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ABSTRACT

This work focuses on the analysis of columnar aerosol properties in the complex
geophysical tropical region of South America within 10-20° South and 50-70° West. The region
is quite varied and encompasses a significant part of Amazonia (lowlands) as well as high
mountains in the Andes (highlands,~4000 m a.s.l.). Several AERONET stations were included to
study the aerosol optical characteristics of the lowlands (Rio Branco, Ji Parana and Cuiaba in
Brazil and Santa Cruz in Bolivia) and the highlands (La Paz, Bolivia) during the 2000-2014
period. Biomass-burning is by far the most important source of aerosol in the lowlands,
particularly during the dry season (August-October). Multi-annual variability was investigated
and showed very strong burning activity in 2005, 2006, 2007 and 2010. This resulted in smoke
characterized by correspondingly strong, above-average AODs (aerosol optical depths) and
homogeneous single scattering albedo (SSA) across all the stations (~0.93). For other years,
however, SSA differences arise between the northern stations (Rio Branco and Ji Parana) with
SSAs of ~0.95 and the southern stations (Cuiaba and Santa Cruz) with lower SSAs of ~0.85.
Such differences are explained by the different types of vegetation burned in the two different
regions. In the highlands, however, the transport of biomass burning smoke is found to be
sporadic in nature. This sporadicity results in highly variable indicators of aerosol load and type
(Angstrom exponent and fine mode fraction) with moderately significant increases in both.
Regional dust and local pollution are the background aerosol in this highland region, whose
elevation places it close to the free troposphere. Transported smoke particles were generally
found to be more optical absorbing than in the lowlands: the hypothesis to explain this is the
significantly higher amount of water vapor in Amazonia relative to the high mountain areas. The

air-mass transport to La Paz was investigated using the HYSPLIT air-concentration five-days
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back trajectories. Two different patterns were clearly differentiated: westerly winds from the
Pacific that clean the atmosphere and easterly winds favoring the transport of particles from

Amazonia.

1.- Introduction

High mountain areas are very sensitive to climate change as they host many glaciers and
are also involved in many cloud formation processes (e.g. Wonsick et al., 2014; Liithi et al.,
2015). Particularly, high mountains in tropical areas are the host of glaciers and snow at such
latitudes, irrigating many rivers and thus are essential for the water supply of local population.
Changes in glacial and snow covers are indicators of climate change (e.g. Xu et al., 2016). The
Andes in South America is the largest mountain chain in the world covering a latitude range
from -55° S to 5°N and with many peaks above 5000 m a.s.]. The Andes mountain chain is part
of many countries and is a natural barrier between the bulk of the South American mainland and
the Pacific Ocean. It also represents a fundamental constraint on the eastern meteorology given
the predominance of easterly trade winds from the Atlantic Ocean. These trade winds create the
conditions for the South American Low Level Jet (SALLJ) that runs parallel to the mountains
(Ulke et al., 2011). The SALLJ exhibits an annual cycle that peaks during austral summer and is
the major air-mass transport mechanism in South America. Despite its low altitude (around 1500
m a.s.l.), it enhances moisture availability for convection in the Andes Mountains (Nogués-
Paegle and Mo, 1997).In other regions containing large mountain chains such as the Himalaya in
Asia or the Alps in Europe many studies have been done concerning trace gases (e.g.

Schwikowski et al., 1999; Maione et al., 2011), aerosols (e.g. Gautman et al., 2011; Zieger et al.,
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2012) and cloud formation (e.g. Bonasoni et al., 2010). In the Andes, however, due to the lack of

appropriate measurements, these topics have not been studied well.

The Amazon Basin is a major source of anthropogenic-driven biomass-burning emissions
(e.g. Mishra et al., 2015), accounting for approximately 15% of total global biomass-burning
emissions (van der Werfet al., 2010).Depending on the vegetation burned, fires inject reactive
gases, greenhouses gases (e.g. as carbon dioxide (CO2) and methane (CH4)) and particles into
the atmosphere (Andreae and Merlet, 2001; Bowman et al., 2009; Remy et al., 2014).Biomass-
burning emissions are also a major source of organic (14-77 Tg/yr) and black carbon particles
(1.8-11 Tg/yr)(e.g. Bond et al., 2013). Aerosol smoke particles that are the result of biomass-
burning directly affect the Earth-Atmosphere radiative budget by scattering and absorbing solar
radiation (e.g. Jacobson, 2014) and also indirectly by acting as cloud condensation nuclei (CCN)
and ice nuclei (IC) and thereby changing the distribution and properties of clouds (e.g. Koren et
al., 2008). Biomass-burning can be the cause of serious public health issues such as extreme
particulate matter (PM) concentrations caused by fires in the island of Borneo and Sumatra (Eck
et al., 2016). Smoke from wildfires has also been associated with both increased mortality (Vedal
and Dutton, 2006) and morbidity (Bowman and Johnston, 2005), and may cause ~250,000
(73,000-435,000) premature mortalities/yr, with >90% being associated with PM (Jacobson,

2014).

