
491

Journal of Heredity, 2020, 491�497
doi:10.1093/jhered/esaa028

Bioinformatics Brief
Advance Access publication September 12, 2020

' The American Genetic Association 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Bioinformatics Brief

AgeStrucNb: Software for Simulating and 
Detecting Changes in the Effective Number of 
Breeders (Nb)
Tiago Antao*, Ted Cosart*, Brian Trethewey, Robin S. Waples,  
Mike W. Ackerman, Gordon Luikart, and Brian�K. Hand

From the Division of Biological Sciences, The University of Montana, Missoula, MT 59812 (Antao, Luikart, and Hand); 
Flathead Lake Biological Station, University of Montana, Polson, MT 59860 (Cosart, Luikart, and Hand); Computer 
Science, The University of Montana, Missoula, MT 59812 (Trethewey); NOAA Fisheries, Northwest Fisheries Science 
Center, Seattle, WA (Waples); and Biomark, Applied Biological Services, 705 S 8th St., Boise, ID 83702 (Ackerman).

*Co-�rst authors.

Address correspondence to B.� Hand, Flathead Lake Biological Station, 32125 Bio Station Ln, Polson, MT 59860, or  
e-mail: brian.hand@umontana.edu.

Received May 12, 2020; First decision June 9, 2020; Accepted July 30, 2020.

Corresponding Editor: William Sherwin 

Abstract
Estimation of the effective number of breeders per reproductive event (Nb) using single sample DNA-
marker-based methods has rapidly grown in recent years. However, estimating Nb is dif�cult in age-
structured populations because the performance of estimators is in�uenced by the Nb / Ne ratio, which 
varies among species with different life histories. We provide a computer program, AgeStrucNb, to 
simulate age-structured populations (including life history) and also estimate Nb. The AgeStrucNb 
program is composed of 4 major components to simulate, subsample, estimate, and then visualize Nb 
time series data. AgeStrucNb allows users to also quantify the precision and accuracy of any set of loci 
or sample size to estimate Nb for many species and populations. AgeStrucNb allows users to conduct 
power analysis to evaluate sensitivity to detect changes in Nb or the power to detect a correlation between 
trends in Nb and environmental variables (e.g., temperature, habitat quality, predator or pathogen 
abundance) that could be driving changes in Nb. The software provides Nb estimates for empirical data 
sets using the LDNe (linkage disequilibrium) method, includes publication-quality output graphs, and 
outputs genotype �les in Genepop format for use in other programs. AgeStrucNb will help advance the 
application of genetic markers for monitoring Nb, which will help biologists to detect population declines 
and growth, which is crucial for research and conservation of natural and managed populations.

Subject area: conservation genomics and biodiversity
Keywords:  conservation genomics, population viability, genetic monitoring, individual-based simulation

When assessing and monitoring population viability, it is crucial to 
consider evolutionary metrics such as the effective population size 
(Ne). Ne is important because it in�uences the rate of loss of genetic 
variation, inbreeding, and the ef�ciency of natural selection (e.g., to 

maintain adaptive variation). Thus, precise and accurate estimates 
of Ne are crucial in evolutionary, conservation, and ecological gen-
etics and have long been used in conservation decision making and 
population genetics (Crow and Kimura 1970; Charlesworth 2009; 
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Luikart et�al. 2010; Allendorf et�al. 2013; Waples et�al. 2014). An 
alternative approach to Ne is to estimate the effective number of 
breeders in one reproductive cycle (Nb). Estimating Nb in natural 
populations is important because it can be used to estimate Ne 
in cases where the relationship between Ne and Nb is understood 
(Waples et� al. 2013; Waples and Antao 2014). In addition, Nb is 
measurable annually (whereas Ne estimation often requires multiple 
years or generations between sampling events), making Nb more 
informative in monitoring long-lived species with annual breeding 
cycles (Waples and Yokota 2007; Waples et�al. 2013). The potential 
of Nb estimation in abundance monitoring is especially promising 
because it generally re�ects the number of successful breeding adults 
in a population at the time of reproduction and also provides infor-
mation about reproductive behavior and breeding systems (Whiteley 
et�al. 2015; Ruzzante et�al. 2016).

