DR. LEWIS A.K. BARNETT (Orcid ID : 0000-0002-9381-8375)
DR. NIS SAND JACOBSEN (Orcid ID : 0000-0001-8754-4518)
DR. JAMES T. THORSON (Orcid ID : 0000-0001-7415-1010)

Realizing the potential of trait-based approaches to advance fisheries science C

Lewis A.K. Barnett* ${ }^{* \square \#, ~ N i s ~ S . ~ J a c o b s e n ~}{ }^{\# \square}$, James T. Thorson ${ }^{\# \ddagger}$, Jason M. Cope ${ }^{\#}$

* Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
\# Fisheries Resource Assessment and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98112, USA
*Present address: Resource Assessment and Conservation Engineering Division, Alaska
Fisheries Science Center, National Marine Fisheries Service, 7600 Sand Point Way NE, Seattle, Washington 98115, USA
\ddagger Present address: Habitat and Ecosystem Process Research Program, Alaska Fisheries Science
Center, National Marine Fisheries Service, 7600 Sand Point Way NE, Seattle, WA 98115, USA

* Corresponding author: Lewis Barnett, lewis.barnett@noaa.gov

Running title: Trait-based fisheries science

Abstract

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/FAF. 12395

This article is protected by copyright. All rights reserved

Analyzing how fish populations and their ecological communities respond to perturbations such as fishing and environmental variation is crucial to fisheries science. Researchers often predict fish population dynamics using species-level life-history parameters that are treated as fixed over time, while ignoring the impact of intraspecific variation on ecosystem dynamics. However, there is increasing recognition of the need to include processes operating at ecosystem levels (changes in drivers of productivity) while also accounting for variation over space, time, and among individuals. To address similar challenges, community ecologists studying plants, insects, and other taxa inereasingly measure phenotypic characteristics of individual animals that affect fitness or ecological function (termed "functional traits"). Here, we review the history of traitbased methods in fish and other taxa, and argue that fisheries science could see benefits by integrating trait-based approaches within existing fisheries analyses. We argue that measuring and modeling functional traits can improve estimates of population and community dynamics, and rapidly detect responses to fishing and environmental drivers. We support this claim using three concrete examples: how trait-based approaches could account for time-varying parameters in population models; improve fisheries management and harvest control rules; and inform sizebased models of marine communities. We then present a step-by-step primer for how trait-based methods could be adapted to complement existing models and analyses in fisheries science. Finally, we call for the creation and expansion of publicly available trait databases to facilitate adapting trait-based methods in fisheries science, to complement existing public databases of life-history parameters for marine organisms.
Keywords: community ecology, ecosystem-based fishery management, functional trait, population dynamics, size-spectrum, stock assessment

1. What is trait-based ecology and why might it be useful in fisheries?

Trait-based analysis involves analyzing ecological dynamics using measurable characteristics of individuals instead of average demographic rates estimated for the population to quantify changes instatus of ecological communities. Here, we briefly review advances in trait-based ecology and explain how these novel insights and methods could improve fisheries management. We argue that trait-based approaches offer solutions to three major challenges in modern aquatic conservation and fisheries science, particularly those related to implementing ecosystem-based management:

1. accounting for time-varying processes in resource assessments (section 2.1);

This article is protected by copyright. All rights reserved
2. assessing the status and dynamics of communities (sections 2.2, 3.3); and
3. determining harvesting strategy at the community scale (sections $1,2.2,3.3$).

We describe a framework to address these challenges with trait-based approaches (section 3) and propose specific actions to execute the framework (section 4). Rather than a complete synthesis, we focus on a set of examples where trait-based approaches could be applied to management most seamlessly or with greatest benefit.

To distinguish trait-based approaches from the population-based methods typically employed in fisheries science, we define a trait as any characteristic of the phenotype that could affect ecological function or performance and can be measured on an individual sampled at a single moment in time. Common examples of traits are measures of morphology, physiology, and phenology. Confusion about the specific definition of a trait persists in the primary literature, where some include population-level quantities such as the finite rate of population increase (Violle et al., 2007), or life-history characteristics that are asymptotic expectations of some individual trait. Our trait definition follows the stricter, though commonly applied ecological definition of something individually measurable and functional, i.e., traits that influence fitness through their relationship with growth, reproduction and survival (McGill, Enquist, Weiher, \& Westoby, 2006). This is different than quantities like maximum body length, which is a population-level parameter (see Table 1 for examples of traits and parameters).

Trait-based methods are deepening the understanding of community ecology beyond that established by more traditional, population- or species-based approaches (McGill et al., 2006; Violle et al., 2007). This is particularly true with respect to understanding the influence of biotic and abiotic factors on processes regulating community structure and how this affects predicted responses of ecosystem functions and services to environmental change (Kiørboe, Visser, \& Andersen, 2018; Lavorel \& Garnier, 2002; Litchman, Pinto, Klausmeier, Thomas, \& Yoshiyama, 2010; McGill et al., 2006; Mouillot, Graham, Villéger, Mason, \& Bellwood, 2013). Traditional approaches that focus on comparing point-values of species parameters will likely underestimate the effect of species on one another due to niche overlap (by not properly accounting for niche breadth), and thus are poor predictors of how communities will respond to change (Violle et al., 2012). Trait-based methods provide a way to quantify population and community structure by accounting for variability among individuals in a common currency across levels of ecological organization (i.e., trait variation or diversity). Predicting how fitness changes with environmental

This article is protected by copyright. All rights reserved
variation is a common goal across many fields of ecology, including fisheries, where researchers attempt to translate the effect of environmental fluctuations on individual organisms across the food web to changes in vital rates and stock productivity. Fitness-environment relationships are typically estimated from observed correlations and are unlikely to remain consistent over space and time (Deyle et al., 2013; Holt \& Gaines, 1992). Traits provide a mechanistic basis for developing fitness-environment relationships, and therefore show promise for predicting population and community responses to environmental change (Laughlin \& Messier, 2015).

Fisheries science faces similar challenges to community ecology given increasing calls to incorporate assessments of ecosystem status and dynamics into policy through ecosystem-based fishery management (EBFM). As EBFM has created a desire to incorporate species interactions into management decisions, the natural first step is to quantify pairwise trophic interactions grouped by taxonomy and ignore within-group variation as in classical community ecology theory (Bolnick et al., 2011). However, we know that trait variation within species is often broad and similar to that among species (Kattge et al., 2011; Messier, McGill, \& Lechowicz, 2010). Further, intraspecific trait change has a comparable effect to interspecific change in terms of influence on community biomass, structure, and function (Des Roches et al., 2018). For example, trophic level of North Sea fishes is well explained by individual body size when summarized at the community scale, but not when size is summarized by species (Jennings, Pinnegar, Polunin, \& Boon, 2001). Despite the clear ecological significance of intraspecific variation, it is not often monitored (Mimura et al., 2017). When individual traits are measured, the intraspecific variation is often lost in the analysis stage. Inference can change greatly depending on whether intraspecific variation is available to provide context (Bolnick et al., 2011; Des Roches et al., 2018), for example, when attempting to discriminate species based on general phenotypic characteristics (Fig. 1). Trait-based approaches incorporate intraspecific variation, an important consideration given the magnitude and role of such variation in population and community stability (Mimura et al., 2017), for example, through effects on the diversity of responses to environmental variation (Barnett, Baskett, \& Botsford, 2015; Bolnick et al., 2011; Elmqvist et al., 2003; Schindler et al., 2010). Although increasing population and community stability is not often an explicit goal of traditional single-species fishery management, it is an objective of EBFM, and reducing variability in productivity and exploitable biomass can provide large socioeconomic benefits to fishing communities (Badjeck, Allison, Halls, \& Dulvy, 2010;

Sanchirico, Smith, \& Lipton, 2008; Sethi, 2010). Trait-based approaches will likely improve assessment of the structure and dynamics of ecosystems and interpretation of the effect on services (i.e., sustainable fisheries).

One critical challenge for the theory underlying EBFM is predicting which harvest policies are most efficient at the ecosystem level, i.e., those that best satisfy a trade-off between maximizing fishery yield or profit and producing a desired community state (e.g., a sustainable biomass level) (Andersen, Brander, \& Ravn-Jonsen, 2015; Jacobsen, Burgess, \& Andersen, 2017). For example, traditional population-based perspectives on optimal multispecies fishery management typically suggested that the pathway to efficiency was selective targeting of only the most productive and marketable species at mature sizes; however, contradictory results from modern ecosystem models have led some researchers to the conclusion that unselective fishing, or harvesting all species and sizes in proportion to their productivity would produce better outcomes (Garcia et al., 2012). This question of whether and how to selectively fish is best addressed with trait-based ecosystem models of individual size. Fish vital rates are most affected by size, and body size also determines the distribution of abundance among marine species (Sheldon and Parsons 1967, Sheldon et al., 1970) through basic physiological constraints of predator-prey interactions (Andersen \& Beyer, 2006). Recently-developed community models using individual size as a functional trait are providing general insights for multispecies harvest strategies (Andersen, Brander, et al., 2015; Jacobsen et al., 2017; Jacobsen, Gislason, \& Andersen, 2014), and we expect that development and use of similar trait-based models will be critical for designing specific policy actions and evaluating their performance toward the implementation of EBFM.

We assert that adopting trait-based approaches would generate rapid advances in fisheries science, improving our estimation and understanding of fish population and ecosystem dynamics, and influence fisheries management decisions. From an extreme perspective, this could mean using functional classifications arising from similarities in phenotypic characteristics at the individual scale rather than population or taxonomic (e.g., species) levels. More realistically, given the structure of established fishery management regimes and the corresponding organismal scale of questions in this field, trait-based approaches will likely supplement-not usurp-the traditional population-based approach. We propose integrating trait-based perspectives into existing management frameworks to reveal how trait distributions
are likely to bias population-level measures of productivity and modify optimal harvesting strategies. In addition, trait-based approaches could help by creating novel methods to address major challenges for EBFM. Trait-based approaches are especially suited for addressing these challenges, enabling incorporation of temporal variation in growth, reproduction and survival into assessments of resource productivity and status via rapid, spatially-explicit, direct measurements at the individual level where interactions and their consequences are realized. As the scope of fisheries science expands from populations to ecosystems, we must learn from community ecology. To this end, we briefly review the advances of trait-based approaches in community ecology and related fields to determine how such approaches can support the evolution of ideas in fisheries science.

