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Abstract
Highly mobile species can be challenging for fisheries management and conservation due to large home ranges

combined with dependence on discrete habitat areas where they can be easily targeted or vulnerable to anthropogenic
disturbances. Management of the Dusky Shark Carcharhinus obscurus in the northwest Atlantic Ocean has been par-
ticularly challenging due to the species’ inherent vulnerability to overfishing and poorly understood habitat associa-
tions. To better understand habitat associations and seasonal distributions, we combined telemetry and remotely
sensed environmental data to spatially model juvenile Dusky Shark presence probability in the northwest Atlantic
Ocean. To accomplish this, 22 juvenile Dusky Sharks (107–220 cm TL) that were tagged with acoustic transmitters
at different locations within the U.S. Middle Atlantic Bight region were tracked through networked arrays of acoustic
receivers. Tag detections were summarized as daily presence records, and data describing environmental conditions,
including depth, chlorophyll-a concentration, salinity, and sea surface temperature, were extracted at detection loca-
tions. These data were used in boosted regression tree models to predict juvenile Dusky Shark presence probability
based on environmental parameters during fall 2017 and summer 2018. Telemetry observations and modeled presence
probability showed consistent associations with temperatures between 16°C and 26°C and chlorophyll-a concentrations
between 2 and 7 mg/m3, which were associated with seasonal migration timing and monthly spatial distributions.
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Dusky Shark tag detections and predicted distributions during summer and early fall overlapped areas in the Middle
Atlantic Bight that were affected by fisheries and potential offshore energy development. Our methodology provides a
framework for assessing climate change effects on distribution.

Highly mobile species can move across jurisdictions
and even entire ocean basins, complicating fishery man-
agement and other conservation measures. However, even
these species often make repeated use of discrete geo-
graphic locations or habitat conditions that may be dis-
proportionately important to reproduction, foraging, and
other activities driving population dynamics (Chapman
et al. 2015). Such habitat areas fit the National Marine
Fisheries Service (NMFS) definition of essential fish habi-
tat (EFH), or habitat areas that are required for the com-
pletion of a species’ life cycle (NMFS 2017). Identification
of EFH is particularly important for elasmobranchs that
show site fidelity, since the life history characteristics of
many cartilaginous fishes, such as slow growth and late
maturity, make them particularly vulnerable to overfishing
in these areas (Hueter et al. 2005).

Telemetry methods have been employed in a variety of
applied conservation contexts and are increasingly being
used in more specialized studies (Hussey et al. 2015).
When combined with environmental data and spatial
modeling techniques, telemetry data can be used to predict
the distribution of highly migratory species at large scales
(Block et al. 2011; Curtis et al. 2014). This can be useful
for applications such as identifying areas of potential fish-
ery interactions (Haulsee et al. 2018), assessing the use of
closed and protected areas (Calich et al. 2018), and pre-
dicting the effects of large-scale environmental changes
(Hazen et al. 2012). Passive acoustic telemetry, which
entails the deployment of ultrasonic tags that are then
detected by acoustic receivers, has traditionally been used
to monitor marine animals in particular habitat areas or
locations along migratory routes, but the advent of collab-
orative acoustic telemetry networks has enabled continen-
tal-scale spatial tracking, which was previously only
possible through satellite-based telemetry (Donaldson
et al. 2014; Udyawer et al. 2018).

By treating telemetry detections as presence records,
boosted regression tree (BRT) modeling offers a feasible
approach to spatially predict the distribution of data-poor,
highly migratory species. This method, which splits envi-
ronmental data based on presence likelihood or abun-
dance data, is robust to the low sample sizes and zero-
inflation that are characteristic of acoustic telemetry data
and is adaptable to most data distributions that are found
in ecological data (Elith et al. 2008; Dedman et al. 2017).
There is precedence for the use of regression tree modeling
to spatially predict migratory shark habitat: it was used to

delineate habitat for juvenile Sandbar Sharks Carcharhinus
plumbeus in their Chesapeake Bay nursery grounds based
on fishery-independent survey catches and environmental
data (Grubbs and Musick 2007). Recent advances in
machine learning and statistical software have allowed
researchers to “boost” regression tree analysis by repeating
trees, with each successive tree informed by the previous
one until a minimum of deviance between model runs is
achieved (Elith et al. 2008). Boosting allows regression
tree modeling to overcome variance between individual
model runs, improving consistency and predictive perfor-
mance (Elith et al. 2008). Boosted regression tree model-
ing based on catch rates has been used to delineate areas
of high potential bycatch of skates in the Irish Sea (Ded-
man et al. 2015) and to identify habitat for elasmobranchs
in relatively enclosed estuarine habitats (Froeschke et al.
2010; Bangley et al. 2018a).