In Amazonia the smoke emissions caused by agricultural burning of residues (e.g. Uriarte
et al., 2009) and by deforestation along the borders of Amazon forests, known as the arc of
deforestation (e.g. Morton et al., 2008; van Marle et al., 2016). The burned areas are commonly
found in Brazil, Peru, Colombia, Bolivia, Paraguay and northern Argentina. Atmospheric

transport patterns lead to spatial distributions of smoke that can be very different from the
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distribution of the actual fire sources (e.g. Freitas et al., 2005). This, in turn, has differing
impacts on different environments and populations. As an example, many studies have been
carried out over Brazilian areas, including modeling transport efforts (e.g. Matichuk et al., 2008;
Longo et al., 2010) and the impact of smoke over both rural areas and highly populated cities
(e.g. Reid et al., 1998,1999; Kotchenruther et al., 1998). Also, intensive field campaigns such as
GOAMAZON (http://campaign.arm.gov/goamazon2014/) have been staged to advance the
understanding of absorption and aging properties of smoke, of greenhouse gases and of smoke
transport patterns. However, due to the enormous areas burned and the population differences as
well as different agricultural traditions and agricultural development between Brazil and its
neighbors, the study of biomass burning in the rest of South America needs to be the focus of

more investigations.

The main objective of this work is to analyze the smoke particle patterns in the Bolivian
Andes and surrounding areas. To that end, we focus on the long-term ground-based
measurements of the AERONET network acquired at the high mountain site in the city of La Paz
(3340 m a.s.]) and at nearby lowland sites in Brazil and Bolivia.We usedthe HYSPLIT model
(Stein et al., 2015) to interpret the origin of the air masses influencing the study region. Biomass-
burning smoke studies using AERONET data have been successfully carried out in Brazil (e.g.
Schafer et al., 2008), Africa (e.g. Eck et al., 2003, 2013: Queface et al., 2011) and in Alaska (e.g.
Eck et al., 2009) as well as for cases of long-range transport of biomass burning smoke in North
America (e.g. Colarco et al., 2003; Veselovskii et al., 2015), Europe (e.g. Alados-Arboledas et
al., 2011) and Asia (e.g. Noh et al., 2009). AERONET data on biomass-burning smoke have also

been used to improve and validate satellite retrievals (e.g. Sayer et al., 2014).
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This work is structured as follows: Section II describes the experimental region and

methodology. The results are in Section III and concluding remarks in section I'V.

2.- Experimental Region and Methodology

The South American study zone of interest is in the tropical region within 10-20° South
and 50-70° West. The area includes three different geophysical regions: The Amazon (lowlands)
is characterized by tropical conditions, the high mountain regions by mountains above 6000 m
a.s.l. that also include flat areas known as the 'Altiplano’ (highlands ~ 4000 m a.s.l.) and by a
transition between the two (foothills). Figure 1 shows a map of the area, including the
AERONET stations whose data were used in this study and an example of an elevation profile
from the Pacific Ocean to Amazonia crossing the La Paz region. The wet season occurs during
the period from December to March, and the dry season is particularly intense in the period from
June to September. The most important geo-atmospheric factor is the strong altitude gradient
between the lowlands and highlands, with its attendant large differences in water vapor content
and relative humidity. The city of La Paz, Bolivia (16.36° South, 68.06° West, 3439 m a.s.l.),
which is located in a valley surrounded by mountains of up to 5500 m a.s.l is an important focus
of this study. The metropolitan area includes the Andean Altiplano with a total population of
around 1.7 million inhabitants. The lowlands to the north and east include the stations of Rio
Branco, Brazil (9.95° South, 67.87° West, 212 m a.s.l.), Cuiaba, Brazil (15.50° South, 56.00°
West, 250 m a.s.l.) and Ji-Parana, Brazil (10.85° South, 61.80° West, 100 m a.s.l.) These stations
are close to small-medium sized cities with populations in the range of 120,000-600,000
inhabitants. The station in the Bolivian city of Santa Cruz de la Sierra (17.08° South, 63.17°

West, 442 m a.s.]l.) with a total population of 2 million was also included in our study.
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Anthropogenic aerosol emissions from these cities, particularly road traffic emissions, are the

main sources of local anthropogenic aerosol over the study region.

Column-integrated characterization of atmospheric aerosol was examined using
AERONET sun-photometry measurements. The standard AERONET instrument is the well-
knownCIMEL CE-318-4 sun photometer. This device measures direct sun signals at 340, 380,
440, 500, 675, 870, and 1020 nm which are transformed into aerosol optical depths (AODs).
Details of AERONET sun photometers including calibration, error analysis and aerosol optical
properties retrievals are in Holben et al., (1998), Eck et al.,(1999) and in Smirnov et al., (2000).

All the data used in this study are cloud-screened and quality assured (Level 2.0).

