrally buoyant (Socolofsky
et al., 2011). Particle transport calculations consider three-dimen-
sional ocean currents, temperature, salinity, multi-fractional
droplet buoyancy, biodegradation, dissolution, sedimentation,
and surface oil evaporation. A unique fourth order Runge—Kutta
spatial and temporal integration scheme forms the basis for parti-
cle advection in the 0il-CMS. Computation of the terminal veloc-
ity of a droplet is based on its density, size, and Reynolds
number, as well as on ambient conditions such as water tempera-
ture, salinity, density, and kinematic viscosity (Zheng et al,
2003).

The model output is saved every 2 h, and includes oil droplets’
effective density, size, location, and depth. The CMS horizontal
grid spacing is 0.04 degrees and includes 20 vertical layers. The
0il-CMS applies a multi-fractional droplet approach in which
each droplet includes multiple hydrocarbon fractions (Perlin
et al., 2020). The biodegradation dynamics of the present study
are based on high-pressure experiments and apply fraction-
specific decay rates (Paris ef al., 2012) to account for dissolution
processes where the droplet shrinks during the partitioning of oil
compounds in the water column (Jaggi et al, 2017). Post-
processing algorithms translate model outputs into oil concentra-
tions (Perlin et al., 2020).

Experimental setup

The total amount of spilled oil in the simulations is represented
in a release of 3000 oil droplets every 2h for 90d until 18 July
2010. The release depth is 1222 or 300 m above the Macondo well
depth, the estimated trap-height (Socolofsky et al., 2011). Initial
droplet diameters are drawn from a uniform distribution between
1 and 500 um. Each droplet released by the CMS model contains
three pseudo-components (fractions) accounting for the differen-
tial oil density as follows: 10% light oil of 800kgm > density,
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75% intermediate oil of 840 kgm™> density, and 15% heavy oil of
950kgm > density. The biodegradation half-life rates for the
light, intermediate, and heavy fractions are set to 30, 40, and
180 h, respectively, based on laboratory and observational studies
(Hazen et al.,, 2010; Schedler et al, 2014; Lindo-Atichati et al.,
2016). Evaporation half-life rate is set to 250 h (De Gouw et al,
2011) and horizontal diffusion is set to 10m?s~" (Okubo, 1971).

Ocean hydrodynamic forcing for the present study uses daily
output from the Hybrid Coordinate Ocean Model (HYCOM;
Chassignet et al., 2003) for the GoM region on a 0.04 degree hori-
zontal grid, including 40 vertical levels spanning from the surface
to 5500 m. HYCOM model employs data assimilation using the
Navy Coupled Ocean Data Assimilation, which assimilates avail-
able satellite altimeter and sea surface temperature observations,
as well as available temperature and salinity profiles from moored
buoys and ARGO floats. HYCOM output variables used for CMS
simulations include horizontal and vertical velocity components,
temperature, and salinity.

The simulation includes parameterization of the effects of sur-
face wind drift (Le Hénaff et al, 2012). Windstress components
from the 0.5-degree Navy Operational Global Atmospheric
Prediction System are interpolated into HYCOM GoM 0.04 de-
gree grid, and 3% of their values are added to the top level ocean
velocity horizontal components taking into the account the wind-
stress rotation. The corrected ocean velocity fields are then imple-
mented in the 0il-CMS.

Oil mass and concentration estimates from the oil-CMS
To obtain oil mass and concentrations from the 0il-CMS model
output, information about the oil flow rate is needed. In a simpli-
fied case of the constant flow rate during the oil-spill event, a
given number of total droplets released in the 0il-CMS simula-
tion, the estimated 7.3 x 10> tonne of crude oil is represented by
the total of 3.132 x 10° droplets. These values translate into the
233 kg of oil represented by a single oil droplet at each release
time in the oil-CMS model. Lastly, to obtain total petroleum
hydrocarbons (TPH), we multiply the mass by a factor of 0.97 as
TPH account for ~97% of oil (Overton et al., 2016). We approxi-
mate the droplet size distribution using the binned approach,
with droplets in the same bin representing similar mass of oil per
droplet, based on a lognormal distribution. We further compute
the scaling factor (Sp for each droplet as the ratio between the
current and initial masses. Oil mass at each output time is then
scaled to obtain effective oil mass at a given location, and
summed for all the droplets found at a given time-step in each
post-processing domain three-dimensional grid cell. The three-
dimensional post-processing domain is of 0.02-degree resolution,
with vertical layers of 0—1m (surface layer), 2-20, 20-40,...,
2480-2500 m. After the oil mass is computed for a given droplet
and a given output time, the effective oil mass from the droplets
found in that grid cell at a given time are summed.
Concentrations are obtained by normalizing the total oil mass to
the mass of water in the corresponding grid box, producing
three-dimensional concentrations across time (Perlin et al,
2020).