Estimating Nb and its variation (among breeding cycles) is useful 
for predicting genetic changes and viability of populations of conser-
vation concern. Often Nb and Nc (population census size) are not of 
similar magnitude or correlated among years, meaning that popula-
tion census studies are not necessarily informative in determining Nb, 
rates of loss of variation, or inbreeding (Duong et�al. 2013; Dowling 
et� al. 2014; Pierson et� al. 2018). However, Nb is not a direct re-
placement for Ne and inference of Ne from Nb often requires under-
standing the relationship between Nb and Ne as determined by a 
species� life-history traits (Waples and Antao 2014). A�lack of cor-
relation between Nb and Nc may be explained by environmental 
variables that constrain Nb, but only a handful of recent studies 
have investigated the relationship between environmental variables 
and Nb (Wood et� al. 2014; Whiteley et� al. 2015). These previous 
studies found that factors such as stream�ow (Whiteley et�al. 2015) 
and other environmental variables can in�uence Nb and the Nb /Nc 
ratio (Wood et�al. 2014). Therefore, understanding the relationships 
between environmental variables and Nb will be a critical step in 
conducting risk assessments in species susceptible to environmental 
variation.

Here we introduce the AgeStrucNb software package that is 
based on a thoroughly tested population genetic simulation model 
that allows for estimation of Nb for age-structured populations 
(Waples et� al. 2014; Waples and Antao 2014). AgeStrucNb al-
lows for controlled simulation of changes in Nb over time through 
both one time and multi-breeding cycle events to simulate changes 
(including nonlinear) in Nb over time. AgeStrucNb takes advantage 
of other recent advancements, including the ability to simulate and 
account for linkage disequilibrium (LD) in estimates of Nb (Waples 
et�al. 2016). AgeStrucNb also includes several time-saving and user-
friendly features, including a powerful graphical user interface, a 
powerful graphing tools that allow for quick visualization of results, 
options for parallel processing for simulating populations and Nb es-
timation, routines for subsampling loci and individuals, and �nally, 
the program utilizes Genepop (v4.6) format conventions (http://
genepop.curtin.edu.au/help_input.html) allowing for quick and easy 
formatting of empirical input data to parameterize simulation with 
real data (e.g., known allele frequencies).

An important feature in the AgeStrucNb package includes the 
ability to simulate a near-constant true Nb (e.g., Nb�=�50, or Nb�=�500, 
etc.) for each of many independent simulation replicates. This allows 
researchers to address questions such as: What is the power of a 
certain number of loci and individuals to reliably estimate Nb (when 
Nb is a certain size; Waples and Faulkner 2009)?. Here, we consider 
the true Nb as the value determined using the Parentage analysis 
without Parents (PwoP) method found in Waples and Waples (2011). 

No other software program has the ability to simulate a stable or 
changing Nb in age-structured populations (for any given life table 
or vital rates) and to conduct a power analysis of the number of 
loci, individuals, and cohort needed to detect a decline (or increase) 
in Nb. We demonstrate the usefulness of the AgeStrucNb software 
tool through 2 example uses highlighting the program�s �exibility in 
handling empirical and simulated genetic data and for multiple pur-
poses. In the �rst example, we use empirical SNP data from a popu-
lation of known pedigree (and hence known Nb) to illustrate the 
effect of subsampling loci and individuals on the bias and precision 
of Nb estimates (using the LDNe estimator). In the second example, 
we demonstrate the use of AgeStrucNb as a tool to quantify the 
power to detect population declines in Nb over time, which will help 
biologists establish genetic monitoring programs. Additionally, we 
explore the correlation between estimated Nb (using LDNe�Waples 
and Do 2008) and true (deterministic) Nb (Waples et�al. 2011) to 
understand the amount of sampling needed to accurately and pre-
cisely track true changes in Nb which is needed when correlating Nb 
with environmental variables that are potentially driving Nb.

Methods
Program Overview and Implementation
The AgeStrucNb program is composed of 4 major components to 
simulate, subsample, estimate, and then visualize either Nb time 
series data for a single population data, or single time point esti-
mates of Nb for multiple populations (Figure�1). Simulations require 
a species� lifetables as part of the input con�guration �le. The pro-
gram includes con�guration �les, including lifetables, for over 30 
commonly studied species as simulated in Waples et�al. (2014) and 
Waples and Antao (2014). For Nb estimation, AgeStrucNb takes 
as input Genepop formatted �les allowing for simulated or empir-
ical data. Much of the base code has had extensive debugging and 
validation and was utilized in previous studies (Waples et�al. 2014; 
Waples and Antao 2014). Notable program features and additions 
include 1)�greater �exibility in the user control of the change in true 
Nb through time and to hold true Nb constant, 2)�linear regression 
model testing of statistical power (e.g., useful for when designing 
monitoring programs aimed at detecting population declines or in-
creases in population size), and 3)�an extensive subsampling routine 
that can be used to subsample on the number of single nucleotide 
polymorphisms (SNPs), individuals, speci�c cohorts.