Within the solar spectrum, the Angstrom exponent is a good indicator of the predominant
size of atmospheric particles (i.e. Dubovik et al., 2002): a > 1.5 implies the predominance of
fine mode (submicron) aerosols while a < 0.5 implies the predominance of coarse mode
(supermicron) aerosols. However, for a more accurate characterization of the relative influence
of fine and coarse mode particles an interpretation based solely on very high or very low values
of a is not straightforward. We accordingly used the Spectral Deconvolution Algorithm (SDA)
product incorporated into AERONET standardized processing (O’Neill et al., 2001a,b; 2003), to
study fine mode AOD (AODsine), coarse mode AOD (AODcoase), and fine mode fraction

(N = AODsine / AOD ) at a reference wavelength of 500 nm.

In terms of aerosol microphysical properties, the operational AERONET algorithm
(Dubovik and King, 2000; Dubovik et al., 2000) uses sky radiances and direct sun measurements
as inputs and provides retrieved aerosol size distribution as well as intensive properties such as

aerosol refractive index, single scattering albedo (SSA) and asymmetry factor (g) (across four
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spectral bands at 440, 675, 870, 1020 nm). However, the AERONET algorithm has specific and
often difficult to satisfy sky condition requirements (Holben et al., 2006) in that skies must be
completely clear and large scattering angles (typically larger than 50°). These limitations imply
that refractive index retrievals are only reliable for AOD > 0.4, although not for the retrieval of
size distribution (Holben et al., 2006). It accordingly provides low temporal resolution results
(generally a maximum of approximately 8 inversions per day are possible). Nevertheless,
retrievals that uses sky radiance measurements are the only that are able to provide retrieved
values of aerosol refractive index, single scattering albedo and phase function with appropriate

accuracy (Dubovik et al., 2006).

To complement AERONET retrieved aerosol microphysical properties, we compute
additional retrievals using the Linear Estimation technique (Veselovskii et al., 2012, 2013), that
uses AERONET spectral AODs measurements as input to yield high frequency estimates of
aerosol microphysical parameters during the whole day. The parameters retrieved using the LE
technique are the effective radius (rerr) and the volume concentration (V). The other retrievals we
ran were based on the method proposed by O"Neill et al., (2005, 2008a), which, itself, is based
on the spectral curvature of the fine mode Angstrom slope and its spectral derivative, derived

from the SDA. This algorithm is used to estimate the fine mode effective radius (rfine).
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The HYSPLIT model (Stein et al., 2015), developed by the NOAA Air Resources
Laboratory, and accessible on-line at http://www.ready.noaa.gov/HYSPLIT.php is used to
compute air parcel backward-trajectories and from them assess dispersion of aerosols. The
meteorological data used to run the model were from 6-hourly GDAS (Global Data Assimilation
http://www.emc.ncep.noaa.gov/gmb/gdas/) output at 1° degree horizontal resolution. The total

trajectory time was set to 120 hours.

3.- Results

3.1. Aerosol Optical Properties
Figure 2 shows the temporal evolution of daily means of AOD, AODfineand AODcoarsefor

the AERONET stations, whose data were employed in our study (with a zoomed insert of the
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temporal plot of the highlands station of La Paz). The reference wavelength is 500 nm. Table 1
presents a statistical summary of the parameters in Figure 2, particularly mean values, standard

deviations (S7D), medians, maxima and minima.

[Insert Figure 2 here]

[Insert Table 1 here]

Maxima of AOD, AODfine and AODcoarseoccur during the biomass-burning season from
August to October. The intensity of the biomass-burning season varies from year to year as
evidenced, for example, by the different maximum values of Figure 2. These intense biomass-
burning seasons have also been reported in the literature based on satellite observations (e.g.
Torres et al., 2010). During the biomass-burning season, increases in AODfine and AODcoarse are
observed when compared with other seasons. But the increase of AOD#ine 1s very large compared
to that of AODcoarse, indicating a large predominance of fine particles (by about an order of

magnitude).

The differences in the maximum values of AODs among the different biomass-burning
seasons imply a multi-year variability in fire emissions, which is consistent with the large
standard deviation of AODs reported in Table 1. Emissions of smoke particles from biomass
burning are mostly associated with human activities. Examples of this are fires that are used for
forest clearing by small farmers and plantation owners who clear understory shrubbery and cut
forest trees. The area is burned a few months after the clearing, and, although the fires are
intended to only burn in limited areas, they sometimes spread beyond the targeted agricultural
zone and consume pristine rainforest (e.g. Torres et al., 2010). The extent and intensity of the

burned areas can vary from year to year.