The Dusky Shark Carcharhinus obscurus in the north-
west Atlantic Ocean has been a data-poor species of par-
ticular conservation concern for which management and
conservation may benefit from spatial modeling
approaches. This species is slow growing and late matur-
ing (Natanson et al. 1995, 2013) and has experienced con-
siderable population declines after targeted fishing in the
1980s and 1990s (McCandless et al. 2014). Landings of
Dusky Sharks have been prohibited in commercial and
recreational fisheries since 2000, and the Mid-Atlantic
Shark Closed Area was established in 2005, closing an
area encompassing most of the continental shelf off North
Carolina to bottom longline gear from January 1 through
July 31 each year to protect juvenile overwintering habitat
(NMFS 2003). Despite slowing population declines and
increasing juvenile abundances (McCandless et al. 2014),
the latest stock assessment showed the Dusky Shark to be
in an overfished state with overfishing still occurring, lar-
gely due to bycatch and low fecundity (SEDAR 2016).
Discard mortality is particularly problematic for juvenile
Dusky Sharks, which show lower at-vessel and postrelease
survival than adults (Romine et al. 2009) and other species
captured in the same areas (Marshall et al. 2015). In addi-
tion, a risk assessment of climate responses in fishery man-
agement-relevant species by Hare et al. (2016) determined
that the Dusky Shark is among the species that are most
likely to shift their distribution in response to climate
change, meaning that spatial management of this species
will need to be adaptable to changes in potential Dusky
Shark habitat.
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In this study, we used acoustic telemetry to obtain posi-
tional data from juvenile Dusky Sharks tagged in the U.S.
Middle Atlantic Bight region to describe coastal move-
ments and environmental associations for this species.
Based on this information, we developed predictive models
of Dusky Shark presence that could be used to identify
key habitat areas. We paid particular attention to the fall
migration period, during which juvenile Dusky Sharks tra-
vel from summer habitats in the Middle Atlantic Bight to
overwintering habitats off North Carolina. Modeling of
spatial distribution over the course of this migration
enabled us to accomplish three objectives that are impor-
tant for Dusky Shark management: demonstrating the fea-
sibility of spatial habitat modeling at a coastal scale from
acoustic telemetry data, identifying migration timing and
associated environmental conditions, and identifying
potential habitat areas and inferring interactions with
human activities within those areas.

METHODS
Acoustic telemetry.— Twenty-three juvenile Dusky

Sharks ranging from 107 to 220 cm TL were tagged with
acoustic transmitters during the late summer and early fall
of 2016 and 2017; 22 of the 23 sharks were detected. All

acoustic transmitters were manufactured by Vemco
(Vemco/InnovaSea, Bedford, Nova Scotia) and transmit-
ted a unique identification code at a randomized interval
between 60 and 180 s at a high-power, 69-kHz frequency.
Three transmitter types were deployed: V13 tags with 653
d of battery life (n= 5), V16 tags with 2,435 d (n= 8) or
3,650 d (n= 3) of battery life, and V16T tags with 1,825 d
of battery life and a built-in temperature sensor that trans-
mitted the current ambient water temperature (°C) along
with the identification code (n= 7; Table 1). All tags were
surgically implanted into the body cavity of the sharks.
We began surgical procedures by placing the shark ventral
side up to induce tonic immobility while in the water or
with a flowing-seawater hose inserted into the mouth to
ventilate the gills. We then made a 2–3-cm incision on the
ventral side of the body just lateral to the center line. The
tag was inserted through the incision after sterilization
with 95% ethanol, and the incision was then closed using
absorbable sutures in an interrupted pattern. Sharks were
released at or near the site of capture immediately after
tagging. Total handling time lasted 5–10 min.

Tag transmissions were recorded on Vemco VR-series
69-kHz acoustic receivers that were deployed in the north-
west Atlantic Ocean from September 2016 through
December 2018. To detect sharks in their presumed

TABLE 1. Identification codes (ID), demographic information (M=male; F= female), tagging date and location, and tag battery life for juvenile
Dusky Sharks that were tagged with acoustic transmitters in the northwest Atlantic Ocean during 2016 and 2017. Shark 15571 (marked with an
asterisk) was not detected during the focal tracking period of September 2017–October 2018.

Tag ID TL (cm) Sex Tagging date Tagging location Tag life (d)

46065 114 M Sep 15, 2017 Ocean City, MD 653
46066 112 F Sep 15, 2017 Ocean City, MD 653
46067 114 M Sep 15, 2017 Ocean City, MD 653
46068 155 F Sep 16, 2017 Ocean City, MD 653
46078 170 F Sep 15, 2017 Ocean City, MD 653
15416 183 F Aug 21, 2017 Chesapeake Bay mouth 2,435
15433 109 M Sep 14, 2017 Ocean City, MD 2,435
15434 160 M Sep 15, 2017 Ocean City, MD 2,435
15435 163 F Sep 15, 2017 Ocean City, MD 2,435
15436 135 F Sep 14, 2017 Ocean City, MD 2,435
15437 150 M Sep 14, 2017 Ocean City, MD 2,435
16950 186 F Sep 14, 2016 Chesapeake Bay mouth 2,435
15154 186 F Sep 14, 2016 Chesapeake Bay mouth 2,427
16085 160 F Sep 14, 2017 Ocean City, MD 1,825
16086 112 F Sep 15, 2017 Ocean City, MD 1,825
16087 119 F Sep 14, 2017 Ocean City, MD 1,825
16088 155 F Sep 14, 2017 Ocean City, MD 1,825
16089 107 F Sep 14, 2017 Ocean City, MD 1,825
16094 218 F Aug 21, 2017 Chesapeake Bay mouth 1,825
16095 220 F Aug 21, 2017 Chesapeake Bay mouth 1,825
23183 132 F Aug 15, 2016 Montauk, NY 3,650
23191 121 F Aug 18, 2016 Montauk, NY 3,650
15571* 138 M Aug 11, 2017 Montauk, NY 3,650
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overwintering habitat within the Mid-Atlantic Shark
Closed Area, we deployed four VR2W receivers on data
buoys maintained by researchers at the University of
North Carolina Wilmington in Onslow Bay, North Caro-
lina. Detections from other receivers were available
through the Atlantic Cooperative Telemetry Network and
the FACT Network, which facilitate the sharing of tag
detection data between researchers using similar equip-
ment. Membership in these networks provided the poten-
tial to detect tagged Dusky Sharks in coastal and
continental shelf waters from Nova Scotia to the Florida
Keys.