Spill scenarios

We simulate two spill scenarios (Table 1), one in the eastern and
one in the western GoM (E_GoM and W_GoM respectively) un-
der similar conditions to the DHW blowout. The spill scenarios
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are designed for alternative locations of a deep-sea blowout in the
GoM. The locations were chosen such that the water depth is
similar to that of the DWH accident, and thus the oil droplets are
released at the same trap-height depth of 1222m. The E_GoM
site is located in the eastern part of the GoM close to the Florida
peninsula and over the continental shelf break, in the “the elbow”
leasing block—an area, which was recently proposed for oil ex-
ploration and production (U\.S\. Department of the Interior,
2018). The W_GoM site is located in the western part of the
GoM, over an area with less steep bathymetry gradients, within
the “Keathley canyon” leasing block, a petroleum-rich area in
which multiple parties have leased the rights to drill (Smith,
2010).

Toxicity computation for the oil-CMS and virtual fishery
closures

Toxicity computations for the o0il-CMS are based on the recent
finding of the toxicity amplification because of the combined ef-
fect of PAH and ultraviolet radiation, phototoxicity (Lay et al,
2015), with PAH becoming toxic to early life stages of marine
organisms from a concentration of PAH=0.5ppb at the surface
and PAH=1ppb in deeper waters (Deepwater Horizon Natural
Resource Damage Assessment Trustees, 2016). Another recently
discovered toxic pathway is cardiotoxicity, i.e. the adverse effect
of PAH on heart development and function in fish embryos and
larvae (Deepwater Horizon Natural Resource Damage
Assessment Trustees, 2016). For cardiotoxicity, the toxicity
threshold is PAH=1ppb as well (Deepwater Horizon Natural
Resource Damage Assessment Trustees, 2016). We apply a linear
regression to compute the PAH-TPH linear relationship from the
Gulf Science Data (GSD), producing the following regression
equations:

log,((TPH+ 1) = 1.733 + 1.0074
x logo(PAH + 1) for surface. (1)

log,,(TPH + 1) = 1.58357 + 0.85257
x log1o(PAH + 1) for the water column.

(2)

More information about the toxicity computation is in the
Supplementary Section S1.

Daily closures are applied as a boundary of all grid cells that
contain toxic concentrations in the GoM (Figure 2) as computed
by the 0il-CMS model. The cumulative closures for both scenar-
ios are determined as the boundary of all daily closures per sce-
nario. MATLAB R2017b is used for all spatial analyses.

Fisheries data analysis

Three fisheries datasets are used in the analysis, which is con-
ducted in R version 3.4.3 (R Foundation, 2017). First, we use a
positional and behavioural dataset that is gathered by the on-
board fishery observer programme. These observer data are
recorded on a subset of trips by the GoM reef-fish fleet, where in-
dependent on-board observers record the time and location when
fishing gears are deployed and recovered. Second, a vessel moni-
toring system (VMS) dataset provides positional information
with approximately hourly resolution. VMS equipment has been
mandated on all GoM commercial fishing vessels with a reef fish

licence since 2006, irrespective of vessel size. Finally, revenue,
gear type and county-of-landing data are collated from manda-
tory logbook records. Integration of the three datasets (Figure 3) is
outlined below.