10
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To show that the data used are predominately cloud-free, Figure 3 shows a(440-870)
versus AOD(500) for lowland stations. Cloud-affected data typically present a(440-870)< 0.5
(O"Neill et al., 2003). In particular, AODs > 2 are associated with a(440-870) values that are
generally> 1.2, a value which suggests minimal cloud contamination in the measurements.
Moreover, the number of photocounts is large enough to guarantee the quality of the
measurements: for very high AODs the number of photocounts registered by the AERONET
instruments ranged from about 50 to 20 counts for 500 nm AODs of 4 and 6 respectively at the
Cuiaba site, while the minimum count required for good AOD measurement is 10 (Sinyuk et al.,

2012).

[Insert Figure 3 here]
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The maximum values reported in Figure 2 represent some of the largest values ever
registered in the AEROENT Version 2 database (http://aeronet.gsfc.nasa.gov/cgi-
bin/climo_menu_v2_new). The mean values during the biomass-burning season are also among
the largest monthly mean climatological values. Schafer et al., (2008) registered similar values
using stations located in the Amazon basin. Comparably high AOD values were also reported for
African biomass-burning by Eck et al., (2003, 2013). Moreover, the occurrence of very high
AOD values over the extended periods of time that we have reported here are only obtained in
very polluted parts of Asia (e.g. Eck et al., 2010), very dusty areas in the Sahara (e.g. Guirado et

al., 2014) and the Arabian Peninsula (e.g. Kim et al., 2011).

For the highland La Paz station the AOD increased during the August-October period
from mean values around 0.09 to 0.12 (Table 1), but the AOD values are much lower than those
in the lowlands. Although the fine mode is still predominant, the contribution of coarse mode to
the total AOD cannot be ignored. The frequency histograms of AOD(500) for each station are
given in Figure 4, and they show that only 7 % of data at La Paz present AOD > 0.4 while for the
stations of Cuiaba, Ji Parana, Rio Branco and Santa Cruz these percentages are of 45%, 59%,
44% and 41% respectively. That indicates the greater contribution of biomass-burning particles

in the lowlands to the total aerosol load and to the aerosol seasonal changes.

Multi-wavelength lidar measurements in the central Amazon made by Baars et al., (2012)
showed that smoke plumes can reach altitudes up to 5 km. During the burning season, the
reduced vegetation in the highlands implies few fires, while the large AODs in the lowlands
suggests that transport of smoke particles from nearby Amazonia is the main source of particles.
The Andes chain in the tropics is therefore a barrier for the transport of smoke to the Pacific

Ocean, in agreement with the results of Bourgeois et al., (2015) using CALIPSO data.

12
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[Insert Figure 4 here]

Indicators of particle type predominance between biomass and non-biomass burning
seasons is illustrated in Figure 5, where Box-Whisker plots of a(440-870) and fine mode fraction
are represented. In the Box-Whisker plots, the mean is represented by a very small open square
within a given rectangle. The horizontal line segment in the rectangle is the median. The top
limit (top of the rectangle) represents the 75" percentile (P75) and the bottom limit the 251
percentile (P25). The lines perpendicular to the boxes are the 1%t (P1) and 99" (P99) percentiles,

and the crosses represent the maximum and minimum values respectively

[Insert Figure 5 here]

Figure 5 shows very high values of a(440-870)in the lowlands during the biomass-
burning seasons, with mean values of 1.5-1.7 which are similar to biomass-burning values
reported in the literature (e.g. Dubovik et al., 2002; Schafer et al. 2008) and, along with the
values of n above 0.80, indicate a predominance of fine particles. Lower values of a(440-870),
characterized by large standard deviations, are observed for the non-biomass burning seasons.
The mean values also vary significantly among stations (from 0.86 at Rio Branco to 1.36 at Santa
Cruz). These results, plus the fact that the values of n vary between 0.7 and 0.5, indicate a lack of
predominance of fine or coarse mode in the wet season. Indeed, a mixture of different particles
predominates. On the other hand, the mean Angstrom Exponent values of 0.94 and 0.85 for the
biomass and non-biomass burning seasons, respectively at the highland station of La Paz, are not
significantly different after considering the standard deviation. The same is true for n, with mean
values of 0.55 and 0.48 respectively. These La Paz values of a(440-870) and m cannot,

accordingly, be associated with large predominance of either fine or coarse mode.
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The multi-year and seasonal variability of AOD and a(440-870) in the highland station is
illustrated in Figure 6 as a function of the day of the year. Mean values are represented by dots
and standard deviations by vertical lines. These values are the result of averaging AOD for each
day of the year in different years. During the biomass-burning season mean AOD at 500 nm is of
0.12 = 0.06, but the standard deviations of the means indicate AOD peaks of up to 0.35, and are
typical values associated with the transport of biomass-burning particles to high mountain places
(e.g. Perez-Ramirez et al., 2008). For other high mountain sites in the Himalayas during the pre-
monsoon season, values of up to 0.1 are reported at elevations of ~ 5000 m a.s.l. (Marcq et a.,
2010) and up to 0.5 at elevations of ~ 2000 m a.s.l. (Dumka et al., 2008). Therefore, the values
obtained in La Paz station are similar to high-mountain Himalayan sites affected by the transport
of pollutants. The large standard deviations of AODs in the biomass-burning season also indicate
large variability, which suggests that the arrival of smoke particles occurs during sporadic events
rather than as part of a continuous. AODs values during the other seasons (especially in the
April-July period), are ~ 0.1 and are considered as background conditions (local
origins).Therefore, biomass-burning transport to high mountains can induce AOD values of up to
five times the average background conditions. In section 3.4, we study several such events in
detail. The period November-March (wet season) exhibits large variability, which might be
explained by meteorological factors such as wet deposition and by the less robust statistics of the

smaller database associated with that period.