Of the 23 sharks, 15 were captured by rod and reel off
Ocean City, Maryland, in September 2017; 5 were cap-
tured by bottom longline during the Virginia Shark Moni-
toring and Assessment Program conducted by the Virginia
Institute of Marine Science (VIMS) in September 2016
and August 2017 off the mouth of Chesapeake Bay and
Virginia’s eastern shore; and 3 were captured by rod and
reel off Montauk, New York, in August 2016 and 2017
during research operations conducted by OCEARCH and
its collaborators targeting White Sharks Carcharodon car-
charias for telemetry tag deployment. Capture and tagging
procedures used in Maryland and Virginia waters were
approved by the Smithsonian Environmental Research
Center’s Animal Care and Use Committee (Protocol D16-
00392 and reciprocal agreement with VIMS), and proce-
dures used in the New York Bight were approved by
NMFS and the New York Department of Environmental
Conservation. Identification code, size, sex, tag battery
life, and tagging location for each individual shark were
recorded at the time of capture (Table 1).

To gain a general understanding of Dusky Shark sea-
sonal movements, we visually analyzed plots of the lati-
tude of detection and temperature sensor data by date.
The time period covered by these plots began on Septem-
ber 1, 2017, because all sharks included in our data set
had been tagged and detected at least once by the end of
that month. The end point of the plotted time period was
October 31, 2018, because this represented the most cur-
rent tag detection data at the time our analyses were con-
ducted.

Spatial modeling.—We used BRT modeling of Dusky
Shark presence/absence at acoustic receiver locations and
environmental data extracted at the receiver sites to iden-
tify environmental associations with shark presence. These
models allowed us to spatially predict the probability of
juvenile Dusky Shark presence in the northwest Atlantic
Ocean based on environmental associations (contingent on
receiver locations). To capture the seasonal change in dis-
tribution, we generated seasonal-scale models for fall 2017
(September, October, and November) and summer 2018
(June, July, and August). Fall 2017 and summer 2018
were chosen because a majority of the tagged sharks were

consistently detected during these seasons (Table S1 avail-
able in the Supplement separately online). Due to the wide
latitudinal range at which sharks were detected during the
annual fall migration and to gain insight into the timing
of occurrence within the Mid-Atlantic Shark Closed Area,
we developed models on a monthly time scale for Septem-
ber–November 2017.

For each season and month for which modeling was
attempted, a matrix containing all receiver locations,
dates, and the presence/absence of tagged Dusky Sharks
at each receiver during each date within that season or
month was created. Dusky Shark presence was defined as
the detection of at least one tagged shark at a given recei-
ver on a given day, and presence was counted once per
receiver each day regardless of the number of individuals
that were actually detected. In this way, we treated daily
presence/absence as a single daily event at each receiver
regardless of how many individuals were detected at a
given receiver on a given day; this strategy mitigated the
spatial and temporal autocorrelation issues that are com-
mon when working with telemetry data (Haulsee et al.
2018).

Environmental data were extracted at receiver locations
and dates from publicly available data sets (National
Oceanic and Atmospheric Administration, Environmental
Research Division Data Access Program) using the pack-
age rerddapxtracto (Mendelssohn 2019) in R (R Core
Team 2018). Extracted environmental variables were sea
surface temperature (SST; °C) and chlorophyll-a concen-
tration (Chl-a; mg/m3), which were observed by the
National Aeronautics and Space Administration (NASA)
Moderate Resolution Imaging Spectroradiometer’s Aqua
sensor (Savtchenko et al. 2004); sea surface salinity (Sal;
psu), which was recorded by the NASA Jet Propulsion
Laboratory’s Soil Moisture Active Passive satellite (Fore
et al. 2016); and depth (m), which was available from the
ETOPO1 Global Relief Model (Amante and Eakins
2009). These variables were chosen based on environmen-
tal associations that have been found to define habitat for
highly migratory coastal species (Block et al. 2011; Curtis
et al. 2014; Calich et al. 2018; Haulsee et al. 2018).
Extracted data applied to each receiver location and date
were mean values taken from within a radius of 0.01 deci-
mal degrees (dd; ~0.88–1.14 km2 between latitudes 23°N
and 45°N) for SST and depth, 0.05 dd (~4.4−5.7 km2) for
Chl-a, and 0.25 dd (~22−28.5 km2) for Sal, roughly
matching the spatial resolution of each environmental
data set.

Boosted regression tree modeling was used to determine
relationships between the presence probability of tagged
Dusky Sharks and environmental variables, which were
then used to spatially predict potential distribution based
on those relationships. Briefly, regression tree modeling
divides the data at cut-points in the environmental
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variables between higher and lower presence likelihood
(see Grubbs and Musick [2007] for a detailed treatment of
regression tree modeling in the context of shark habitat
delineation). “Boosting” reduces the variability inherent in
regression tree models by using machine learning to itera-
tively add trees in a stagewise fashion until the lowest level
of deviance between trees is reached. During each iteration
of this process, a proportion of the data is randomly
selected to train the model and training data are cross val-
idated against the unselected testing data. Generally, mod-
els that are fitted by using at least 1,000 trees are more
likely to reach the minimum possible deviance and provide
more reliable predictions (Elith et al. 2008). For a consid-
erably more detailed description of each step of the mod-
eling process, see Elith et al. (2008).