Data processing

Vessels that are actively engaged in fishing display characteristic
movement patterns as they deploy and recover gears (Bastardie
et al., 2010). These movement patterns can be decomposed into
quantifiable components of a vessel track, such as velocities and
turning angles. The movement variables can then be combined
with additional exogenous variables such as depth at location and
time of day to create signature sets of variables from which fishing
activity can be identified in vessel tracks (O’Farrell et al, 2017).
First, VMS data are processed to calculate the relevant movement
metrics. The distances and turning angles of successive VMS legs
are calculated using the spherical trigonometry functions and in
the R-package, geosphere (Hijmans, 2016). These distances and
the VMS time intervals are then used to calculate velocity. Time
of day is extracted directly from the VMS signal. After processing,
the derived variables are used to classify the VMS records into ei-
ther fishing or non-fishing, using a random forest classifier that
had been trained to recognize fishing behaviour using the
ground-truthed fishery observer dataset. Full details of VMS data
processing and the random forest training and testing protocol
are described in O’Farrell et al. (2017).

Calculating lost revenue by vessel and by county

To estimate an upper bound on the economic impacts from the
spill, a maximum loss scenario is used whereby any fishing that
took place within the simulated closed areas is assumed to be
“lost.” This is a maximum loss, because we would expect that
these displaced vessels would have moved to areas outside the
closed areas to fish and thereby would mitigate some of the losses.
For each day of the simulated oil spill, the relevant toxic concen-
tration polygon(s) are intersected with the VMS fishing records
for that day using the R-packages sp (Bivand et al., 2013) and ras-
ter (Hijmans, 2017). Fishing locations that fell within the poly-
gons are identified, and lost fishing is quantified for each trip as
the proportion of VMS records that fell within the polygons rela-
tive to the total number of fishing records for that trip. The
reported revenue in the merged logbook dataset is then adjusted
accordingly. For instance, if 30% of the VMS fishing records for a
vessel on a given trip falls within the polygon(s), it is assumed
that 30% of the reported revenue is lost. Finally, losses are aggre-
gated at county level using the merged logbook dataset, which
records the county where each trip is landed. County shapefiles
are downloaded from the United States Census Bureau website
(2018) and imported to R using the package rgdal (Bivand et al.,
2017).

Fishing analyses

After merging the logbook and VMS datasets, 101 bottom long-
line trips and 222 bandit-reel trips are available (Table 2). There
is a considerable spatial overlap of fishing grounds between the
two fleets, which is to be expected considering that both target
reef fish, albeit of differing species. Bandit-reel vessels originate in
more than twice as many counties (N=26) as bottom longline
vessels (N=11; Table 1) and the number of bandit-reel vessels
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Figure 2. Daily snapshots of a simulated oil spill for the eastern (E_GoM) and western (W_GoM) spill scenarios during (a, b) 5 May 2010; (c,
d) 29 June 2010. Polygons represent simulated fishery closures encompassing polycyclic aromatic hydrocarbons (PAH) concentrations higher

than 0.5 ppb at the surface (depth: 0-1m) and 1 ppb at deeper waters.
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Figure 3. Fisheries data analysis process.

(N=359) is an order of magnitude greater than the number of
bottom longline vessels (N = 38; Table 2).

Linking oil-spill economic impacts to social vulnerability

The SOVI (Cutter et al., 2003) provides a numerical social vulner-
ability score for each US County based on 29 variables derived
primarily from the US Census Bureau. The variables include

Mapped
fishing
locations

Fisheries
log book
data

Lost revenue
by county

Lost fishing
locations

Closed

polygons
from 3D oil

spill model

metrics of wealth, social status, gender, age, ethnicity, and health
insurance, among others. The dimensionality of the dataset is re-
duced to eight significant components using principal compo-
nents analysis, and the cardinalities of the components are then
adjusted so that higher SOVI scores indicate greater vulnerability.
We focus only on the counties that border the GoM.