[Insert Figure 6 here]

The parameter a(440-870) shows mean values that are not significantly different during
the biomass burning season as compared with the other seasons (Figure 6b). This suggests that

the particle type predominance during the biomass-burning season is similar to that in other

14
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seasons (which are probably dominated by aerosols of local origin). Actually, during the
biomass-burning season, mean a(440-870) values are around 1.0 while values for background
conditions (focussing on the April-July period with mean AODs of ~0.09) a(440-870) are around
0.85. In the wet season (November-March), the larger variability observed in Figure 6 can be

explained by the low AODs (<0.05) which implies larger uncertainties in a(440-870).

The frequency of sporadic smoke events transported to La Paz can be observed in the
a(440-870) versus AOD graph of Figure 7 (whose dataset is limited to the biomass-burning
season).In order to discriminate AOD contributions associated with thetransport of smoke from
background AODs, we established AOD > 0.14, which is the mean plus standard deviation value
during the non biomass-burning season (Table 1), as a criterion for classifying intense smoke
events. Analyses of Figure 7 data indicate that only 10 % of the measurements acquired during
the biomass-burning season exceed this threshold. The cases of smoke transport are
characterized by a considerably higher a(440-870) (1.4 = 0.2) versus the background. Since there
is no other extra source than episodic biomass-burning aerosols (emissions by local sources are
almost constant throughout the year), the large differences in the Angstrom exponent associated
with smoke between lowlands (~1.8) and highlands (~1.4) suggest changes in smoke particles
during their transport to the highlands. This could also suggest a larger influence of local coarse
mode particles at La Paz since the maximum AOD values are much lower there than in the

Amazonian Basin.

[Insert Figure 7 here]

3.2. Biomass-burning and precipitation rates

Table 2 reports the rainfall difference between values registered and climatological

values for each season. Such difference is defined here as rainfall anomaly. Data used are from

15
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TRMM satellite (http://trmm.gsfc.nasa.gov) for the period 2002-2014 in the study area (10-20°
South, 50-70° West.). The mean of the TRMM data are taken as the climatological values and are
shown in parentheses. The ‘wet’ period was taken to be November-March, the ‘dry’ period to be

April-July while the biomass burning period was taken as August-October.

[Insert Table 2 here]

An anomalous precipitation increase during the wet period can increase the amount of
vegetation to be burned during the biomass-burning season (Uhl et al., 1998). Increases in
precipitation during the biomass-burning period favors particle wet deposition and the shortening
of aerosol lifetimes (Freitas et al., 2005). An increase in aerosol loads can be expected for the dry
and biomass burning periods due to unusually dry conditions that intensify fire activity. Such
links with precipitation seem to be clear for the intense biomass-burning activity (as represented
by AOD amplitude in Figure 2) registered in 2005-2010: positive rainfall anomalies in the wet
season could have increased the amount of biomass that could be burned in the following
burning season, while negative rainfall anomalies in the dry and / or burning seasons could have
favored fire activity. An exception to this pattern is 2009, which exhibits positive rainfall
anomalies during the dry and biomass-burning seasons and therefore lowers AODs. However, in
2008 a strange behavior was observed in that dry conditions were present but lower AOD values
were recorded compared with 2005, 2006, 2007 and 2010. The strange behavior in 2008 was also
reported by Torres et al., (2010) using OMI space-borne sensor data.

The 2002-2004 period (except for the dry period of 2004) exhibits an opposite pattern,
with a precipitation deficit in the wet season and positive rainfall anomalies in the dry and
burning seasons. The lower AODs for these years are broadly coherent with the concepts

presented above on the relationship between rainfall anomaly and fire activity. However, after
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2011 the type of reasoning that we have employed above to make the link between rainfall
anomaly and fire activity is not followed, as a continuous reduction of AODs and fire activity
has been observed independently of precipitation. Specific regulations and/or economic forces as
suggested by Koren et al., (2007, 2009) could have helped to reduce fire activity. More years of

data and perhaps different level of correlation analyses have to be investigated.