AgeStrucNb has built-in visualization tools for creating boxplot 
�gures on-the-�y for exploring subsampling of Nb and con�dence 
interval (CI) related data (Figure�1). The user also has the option 
to create linear regression plots to explore time series data (e.g., to 
detect slopes signi�cantly different from 0)�and a summary statis-
tics package to determine the number of slopes signi�cantly different 
from zero. Plots are created using the Matplotlib python package, 
which can be used to produce publication-quality �gures in a .png 
and .pdf �le format (Hunter 2007).

AgeStrucNb is a python program (created and tested using 
python 3.5 and 3.6, and with limited testing on 3.7), available 
through both a popular python package distribution database 
(pypi.python.org/pypi) and a github repository (github.com/
popgengui/AgeStrucNb). The manual, installation details, and a set 
of simulation con�guration �les for multiple species can be found 
at github.com/popgengui/AgeStrucNb/tree/data. For ef�ciency and 
speed, the program utilizes multi-core processing to allow users 
to start multiple simulations, estimation or visualization sessions 
at once, as well as perform parallelized per-replicate simulations 
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and per-population Nb estimations. The program has been tested 
thoroughly on Linux (Ubuntu 16.04), 64-bit Windows 8.1 and 10 
and had limited testing on OS X version 10.11. For a complimen-
tary program to AgeStrucNb also see NeOGen: a tool for Ne simu-
lation, estimation, and study design for species with overlapping 
generations (Blower et�al. 2019).

Genetic Simulation With�SimuPOP
AgeStrucNb uses a forward-time, individual-based population gen-
etics simulation environment called simuPOP (Peng and Kimmel 
2005; Peng and Amos 2008) to simulate age-structured genetic data 
for the desired study species. Demographic inputs for the simulation 
model include information about age and sex-speci�c survival rates 
and relative fecundity, mating system (monogamy/polygamy), the 
probability of male birth, and optional information about litter size. 
Other Nb-speci�c options include the ability to set a tolerance on the 
true Nb, the ratio of Nb/Nc, and the ability to prescribe changes in 
the true Nb over time either as 1-time events, a continuous decline 
or as multiple and varied �uctuations through time. To ensure that 
realized Nb is within a given threshold (e.g., within 1% of the true 
Nb) the program uses a trial-and-error �tting algorithm to repeat-
edly generate the next simulation generation and test the realized Nb 
(calculated using the PwoP method) is within the threshold speci�ed 
by the user. The user can also enter their desired Nb from which the 
number of newborns (N0) and population census size (Nc) are calcu-
lated based on the input Nb/Nc�ratio.

Simulations can be set to track large numbers of SNPs (tested 
up to 5000 in worked example 2)� or microsatellite markers and 
including specifying the starting number of alleles. This allows for 
further connection and application of the program to past studies 
using microsatellite markers. Genetic and demographic processes are 
simulated and tracked based on the base unit of reproductive�cycles.

At time 0, the age of each individual not in the N0 age class 
is drawn randomly from the stable age distribution. Because sur-
vival and reproduction are random and independent, total popu-
lation size, and the number of each sex in each age class, can vary 
randomly around the mean values expected in a stable population. 
Furthermore, although primary sex ratio at age N0 varies randomly 