Binary BRT presence/absence models were fitted using
the R package gbm.auto, which automates the regression
tree modeling, boosting, and mapping processes as well as
calculating the percentage of tree splits based on each
variable, generating marginal effect plots of presence prob-
ability against each variable, and determining the interac-
tion strength between pairs of variables based on residual
variance (Dedman et al. 2017). The initial parameters of
the models were tree complexity, which indicates the num-
ber of nodes in each tree split; learning rate, which indi-
cates the contribution of each individual tree to reducing
deviance; and bag fraction, which is the proportion of
data that are randomly chosen at each tree step and used
as training data to be cross validated with the remaining,
unselected data. Combinations of these parameters were
tested, and the model that generated at least 1,000 trees
and had the lowest mean deviance and greatest cross vali-
dation scores and area-under-the-curve values was chosen
for use in predicting presence probability. For our models,
we tested tree complexity values of 2 or 4 to represent bin-
ary interactions or interactions incorporating all four envi-
ronmental variables, learning rate values between 0.01 and
0.0005 to balance model repeatability and processing time
(Elith et al. 2008), and bag fraction values between 0.5
and 0.7, which are near to or slightly greater than typical
starting values for BRT analysis (Elith et al. 2008; Ded-
man et al. 2017). The relative influence of each variable in
each BRT model was measured using the percentage of
tree splits attributed to that variable, and marginal effect
plots were generated to identify particular variable values
or ranges associated with increased presence probability.
To identify potential interactions between variables, we
also report the two strongest pairwise interactions.

Once the best-performing models for each season and
month were identified, spatial grids containing SST, Chl-a,
Sal, and depth data were created to map modeled Dusky
Shark presence probabilities. To accomplish this, we
downloaded monthly mosaics of the same environmental
data sets used for extraction, corresponding to the months

covered by BRT modeling. The SST and Chl-a mosaics
were downloaded from the NASA Ocean Color Web site
(http://oceancolor.gsfc.nasa.gov); Sal data were down-
loaded from the NASA Jet Propulsion Laboratory’s Phys-
ical Oceanography Distributed Active Archive Center
(https://podaac.jpl.nasa.gov). These data were imported
into SeaDAS version 7.5.3 (NASA) and cropped at the
following latitude and longitude (dd) bounds: 45.83°N,
−85.00°W, 23.67°N, and −65.08°W. These bounds
roughly correspond with the Dusky Shark’s range along
the continental shelf and oceanic waters off the U.S. East
Coast (Ebert et al. 2013). Depth data were accessed
through the ETOPO1 layer built into SeaDAS. Cropped
data were exported as NetCDF-4 (Network Common
Data Form) rasters and imported into ArcGIS version
10.5.1 (ESRI, Redlands, California), where environmental
data were extracted at points positioned every 0.05 dd
within a grid covering the same latitude and longitude
bounds as the cropped data sets. This allowed us to create
one gridded point data set with all environmental data for
each month, which we then exported as a .csv file. Grid-
ded environmental data sets were then imported into R,
and the “gbm.map” function from the gbm.auto package
(Dedman et al. 2017) was used to apply BRT model
results to the grids and generate maps and gridded data
sets of presence probability. To determine how well the
environmental data in the models reflected the monthly
environmental data used for mapping, the function
“gbm.rsb” was used to generate maps of unrepresentative-
ness, which indicate how well environmental ranges within
a given cell in the grid data are represented by the samples
data used in the original BRT model (Dedman et al.
2017).

RESULTS

General Acoustic Telemetry Observations
All but one of the tagged Dusky Sharks were detected

at least once, with a total of 4,591 detections and 446
daily presence records since the beginning of the focal per-
iod in September 2017. Four sharks were tagged in fall
2016 and detections of these individuals prior to Septem-
ber 2017 were not used in statistical analyses, but the tim-
ing and location of telemetry detections from these sharks
during the previous year were similar to those of tag
detections from 2017–2018. As of October 2018, 16
(72.7%) of the 22 tagged sharks were still being detected.
Tagged sharks were detected along the coast between the
New York Bight and Onslow Bay, North Carolina (Fig-
ure 1). Detections occurred on arrays deployed in areas
being leased by the Bureau of Ocean Energy Management
(BOEM) for wind energy development off Delaware Bay
and the Maryland eastern shore (69.5% of detections) and
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within the Mid-Atlantic Shark Closed Area off North
Carolina (6.4% of detections; Figure 1). Sharks were con-
sistently detected from September through November,
with some detections occurring up to mid-December;
sharks were not detected on any acoustic receivers from
mid-December through mid-April (Figure 2). Four sharks
were detected on receivers within the Mid-Atlantic Shark
Closed Area immediately prior to or after the period dur-
ing which no transmitters were detected, and one of these
sharks showed a similar pattern during the previous year.
Detections were consistent through June, but relatively
few detections were recorded during July and August, with
frequent detection of tagged sharks resuming during the
fall (Figure 2).