3.2. Aerosol Particle Sizes

Figure 8 shows the mean particle volume size distributions from AERONET almucantar
retrievals for the study stations, separated into biomass and non-biomass burning seasons.
Different scales are used in the Y-axes between both seasons to better visualize size distribution
shapes. This figure indicates that during the biomass-burning season the fine mode largely
predominates for the lowland stations. Very similar size distributions for biomass-burning have
been reported in the literature (e.g. Eck et al., 2003; Schafer et al., 2008). However, in the
highlands the size distribution exhibits two modes with approximately the same volumetric
relevance, although that does not imply that both modes have the same optical effect (

). This is broadly
consistent with the previous results of the a(440-870) and r analysis: the coarse mode could be
associated with the injection of dust particles from the Andean Altiplano, either by traffic re-
suspension or regional winds: On-going studies with in-situ instrumentation are revealing that 50
9% of PM10 particles are associated with mineral dust (Alastuey et al., 2017). Fine mode particles
are likely associated with anthropogenic activity (e.g. vehicle emissions) and with the transport
of smoke particles. On the other hand, during the non-biomass burning season, the maxima of
volume size distributions are lower in accordance with the lower AODs. It is also observed for

all the stations that no mode predominates, but rather, there is an apparent mixture of different
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types of particles. This result is also consistent with the intermediate values of a(440-870) and n
noted above. For La Paz, the two modes are explained by the same mechanism noted for the
biomass-burning case, although the fine mode volume is smaller due to the absence of

transported smoke particles.

[Insert Figure 8 here]

The stations in the lowlands, Santa Cruz and Cuiaba show a relevant coarse mode, which
is present in both seasons. This coarse mode can be associated with different local sources of
dust. Transport of dust from river beds is a possible explanation, as is illustrated in Figure 9
which shows a true color image for the lowland area on 12" September 2016. The image is
composed by the different images acquired by MODIS (Aqua and Terra) and VIIRS space
systems (images available at http://go.nasa.gov/2eULwP1). The low level jet which runs parallel to
the mountain with southerly direction is observed from the clouds and smoke transport patterns.
Making a zoom on the river areas, transported dust plumes are observed. Injections of dust from
riverbeds have been also observed in Alaska (Crusius et al., 2011). In South America, other
regions that could be responsible for transport of dust to the lowlands is the Chaco plain that
spreads to the Andes foothills through Bolivia, Argentina and Paraguay, and include some of the
largest tributary rivers and delta rivers in the world (Latrubesse et al., 2012). From more southern
locations, injections of salt particles in the atmosphere have been observed from the Mar
Chiquita Lake (Bucher and Stein, 2016). The Andean region has other possible sources of dust
particles such as the Salar de Uyuni or the Atacama Desert (Gaiero et al., 2013). The high
latitudes of these two places could have more influence on the injection of particles in the
lowlands. Nevertheless, more analysis is needed to study the impact and properties of dust

particles in the tropical region of South America.
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[Insert Figure 9 here]

Measurements of water vapor mixing ratio, w, derived from different meteorological
stations in Bolivia are available for more than 10 years, both for the lowlands and the highlands.
For the wet period (November-March) when most precipitation occurs, the highest values of
ware found (around 19 g/Kg and 8 g/Kg for the lowlands and highlands, respectively). For the
dry period (April-July) with very little precipitation the lowest values are found (around 14 g/Kg
and 4 g/Kg for the lowlands and highlands, respectively). However, for the biomass-burning
season values are in the middle (around 16.5 g/Kg and 5.5 g/Kg for the lowlands and highlands,
respectively) indicating the presence of enough water vapor in the atmosphere to favor cloud
development which therefore, reduces the number of measurements that fulfil the completely
cloud-free sky AERONET criteria for retrieving aerosol microphysical properties. Therefore, due
to AODs measurements only require direct sun measurements, LE retrievals and O“Neill et al.,
(2005) methodology are used to obtain refr and rfine, respectively, and complement AERONET
retrievals. Actually, during all of the biomass-burning seasons, the number of Level 2.0 retrievals
obtained using the almucantar retrieval was 738, 750, 1017, 262 and 206 for the Rio Branco, Ji
Parana, Cuiaba, Santa Cruz and La Paz stations, respectively. The number of higher temporal
resolution (spectral) retrievals using the LE technique were respectively 16189, 6343, 25017,
6719 and 18220 — this is a significant increase in the number of retrievals for the La Paz station

compared with the AERONET almucantar retrievals.

To understand the spatial differences in retrieved particle radii, station by station, Box-
Whisker plots of refr and rfine, separated into biomass-burning and non biomass-burning seasons,
are shown in Figure 10. Table 3 summarizes the main statistical parameters of these plots. Linear

Estimation and O'Neill et al., (2005) retrievals are used.
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During the
biomass-burning season the similarity of the mean values and the low standard deviations of both
parameters in the lowlands is remarkable: both of these comparisons indicate an approximate
homogeneity in the biomass-burning process with respect to particle size. The relatively large
variability in the non biomass-burning season can be explained by the highly variable
background aerosol conditions with mixtures of different aerosol types prevailing. The typically
larger uncertainties in refr and reine for low aerosol loads can also explain some of the increased
variability. The Santa Cruz station shows larger reff during the non biomass-burning season
which, as noted before, could be associated with coarse particles transported from local riverbeds

as described in association with Figure 9.