around 0.5, adult sex ratio can differ from this due to sex-speci�c 
survival rates and ages at maturity. For each newborn individual, 
2 parents are selected by drawing 1 male and 1 female randomly 
from the pool of potential parents, with the probability of choosing 
a parent of age × proportional to bx for that sex. In other words, all 
potential parents of the same sex and age have an equal opportunity 
to be the parent of each newborn (i.e., ��=�1, where � is the ratio of 
the variance to the mean reproductive success in individuals in the 
same age and sex class), but that is not necessarily true for individ-
uals of different ages or sex. The value of � is hard to estimate em-
pirically, but it is likely that � � 1 in all cases (e.g., see Waples et�al. 
2018). As an optional setting, users can enforce strict adherence to 
sex and age class proportions using a lottery-based method that bins 
individuals based on age class and gender. Next, the number of indi-
viduals to be culled per age class and gender is determined by strictly 
maintaining age class and gender proportions relative to age and 
gender-speci�c survival rate. Individuals are then drawn randomly 
from each age class and gender and culled until the desired propor-
tion is reached. Enforcing a strict age class structure allows for sus-
tainable populations with low Nb, and thus, removing the chance for 
extreme events (e.g., the lost an entire gender or age class) that might 
not be biologically relevant (Waples and Faulkner 2009).

Simulations are optimized for speed, �exibility, and space saving. 
For example, users can set a simulation target for mean heterozy-
gosity (HE) for SNPs or microsats where the program will record 
genetic information for a desired number of cycles after reaching the 
target HE within a certain threshold. In addition, population allele 
frequencies can be initialized based on a desired starting HE. This 
greatly aids in speeding up simulation runs when Nb is large (e.g., 
Supplementary Figure S1 highlights the decay in HE over time with 
respect to starting Nb).

The base python code for AgeStrucNb and the simulation 
modeling has been thoroughly tested and used extensively in multiple 
studies (Waples et�al. 2014; Waples and Antao 2014; Luikart et�al. in 
press). For model validation, we also conducted longer runs to track 
the loss of HE over time and compared (validated) the loss rate to that 
expected (from theoretical equations) and the rate estimated from 
values from AgeStrucNb (Supplementary Figure S1).

Figure 1.  Work�ow diagram of the AgeStrucNb program highlighting the main operation components (SimuPOP, subsampling, Nb estimation, and visualization). 
Some of the parameters for each component is show in their respective box. Input data can be either simulated (by SimuPOP) or empirical data in Genepop 
formatted �les. The program also will output Genepop �les containing either the entire population or a subsample of loci and individuals (and cohorts) for use 
in other programs.
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Estimating Nb From Empirical and Simulated 
Datasets
LDNe v2 estimates Nb from genetic markers (e.g., SNPs or micro-
satellites) by quantifying the amount of nonrandom association 
(linkage disequilibrium) of alleles at independent locations on 
chromosomes (Waples and Do 2008). LDNe is one of the most 
extensively tested single sample Ne estimator currently available 
(Wang 2016). Computer simulations have shown that LDNe is ef-
fective in predicting Nb in populations with Nb�=�200 using only 
200 SNPs and a sample of 50 individuals, and also populations 
with Nb�=�500 using 400�5000 SNPs and >100 individuals, making 
it useful for estimating Nb in a range of populations (Luikart et�al. 
in press). Other recent improvements in LDNe include increased 
power by lessening estimate biases in the LD method (Waples 2006) 
and improved jackknifed CIs (Jones et�al. 2016). AgeStrucNb also 
includes further bias corrections as suggested by Eqn. 8 in Waples 
and Antao (2014) in cases where the ratio of estimated Nb and 
true Nb is not equal to 1.�The most recent version of LDNe (as im-
plemented in V2.1 of NeEstimator, released December 2017)�can 
also utilize chromosomal information to not use pairs of loci on 
the same chromosome when calculating pairwise LD (to avoid 
the use of nonindependent loci). Therefore, AgeStrucNb users 
can use chromosomal map information for empirical and simu-
lated datasets to remove any pairwise LD calculations for markers 
that reside on the same chromosome. This is an important con-
sideration in genomic data sets where thousands of loci are used 
(Waples et�al. 2016).

Statistical Output and Slope Signi�cance�Testing
AgeStrucNb features a stats and linear regression module that per-
forms signi�cance testing for a decline (or increase) in Nb point es-
timates from multiple time points (e.g., consecutive cohorts). Using 
simulated data, the program can be used to conduct power ana-
lysis to quantify the probability of detecting a negative or positive 
slope of a line through Nb point estimates compared to a zero slope. 
A�range of scenarios can be simulated, including different rates of 
decline, and sampling of loci, individuals, and time points (cohorts). 
Additionally, the stats module can also be used with a single empir-
ical data set with multiple time point estimates to test for a slope 
signi�cantly different from�zero.