1.1 Use of trait-based approaches across ecological fields

Usage of trait-based approaches is increasing rapidly within ecology as a whole, but uptake of these ideas is heterogeneous among subfields (Fig. 2). The modern origins of trait-based approaches arose from plant community ecology (Lavorel \& Garnier, 2002; McGill et al., 2006; Westoby \& Wright, 2006), and this remains the most active field using trait-based methods. At a broader scale, trait-based approaches appear more commonly in terrestrial than aquatic literature. In aquatic fields, plankton community ecology is an early-adopter of trait-based methods (Litchman \& Klausmeier, 2008; Litchman, Klausmeier, Schofield, \& Falkowski, 2007; Litchman et al., 2010). Trait-based approaches have seen little use in fisheries science aside from indirect connections through basic fish ecology (Stuart-Smith et al., 2013), particularly in stream (Frimpong \& Angermeier, 2010) and coral reef systems (Mouillot et al., 2013), and analysis of marine organismal size distributions (Andersen, Jacobsen, \& Farnsworth, 2015; Kerr \& Dickie, 2001; Kiørboe et al., 2018; Sheldon \& Parsons, 1967; Sheldon, Prakash, \& Sutcliffe Jr, 1972).

Community ecologists have rapidly popularized the idea of using trait-based approaches to seek general answers to the fundamental ecological question of what drives patterns of community structure in space and time (McGill et al., 2006). Such efforts aim to reconnect intraspecific and interspecific trait variation to niche concepts (Hutchinson, 1957; MacArthur \& Wilson, 1967) and modern coexistence theory (Chesson, 2000), and seek to explain community assembly (Ackerly \& Cornwell, 2007; Violle et al., 2012) and response of ecosystem structure and function to disturbance and environmental change in systems from forests to coral reefs (Mouillot et al., 2013). With such efforts has come the realization that the magnitude of

This article is protected by copyright. All rights reserved
intraspecific and interspecific variation are more comparable in plant communities than previously thought (Kattge et al., 2011; Messier et al., 2010). Since individual variation can change the expected outcome of ecological interactions (Bolnick et al., 2011), it is perhaps not surprising that this renewed focus on individual variation has led to different insights than provided by the more typical approach of comparing mean characteristics among species (Violle et al., 2012). If this refreshed perspective on intra- and inter-specific variation is applied to fish communities, there could be profound insights for basic fish ecology regarding the contributions of biotic and abiotic interactions to aquatic food web structure and how energy fluxes vary in space and time with environmental change (see sections 2.2-3.2).

Trait-based approaches are not only influencing the basic ecological sciences, but also applications to restoration and management. Trait-based methods are facilitating the understanding of how ecosystem function and services are related not only to species diversity, but to the distribution of functional traits within communities (Enquist et al., 2015; Laughlin, 2014). For example, Laughlin (2014) proposed a framework of trait-based models to explore the most efficient paths to achieving restoration targets described with functional traits by using assemblage structures to define target and actionable benchmarks to improve ecosystem function. Researchers are using a similar mapping of biodiversity, traits, and function to predict change in ecosystem function under a variable environment (Enquist et al., 2015). Analogously, fisheries managers could define aquatic community structures that maximize sustainable fishery yield and use these as biological reference points to implement EBFM (see sections 2.3, 3.3).

Following on the trait-based revolution in plant community ecology, researchers in a broad array of systems are calling for advancement in their field through incorporation of traitbased approaches. Fungal ecologists have a vision that these approaches and development of relevant databases will advance their ability to describe life-history variation, succession, and spatial community structure (Aguilar-Trigueros et al., 2015; Chagnon, Bradley, Maherali, \& Klironomos, 2013). Similarly, microbial ecologists are promoting trait-based approaches to explore life-history variation and estimate biodiversity-ecosystem-function relationships (Krause et al., 2014). In wetland plant ecology, extensions of terrestrial plant trait-based approaches could help identify traits that drive ecosystem service provisioning (Moor et al., 2017). Applications such as these have use in the field of fisheries, enabling translation of life-history variation directly and efficiently into effects on stock productivity and catch limits in space or
over time (see section 2.1). The above are just a few examples of how bringing trait-based approaches to new fields can provide novel insight and perspective. The following sections describe our vision for how an infusion of trait-based approaches in fisheries offers similar benefits as those seen in other disparate fields.

1.2 Current and past use of trait-based perspectives in fisheries

Aquatic populations and the individuals that compose them present sampling challenges different from many plant and terrestrial animals. In addition to the difficulty of direct visibility and threedimensional movement capacity, surveys of marine species often remove individuals from their habitat (via capture) and require destructive sampling that eliminates the opportunity to determine how traits vary over time within individuals (e., repeated measures).

Despite the limitations and challenges of sampling the aquatic system, individual traits were recognized by early fisheries researchers as an important source of information to determine the processes driving observations of large fluctuations in fisheries catches (Smith, 1994). Specifically, the size and maturation state of individuals provided insight into variation in reproductive potential (Holt, 1891, 1895) and cohort strength and distribution (Hjort \& Petersen, 1905). The hypotheses and theories that emerged became the foundation of the rapid advancement of ecological and population modelling and parameter estimation that began in the early-to-middle $20^{\text {th }}$ century (culminating in Beverton \& Holt, 1957; Kingsland, 1995; with earlier work reviewed by Quinn, 2003).

Biomass dynamic models and size- or age-structured models (using population- level parameters determined outside the model) were the most prevalent fisheries modelling approaches for decades, though approaches such as catch curve and length frequency analysis were explicitly trait-based (Gulland, 1983; Quinn \& Deriso, 1999). Formal inclusion of traits in fisheries models emerged with the development of size- and age-structured integrated population models (Fournier \& Archibald, 1982; Maunder \& Punt, 2013). These models are fit to a variety of data, including individual-level metrics like size at age and maturity, to estimate population parameters and predict stock status (Dichmont et al., 2016; Methot \& Wetzel, 2013). Trait information is highly valued in these models, often improving estimation of dynamics (Wetzel \& Punt, 2015) and enabling the modelling of coarse intraspecific variation in growth over space or time (Methot \& Wetzel, 2013; Taylor \& Methot, 2013).

This article is protected by copyright. All rights reserved

As fisheries science focused mainly on population modelling, patterns and theory of life histories started emerging (Beverton \& Holt, 1959). Note that although life-history characteristics were often referred to as traits, they do not meet our trait definition here. Nonetheless, relationships between growth, longevity, mortality and reproduction were used to produce predictive life-history patterns (Charnov, Gislason, \& Pope, 2013; Then, Hoenig, Hall, \& Hewitt, 2015; Thorson, Munch, Cope, \& Gao, 2017). These patterns were combined to form life-history strategies (e.g., slow growing, long-lived, opportunistic strategists; Adams, 1980; King \& MeFarlane, 2003; Winemiller \& Rose, 1992), all dictated by population level parameters, but implicitly driven by traits (Chapman \& Robson, 1960; Roff, 2002; Stearns, 1992). Increasingly, researchers are recognizing the importance of incorporating individual variation in estimation of growth, mortality (e.g., e.g., Jacobsen, Essington, \& Thorson, 2018; Laslett, Eveson, \& Polacheck, 2004; Pilling, Kirkwood, \& Walker, 2002; Sinclair, Swain, \& Hanson, 2002; Wang \& Ellis, 2005) and reproduction (Rowe, Hutchings, Skjæraasen, \& Bezanson, 2008; Scott \& Heikkonen, 2012). This is particularly true as it relates to the increasing interest in the influence of environment, habitat (Hutchings et al., 2007; Morrongiello \& Thresher, 2015) and fishing (Lowerre-Barbieri, Ganias, Saborido-Rey, Murua, \& Hunter, 2011; Wang, Chen, Hsu, \& Shen, 2017) on the relative success of alternative life-history strategies among individuals within a population (Conover, Arnott, Walsh, \& Munch, 2005).

2. Potential applications for trait-based fisheries biology

Given the demonstrated utility of trait-based methods in community ecology we highlight a few potential applieations of trait-based methods in fisheries biology. We emphasize how modeling, monitoring, and managing based on traits such as individual size can facilitate better management outcomes.

2.1 "Parameters that aren't" and time-varying processes

For over six decades, fisheries scientists have relied on fitting models to data under the assumption that many processes can be approximated using life-history parameters that are constant over time; however, many processes (e.g., somatic growth and natural mortality) clearly vary among years due to density dependence and environmental variation (Thorson, Monnahan, \& Cope, 2015). Therefore, population parameters are increasingly understood to actually be variables, and ideally, they are predicted from dynamics operating at the level of individual

This article is protected by copyright. All rights reserved
decision-making and fitness optimization. Hilborn and Walters (1992, pg. 347) called this phenomenon "parameters that aren't," and it remains one of the largest issues in fisheries population dynamics (e.g., Sampson \& Scott, 2012). Certainly, stock assessment scientists often update parameters as new information becomes available and sometimes use empirical estimates to inform time-varying vital rates; yet this approach is constrained by access to data and appropriate statistical techniques and is potentially confounded by simultaneous changes in exogenous factors such as fishing mortality and selectivity. Recent advances in state-space models are making it increasingly feasible to predict time-varying parameters (using temporal covariates or residual-error terms), but simply estimating additional random-effects (i.e., allowing slopes to vary with time) does not resolve the larger question: Why do parameters change, and how can we efficiently measure such changes from field observations?

We therefore predict great benefits from using functional traits (as measured from field samples) to mechanistically inform time-varying parameters as specified in population models. For example, researchers have found that they can better predict recruitment using realized spawning output rather than spawning biomass estimated from fixed size-fecundity relationships in population models (Morgan, Perez-Rodriguez, \& Saborido-Rey, 2011). Therefore, annual sampling for traits like ovary weight and development, adult lipid concentration, and reproductive investment (e.g., spawning frequency) will often improve recruitment predictions for fish populations. Similarly, changes in weight-at-length (a trait called "condition") is likely to indicate changes in resource availability or abundance of competitors. For example, recent large increases in abundance of Baltic cod (Gadus morhua, Gadidae) were associated with decreasing condition (Svedäng \& Hornborg, 2014). In some cases, a large decrease in body condition could indicate environmental conditions that are sufficiently poor to cause adult starvation and an associated increase in natural mortality (e.g., for Gulf of Alaska Pacific cod (Gadus macrocephalus, Gadidae) during the 2014-2016 marine heatwave, Barbeaux et al., 2017, see Figs. 2.23-2.26). Furthermore, trends in natural mortality can be detected from survey data of length or weight data alone when combined with basic catch information, leading to improved estimates of population biomass and the drivers of biomass dynamics (Jacobsen et al., 2018). In cases where a theoretical link exists between a trait and more than one biological process (e.g., body condition affecting both natural mortality and reproductive output), analysts could explore
models that include one or the other linkage and base resulting management advice upon an ensemble of both models.