To identify impacted counties in revenue losses and social vul-
nerability, we cross-reference the SOVI (2010-2014) scores for
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Table 2. Summary statistics of merged logbook and VMS datasets for two Gulf of Mexico reef-fish fleets during the simulated oil-spill fishery

closures.
Number of Number of VMS Number of VMS Number of Number
Fleet vessels records—fishing only records—total® fishing trips of counties
Bottom longline 38 31179 123685 101 11
Bandit-reel 359 70301 481391 222 26
?Includes VMS records classified as “in port” and “at sea but not fishing” (e.g. steaming).
Bottom longline Bandit reel
i
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Figure 4. Fishing activity in the Gulf of Mexico (GoM) during the simulated oil spills. Coloured heatmaps show the density of fishing activity
for bottom longline and bandit-reel. Greyscale heatmaps indicate the total number of trips made per county per fishery during the simulated
spill period, including trips that did not overlap with the simulated closures and would therefore not have been impacted. To maintain

confidentiality, fishing grid cells containing data from fewer than three vessels are not plotted. GoM states include Florida (FL), Alabama (AL),

Mississippi (MS), Louisiana (LA), and Texas (TX).

each county in our study with the predicted revenue losses result-
ing from the two spill scenarios for the two gear types. Revenues
and SOVI variables (V) were standardized for each impacted
county, i, relative to all fishing counties, k, for each combination
of a given spill (S) and fishing gear type (G;, G,):

Vie, — MG G
Via|s = #7 (3)
,G1,Gy

where 1y g ¢, is the mean revenue or SOVI across all fishing
counties, k, and gear types, and oy g, g, is the standard deviation.
The SOVI score is originally calculated as a relative measure of so-
cial vulnerability for a large number of counties, most of which
were not engaged in bandit or longline fishing during our study
period. Consequently, we standardize the SOVI score to express
the values relative only to counties in our study. A standardized
SOVI score of zero is the average score for the counties in our
study, and scores above or below zero respectively indicate coun-
ties that are above or below average vulnerability in our study.
Using this standardization, we can partition the counties into
four categories based on whether they lie above/below the means
for both SOVI and revenue. For example, a county could have
higher fishing revenues and at the same time be one of the most
socially vulnerable counties bordering the GoM.

Results

Commercial fishing data analysis indicates that bottom longline
fishing in the GoM is dominated by the Florida counties, and is

concentrated on the West Florida Shelf. In contrast, bandit-reel
fishing is more widespread across counties from all GoM states
(Figure 4), and the fishing activity in the Gulf is also more wide-
spread compared with bottom longline.

The Florida shelf spill (E_GoM) had a particularly large impact
on socially vulnerable counties, which engage in longline fishing,
with five impacted bottom longline counties (Figure 5, white tri-
angles) being either within or bordering the red quadrant of high-
est concern. At the other end of the spectrum, the Texas spill
(W_GoM) had a low impact on longlining counties, with only a
single impacted county of below average social vulnerability
(black triangle). For bandit-reel fishing the effect was milder, with
two socially vulnerable counties impacted in the E_GoM (white
circles), and one in the W_GoM (black circles).

Cumulative oil spill extents of the two scenarios reveal a large
spread covering more than half of the GoM waters (Figure 6).
Toxic concentrations of the E_GoM and W_GoM were limited,
covering the eastern and the northwestern areas of the GoM re-
spectively. In E_GoM, a considerable amount of oil entered the
Gulf Stream, transporting the oil northwards along the east
Florida shelf, whereas for W_GoM, oil did not enter the Gulf
Stream. The relative impact because of the fishery closures is evi-
dent across counties from most GoM states, mainly Florida for
E_GoM, and Texas for W_GoM (Figure 6). Relatively vulnerable
counties, which suffered high revenue loss are in south Texas and
central- and north-Florida (Figure 6, red shading). The effect on
the bandit-reel fishery is wider across counties compared with the
Bottom longline fishery, however most impacted counties are
characterized by either low revenue loss and low vulnerability
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Figure 5. Fishing revenue losses vs. social vulnerability index (SOVI)
scores for counties impacted by the two oil-spill scenarios. Values
are expressed in standard deviations, with zero representing the
average for all fishing counties, impacted or not. Higher SOVI scores
indicate greater social vulnerability to environmental hazards.
Marker shapes show gear types (triangles, bottom longline; circles,
bandit-reel) and shading indicates spill scenario (white, E_GoM;
black, W_GoM). Counties falling within the blue (lower left)
quadrant are those that suffered relatively little revenue losses and
are of low social vulnerability, and therefore may be considered of
the lowest concern. Counties in the red (upper right) quadrant are
those that suffered relatively high revenue losses and are also of high
social vulnerability, and are thus of the highest concern. Yellow and
magenta quadrants represent high SOVI + low revenue losses and
low SOVI + high revenue losses, respectively.