Two parameters are estimated in the linear regression module 
of AgeStrucNb, the slope coef�cient (b1) and the intercept (b0). This 
reduces the number of degrees of freedom to � � � where � was the 
number of points (i.e., the number of cycles tested) used to calcu-
late the regression and necessarily imposes a minimum limit on the 
number of sampling events of 3 breeding cycles (Neter et�al. 1985). 
The test statistic (t*) for the slope of a linear regression is calcu-
lated for a normally distributed regression with a null hypothesis 
equal to zero, where ����� is an estimate of the variance of the slope 
(Equation 1; Neter et�al. 1985).

�� � ��������� (1)

In most regression models �� is assumed to be distributed normally. 
This assumes the data being regressed over is roughly linear, distrib-
uted approximately normal, contains no major outliers, and inde-
pendent variables. To calculate � ���� requires calculating the mean 
squared error (MSE) of the line (Equations 2 and 3). Using t* and 

the degrees of freedom of the regression we can then calculate the 
P-value for that line using a Cumulative Density Function (CDF) on 
the T distribution (Neter et�al. 1985).

� ���� �
���

�
��� � ��� (2)

��� �
�

��� � �� ��

� � �
� (3)

An advantage of using a CDF function is it maintains sidedness, and 
thus, allowing differentiation between signi�cant positive and nega-
tive values. A�P-value is then used to determine cases where the slope 
is signi�cantly different from zero.

Empirical Examples
Example 1: Subsampling of Empirical�Data
A major feature of AgeStrucNb is to streamline the process of sub-
sampling data when input is either empirical or simulated datasets. 
AgeStrucNb will accept as an input a Genepop formatted �le 
that can include any number of populations which can be treated 
as a timeseries for a single population or as a number of inde-
pendent populations (e.g., when using empirical data for multiple 
locations). The Nb estimation module includes multiple optional 
methods of subsampling by the number of individuals (e.g., by a 
series of percentage values or remove-N individuals) and by the 
number of loci (by percentage or total number). Users can also 
choose to subsample individuals based on age or cohort number 
when calculating Nb.

We demonstrated the subsampling routine using an empir-
ical dataset for steelhead trout (Oncorhynchus mykiss) from the 
Pahsimeroi hatchery in the Snake River Basin (Ackerman et� al. 
2017). Complete hatchery pedigree (parentage) information exists 
for the Pahsimeroi hatchery, including the genetic information for 
all breeding parents and their returning offspring. True Nb was 
calculated using the PwoP method. Multiple estimates of Nb were 
then calculated in AgeStrucNb using a panel 95 SNPs and repeated 
random subsets (i.e., 10%, 20%�90%) of the number of returning 
individuals (N�=�1481). LDNe estimates were run using 100 repli-
cates (random subsamples of individuals) per each sampling subset 
or 900 sampling replicates in total (Figure�2).

Ackerman et�al. (2017) conducted a similar analysis on steelhead 
hatchery population; however, their analysis used sibship analysis 
in the program COLONY v2.0.5.6 to estimate Nb (Jones and Wang 
2010). Ackerman et�al. (2017) concluded that relatively large sample 
sizes (e.g., similar to the true value of Nb) were required to accur-
ately estimate Nb using parentage analysis. There was also a down-
ward bias in the estimates of Nb using COLONY, especially with 
small sample sizes. We found less obvious bias when using LDNe; 
however, there was a slightly increased amount of variation among 
Nb estimates for each subsampling. This increased variation could 
partly be attributed to the small SNP panel used for estimating Nb in 
LDNe. The major advantage of LDNe, in this case, was the greatly 
reduced computational time required to recreate the (subsampling 
used in Ackerman et�al. 2017). Ackerman et�al. (2017) used 90 rep-
licate runs of the COLONY program that took a total amount of 
computer time ~400�h versus ~1�h needed to run 900 subsampling 
replicates in AgeStrucNb.
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Example 2: Establishing Monitoring Programs and 
Sampling Design�Needs
We demonstrate the use of AgeStrucNb as a tool for genomic 
monitoring sampling design by conducting power analysis to 
quantify the probability of detection in a population where Nb 
declines by 10% per year. For our study species, we choose the 
short-lived wood frog (Rana sylvatica) that has 4 age classes and 
the long-lived lake trout (Salvelinus namaycush) that has 63 age 
classes. The linear regression and slope signi�cance (described 
above) test was used to test for the probability of a correct de-
tection (statistically signi�cant negative slope) using 100 replicate 
simulations. Slope signi�cance tests were calculated using 3�10 
breeding cycles (and thus 3�10 Nb estimates; Figure� 3) with an 
alpha of 0.1, which is equivalent to a false positive detection rate 
of ~10%. We deemed this higher false-positive rate a reasonable 
test based on the assumption that increased sensitivity (lower 
false negatives) may be desirable, even with a slightly increased 
rate of false-positive detections of declines. However, users can 
also adjust the rate of their alpha based on their risk tolerance 
needs. We used Nb starting values of 200 and 500 and examined 
the change in probability of detection over a combination of in-
dividual sample sizes (50, 100, and 200)�and the number of SNP 
markers (100, 500, 1000, and 5000). We assumed a probability of 
detection �80% to be acceptable or desired for most monitoring 
programs to detect a decline. Finally, we also calculated the correl-
ation between replicate sets (i.e., including all point estimates of a 
single replicate over 10 cycles) of estimated Nb correlated with the 
single set of true (deterministic) Nb (Table�1).