2.2 Expanding the role of traits in fisheries management: towards trait-based harvest control rules and ecosystem indicators

Fisheries management scientists use trait-based methods intermittently, and greater recognition of existing trait-based management could lead to improved coordination of research and management changes among regions. For example, fisheries researchers and managers already consider traits when discussing: (1) protection of forage fishes, (2) maintenance of size diversity and ecological integrity more generally, and (3) consequences of global change.

An active debate is whether rates of fishing should be lower for "forage fishes" than that recommended from single-species assessment models. Advising lower fishing rates for forage fishes is often justified by claims that their abundance and nutritional density supports productivity of many predators (Alder, Campbell, Karpouzi, Kaschner, \& Pauly, 2008; Pikitch et al., 2012; Pikitch et al., 2014; Trites \& Donnelly, 2003). Forage fishes are often defined as species having a low maximum age, small asymptotic size, and low trophic position within a community (Rountos, 2016). Fisheries managers are therefore discussing whether management actions should protect species with typical trait values (small body sizes) that correlate with ecological function (high production per biomass; Engelhard et al., 2014). Fisheries managers concerned with predator forage could instead modify management measures to achieve a target biomass of small-bodied individuals, without explicit consideration of the species comprising these individuals (i.e., including juveniles of species with larger asymptotic body sizes). Another relevant trait distinction that managers might consider is separate measures for demersal and pelagic forage fishes, or targeting management actions based on functional traits that define positions of individuals in food webs (as opposed to the mean trophic level of a species).

Similarly, fisheries managers in Europe and elsewhere have increasingly discussed a "stop-light" approach. This refers to management based on community-level control rules derived from threshold responses in indicators of change in ecosystem structure (Jennings, 2005), which are often related to size structure (Greenstreet et al., 2011; Houle, Farnsworth, Rossberg, \& Reid, 2012), e.g., the Large Fish Indicator, slope of the size spectrum, or mean body length. This community-level control rule can be interpreted as an effort to maintain diversity in a functional trait (individual size), and we foresee future efforts to maintain functional diversity

This article is protected by copyright. All rights reserved
or desired forms of trait distributions in a range of traits and life-histories (Pecuchet et al., 2017). Likewise, fisheries management councils in the United States are increasingly interested in results from integrated ecosystem assessments (Levin, Fogarty, Murawski, \& Fluharty, 2009; PFMC, 2013), and ecosystem assessments in the future may include trait-based management indicators.

To implement trait-based ecology into management of marine resources, target reference points for indicators need to be set for trait-distributions, on the level of stocks and ecosystems. These targets need to be agreed upon with collaboration among stakeholders, managers, and scientists. Involvement of managers and stakeholders is important for collaboration, data collection, and development of robust trait-based indicators. Many trait-based targets are set by reference to unfished states (e.g., size spectrum slope or age distribution within a stock), and since these are rarely available from empirical data, efforts in modeling and theoretical ecology are required to set baseline values. A major challenge for scientists is to communicate and develop target values of trait indicators.

A practical application of trait-based management to fisheries would benefit contemporary efforts to move towards ecosystem-based fisheries management (Skern-Mauritzen et al., 2016). Trait-based applications can be used as specific tools to meet national and international legislation and agreements. Potential candidate traits for ecosystems are size distributions, trait diversity, or prevalence of specific desired traits. An example where direct application of a trait-based framework is useful is the European Marine Strategy Framework Directive, which requires the use of indicators to reach 'good ecological status.' By being readily measurable and potentially comparable using available historical data, trait-based indicators have the potential to be an invaluable supplement to current management practices in this framework. Additionally, trait distributions could be a valuable tool for management in terms of observing gradual ecosystem change due to a variety of anthropogenic impacts, including overfishing and climate change.

Climate change presents a major challenge to fisheries management, where there is much room for improvement in how climate information is used across the science-policy interface (Karp et al., 2019). Climate influences fish at the individual level where, e.g., temperature influences metabolism and growth according to a thermal tolerance function. As a result of this, environmental trends can influence stock productivity and distribution along with the ability to
detect such changes via monitoring and population modeling. Recent recommendations for incorporating climate in fisheries management include establishing mechanistic drivers of biological change, accounting for intraspecific variation, and the expansion of monitoring efforts for the rapid detection of responses to a changing environment (Karp et al., 2019), all of which are strengths of the trait-based approach. Monitoring changes in traits across an ecosystem will be important to measure complex system-level responses to global change (Kiørboe et al., 2018), informing decisions such as the reduction of catch limits because of decreases in ecosystem productivity. Specifically, changes in traits such as body condition or metabolic rates (as measured by, e.g., RNA expression and hormone concentrations) may be useful indicators of regional environmental changes that otherwise may be obscured when only inspecting species-by-species responses. Trait monitoring programs would complement ongoing efforts to categorize the intrinsic vulnerability of species to climate change (Hare et al., 2016) through rapid detection of climate-driven changes in productivity and community structure.

2.3 Trait-based models to inform ecosystem-based management

Management of marine resources has improved drastically in recent years (Worm et al., 2009), but this is mainly due to increased attention to rebuilding overfished stocks on a single species level (Hilborn \& Ovando, 2014; Wetzel \& Punt, 2016). Even though ecosystem-based fisheries management (EBFM) has been promoted for over a decade (Pikitch et al., 2004), it has still struggled to make an impact on tactical management (Skern-Mauritzen et al., 2016). Multispecies trait-based models can provide strategic guidance to inform future tactical applications of EBFM by predicting the influence of fishing and climate change on ecosystem structure and function.

A common problem in ecosystem modelling is the accelerating rate of increase in the number of estimated parameters given an increase in the number of modeled species. For example, an ecosystem model that estimates all pairwise species interactions will have N^{2} interaction parameters for N species. This increase in model complexity ultimately causes large structural uncertainty (Collie et al., 2014). A suite of models commonly referred to as 'size spectrum models' remedy this by expressing the community state as a distribution of abundance of traits rather than taxonomic units (Blanchard, Heneghan, Everett, Trebilco, \& Richardson, 2017). Individual body size is often the trait used to describe community state (Andersen, Jacobsen, et al., 2015) because this trait influences metabolic rates (West, Brown, \& Enquist,
1997), prey size (Barnes, Maxwell, Reuman, \& Jennings, 2010; Gilljam et al., 2011), swimming performance (Ware, 1978) and the biomass distribution of individuals (Sheldon \& Parsons, 1967; Sheldon et al., 1972). The assumption that individual body size governs community processes can result in a model with a fixed number of parameters regardless of the number of species. We introduce size-spectrum models below as an example of trait-based ecosystem modelling, while noting that some current applications of these models are not entirely trait-based (e.g., in cases where asymptotic size is defined for each species).

Size spectrum models are structured physiologically, where encounter rates (leading to feeding and subsequently growth), mortality, and reproduction are calculated on the level of the individual (as a function of their size). These sub-models are often scaled up to the population level using the McKendrick-Von Foerster equation

$$
\frac{\partial n(w)}{\partial t}+\frac{\partial g(w) n(w)}{\partial w}=-\mu(w) n(w)
$$

where $n(w)$ is the number of individuals at weight w, a vector of which describes the size spectrum, t is time, g is growth rate and μ is mortality. The equation is supplemented by a boundary condition $g\left(w_{0}\right) n\left(w_{0}\right)=R$, where R is the number of recruits entering the population per unit time. It is clear from the McKendrick-Von Foerster equation that the rate of change in numbers in a weight class (the first term on the left-hand side) depends on two things: how many die before they grow larger (the term on the right-hand side), and how many grow into the next size class (the second term on the left-hand side). In the dynamic population model, researchers can specify recruitment, growth or mortality to vary over time (depending on the number of conspecific adults, predators and prey).

The simplest multispecies size-spectrum models assume that there is no difference between species, and therefore individual size determines rates of growth, mortality, and reproduction. This simple ecosystem model is termed 'the community model' by Andersen et al. (2015). These models are most often used to test the sensitivity of size spectra to, e.g., fishing (Rochet \& Benoît, 2011), life history diversity (Zhang, Thygesen, Knudsen, \& Andersen, 2013), and the prevalence of different feeding pathways (e.g., benthic or pelagic; Blanchard et al., 2009).

Size-spectrum models can also be defined to include differences in asymptotic size among species, using this difference to drive differences in age-specific growth, mortality (due
to, e.g., predator gape limitation), and reproductive rates among species (Andersen \& Beyer, 2006; Gislason, Daan, Rice, \& Pope, 2010). The inclusion of asymptotic size allows the models to distinguish species and specify recruitment as a function of the abundance of mature individuals within asymptotic size groups. The models track biomass moving through size classes by growth and predation, and are therefore suitable to predict, e.g., how community structure and fishery yield is influenced by size-selective fishing (Andersen \& Pedersen, 2010; Houle et al., 2012; Jacobsen et al., 2014) different forms of density dependence (Maury \& Poggiale, 2013), or climate change (Blanchard et al., 2012). Furthermore, the models have been applied to several large marine ecosystems to predict efficient ecosystem level fishing patterns. These applications inform strategic EBFM by quantifying the trade-off between yield and ecosystem state, through incorporating biotic interactions between different sized individuals and how they are affected by fishing (Jacobsen et al., 2017).

3. Framework for trait-based analysis in fish conservation and management

Trait-based approaches could have an important role in the management of marine resources in both data rich and data limited systems. Trait based methods would serve as a complementary tool to traditional single-species management while contributing to the developing field of ecosystem assessment. We envision three steps for developing a trait-based approach to fisheries management: (1) identify candidate traits; (2) screen for useful traits; (3) identify management actions and reference points (see Fig. 3). The major challenges to implementing this framework would be the transitions between steps: establishing the relationship between candidate traits and the process of interest (from step 1 to 2), and the sampling logistics of monitoring the selected traits (from step 2 to 3). Only the former challenge is unique to the trait-based approach, while the latter is common to all management approaches. In practice, we envision that these steps would be conducted as part of a system of iterative learning, where steps 1-3 are revisited periodically to reflect lessons learned during previous iterations (Williams, 2011).