Latitude of detection showed evidence for migration
along the coast between warm-season habitats from Mary-
land to New York and potential overwintering areas off
North Carolina (Figure 3A). Sharks were detected at
North Carolina latitudes immediately before and after the
period of no tag detections between mid-December and
mid-April (Figure 3A). Transmissions from temperature
sensors showed Dusky Sharks occurring at water tempera-
tures between approximately 16°C and 25°C; sharks
occurred at higher temperatures during the late summer
and early fall and at lower temperatures during late fall
and late spring (Figure 3B). Temperatures at detections
during early summer between May and June were among
the lowest recorded, and these detections occurred within

FIGURE 1. Locations of acoustic transmitter detections of tagged juvenile Dusky Sharks between September 2017 and October 2018. The Mid-
Atlantic Shark Closed Area is outlined in purple. Inset map shows the area off Maryland and Delaware with Bureau of Ocean Energy Management
(BOEM) wind farm lease areas.
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potential wind farm lease areas off Delaware and the
Maryland eastern shore (Figure 3).

Spatial Modeling
At least 19 daily presence events at acoustic receivers

were recorded during each season and month chosen for
BRT modeling; 100% of tagged sharks were detected dur-
ing fall 2017, and at least 59% of tagged sharks were
detected during summer 2018 and each individual month
during fall (Table S1). All seasonal and monthly models
performed relatively well, with cross validation scores
approximately 0.6 or greater and area-under-the-curve val-
ues of 0.93 or greater (Table 2). Maximum presence likeli-
hood ranged from 0.51 to 0.88 (Table 2). In seasonal
models, Chl-a and SST accounted for nearly equal per-
centages (35.56% and 35.59%, respectively) of tree splits in
the fall 2017 model, suggesting nearly equal influence,
whereas Sal accounted for the most tree splits (36.02%),
followed by SST (33.11%), in the summer 2018 model
(Table 3). In the monthly models, the most influential vari-
ables were Chl-a during September, depth during October,
and SST during November, with each variable accounting

for at least approximately 40% of tree splits. Chlorophyll-
a concentration accounted for the second-highest percent-
age of tree splits during October and November, and
depth was the second most important variable during
September. The strongest interactions included SST and
the second strongest included Chl-a in all models except
fall 2017, for which SST and depth showed the second-
strongest interaction (Table 3).

Marginal effect plots from both seasonal and monthly
models showed that SST measurements between approxi-
mately 17°C and 26°C and Chl-a between approximately
2 and 7mg/m3 were consistently associated with elevated
Dusky Shark presence probability, although the full
range of SSTs was not encountered during all months
(Figures 4, 5). Salinity and depth associations differed
between fall and summer and varied by month. Dusky
Shark presence during fall was positively associated with
greater Sal and shallower depth than presence during
summer (Figure 4). In monthly models, Sal had no effect
during September, whereas measurements less than 32
psu during October and greater than 35 psu during
November were positively associated with presence

FIGURE 2. Abacus plot of acoustic detections by date for each tagged juvenile Dusky Shark. The areas highlighted in gray denote seasons for which
habitat modeling based on tag detections and environmental data was attempted. Red points represent detections within arrays in potential wind farm
sites off Delaware and Maryland, blue points represent detections within the Mid-Atlantic Shark Closed Area, and gray points represent detections
outside of either of those areas. Fall 2018 data were the most recent data at the time of analysis, and we could not verify that all tag detection data
had been received.
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likelihood. Dusky Shark presence probability was posi-
tively associated with depths less than 20 m during
September and November and depths between 10 and
30m during October (Figure 5).

Predictive maps showed discrete hot spots of Dusky
Shark presence probability and inshore–offshore move-
ments between fall and summer and over the course of the
3 months during fall 2017 (Figures 6, 7). During fall 2017,

FIGURE 3. Detections over date for tagged juvenile Dusky Sharks by (A) latitude of detection (°N) and (B) water temperature (°C) transmitted by
onboard temperature sensors. Red points represent detections within arrays in potential wind farm sites off Delaware and Maryland; blue points
represent detections within the Mid-Atlantic Shark Closed Area.

TABLE 2. Starting parameters (tc= tree complexity; lr= learning rate; bf= bag fraction) and performance metrics (cross validation score, with SE in
parentheses; AUC= area under the curve; Max P=maximum presence likelihood) for the best-performing boosted regression tree models of juvenile
Dusky Shark presence for fall 2017 (September–November 2017 aggregated data), summer 2018 (June–August 2018 aggregated data), and each month
during fall 2017.

Model tc lr bf n trees Cross validation score (SE) AUC Max P

Fall 2017 4 0.0075 0.5 2,300 0.56 (0.03) 0.93 0.95
Summer 2018 4 0.0075 0.5 2,100 0.60 (0.03) 0.94 0.55
Sep 2017 4 0.0015 0.6 1,300 0.60 (0.06) 0.96 0.66
Oct 2017 4 0.005 0.6 3,350 0.57 (0.04) 0.94 0.51
Nov 2017 4 0.005 0.6 1,300 0.72 (0.08) 0.97 0.88
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areas of presence probability greater than 0.25 were dis-
tributed across a broad portion of the U.S. East Coast
from the mouth of Chesapeake Bay to Cape Canaveral,
Florida (Figure 6A). During summer 2018, areas of ele-
vated presence probability were distributed in the vicinity
of the mouth of Delaware Bay, along the northern New
Jersey shoreline, and in New England waters from Long
Island to just north of Cape Cod (Figure 6B). Maps based
on monthly models showed changes in presence probabil-
ity by latitude and distance to shore over the course of the
fall 2017 southward migration (Figure 7). During Septem-
ber 2017, areas with the greatest presence probability were

in the U.S. mid-Atlantic region between Cape May, New
Jersey, and the mouth of Chesapeake Bay, with another
predicted southeast of Nantucket off Massachusetts (Fig-
ure 7A). High presence probability during October 2017
was distributed near the mouth of Delaware Bay and
nearshore in Onslow Bay, North Carolina (Figure 7B).
During November 2017, areas of presence probability
greater than 0.25 were nonexistent north of the mouth of
Chesapeake Bay, distributed relatively close to shore south
of Chesapeake Bay and along the North Carolina Outer
Banks, and distributed farther offshore over the continen-
tal shelf south of Onslow Bay (Figure 7C).