Overall, the number of cohorts sampled had a strong effect on 
increasing power until at least 7 cohorts were sampled. No scenarios 
with less than 5 cohorts samples achieved high power (>.80). For 
�xed numbers of individuals and loci, Larger values of Nb required 
an increased number of breeding cycles sampled to approach the 
desired 80% threshold of power. In the case of Nb�=�200, 5 breeding 
cycles were required to reach the 80% threshold, and a minimum of 
6 breeding cycles sampled was necessary for Nb�=�500 to reach the 

same threshold. In terms of Nb, this equates to Nb�=�131 for a starting 
Nb�=�200, and Nb�=�328 for a starting Nb�=�500.

The number of individuals and SNPs sampled also greatly im-
pacted the probability of detection (Figure� 3). There appeared to 
be distinct thresholds over which the increase in the number of in-
dividuals sampled or the number of SNPs sampled did not greatly 
increase rates of detection. General patterns in the probability of 
detection were similar between species.

For this example, we also investigated the correlation between 
estimated and true Nb to determine how many SNPs and individuals 
need be sampled to produce tightly correlated values. This is im-
portant as a �rst step in determining under what conditions annual 
Nb might be correlated with an underlying environmental factor. If 
noise is too great, it could be impossible to detect an underlying 
correlative relationship. Using the datasets above, we correlated sets 
of estimated Nb over 10 breeding cycles (with a 10% decline) to 
the true Nb (Table�1). The range in correlation values between esti-
mated and true Nb appeared most sensitive to the number of SNPs 
and individuals sampled, less dependent on the starting Nb. Values 
of 100�200 individuals and 1000�5000 SNPs sampled appeared to 
provide high accuracy (mean correlation � 0.89), and moderate pre-
cision (range of correlation�=�0.61�1). With ample sampling of in-
dividuals (>200) and using >500 SNPs, the precision was increased 
(range of correlation�=�0.81�1). This simple example appears to offer 
hope that with adequate sampling, correlations between Nb and en-
vironmental variables will be detectable, but we leave further explor-
ation for future use of the AgeStrucNb�tool.

Such simulation and empirical-based tools for assessing power, 
precision, and accuracy will become increasingly important as man-
agers need tools for establishing genomic monitoring programs. 
AgeStrucNb will allow managers to balance the power to detect a 
population decline with the cost and time associated with sampling. 
In general, 5�6�years of sampling time with the appropriate number 
of individuals (~100�200 for Nb >200) and SNPs (�500) sampled 
can provide enough power to have a high probability (�80%) to de-
tect population declines.

Figure 2.  Output from the AgeStrucNb program using the visualization interface and the box-plotting option. Box-plots are for hatchery steelhead (Pahsimeroi). 
The total steelhead population consisted of 1,481 individual offspring with a true (pedigree-based) Nb�=�353 (Ackerman et�al. 2017). Subsampling across a 
randomly chosen set of individuals shows the variation in the LDNe estimation of Nb using 95 markers and across 10%, 20%�100% of individuals sampled. Note 
that even when sampling all individuals (1481) there is still error associated with the choice of sampled loci which is not depicted here.
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