3.1 Step 1: Identify candidate traits

To apply the trait-based approach to fish conservation and management, the first step is to identify candidate traits to measure. Candidate traits should be functional, thus one could start listing traits likely to influence species fitness based on direct evidence or general first principles. In addition to body size, we recommend listing other traits that affect survival, growth, or

This article is protected by copyright. All rights reserved
reproduction through mechanisms such as predator defense. For example, changes in survival could be measured by extent of armoring (Fig. 4), chemical defense (e.g., toxin concentration), or body morphology (e.g., crypsis or ability to flee). In addition, we recommend consideration of traits that integrate over many biological and physical processes to provide a fitness indicator (e.g., lipid concentration or body condition). It may be prudent to select traits that can affect key ecosystem functions, such as gape size (indicating capacity for top-down control) or the morphology of habitat-forming species (indicating sheltering capacity). It is also helpful to identify traits that researchers can quickly and precisely measure in a cost-efficient way over large spatial scales.

3.2 Step 2: Screen traits

After identifying potential traits and making preliminary measurements, the next step is to screen for useful traits given research and management goals. We recommend retaining any trait with sufficient variation that satisfies at least one of the following conditions:

1. Traits are directly useful: Some traits tie directly into a given research or management goal. For example, freshwater fisheries management often seeks to optimize angler satisfaction, and therefore a time-series of "trophy-sized" catches will be useful as a direct measure of management success (Gwinn et al., 2015). Similarly, wetland restoration often seeks to minimize chemical contaminants in fishes targeted for consumption, so measuring chemical concentrations will be directly relevant to determining further restoration efforts.
2. Traits are known proxies for biological processes: Traits that are not directly linked to management outcomes may still be appropriate if they are reliable proxies for unmeasured biological rates or processes. For example, individual size is correlated with metabolic rates (West et al., 1997) and therefore excretion rates (Peters, 1986; Schindler \& Eby, 1997). Thus, measurements of community size-spectra can indicate changes in respiration and nutrient cycling, and represent a measurable link between human actions (e.g., fishing) and environmental degradation (e.g., eutrophication, acidification).
3. Hypothesized mechanisms linking traits and biological processes: Finally, researchers could use ecological theory to hypothesize associations between traits and important biological processes. These hypotheses could motivate future data collection and analysis to screen traits that might later serve as "known proxies". For example, natural mortality rate is an important demographic parameter for population models and likely varies over time. Theory
suggests that immune burden is associated with senescence, and that high parasite concentrations could indicate immune stress (Wilson et al., 2001) or behavioral modification that may increase mortality risk (Lafferty \& Morris, 1996). Therefore, researchers could sample parasite concentrations for fishes of management concern (e.g., steelhead trout (Onchorhynchus mykiss, Salmonidae) in the North Pacific) and explore the correlation between parasite concentrations and demographic rates (e.g., Krkošek et al., 2011; in this case, smolt-to-adult survival and repeat spawning frequency, indicating key survival rates). In addition, information about parasite load has been used to estimate spatial population structure and connectivity (Bailey, Margolis, \& Groot, 1988; de Moor, Butterworth, \& van der Lingen, 2017; MacKenzie \& Abaunza, 2014), which could inform spatial stock assessment if researchers were able to link parasite burden to demographic rates.

3.3 Step 3: Develop a management system using trait-based reference points

Fisheries management generally compares a measure of system status (e.g., abundance) with a target or limit reference level (e.g., abundance at maximum sustainable yield). Managers use this comparison to regulate human activities (e.g., fishing) that influence resource status (Gavaris, 2009). We envision an implementation of fisheries management using a measure of system status that is a mix of population-level attributes (e.g., population biomass) and individual traits (e.g., the shape of the size distribution). For example, ecosystem indicators could be a combination of trait-based and species-based measures, such as multispecies maximum sustainable yield (MSY; species based) or the slope of the size spectrum (trait based). Using individual traits as a management indicator requires consideration of several questions:

1. What is the desired system state? Using a trait distribution (or a summary thereof) in fisheries management requires defining a target and limit for that element. For instance, research indicates that size spectrum slopes become steeper when fishing commences (e.g., Daan, Gislason, G. Pope, \& C. Rice, 2005; Fig. 3c). Management bodies must decide a priori on acceptable targets (e.g., the expected size spectrum slope at multispecies MSY) and limits for the ecosystem state. Some researchers have suggested that fishing on the ecosystem scale should be distributed among sizes and species to maintain the 'unfished' size structure (Garcia et al., 2012), defined as the size structure of a system without fishing. Whether the unfished size structure is the desired state is up to the management body to decide, as other solutions might give better results in terms of yield or profit while still being sustainable
(Jacobsen et al., 2017). Managers should develop this target state based on socio-economic and biological considerations. Previous research has suggested guidelines for the process used to design management targets (Rindorf et al., 2017), and these could be used to develop trait-based target states.
2. How best to measure system state? Fisheries management must also measure system states regularly to compare with system target or limit levels. To continue our example, we could calculate community size spectra from scientific surveys that measure individual lengths. We could also quantify distributions of other traits such as armoring (spine number or length), chemical contamination or RNA/DNA ratios, but doing so would require incorporation of novel sampling protocols in existing scientific monitoring programs.
3. What policy would regulate human activities most effectively? Fisheries management seeks to achieve a target system state by regulating human activities using a well-defined and transparent policy. Most regulations will involve some trade-off between multiple human values (e.g., between economic value and risks of overfishing). These trade-offs are often difficult to identify a priori, so fisheries science increasingly uses closed-loop simulation with numerical models (termed "management strategy evaluation", MSE) to evaluate expected performance using alternative management policies. We recommend additional research using MSE to identify what management policy is optimal to achieve a given traitbased target.

Stock assessments are the science used to inform fishery management, and generally take the form of a population dynamic model using life-history parameters (see Fig. 3a for examples) rather than individual traits. However, researchers sometimes incorporate traits (averaged across individuals in a given time) via samples of size or age composition samples (Methot \& Wetzel, 2013) or stomach contents (Moustahfid, Link, Overholtz, \& Tyrrell, 2009). Researchers could incorporate traits into assessments in two additional and more fundamental ways:

1. Monitoring status using predicted traits: researchers could use stock assessments to predict trait distributions, and then use the distributions as an index of population status. This would build on existing length-based assessment methods (e.g., Hordyk, Ono, Valencia, Loneragan, \& Prince, 2015; Rudd \& Thorson, 2018). For example, predicted changes in population agestructure may be more sensitive to short-term changes in fishing intensity than would changes in spawning biomass. Specifically, a prediction of strong recruitment will often be a
leading indicator of future changes in population abundance. Such forward-looking metrics could help limit unnecessary abrupt change in recommended catches, which can cause large socioeconomic costs.
2. Defining system status using measured traits: researchers can calculate management targets as a function of field samples of traits. For example, the Large Fish Indicator (LFI) is calculated directly from field samples of fish size as the proportion of fish greater than a specified length (Cury \& Christensen, 2005; Greenstreet et al., 2011). The LFI is used to measure ecosystem status as an Ecological Quality Objective in the North Sea. In this case, regions adopting the LFI can define a target based on ecological models and theory, e.g., 0.4 in the Celtic Sea (Shephard, Reid, \& Greenstreet, 2011), and compare the current LFI relative to this target within an empirical harvest strategy to inform management. Other trait-based indicators could be used within empirical harvest control rules. For example, the proportion of spawning male salmon that are jacks (i.e., young males) vs. fully grown males has been discussed as an indicator for changes in the evolutionary pressures facing salmon stocks (Gross, 1991), and could be used within an empirical harvest strategy (as either target or limit) for exploited salmon stocks.

4. How to advance trait-based ecology in fisheries biology

In this paper, we briefly introduced trait-based approaches in community ecology, gave examples of how it could be most useful in fisheries science, and outlined how it can be adapted to new purposes. We now describe our vision of what would be required to "scale up" this trait-based approach within fisheries science, in addition to the needs we highlighted earlier (development and extension of trait-based ecosystem models, broad monitoring of traits, and methods for defining trait-based management objectives).

4.1 Creating and growing open trait databases

Most importantly, we encourage more centralized storage, distribution, and documentation of existing trait databases. Existing fisheries databases often include field measurements of only population parameters (e.g., FishBase; Froese, 1990) or are specific to small subsets of fishes (e.g., North American freshwater species in FishTraits; Frimpong \& Angermeier, 2009). By contrast to these population-level databases, a database of fish traits must include measurements of individuals (not populations or species) with data regarding the species, location, and timing

This article is protected by copyright. All rights reserved
of each measurement. In many parts of the world regional science agencies, survey teams, or management bodies are already maintaining such databases for their particular system. For example, the Northwest Fisheries Science Center has a public database of length and weight measurements for hundreds of species collected in marine waters off the US West Coast (https://www.nwfsc.noaa.gov/data/map) and the International Council for the Exploration of the Sea has a similar database for European surveys (DATRAS ICES: http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx). Without any centralized database for meta-data, however, researchers rarely use these regional databases for comparative analysis outside of small, geographically isolated areas. The importance of centralized meta-data for regional databases is well-recognized for other activities in fisheries science (e.g., for regional ecosystem analyses; Cisneros-Montemayor et al., 2016) in addition to marine ecology (Kiørboe et al., 2018), and we similarly recommend a centralized database to provide access to (or ideally serve and harmonize) data from regional trait databases.

Fisheries scientists also have a long history of compiling individual measurements used in morphological identification of stocks using the dimensions or counts of body parts (Cadrin, 2000), such as fin rays, spines, teeth, gill rakers, etc. (collectively called morphometrics and meristics). For example, WH Lenarz and colleagues recorded nearly 50 such trait measures for thousands of individual rockfish (Sebastes spp., Sebastidae) off the US West Coast (PB Adams, unpublished data). These individual measurements could be ecological meaningful in some cases, e.g., if a cline in the number of gill rakers is correlated with differences in feeding behaviors within a species' range. Reliance on meristics and morphometrics for identification of stocks has become much less prevalent since the advent of inexpensive genetic techniques, so we fear that these historical datasets may disappear when researchers retire. We therefore see urgency in developing a database of meristic and morphometric trait measurements for fishes.