(blue) or low revenue loss and high vulnerability (yellow).
Counties with high revenue loss and low vulnerability (magenta)
are in located in northern Texas and northern Florida.

Discussion
Our study demonstrates that coupling a three-dimensional oil-
spill model with fishery vessel movement data, and SOVIs permit
estimation of county level impacts for given oil-spill scenarios.
The E_GoM and W_GoM are realistic and relevant oil scenarios
as they are situated both in active and under-consideration leas-
ing blocks. We show that Florida counties will be affected by the
E_GoM and Texas counties will be mainly affected by the
W_GoM scenario, yet fishing counties from other GoM states are
at some risk of impact as the choice of fishing grounds is dy-
namic. This study provides a glimpse into how each county is
susceptible to each spill scenario (Figure 6), providing important
insights at the county management level, facilitating a better un-
derstanding of the risk associated with the possible spill scenarios.
Similarly, these data are valuable for the fishers themselves, allow-
ing them to anticipate and prepare their own firm-level contin-
gency plans for a possible major spill.

The implementation of high-resolution vessel tracking systems
such as VMSs and automatic identification system heralds a new
era in fishery management (Russo et al, 2011). Prior to these
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systems, the spatial management of fishery was mostly limited to
self-reported data, which were assigned to coarse-scale manage-
ment zones (“statistical areas”), constraining their usefulness.
Modern tracking systems not only permit fishing vessel locations
to be pinpointed with GPS-level accuracy, but also permit vessel
activity to be inferred from movement and environmental varia-
bles (Bastardie et al., 2010). Deploying analytical tools such as
machine-learning algorithms and hidden Markov models have
delivered greatly increased accuracy over traditional approaches
such as speed filters (Joo et al, 2013; O’Farrell et al., 2017) and
even allows métiers to be inferred directly from vessel data (Russo
et al., 2011). Although further improvements in the data and ana-
Iytical methods are necessary—and indeed under way—the qual-
ity of the outputs is now sufficient that integration with spatial
tools such as three-dimensional oil-spill models as well as with
datasets such as habitat maps can create flexible analytical frame-
works that hold great promise for fishery science and policy.

The 2010-2014 SOVI score we use in our manuscript is calcu-
lated from 29 variables, including per capita income and percent-
age of the population employed in extractive industries such as
fishing. Although we plot SOVT scores against fishing revenues
for impacted counties, we do not model either variable as a func-
tion of the other because measures of revenue would be included
in both the predictors and the response. Regardless of endogene-
ity concerns, however, any correlation between the SOVI score
and fishery revenue is likely to be small given that SOVT is calcu-
lated using numerous non-revenue variables (e.g. age, ethnicity,
gender). We formally confirm that no significant correlation
exists by calculating Pearson correlation coefficients for the SOVI
scores and bandit revenues (rho=—0.02; p=0.917) and for
SOVI scores and longline revenues (rho = 0.4; p=0.223).

The SOVT score collapses complex, high-dimensional socio-
economic information into a tractable scalar quantity. Naturally,
there are drawbacks in doing so. Some workers have found the
scores are sensitive to the selection of variables and their repre-
sentation, as well as to the relative weighting of the variables used
in calculating the index (Jones and Andrey, 2007). The adaptabil-
ity of the methodology to contexts beyond the United States is
also questionable (Boruff and Cutter, 2007). However, in con-
ducting a formal sensitivity analysis on SOVI within its geo-
graphic context, Schmidtlein et al. (2008) found the index to be
mostly robust. SOVT has also been lauded for its approach to in-
tegrating theory, conceptualization, and variable selection (Adger
et al., 2005; Fiissel, 2007). When applied in the geographical con-
text in which the index was developed, the index lends itself well
to mapping vulnerability across space (Cutter and Finch, 2008),
as we have done in our study.