TABLE 3. Relative importance (percentage of tree splits) of depth, chlorophyll-a concentration (Chl-a), salinity (Sal), and sea surface temperature
(SST) in boosted regression tree models for each month, with interaction strength (str) and variables included in the strongest pairwise interaction (Int
1) and second-strongest pairwise interaction (Int 2).

Model

Variable (% of tree splits)

Int 1 Int 1 str Int 2 Int 2 strDepth Chl-a Sal SST

Fall 2017 22.87 35.56 5.98 35.59 SST, Sal 147.01 SST, Depth 101.53
Summer 2018 11.81 19.05 36.02 33.11 SST, Chl-a 141.73 Sal, Chl-a 140.12
Sep 2017 26.65 48.16 0.00 25.18 SST, Depth 54.19 Chl-a, Depth 5.62
Oct 2017 39.66 26.77 7.89 25.68 SST, Chl-a 135.10 Chl-a, Depth 121.43
Nov 2017 10.59 36.13 5.45 47.83 SST, Sal 55.28 SST, Chl-a 12.73

FIGURE 4. Marginal effect plots of the influence of environmental variables on the likelihood of juvenile Dusky Shark presence from boosted
regression tree models for fall 2017 (aggregated data from September to November 2017) and summer 2018 (aggregated data from June to August
2018). Percentages of tree splits attributed to each variable in the given model are shown in parentheses (Chla= chlorophyll-a concentration, mg/m3;
Sal= salinity, psu; SST= sea surface temperature, °C; Depth= depth, m).
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Unrepresentativeness maps showed that environmental
data extracted at acoustic receivers were representative
(<0.25 unrepresentativeness) of gridded environmental
data along most of the continental shelf in both seasonal
models (Figure S1 available in the Supplement separately
online) and monthly models (Figure S2).

DISCUSSION
The results of our telemetry study and spatial models

provide updated information on the seasonal movement
patterns and environmental associations of juvenile Dusky
Sharks in their range along the U.S. Atlantic coast. We
further demonstrate that BRT modeling of acoustic tag
detections can improve our understanding of the environ-
mental drivers of seasonal distribution for this overfished
species. In particular, our results provide a mechanism for

improving the characterization of EFH, assessing the use
of spatial management measures like the Mid-Atlantic
Shark Closed Area, and quantifying the potential overlap
of offshore energy development with seasonal movements
and distribution. This information may allow for more
precise spatial management and bycatch avoidance mea-
sures, which could help continue the recovery of the
northwest Atlantic Dusky Shark population.

Telemetry detections showed a seasonal migration
mostly within the U.S. Middle Atlantic Bight that crossed
into subtropical waters south of Cape Hatteras during the
winter. Although our interpretation of telemetry results is
mostly based on tag detections recorded since September
2017, the four sharks that were tagged in fall 2016 showed
similar patterns over the course of the previous year. Most
of the tagged sharks were detected off Delaware and
Maryland during the fall and moved south past the mouth

FIGURE 5. Marginal effect plots of the influence of environmental variables on the likelihood of juvenile Dusky Shark presence from boosted
regression tree models of each month during fall 2017. Percentages of tree splits attributed to each variable in the given model are shown in
parentheses (Chla= chlorophyll-a concentration, mg/m3; Sal= salinity, psu; SST= sea surface temperature, °C; Depth= depth, m).
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FIGURE 6. Mapped presence probability based on boosted regression tree modeling of juvenile Dusky Shark tag detections and satellite-recorded
environmental data during (A) fall 2017 (aggregated data from September to November 2017) and (B) summer 2018 (aggregated data from June to
August 2018).

FIGURE 7. Mapped presence probability based on boosted regression tree modeling of juvenile Dusky Shark tag detections and satellite-recorded
environmental data during (A) September 2017, (B) October 2017, and (C) November 2017.
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of Chesapeake Bay and into North Carolina waters during
the late fall and early winter. No tag detections were
recorded from mid-December through mid-April during
both 2016–2017 and 2017–2018, although detections of
other tagged elasmobranchs at receivers south of North
Carolina during this time period confirmed that receivers
were available to detect the tagged Dusky Sharks (C.W.B.
and T.H.C., unpublished data). The most likely explana-
tion is that the tagged Dusky Sharks were distributed
somewhere outside of acoustic receiver coverage, which is
supported by predicted habitat distributions farther off-
shore during November. Larger juvenile and adult Dusky
Sharks that were tracked using pop-off satellite tags in the
Gulf of Mexico showed movements along the continental
shelf edge and into pelagic waters (Hoffmayer et al. 2014),
so offshore movements are possible for smaller juveniles.
Tagged sharks appeared to return to North Carolina
waters in mid-April and were detected in arrays off Mary-
land and Delaware by May. During the summer, some
individuals remained in that area, while others were
detected as far north as the south shore of Long Island,
New York. By October 2018, the southern migration
appeared to have begun. These findings are consistent with
migratory patterns for juvenile Dusky Sharks as inferred
from the timing and location of observed fishery captures
and conventional tag and recapture locations from the
NMFS Cooperative Shark Tagging Program, which
showed a wide distribution along the continental shelf dur-
ing fall and summer and a more restricted distribution
south of Cape Hatteras during winter (NMFS 2017; Koh-
ler and Turner 2019). The results are also consistent with
telemetry studies of Dusky Sharks off western Australia,
which showed seasonal migrations between biogeographic
regions (Braccini et al. 2018).