4.2 Incorporating novel traits

In addition to historical (meristics, morphometrics) and common (length, weight) traits in existing trait databases in fisheries science, we recommend research to expand the set of traits that are typieally measured in fisheries sampling programs. This could be done by applying the workflow explained in Section 3 above (e.g., identify \rightarrow screen \rightarrow apply \rightarrow repeat), and the results will obviously vary among research groups based on their study species and scientific
goals. However, we here note several traits that appear particularly worthwhile for expanded field sampling:

1. Researchers have shown that defense traits such as body armoring can indicate rapid changes in exposure to predation (Fig. 4; Kitano et al., 2008). Future research could link such measurements to historical databases of other morphometrics and meristics that relate to predator defense, in which case it could provide a long time-series for identifying changes in predation intensity.
2. The cost of measuring steroid hormone concentrations or even genetic expression is rapidly decreasing (e.g., du Dot et al., 2009); therefore, hormone and gene-expression levels could be measured to directly indicate opportunities for growth and exposure to natural mortality.
3. Autonomous sampling and automated compilation of large datasets (e.g., continuous telemetry data from acoustic receivers) is providing researchers with new measurements of behavioral traits. For example, acoustic sampling near fishing aggregating devices can now measure the distance of individual tunas from the water surface or floating structures (Moreno et al., 2016). These behavioral traits may indicate population-level changes in vertical habitat that also influences mortality due to the extent of exposure to fishing or predators.

We provide this list of examples to spark interest, and imagine that individual research groups will identify other useful opportunities.

4.3 Using traits to inform data-poor assessments

Lack of available data to perform formal stock assessment prevails in the world of fishery management. Researchers have confronted this challenge with a variety of alternative methods developed to adapt to any data that is available (Carruthers et al., 2014). Several methods use a hybrid of population parameters and trait-based inputs. For example, some methods use individual length (Hordyk et al., 2015; Rudd \& Thorson, 2018) or age (Thorson \& Cope, 2015) measurements (traits) along with life-history parameters to determine stock status .

While the above approaches use a mix of traits and parameters (much like typical stock assessments), the management procedure approach to fisheries management (Geromont \& Butterworth, 2015) can be used to develop pure trait-based applications. Management procedures use changes in indicators (e.g., an abundance index) to define decision rules that determine modifications in catch or effort (Jardim, Azevedo, \& Brites, 2015). Researchers could derive
these indicators of stock status from traits (see Section 3.3). Then, researchers could summarize such indicators at the species or community level (Fontana, Petchey, \& Pomati, 2016). The management-procedure approach avoids modeling population dynamics, and therefore bypasses the need to estimate population parameters. It can also combine different trait indicators to provide multiple lines of evidence to inform management decisions (Dowling et al., 2015). If the traits are easy to measure and prove to be an informative indicator, this simple approach can be a powerful method to monitor and manage species when traditional data sources and coverage are not available.
4.4 Formal assessment of the costs, benefits, and potential pitfalls of trait-based management

It is important to acknowledge that adopting trait-based methods may not provide effective and efficient improvements to fishery management in all cases, thus more formal scoping is needed to determine the scenarios under which the approach is prone to success or failure. In some cases, there will be additional costs associated with sampling traits, as even in regions with existing fishery-independent surveys more time may be required to sample novel traits or perform more comprehensive sampling of traditional body size measurements. There are also additional costs when integrating these new techniques into current management regimes, associated with funding researchers to formulate and test trait-based models while reconciling differences in inferences between these and traditional population models; however, this problem is ubiquitous to any new approach to ecosystem-based fishery management. There are also risks of failure related to the potential for expected trends and relationships to be absent or difficult to attribute to clear drivers, as it can be challenging to establish mechanistic links between changes in traits and the environment. Sometimes there is little change in traits even over long periods, despite clear changes in habitat and species interactions (Geladi et al., 2019). Finally, it can be challenging to establish whether traits are truly functional, yet there is a developing literature identifying traits that are generally related to fitness among fishes. In summary, most of the challenges listed above are not unique to trait-based approaches, yet we encourage more formal comparisons of approaches to demonstrate which questions and objectives would be most likely to benefit from implementation of trait-based methods. Before suggesting replacing or supplementing a population-based method with an analogous trait-based method we recommend conducting cost-benefit and sensitivity analyses.

4. Conclusions

We call for incorporating the concept of functional traits into methods in fisheries science so that we can build on innovations in other fields. This will allow us to address common challenges, such as predicting ecosystem responses to environmental change, which require consideration of variation among and within species. Trait-based approaches will help solve the issue of increasing model complexity and associated uncertainty that has arisen as we develop the scientific basis for EBFM, providing novel methods for assessing ecosystem status and determining how ecosystem dynamics affect—and are affected by—fisheries. Trait-based methods would complement traditional population methods to make management more agile,
able to quickly detect changes in underlying conditions that influence productivity, distribution, and interactions. We present a framework for managing based on traits to demonstrate that such advances are practical, feasible, and do not necessarily require radical shifts in philosophy or decision-making structure. The evolution of trait-based methods can facilitate rapid advances in fisheries, but this will require supporting new efforts, including: a commitment to systematic measurement and screening of novel and familiar traits, in addition to development of open trait databases, trait-based ecosystem models, and methods for integrating traits into descriptions of resource status and reference points.

Acknowledgements

LAKB thanks Eric Ward, Michelle McClure, Trevor Branch, and Tim Essington for providing resources, in addition to Peter Adams and Steven Lindley for providing data that offered inspiration. LAKB acknowledges funding from the NMFS National Protected Species Toolbox and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA15OAR4320063, Contribution No. 2018-0142. We thank three anonymous reviewers for comments on an earlier draft.

References

Ackerly, D. D., \& Cornwell, W. (2007). A trait-based approach to community assembly: partitioning of species trait values into within-and among-community components. Ecology Letters, 10(2), 135-145.

Adams, P. B. (1980). Life history patterns in marine fishes and their consequences for fisheries management. Fishery Bulletin, 78, 1-12.

Aguilar-Trigueros, C. A., Hempel, S., Powell, J. R., Anderson, I. C., Antonovics, J., Bergmann, J., . . . Klironomos, J. (2015). Branching out: towards a trait-based understanding of fungal ecology. Fungal Biology Reviews, 29(1), 34-41.
Alder, J., Campbell, B., Karpouzi, V., Kaschner, K., \& Pauly, D. (2008). Forage fish: from ecosystems to markets. Annual Review of Environment and Resources, 33.
Andersen, K. H., \& Beyer, J. (2006). Asymptotic size determines species abundance in the marine size spectrum. The American Naturalist, 168(1), 54-61.

This article is protected by copyright. All rights reserved

Andersen, K. H., Brander, K., \& Ravn-Jonsen, L. (2015). Trade-offs between objectives for ecosystem management of fisheries. Ecological Applications, 25(5), 1390-1396. doi:10.1890/14-1209.1

Andersen, K. H., Jacobsen, N. S., \& Farnsworth, K. D. (2015). The theoretical foundations for size spectrum models of fish communities. Canadian Journal of Fisheries and Aquatic Sciences, 73(4), 575-588.

Andersen, K. H., \& Pedersen, M. (2010). Damped trophic cascades driven by fishing in model marine ecosystems. Proceedings of the Royal Society B: Biological Sciences, 277, 795802. doi:10.1098/rspb.2009.1512

Badjeck, M.-C., Allison, E. H., Halls, A. S., \& Dulvy, N. K. (2010). Impacts of climate variability and change on fishery-based livelihoods. Marine Policy, 34(3), 375-383. doi:https://doi.org/10.1016/j.marpol.2009.08.007
Bailey, R. E., Margolis, L., \& Groot, C. (1988). Estimating stock composition of migrating juvenile Fraser River (British Columbia) sockeye salmon, Oncorhynchus nerka, using parasites as natural tags. Canadian Journal of Fisheries and Aquatic Sciences, 45(4), 586-591. doi:10.1139/f88-071

Barbeaux, S., Aydin, K., Fissel, B., Holsman, K., Palsson, W., Shotwell, L., . . . Zador, S. (2017). Assessment of the Pacific cod stock in the Gulf of Alaska. In. Anchorage, AK: North Pacific Fishery Management Council.
Barnes, C., Maxwell, D., Reuman, D. C., \& Jennings, S. (2010). Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology, 91, 222232. doi:10.1890/08-2061.1

Barnett, L. A. K., Baskett, M. L., \& Botsford, L. W. (2015). Quantifying the potential for marine reserves or harvest reductions to buffer temporal mismatches caused by climate change. Canadian Journal of Fisheries and Aquatic Sciences, 1-14. doi:10.1139/cjfas-2014-0243
Beverton, R. J., \& Holt, S. J. (1957). On the dynamics of exploited fish populations (Vol. 19). London, UK: UK Ministry of Agriculture, Fisheries and Food.
Beverton, R. J.H., \& Holt, S. J. (1959, 1959). A review of the lifespans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics.

This article is protected by copyright. All rights reserved

Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R., \& Richardson, A. J. (2017). From bacteria to whales: using functional size spectra to model marine ecosystems. Trends in Ecology \& Evolution, xx, 1-13. doi:10.1016/j.tree.2016.12.003

Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., . . . Barange, M. (2012). Potential consequences of climate change for primary production and fish production in large marine ecosystems. Phil. Trans. R. Soc. B, 367(1605), 2979-2989.

Blanchard, J. L., Jennings, S., Law, R., Castle, M. D., McCloghrie, P., Rochet, M. J., \& Benoît, E. (2009). How does abundance scale with body size in coupled size-structured food webs? Journal of Animal Ecology, 78, 270-280.
Bolnick, D.I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., . . . Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology \& Evolution, 26(4), 183-192. doi:http://doi.org/10.1016/j.tree.2011.01.009

Cadrin, S. X. (2000). Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries, $10(1), 91-112$. doi:10.1023/A:1008939104413

Carruthers, T. R., Punt, A. E., Walters, C. J., MacCall, A., McAllister, M. K., Dick, E. J., \& Cope, J. (2014). Evaluating methods for setting catch limits in data-limited fisheries. Fisheries Research, 153, 48-68. doi:10.1016/j.fishres.2013.12.014
Chagnon, P.-L., Bradley, R. L., Maherali, H., \& Klironomos, J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science, 18(9), 484-491.