We chose to use the bandit-reel and longline reef-fish fishery
for a number of reasons. First, both fishery had the VMS system
installed for a number of years prior to our study period, amelio-
rating concerns about data quality problems during system im-
plementation and mitigating any short-term behavioural changes
induced by the recent installation of any monitoring system.
Second, bandit-reel and longline are two of the dominant gear
types in the GoM, comprising relatively large fleets and increasing
the number of vessels that would have been fishing during our
simulated study period. And third, the bandit-reel and longline
reef-fish fishery employ a large number of individuals in the
coastal counties of the GoM, and are thus part of a tightly cou-
pled social-ecological system that may be considered particularly
vulnerable to disturbances such as oil spills.
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Figure 6. Relative impact of the simulated oil spills on the Gulf of Mexico (GoM) counties given fishing revenue loss and social vulnerability
indices (SOVIs) during the simulated spill period. “+” and “—" represent above and below the mean value, with colours similar to Figure 5.
E_GoM and W_GoM are simulated oil spills on the east and west GoM of the same magnitude as the Deepwater Horizon spill. The location
of the simulated wellhead is marked with “x.” Black dotted polygons are the boundary of all daily closures per scenario. Fishing gear categories
include bandit-reel and bottom longline. GoM states include Florida (FL), Alabama (AL), Mississippi (MS), Louisiana (LA), and Texas (TX).

The spills simulated here represent relevant scenarios in areas,
which include active leases (Smith, 2010; U\.S\. Department of
the Interior, 2018; Li and Johnson, 2019). These locations provide
a good spatial geographical coverage for the US region of the
GoM (Figure 6). The similarity to the DWH in spill characteris-
tics provides a vivid point of reference as for the possible out-
comes of such spills, as well as representing ultra-deep blowout
scenarios, which are difficult to contain and are therefore suscep-
tible for longer spill durations. Future work will explore hypo-
thetical spills with variable characteristics including other
locations, different depths, spill durations, and flow-rates.

Our framework is also relevant of marine spatial planning
(MSP; Douvere, 2008), an integrated management approach,
which emerged in response to increasing pressure on marine nat-
ural resources (Millennium Ecosystem Assessment, 2005). MSP
aims to balance stakeholder activities, which spatially interact
with each other and with the marine environment, e.g. fishery,
offshore petroleum industry, and shipping. This is especially rele-
vant in environments such as the GoM, in which highly produc-
tive fishery and oil extraction infrastructure often overlap,
resulting in immense anthropogenic pressure, with millions of
people exploiting its resources for livelihood, energy, and nutri-
tion (Yéanez-Arancibia and Day, 2004). By predicting the spatial

distribution of water-borne pollutants and the socio-economic
consequences for fishery-dependent coastal populations, our
framework can provide valuable inputs to a regional GoM MSP
process within frameworks such as the Gulf of Mexico Alliance,
which promotes the use of ecosystem-based management at a re-
gional level, considering ecological, social, and economic short-
and long-term objectives (Carollo and Reed, 2010). Our frame-
work would allow stakeholders to estimate the socio-economic
impacts of an oil spill at a given location, varying parameters
such as the magnitude or duration of the spill. The various out-
puts can be used as impact “visualizations” during scenario plan-
ning, helping stakeholders to make informed decisions
considering the consequences of allowing oil wells to be posi-
tioned at various locations.

Our study synthesizes physical, behavioural, and socio-
economic data from multiple sources to understand how oil spills
could affect fishing-dependent communities in the GoM. We
quantify and evaluate our results in a spatial context, providing a
useful framework not only for federal policy-makers, but also for
state, county, and firm-level management. Examining the spa-
tially explicit impacts revealed by this framework can facilitate ef-
ficient allocation of resources to impacted counties in case of a
major oil spill and in planning for further oil extraction in the
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GoM. Future work includes incorporation of finer elements
within counties and communities, including a more granular spa-
tial analysis of the level of dependence on fishery (Jacob et al,
2010), as well as integrating spatially explicit discrete-choice
models to improve predictions of fishing displacement by oil
spills (Berman, 2006).

Supplementary data
Supplementary material is available at the ICESJMS online ver-
sion of the manuscript.
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