Temperature and primary productivity (measured as
Chl-a) consistently accounted for the strongest interactions
in BRT model results, suggesting that these variables may
influence Dusky Shark habitat selection. Areas of high pri-
mary productivity tend to aggregate prey species, increas-
ing foraging opportunities for higher-trophic-level species
(Benoit-Bird and McManus 2012). The ranges of tempera-
ture and primary productivity associated with an increased
likelihood of Dusky Shark presence were also consistent
across all seasonal and monthly models. Although the
Chl-a range that was positively associated with Dusky
Shark presence was low compared to all values measured
in environmental data sets, Chl-a levels were among the
highest available in coastal areas outside of estuaries
where the tagged sharks were detected. Comparisons of
model results between fall and summer and between
months encompassing the southern migration from sum-
mer to winter habitats captured an apparent seasonal shift
in the relative influence of temperature and productivity.
Temperature was the most influential variable during fall

but decreased in relative influence during summer. During
September, Chl-a accounted for nearly half of all tree
splits; during October, depth was the most influential vari-
able, while SST and Chl-a accounted for nearly equal per-
centages of splits. In November, SST was the most
influential variable, accounting for nearly half of all tree
splits. This may indicate a switch in which environmental
conditions are prioritized by juvenile Dusky Sharks for
habitat selection: during the late summer and early fall,
when water temperatures within the range of the sharks’
temperature preference are broadly distributed, they may
be free to select areas of greatest foraging opportunity,
whereas decreasing water temperatures during the late fall
and early winter force the sharks to seek out optimal tem-
perature ranges for transit or foraging. Habitat selection
by highly migratory pelagic predators is largely driven by
trade-offs between temperature and productivity (Block
et al. 2011), and this is likely also the case for highly
migratory coastal species. Areas where Dusky Sharks can
optimize both temperature preference and foraging success
are likely to be the most important habitats.

Tag detection locations, temperature sensor data, and
spatial modeling suggested the importance of two distinct
oceanographic features as juvenile Dusky Shark habitat:
the Hatteras Bight and the Middle Atlantic Bight Cold
Pool. The Hatteras Bight marks the transition area
between temperate and subtropical marine biogeographic
regions along the U.S. East Coast (Hayden et al. 1984;
Fautin et al. 2010). In this area, the cold Labrador Cur-
rent from the north and the warm Gulf Stream to the
south meet in a location where the continental shelf is nar-
row, leading to high primary productivity during the win-
ter (Lohrenz et al. 2002). This productivity may provide
access to high prey densities for juvenile Dusky Sharks
migrating south for the winter while still allowing the
sharks to avoid temperatures below their thermal toler-
ances and may explain the tendency of juveniles to aggre-
gate within Raleigh and Onslow bays. The Middle
Atlantic Bight Cold Pool, stretching from southern
Georges Bank to the northern Outer Banks, shows
extreme temperature stratification vertically in the water
column, particularly off the coast between Delaware and
Chesapeake bays (Houghton et al. 1982; Lentz 2017). In
this area, which covers a variable portion of the mid-con-
tinental shelf, cold water remaining from winter becomes
trapped by the seasonal thermocline in the lower 20–60 m
of the water column during the spring and summer
(Houghton et al. 1982; Lentz 2017). During May and
June, colder bottom waters associated with this feature are
at their nearest point to shore in the vicinity of coastal
Maryland and Delaware (Lentz 2017), an area that
includes the acoustic arrays in the Delaware and Mary-
land wind farm areas. The lowest temperatures measured
by V16T tags for the entire year were encountered by
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Dusky Sharks detected in this area during May and June,
but they did not match the lowest temperatures available
during this time, which range between 8°C and 15°C in
the Maryland array area (D.H.S., unpublished data). This
may be evidence that juvenile Dusky Sharks are spending
time just above the thermocline at the upper vertical edge
of the Middle Atlantic Bight Cold Pool, which may pro-
vide access to both warmwater and coolwater prey species
available in the area while avoiding the coldest tempera-
tures. Cooling temperatures and late-summer storms cause
destruction of the Middle Atlantic Bight Cold Pool
through permanent destratification (Secor et al. 2019).
September storms in 2017 and 2018 resulted in destratifi-
cation and permanent declines of temperature throughout
the water column in the Maryland array area (D.H.S.,
unpublished data), aligning with temperatures less than
20°C encountered by tagged sharks during October in
each year. Spatiotemporal associations of sharks with the
Middle Atlantic Bight Cold Pool warrant further investi-
gation.