Chapman, D. G., \& Robson, D. S. (1960). The analysis of a catch curve. Biometrics, 16, 354368.

Charnov, E. L., Gislason, H., \& Pope, J. G. (2013). Evolutionary assembly rules for fish life histories. Fish and Fisheries, 14, 213-224. doi:10.1111/j.1467-2979.2012.00467.x

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31(1), 343-366.
Cisneros-Montemayor, A. M., Cheung, W. W. L., Bodtker, K., Teh, L., Steiner, N., Bailey, M., . . . Sumaila, U. R. (2016). Towards an integrated database on Canadian ocean resources: benefits, current states, and research gaps. Canadian Journal of Fisheries and Aquatic Sciences, 74(1), 65-74. doi:10.1139/cjfas-2015-0573

This article is protected by copyright. All rights reserved

Collie, J. S., Botsford, L. W., Hastings, A., Kaplan, I. C., Largier, J. L., Livingston, P. a., . . . Werner, F. E. (2014). Ecosystem models for fisheries management: finding the sweet spot. Fish and Fisheries, 17, 101-125. doi:10.1111/faf. 12093
Conover, D. O., Arnott, S. A., Walsh, M. R., \& Munch, S. B. (2005). Darwinian fishery science: lessons from the Atlantic silverside (Menidia menidia). Canadian Journal of Fisheries and Aquatic Sciences, 62, 730-737.
Cury, P. M., \& Christensen, V. (2005). Quantitative ecosystem indicators for fisheries management. ICES Journal of Marine Science, 62(3), 307-310. doi:10.1016/j.icesjms.2005.02.003 \%J ICES Journal of Marine Science
Daan, N., Gislason, H., G. Pope, J., \& C. Rice, J. (2005). Changes in the North Sea fish community: evidence of indirect effects of fishing? ICES Journal of Marine Science: Journal du Conseil, 62, 177-188. doi:10.1016/j.icesjms.2004.08.020
de Moor, C. L., Butterworth, D. S., \& van der Lingen, C. D. (2017). The quantitative use of parasite data in multistock modelling of South African sardine (Sardinops sagax). Canadian Journal of Fisheries and Aquatic Sciences, 74(11), 1895-1903. doi:10.1139/cjfas-2016-0280

Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T., . . . Palkovacs, E. P. (2018). The ecological importance of intraspecific variation. Nature ecology \& evolution, 2(1), 57.
Deyle, E. R., Fogarty, M., Hsieh, C.-h., Kaufman, L., MacCall, A. D., Munch, S. B., . . . Sugihara, G. (2013). Predicting climate effects on Pacific sardine. Proceedings of the National Academy of Sciences, 110(16), 6430-6435.
Dichmont, C. M., Deng, R. A., Punt, A. E., Brodziak, J., Chang, Y.-J., Cope, J. M., . . . Shertzer, K. W. (2016). A review of stock assessment packages in the United States. Fisheries Research, 183, 447-460. doi:10.1016/j.fishres.2016.07.001

Dowling, N. A., Dichmont, C. M., Haddon, M., Smith, D. C., Smith, A. D. M., \& Sainsbury, K. (2015). Guidelines for developing formal harvest strategies for data-poor species and fisheries. Fisheries Research, 171, 130-140. doi:10.1016/j.fishres.2014.09.013
du Dot, T. J., Rosen, D. A., Richmond, J. P., Kitaysky, A. S., Zinn, S. A., \& Trites, A. W. (2009). Changes in glucocorticoids, IGF-I and thyroid hormones as indicators of nutritional stress and subsequent refeeding in Steller sea lions (Eumetopias jubatus).

This article is protected by copyright. All rights reserved Comparative Biochemistry and Physiology Part A: Molecular \& Integrative Physiology, 152(4), 524-534. doi:10.1016/j.cbpa.2008.12.010

Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., \& Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, l(9), 488-494.

Engelhard, G. H., Peck, M. A., Rindorf, A., C. Smout, S., van Deurs, M., Raab, K., . . . Scott, F. (2014). Forage fish, their fisheries, and their predators: who drives whom? ICES Journal of Marine Science, 71(1), 90-104.
Enquist, B. J., Norberg, J., Bonser, S. P., Violle, C., Webb, C. T., Henderson, A., . . . Savage, V. M. (2015). Chapter nine-scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Advances in Ecological Research, 52, 249-318.
Fontana, S., Petchey, O. L., \& Pomati, F. (2016). Individual-level trait diversity concepts and indices to comprehensively describe community change in multidimensional trait space. Functional Ecology, 30, 808-818. doi:10.1111/1365-2435.12551
Fournier, D., \& Archibald, C. P. (1982). A general theory for analyzing catch at age data. Canadian Journal of Fisheries and Aquatic Sciences, 39, 1195-1207.
Frimpong, E. A., \& Angermeier, P. L. (2009). Fish traits: A database of ecological and lifehistory traits of freshwater fishes of the United States. Fisheries, 34(10), 487-495.
Frimpong, E. A., \& Angermeier, P. L. (2010). Trait-based approaches in the analysis of stream fish communities. In K. B. Gido \& D. A. Jackson (Eds.), Community ecology of stream fishes: concepts, approaches, and techniques (Vol. 73, pp. 109-136).
Froese, R. (1990). FishBase: An information system to support fisheries and aquaculture research. ICLARM Fishbyte, 8(3), 21-24.
Garcia, S., Kolding, J., Rice, J., Rochet, M.-J., Zhou, S., Arimoto, T., . . . Dunn, D. (2012). Reconsidering the consequences of selective fisheries. Science, 335(6072), 1045-1047. Gavaris, S. (2009). Fisheries management planning and support for strategic and tactical decisions in an ecosystem approach context. Fisheries Research, 100, 6-14. doi:10.1016/j.fishres.2008.12.001

Geladi, I., De León, L. F., Torchin, M. E., Hendry, A. P., González, R., \& Sharpe, D. M. T. (2019). 100-year time-series reveal little morphological change following impoundment

This article is protected by copyright. All rights reserved
and predator invasion in two Neotropical characids. Evolutionary Applications, $0(\mathrm{ja})$. doi:10.1111/eva. 12763

Geromont, H. F., \& Butterworth, D. S. (2015). Generic management procedures for data-poor fisheries: forecasting with few data. ICES Journal of Marine Science, 72, 251-261. doi:10.1093/icesjms/fst232
Gilljam, D., Thierry, A., Edwards, F. K., Figueroa, D., Ibbotson, A. T., Jones, J. I., . . . Ebenman, B. (2011). Seeing double: size-based and taxonomic views of food web structure. Advances in Ecological Research, 45, 67-133. doi:10.1016/B978-0-12-386475-8.00003-4
Gislason, H., Daan, N., Rice, J. C., \& Pope, J. G. (2010). Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries, 11(2), 149-158.

Greenstreet, S. P. R., Rogers, S. I., Rice, J. C., Piet, G. J., Guirey, E. J., Fraser, H. M., \& Fryer, R. J. (2011). Development of the EcoQO for the North Sea fish community. ICES Journal of Marine Science, 68, 1-11. doi:10.1093/icesjms/fsq156

Gross, M. R. (1991). Salmon Breeding Behavior and Life History Evolution in Changing Environments. 72(4), 1180-1186. doi:10.2307/1941091

Gulland, J. (1983). Fish Stock Assessment. A Manual of Basic Methods. New York: FAO/Wiley Inter-Science.

Gwinn, D. C., Allen, M. S., Johnston, F. D., Brown, P., Todd, C. R., \& Arlinghaus, R. (2015). Rethinking length-based fisheries regulations: the value of protecting old and large fish with harvest slots. Fish and Fisheries, 16(2), 259-281.

Hare, J. A., Morrison, W. E., Nelson, M. W., Stachura, M. M., Teeters, E. J., Griffis, R. B., . . . Bell, R.J. (2016). A vulnerability assessment of fish and invertebrates to climate change on the Northeast US Continental Shelf. PLoS ONE, 11(2), e0146756.
Hilborn, R., \& Ovando, D. (2014). Reflections on the success of traditional fisheries management. ICES Journal of Marine Science, 71(5), 1040-1046.
Hilborn, R., \& Walters, C. J. (1992). Quantitative fisheries stock assessment - choice, dynamics and uncertainty. Norwell, Massachusetts: Springer.
Hjort, J., \& Petersen, C. (1905). Short review of the results of the International Fisheries Investigations. Rapp. Cons. Perm. Int. Explor. Mer, 3.

Holt, E. W. (1891). Survey of fishing grounds, west coast of Ireland, 1890-92. Scientific Proceedings, Royal Dublin Society, 7, 218-477.

This article is protected by copyright. All rights reserved

Holt, E. W. (1895). An examination of the present state of the Grimsby trawl fishery, with especial reference to the destruction of immature fish. Journal of the Marine Biological Association of the United Kingdom, 3(5), 339-446.
Holt, R. D., \& Gaines, M. S. (1992). Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evolutionary Ecology, 6(5), 433447

Hordyk, A., Ono, K., Valencia, S., Loneragan, N., \& Prince, J. (2015). A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science, 72, 217-231. doi:10.1093/icesjms/fsu004

Houle, J. E., Farnsworth, K. D., Rossberg, A. G., \& Reid, D. G. (2012). Assessing the sensitivity and specificity of fish community indicators to management action. Canadian Journal of Fisheries and Aquatic Sciences, 69(6), 1065-1079.

Hutchings, J. A., Swain, D. P., Rowe, S., Eddington, J. D., Puvanendran, V., \& Brown, J. A. (2007). Genetic variation in life-history reaction norms in a marine fish. Proceedings of the Royal Society B: Biological Sciences, 274, 1693-1699. doi:10.1098/rspb.2007.0263
Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427. doi:10.1101/sqb.1957.022.01.039
Jacobsen, N. S., Burgess, M. G., \& Andersen, K. H. (2017). Efficiency of fisheries is increasing at the ecosystem level. Fish and Fisheries, 18(2), 199-211.