The highlands show systematically larger values of rerr and rrne independently of the
season. The slightly lower values of both parameters during the biomass-burning season can be
explained by the transport of smoke particles which, as previously noted, are predominantly fine
mode. Aging of the transported particles (e.g. Eck et al., 2003; O'Neill et al., 2008b) could
explain the larger reff and rfine. The permanent coarse mode associated with dust on the Altiplano
could also have an influence in terms of an increase in refr. The wind regime in the high
mountains can favour accumulation of particles and can explain the larger values of rfine

compared to the lowlands (Vuille, 1999).

[Insert Figure 10 here]

[Insert Table 3 here]

The dependences of particle size on aerosol load is illustrated in Figure 11 where we

represent rer and rene versus the AOD at 500 nm for the combination of all lowland data. Again,
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Linear Estimation and O'Neill et al.,, (2005) are used for the retrievals of rerr and rfine,
respectively. We constrained the data plotted to conditions of AOD > 1.0 in order to limit the
study to smoke particles only. Higher temporal-resolution retrievals of rerr and rrine because do
provide larger datasets and also do allow retrievals for very high AODs which and may well be
favoured in the case of partly cloudy skies (see our argument above for the greater probability of
clouds being associated with smoke aerosols): for example, values of AOD up to 6.0 were
measured and the retrievals of linear estimation and O'Neill et al., (2005) were possible, while

the almucantar retrievals were limited to measured AODs up to 3.2.

[Insert Figure 11 here]

Root-mean-square differences are ~0.027 for regr and ~0.016 for rine. The results of the linear fits
shown in Figure 11 indicate that rfine is nominally more sensitive to changes in AOD (the slope of
the regression line is larger). The difference, for example, between the minimum and maximum
AOD values of 1.0 and 6.0 is 0.035 pum for the associated refr regression line. This is small
compared with the refr values. The analogous rrine calculation (a regression line increase of 0.065
um for the same range of AODs),corresponds to a change of approximately 40%. Such large
aerosol loads favour the accumulation of particles in the atmosphere and, can therefore favor
particle aging. For example, larger rfine and refr have been found during the night due mainly to
particle accumulations (e.g. Pérez-Ramirez et al., 2012). Also, coagulation rates increase as

particle concentration (or AOD) increases (Colarco et al., 2003). The observed trend of
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increasing fine mode particle size in Amazonia as AOD increases is consistent with the findings

of Schafer et al. (2008) from AERONET almucantar retrievals.

3.3. Aerosol Single Scattering Albedo, Refractive Index and Asymmetry Factor

For primary (directly retrieved) optical parameters such as the refractive index and
derived optical parameters such as the single scattering albedo (SSA) the only source of
information in this study is the AERONET almucantar scan/extinction spectrum retrieval. Level
2.0 data, the most reliable inversion product, is constrained by several quality control criteria(see
Holben et al., 2006 for more details on the Level 2.0, Version 2.0 inversion criteria). Also, for
intensive parameters such as SSA, asymmetry factor and refractive index, the retrieval
uncertainties increase rapidly with decreasing AOD: this type of dependence was the motivation
behind the Level 2.0 criterion that limits retrievals of these parameters to conditions where
AOD(440 nm)>0.4 (Holben et al., 2006). Because of this AOD>0.4 requirement, level 2.0 La
Paz data over the whole database were limited to just six retrievals acquired during the 21% to
25™ September 2010 period. Thus for this station only, we used Level 1.5 data that fulfilled the
Level 2.0 sky conditions - sky errors, solar zenith scattering angle criterion - while constraining
the retrievals to AOD values > 0.2. The analyses are only done for the biomass-burning seasons
since there are little retrievals during the other seasons. The main statistical parameters of SSA,
real and imaginary refractive index and asymmetry factor are listed in Table 4 (for a wavelength

at 500 nm from linear interpolation of values at 440 and 670 nm).
[Insert Table 4 here]
From Table 4, SSA is generally lower in the highlands, implying more absorbing

particles. The imaginary part of the refractive index exhibits considerably larger values in the
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highlands (i.e. stronger absorption with imaginary refractive index values that are, except for
Cuiba, greater by~ 0.005 than the lowland cases). The real part of the refractive index is
approximately the same for the different lowland stations, while the highland station values are
significantly higher. Finally, there are differences in the asymmetry factor, mostly in the near
infrared region, that are likely related to particle size differences. The changes between the
lowland and highland retrieval parameters of Table 4 suggest changes in particle composition

(notably the real part of the refractive index).