Dusky Shark habitats that were identified by our analy-
ses overlap with human uses of the marine environment,
including fisheries and offshore wind development. Coastal
North Carolina has long been recognized as an important
aggregation area and secondary nursery for Dusky Sharks,
which are among the most common bycatch species in
fisheries operating there (Jensen and Hopkins 2001;
McCandless et al. 2014). This was a major reason for the
establishment of the Mid-Atlantic Shark Closed Area
(NMFS 2003). However, our results suggest that the tim-
ing of juvenile Dusky Shark arrival within this area may
not precisely match the dates during which the closure
occurs (January 1–July 31 of each year). Tagged Dusky
Sharks were detected on receivers within the closed area
beginning in November and were mostly detected outside
of the area by May, 2 months prior to the start and end
dates, respectively, of the seasonal closure (NMFS 2003).
The Dusky Shark is not the only species that is protected
by the Mid-Atlantic Shark Closed Area, but populations
of Sandbar Sharks and other coastal sharks appear to be
recovering (Peterson et al. 2017), so assessing potential
changes in the closure’s timing to more precisely match
the presence of juvenile Dusky Sharks could be consid-
ered. Another potential area of concern is the location of
potential wind farm sites in the portion of the Middle
Atlantic Bight Cold Pool with which the tagged sharks
were associated during the summer. Electromagnetic fields
produced by undersea power cables connecting wind tur-
bines to the shore have been found to affect fine-scale
movements in skates within the immediate area around
the cables, but they did not create barriers to movement
(Hutchison et al. 2018). Construction noise created by
pile-driving, turbine assembly, and associated vessel traffic
may also affect habitat use by sharks and other species in

the area. Conversely, structure created by wind turbines
may provide long-term increased foraging opportunities
for Dusky Sharks by attracting reef-associated fishes
(Rooker et al. 1997). The effects of electromagnetic fields
and wind farm construction and operation on large-bod-
ied, highly migratory elasmobranchs have received little
study and are still largely unknown.

Dusky Sharks and other coastal migratory elasmo-
branchs are among the most likely species to shift distribu-
tion in response to climate change (Hare et al. 2016).
Summer and winter habitat areas where tagged Dusky
Sharks were located are defined by local temperature and
primary productivity ranges, which can be strongly influ-
enced by long- and short-term climate effects, such as
warming, increased storm events, increased thermal strati-
fication of the water column, and changes in seasonal
atmospheric pressure patterns. In the northwest Atlantic
Ocean, temperature effects have been shown to more
strongly impact species at higher trophic levels (Friedland
et al. 2019) and have the ability to dramatically influence
features like the Middle Atlantic Bight Cold Pool (Lentz
2017) as well as influence distributions of coastal fishes
(Secor et al. 2019). There is already evidence that some
elasmobranch species are expanding or shifting their distri-
butions in response to changing ocean conditions (e.g.,
Bangley et al. 2018b), and such shifts are likely in other
migratory elasmobranchs in the U.S. mid-Atlantic region
(Haulsee et al. 2018; Ogburn et al. 2018). If thermal and
productivity patterns are altered by climate change, Dusky
Sharks are likely to shift their distributions poleward in
response, as has been observed for other temperate mid-
Atlantic species (Nye et al. 2009; Pinsky et al. 2013).

The distribution of tag detections and predicted pres-
ence likelihood fell within the known Dusky Shark distri-
bution in the northwest Atlantic, and the migratory extent
covered most of the area designated as EFH for juveniles
(NMFS 2017). Temperature associations from both sensor
tag data and BRT modeling results also fell within ranges
that were previously identified in assessments of Dusky
Shark habitat (McCandless et al. 2014; NMFS 2017). The
consistency of our results with previously published data
supports spatial modeling of acoustic telemetry detections
paired with remotely sensed environmental data as a tool
for making ecologically realistic predictions of potential
habitat for migratory species at regional scales. However,
there are a number of limitations to our analysis. The
foremost is that acoustic telemetry relies on receivers to
document the presence of tagged animals, which means
that no data are available from locations without receivers
and modeling results based on acoustic telemetry data
may be biased by receiver deployment locations (e.g.,
mostly close to shore). This has been mitigated somewhat
by leveraging acoustic receiver networks, which allow
acoustic telemetry data to be recorded at a coastwide scale
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in areas like the U.S. East Coast (L. M. Brown, paper
presented at the Annual Meeting of the American Fish-
eries Society, 2012) and Australia (Udyawer et al. 2018).
However, outer shelf and deepwater habitats may be chal-
lenging to cover with acoustic receiver arrays. For this
reason, we spatially constrained our modeling results to
the continental shelf, where environmental conditions and
interactions are more likely to be similar to the nearshore
areas where receivers were deployed. Future studies should
also incorporate satellite-based telemetry methods to track
Dusky Sharks beyond the detection range of acoustic
receivers.

Inclusion of new data may also help to improve the
performance of BRT modeling. Despite being robust to
low sample sizes and zero-inflation (Elith et al. 2008), this
modeling approach still required more presence records to
resolve the models than were available during some
months. In addition, low sample size for presence data in
combination with gaps in satellite data decreased the like-
lihood that a given presence location would occur in an
area where environmental data were recorded. Although
spatial resolution differed between environmental data
sets, this did not appear to affect overlap with telemetry
locations. These issues with sample size caused us to limit
our modeling efforts to seasons and months with at least
20 daily presence records. As data beyond the first year of
tracking are collected, we expect that more detection days
will be available either through expanded acoustic receiver
coverage or combining data over multiple years.

We have identified environmental associations, migra-
tion phenology, and potential important habitat areas at a
spatiotemporal precision that has not previously been
achieved for Dusky Sharks in the northwest Atlantic
Ocean. Our results also further highlight the value of net-
worked acoustic telemetry arrays for studying the spatial
ecology and movement patterns of coastal migratory
fishes. This will help to guide future studies and fishery
management measures focused on Dusky Sharks, and our
approach may be helpful for management of other data-
poor, highly migratory species.
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