Jacobsen, N. S., Essington, T. E., \& Thorson, J. T. (2018). Detecting mortality variation to enhance forage fish population assessments. ICES Journal of Marine Science, 76(1), 124135. doi:10.1093/icesjms/fsy160 \%J ICES Journal of Marine Science

Jacobsen, N. S., Gislason, H., \& Andersen, K. H. (2014). The consequences of balanced harvesting of fish communities. Proceedings of the Royal Society B: Biological Sciences, 281, 20132701. doi:10.1098/rspb.2013.2701

Jardim, E., Azevedo, M., \& Brites, N. M. (2015). Harvest control rules for data limited stocks using length-based reference points and survey biomass indices. Fisheries Research, 171, 12-19. doi:10.1016/j.fishres.2014.11.013

Jennings, S. (2005). Indicators to support an ecosystem approach to fisheries. Fish and Fisheries, 6(3), 212-232.

This article is protected by copyright. All rights reserved

Jennings, S., Pinnegar, J. K., Polunin, N. V., \& Boon, T. W. (2001). Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. Journal of Animal Ecology, 70(6), 934-944.
Karp, M. A., Yau, A. J., Kobayashi, D., Leising, A., Thompson, A., Manderson, J. P., . . . Karnauskas, M. (2019). Accounting for shifting distributions and changing productivity in the development of scientific advice for fishery management. ICES Journal of Marine Science, fsz048. doi:10.1093/icesjms/fsz048

Kattge, J., Diaz, S., Lavorel, S., Prentice, C., Leadley, P., Bonisch, G., . . . Wirth, C. (2011). TRY - a global database of plant traits. Global Change Biology, 17(9), 2905-2935. doi:10.1111/j.1365-2486.2011.02451.x

Kerr, S. R., \& Dickie, L. M. (2001). The biomass spectrum: a predator-prey theory of aquatic production. New York: Columbia University Press.
King, J. R., \& McFarlane, G. A. (2003). Marine fish life history strategies: applications to fishery management. Fisheries Management and Ecology, 10, 249-264.
Kingsland, S. (1995). Modeling nature: episodes in the history of population ecology (2 ed.): University of Chicago Press.
Kiørboe, T., Visser, A., \& Andersen, K. H. (2018). A trait-based approach to ocean ecology. ICES Journal of Marine Science, 75(6), 1849-1863. doi:10.1093/icesjms/fsy090
Kitano, J., Bolnick, D. I., Beauchamp, D. A., Mazur, M. M., Mori, S., Nakano, T., \& Peichel, C. L. (2008). Reverse evolution of armor plates in the threespine stickleback. Current Biology, 18(10), 769-774.
Krause, S., Le Roux, X., Niklaus, P. A., Van Bodegom, P. M., Lennon, J. T., Bertilsson, S., . . . Bodelier, P. L. (2014). Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Frontiers in Microbiology, 5.
Krkošek, M., Connors, B. M., Morton, A., Lewis, M. A., Dill, L. M., \& Hilborn, R. (2011). Effects of parasites from salmon farms on productivity of wild salmon. Proceedings of the National Academy of Sciences, 108(35), 14700-14704. doi:10.1073/pnas. 1101845108

Lafferty, K. D., \& Morris, A. K. (1996). Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology, 77(5), 1390-1397.

Laslett, G. M., Eveson, J. P., \& Polacheck, T. (2004). Fitting growth models to length frequency data. ICES Journal of Marine Science, 61, 218-230. doi:10.1016/j.icesjms.2003.12.006

This article is protected by copyright. All rights reserved

Laughlin, D. C. (2014). Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 17(7), 771-784.

Laughlin, D. C., \& Messier, J. (2015). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology \& Evolution, 30(8), 487-496.
Lavorel, S., \& Garnier, É. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16(5), 545556.

Le Cren, E. (1951). The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). The Journal of Animal Ecology, 201-219.
Levin, P. S., Fogarty, M. J., Murawski, S. A., \& Fluharty, D. (2009). Integrated ecosystem assessments: developing the scientific basis for ecosystem-based management of the ocean. PLoS Biology, 7(1), e1000014. doi:10.1371/journal.pbio. 1000014
Litchman, E., \& Klausmeier, C. A. (2008). Trait-based community ecology of phytoplankton. Annual Review of Ecology Evolution and Systematics, 39, 615-639. doi:10.1146/annurev.ecolsys.39.110707.173549
Litchman, E., Klausmeier, C. A., Schofield, O. M., \& Falkowski, P. G. (2007). The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters, 10(12), 1170-1181. doi:10.1111/j.14610248.2007.01117.x

Litchman, E., Pinto, P. D., Klausmeier, C. A., Thomas, M. K., \& Yoshiyama, K. (2010). Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia, 653(1), 15-28. doi:10.1007/s10750-010-0341-5
Lowerre-Barbieri, S. K., Ganias, K., Saborido-Rey, F., Murua, H., \& Hunter, J. R. (2011). Reproductive timing in marine fishes: variability, temporal scales, and methods. Marine and Coastal Fisheries, 3, 71-91. doi:10.1080/19425120.2011.556932

MacArthur, R. H., \& Wilson, E. O. (1967). The theory of island biogeography. Princeton: Princeton University Press.
MacKenzie, K., \& Abaunza, P. (2014). Chapter Ten - Parasites as Biological Tags. In S. X. Cadrin, L. A. Kerr, \& S. Mariani (Eds.), Stock Identification Methods (Second Edition) (pp. 185-203). San Diego: Academic Press.

This article is protected by copyright. All rights reserved

Maunder, M. N., \& Punt, A. E. (2013). A review of integrated analysis in fisheries stock assessment. Fisheries Research, 142, 61-74. doi:10.1016/j.fishres.2012.07.025

Maury, O., \& Poggiale, J.-C. (2013). From individuals to populations to communities: A dynamic energy budget model of marine ecosystem size-spectrum including life history diversity. Journal of Theoretical Biology.

McGill, B. J., Enquist, B. J., Weiher, E., \& Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology \& Evolution, 21(4), 178-185.

Messier, J., MeGill, B. J., \& Lechowicz, M. J. (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13(7), 838-848.

Methot, R. D., \& Wetzel, C. R. (2013). Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fisheries Research, 142, 86-99. doi:10.1016/j.fishres.2012.10.012
Mimura, M., Yahara, T., Faith, D. P., Vázquez-Domínguez, E., Colautti, R. I., Araki, H., . . . Zhou, S. (2017). Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolutionary Applications, 10(2), 121-139.
Moor, H., Rydin, H., Hylander, K., Nilsson, M. B., Lindborg, R., \& Norberg, J. (2017). Towards a trait-based ecology of wetland vegetation. Journal of Ecology.

Moreno, G., Dagorn, L., Capello, M., Lopez, J., Filmalter, J., Forget, F., . . . Holland, K. (2016). Fish aggregating devices (FADs) as scientific platforms. Fisheries Research, 178, 122129.

Morgan, M. J., Perez-Rodriguez, A., \& Saborido-Rey, F. (2011). Does increased information about reproductive potential result in better prediction of recruitment? Canadian Journal of Fisheries and Aquatic Sciences, 68(8), 1361-1368. doi:10.1139/f2011-049

Morrongiello, J. R., \& Thresher, R. E. (2015). A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example. Ecological Monographs, 85, 93-115. doi:10.1890/13-2355.1

Mouillot, D., Graham, N. A., Villéger, S., Mason, N. W., \& Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology \& Evolution, 28(3), 167-177.

Moustahfid, H., Link, J. S., Overholtz, W. J., \& Tyrrell, M. C. (2009). The advantage of explicitly incorporating predation mortality into age-structured stock assessment models:

This article is protected by copyright. All rights reserved
an application for Atlantic mackerel. ICES Journal of Marine Science, 66, 445-454. doi:10.1093/icesjms/fsn217
Pecuchet, L., Lindegren, M., Hidalgo, M., Delgado, M., Esteban, A., Fock, H. O., . . . Payne, M. R. (2017). From traits to life-history strategies: Deconstructing fish community composition across European seas. Global Ecology and Biogeography, 26, 812-822. doi:10.1111/geb. 12587

Peters, R. H. (1986). The ecological implications of body size (Vol. 2): Cambridge University Press.

PFMC. (2013, May 6-9). Managing our Nation's Fisheries 3: Advancing Sustainability. Paper presented at the a Conference on Fisheries Management in the United States, Washington, D.C.
Pikitch, E., Boersma, P. D., Boyd, I., Conover, D., Cury, P., Essington, T., . . Pauly, D. (2012). Little fish, big impact: managing a crucial link in ocean food webs. Lenfest Ocean Program, Washington, DC, 108.

Pikitch, E. K., Rountos, K. J., Essington, T. E., Santora, C., Pauly, D., Watson, R., . . . Munch, S. B. (2014). The global contribution of forage fish to marine fisheries and ecosystems. Fish and Fisheries, 15(1), 43-64. doi:10.1111/faf. 12004

Pikitch, E. K., Santora, C., Babcock, E. A., Bakun, A., Bonfil, R., Conover, D. O., . . . others. (2004). Ecosystem-based fishery management. Science, 305, 346-347.

Pilling, G. M., Kirkwood, G. P., \& Walker, S. G. (2002). An improved method for estimating individual growth variability in fish, and the correlation between von Bertalanffy growth parameters. Canadian Journal of Fisheries and Aquatic Sciences, 59, 424-432. doi:10.1139/f02-022
Quinn, T. J. (2003). Ruminations on the development and future of population dynamics models in fisheries. Natural Resource Modeling, 16, 341-392.
Quinn, T. J., \& Deriso, R. B. (1999). Quantitative Fish Dynamics: Oxford University Press.
Rindorf, A., Diehmont, C. M., Thorson, J., Charles, A., Clausen, L. W., Degnbol, P., . . . Levin, P. (2017). Inclusion of ecological, economic, social, and institutional considerations when setting targets and limits for multispecies fisheries. ICES Journal of Marine Science, 74, 453-463.

This article is protected by copyright. All rights reserved

Rochet, M.-J., \& Benoît, E. (2011). Fishing destabilizes the biomass flow in the marine size spectrum. Proceedings of the Royal Society of London B: Biological Sciences, rspb20110893.
Roff, D. A. (2002). Life history evolution. Sunderland, MA: Sinauer Associates.
Rountos, K. J. (2016). Defining Forage Species to Prevent a Management Dilemma. Fisheries, $41(1), 16-17$.
Rowe, S., Hutchings, J., Skjæraasen, J., \& Bezanson, L. (2008). Morphological and behavioural correlates of reproductive success in Atlantic cod Gadus morhua. Marine Ecology Progress Series, 354, 257-265. doi:10.3354/meps07175
Rudd, M. B., \&Thorson, J. T. (2018). Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences.
Sampson, D. B., \& Scott, R. D. (2012). An exploration of the shapes and stability of populationselection curves. Fish and Fisheries, 13(1), 89-104.
Sanchirico, J. N., Smith, M. D., \& Lipton, D. W. (2008). An empirical approach to ecosystembased fishery management. Ecological Economics, 64(3), 586-596. doi:https://doi.org/10.1016/j.ecolecon.2007.04.006

Schindler, D. E., \& Eby, L. A. (1997). Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology, 78(6), 1816-1831.
Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., \& Webster, M. S. (2010). Population diversity and the portfolio effect in an exploited species. Nature, 465(7298), 609-612. doi:http://www.nature.com/nature/journal/v465/n7298/suppinfo/nature09060 S1.html
Scott, R. D., \& Heikkonen, J. (2012). Estimating age at first maturity in fish from change-points in growth rate. Marine Ecology Progress Series, 450, 147-157.
Sethi, S. A. (2010). Risk management for fisheries. Fish and Fisheries, 11(4), 341-365. doi:10.1111/j.1467-2979.2010.00363.x
Sheldon, R., \& Parsons, T. (1967). A continuous size spectrum for particulate matter in the sea. Journal of the Fisheries Board of Canada, 24(5), 909-915.

Sheldon, R. W., Prakash, A., \& Sutcliffe Jr, W. H. (1972). The size distribution of particles in the ocean. Limnology and Oceanography, 17(3), 327-340. doi:10.4319/lo.1972.17.3.0327

This article is protected by copyright. All rights reserved

Shephard, S., Reid, D. G., \& Greenstreet, S. P. R. (2011). Interpreting the large fish indicator for the Celtic Sea. ICES Journal of Marine Science, 68(9), 1963-1972. doi:10.1093/icesjms/fsr114 \%J ICES Journal of Marine Science

Sinclair, A. F., Swain, D. P., \& Hanson, J. M. (2002). Disentangling the effects of size-selective mortality, density, and temperature on length-at-age. Canadian Journal of Fisheries and Aquatic Sciences, 59, 372-382.

Skern-Mauritzen, M., Ottersen, G., Handegard, N. O., Huse, G., Dingsør, G. E., Stenseth, N. C., \& Kjesbu, O. S. (2016). Ecosystem processes are rarely included in tactical fisheries management. Fish and Fisheries, 17, 165-175. doi:10.1111/faf. 12111
Smith, T. D. (1994, 1994/07). Scaling Fisheries: The Science of Measuring the Effects of Fishing,1855-1955. Cambridge Core.
Stearns, S. C. (1992). The evolution of life histories. New York: Oxford University Press.
Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., . . . Airoldi, L. (2013). Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501(7468), 539.

Svedäng, H., \& Hornborg, S. (2014). Selective fishing induces density-dependent growth. Nature Communications, 5, 4152.

Taylor, I. G., \& Methot, R. D. (2013). Hiding or dead? A computationally efficient model of selective fisheries mortality. Fisheries Research, 142, 75-85. doi:10.1016/j.fishres.2012.08.021

Then, A. Y., Hoenig, J. M., Hall, N. G., \& Hewitt, D. A. (2015). Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science, 72, 82-92. doi:10.1093/icesjms/fsu136

Thorson, J. T., \& Cope, J. M. (2015). Catch curve stock-reduction analysis: An alternative solution to the catch equations. Fisheries Research, 171, 33-41. doi: $10.1016 / \mathrm{j} . f i s h r e s .2014 .03 .024$

Thorson, J. T., Monnahan, C. C., \& Cope, J. M. (2015). The potential impact of time-variation in vital rates on fisheries management targets for marine fishes. Fisheries Research, 169, 817.

Thorson, J. T., Munch, S. B., Cope, J. M., \& Gao, J. (2017). Predicting life history parameters for all fishes worldwide. Ecological Applications, 27, 2262-2276.

This article is protected by copyright. All rights reserved

Trites, A., \& Donnelly, C. (2003). The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mammal Review, 33(1), 3-28.

Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., . . . Messier, J. (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology \& Evolution, 27(4), 244-252. doi:10.1016/j.tree.2011.11.014

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., \& Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882-892. doi:10.1111/j.2007.00301299.15559.x

Wang, H. Y., Chen, Y. S., Hsu, C. C., \& Shen, S. F. (2017). Fishing-induced changes in adult length are mediated by skipped-spawning. Ecological Applications, 27(1), 274-284.

Wang, Y.-G., \& Ellis, N. (2005). Maximum likelihood estimation of mortality and growth with individual variability from multiple length-frequency data. Fishery Bulletin, 103, 380391.

Ware, D. (1978). Bioenergetics of pelagic fish: theoretical change in swimming speed and ration with body size. Journal of the Fisheries Research Board of Canada, 35, 220-228. doi:https://doi.org/10.1139/f78-036

West, G. B., Brown, J. H., \& Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276(5309), 122-126.

Westoby, M., \& Wright, I. J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology \& Evolution, 21(5), 261-268.

Wetzel, C. R., \& Punt, A. E. (2015). Evaluating the performance of data-moderate and catchonly assessment methods for U.S. west coast groundfish. Fisheries Research, 171, 170187. doi:10.1016/j.fishres.2015.06.005

Wetzel, C. R., \&Punt, A. E. (2016). The impact of alternative rebuilding strategies to rebuild overfished stocks. ICES Journal of Marine Science, 73(9), 2190-2207.

Williams, B. K. (2011). Adaptive management of natural resources-framework and issues. Journal of Environmental Management, 92(5), 1346-1353.
Wilson, K., Bjørnstad, O., Dobson, A., Merler, S., Poglayen, G., Randolph, S., . . . Skorping, A. (2001). Heterogeneities in macroparasite infections: patterns and processes. In P. Hudson, A. Rizzoli, B. Grenfell, H. Heesterbeek, \& A. Dobson (Eds.), The ecology of wildlife diseases (pp. 6-44). Oxford: Oxford University Press.

This article is protected by copyright. All rights reserved

Winemiller, K. O., \& Rose, K. A. (1992). Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences, 49, 2196-2218. doi:10.1139/f92-242
Worm, B., Hilborn, R., Baum, J. K., Branch, T. A., Collie, J. S., Costello, C., . . Jennings, S. (2009). Rebuilding global fisheries. Science, 325(5940), 578-585.

Zhang, L., Thygesen, U. H., Knudsen, K., \& Andersen, K. H. (2013). Trait diversity promotes stability of community dynamics. Theoretical Ecology, 6, 57-69.

Table 1. List of biological processes commonly used to predict fish population dynamics, with examples of either (1) how that process could be measured as a trait at an individual level, or (2) how that process can be estimated using a model that approximates a biological process when averaging across multiple individuals with available data.

Biological process	Direct measurement (or a related proxy) of biological process for each individual	Model for process when averaging across individuals (with interpretable parameters for that model in parentheses)
Allocating energy towards reproductive output	Does an ovary contain mature oocytes?	Maturation ogive (represented by age/size at 50\% maturity)
Accumulation of energetic reserves	Le Cren's (1951) condition factor	Ratio of asymptotic weight and asymptotic length
Individual somatic growth rates	Expression of growth hormones	von Bertalanffy growth curve (represented by the Brody growth coefficient)
Exposure to sources of non-	Armor, body shape, change in age/size distribution	Survival function (represented by the natural mortality rate)
anthropogenic mortality	Stomach fullness and	Predator-prey preference function

This article is protected by copyright. All rights reserved

upon available prey resources	content, gape size, teeth or gill raker number or shape	(represented by relative attack rates); diet matrix for a population (represented by prey selection ratios)
		Individual adaptions and behaviors to attain suitable habitat
	coloration, body shape, eye	Habitat suitability model (representing relative preference for one or more environmental variable)

Figure Legends

Figure 1. Visualization of trait-based patterns across taxonomic scales and environmental gradients, for three hypothetical species. The population approach often provides only a point estimate for each species or population (A), which can obscure more nuanced patterns apparent in intraspecific variation and scale of variation from among-individual to within-community (B). Traits may vary with the environment (C), which can cause erroneous characterization of differences in traits among groups, depending on what environment they are sampled in and how many traits are being compared. For example, in panel B, it appears that the species represented by black symbols (open and closed circles) are completely distinguishable based on two traits, while the species represented by open circles and blue circles are moderately distinct, with some overlap. This perspective obscures some information explained by the environmental gradient (C), showing that both sets of species are have similar traits in some environments and differ in others. As a result, if a study samples individuals only from a narrow subset of environmental conditions (shaded region), then misleading generalities can arise (e.g., species represented by black circles are completely similar and both are entirely distinct from the blue species). Fish silhouettes are from http://phylopic.org. (Figure appears in colour in the online version only.)

Figure 2. Number of publications over time (A) with a topic (title, abstract or key words) including the phrase "functional trait*" and a specific taxonomic group indicated in the legend, and the general phrase "aquatic ecology" alone as a reference for the baseline growth rate of the
literature. The number of citations of these papers over time (B). Results are from a search of the ISI Web of Science database for the years 2000-2016, conducted on 11/30/2017.

Figure 3. Proposed framework for incorporating trait-based analyses in fish conservation and management. (A) Examples of how population parameters (blue text) are related to candidate traits (black text), which might be identified as part of the research component of a decision process for trait-based management (B). Once appropriate traits are identified, sampled, and screened, the management component of the framework will define the target and present status of the resource using a trait-based status designation. For example, (C) the size spectrum slope, serving as a trait-based ecosystem status indicator (solid line and points, with estimated trend and uncertainty) and a target reference point for a lightly exploited ecosystem (dashed horizontal line) - see the supplementary information for descriptions of the data and calculations. (Figure appears in colour in the online version only.)

Figure 4. Changes over time in a predator defense trait demonstrate the utility of incorporating measures of a wide range of traits into monitoring programs. Threespine stickleback (Gasterosteus aculeatus, Gasterosteidae) in Lake Washington, Seattle, Washington dramatically increased their number of armor plates over several decades, possibly as a result of selection due to increased predation risk triggered by increases in water clarity. The figure is modified from Kitano et al. (2008) and reprinted here with permission. (Figure appears in colour in the online version only.)