Larger SSA values being associated with the long-range transport of biomass-burning
particles is known in the literature (e.g. Colarco et al., 2004). In the case of inter-regional
transport between the lowlands and the highlands, the explanation of the differences in particle
composition is hypothesized to be the large differences in the availability of water vapor in the
atmosphere commented before: hygroscopic particles grow quickly by humidification in the
lowlands (see, for e.g. Kotchenruther et al., 1998 and Kreidenweis et al., 2001 for general
discussions on humidity induced particle growth of smoke particles). The water vapor condenses
on the particles making them larger thereby increasing their scattering efficiency while also
decreasing their imaginary refractive index, resulting in making them less absorbing. At higher
altitudes, this particle growth effect is less probable due to the less availability of water vapor as
well as the fact that the water coatings of particles uplifted from the lowlands may have largely
evaporated. In spite of the possible mixture of smoke with local particles, the lower values of the
real part of refractive index in the lowlands (~1.47) versus the highlands (~1.53) would support a
hypothesis of humidification. It must however be borne in mind that, although humidification of
biomass-burning particles affects their properties in general, our retrievals involve column-

integrated properties, and we must accordingly be careful to not infer more from those retrievals
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than can be justified. Indeed, these limitations indicate that more investigations into smoke
dynamics are needed than we carried out in our study. In particular, experimental plans would
need to include resources for the measurement of vertical-profiles of aerosol properties such as
those performed in the SAFARI-2000 field campaign (Swap et al., 2003), either by airplanes

(Hobbs et al., 2003) or lidar measurements (McGill et al., 2003; Veselovskii et al., 2009).

Because SSA is a key aerosol radiative forcing parameter, it is important to study both its
spatial and temporal evolution. To that end, Figure 12 shows the mean SSA and AOD means at
500 nm (computed from linear interpolation using 440 and 675 nm values) for the lowland
stations and for each biomass-burning season during the 2000-2013 period. The year to year
averages of Figure 12a reflect the influence of the day-to-day variations of Figure 2 with, for
example, peaks in 2005, 2006, 2007 and 2010 (except that the mean values of Figure 12a seem
larger than expected: this is because the inversion processing protocols exclude retrievals for
which AOD(440) is less than 0.4).With respect to the SSA, we note significant station-to-station
variability in Figure 12b. The SSA analysis reveals curious results: for the large AOD years
(2005, 2006, 2007 and 2010) the values of SSA are approximately similar among the stations
with an average that is close to 0.90. However, for the years of lower AODs (e.g. 2003, 2004 and
2008), SSA values are lower(0.85 - 0.78)at Cuiaba and Santa Cruz, while at Rio Branco and Ji
Parana the values remain around 0.92. During the years of very intense burning activity (2005,
2006, 2007 and 2010) the burned area is very extensive in area: there is accordingly an enormous
loading of particles in the atmosphere that arguably produce spatial homogenization of aerosol
properties associated with greater regional transport dynamics. For smaller AODs the aerosols
are not so regionally homogenous and differences in particle properties can arise between

different sites.During low biomass-burning years at the southern Cuiaba and Santa Cruz sites,
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cerrado and agricultural burning is very likely more dominant. During higher biomass-burning
years there would be more long-range transport of higher AOD plumes from the forest burning
regions towards the south and west (Freitas et al., 2005). The cerrado vegetation (savannah type)
burns with relatively more flaming phase combustion, thereby producing more black carbon.
This results in lower SSA than smoke from forest burning regions which have a higher
percentage of smoldering phase combustion from woody fuels therefore producing less black

carbon(e.g. Ward et al., 1992; Reid et al. 2005a,b).

[Insert Figure 12 here]

A scatterplot analysis of SSA versus AOD is shown in Figure 13. The large SSA values
of approximately 0.90 to 0.95 for very large AOD values are observed again for all the stations.
For lower AODs there are, as discussed above, site-dependences with low SSA values in Cuiaba
and Santa Cruz and larger values in Ji Parana and Rio Branco. Lower AOD with low SSA is
particularly observed in 2008, when an anomaly in the biomass-burning pattern was observed
using OMI data (Torres et al., 2010). For that year we note the rather extraordinary AERONET
station-to-station SSA differences (which the OMI sensor, with its coarse spatial resolution of 1°
x 1°, is largely insensitive to). The fact that the fires were less intense and sparser, and/or that
particle-type emission differences occurred between the savannah-like cerrado vegetation and the

rainforest, could explain the lack of SSA spatial homogeneity.

[Insert Figure 13 here]

3.4. Aerosol transport patterns to the highlands: biomass-burning case study in September-
October 2010.

Our goal in this section is to illustrate the smoke patterns and transport from the lowlands

to the highlands during one carefully analysed biomass-burning season. We particularly
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investigated the intense biomass-burning season of September-October 2010 when large AODs
(0.5) were registered at La Paz on a few days. Such AODs values are more than three times the
average at La Paz. Figure 14 shows the temporal evolution of AOD, a(440-870), refr and rfine for

this case study at the Cuiaba, Ji-Parama, Rio Branco, Santa Cruz and La Paz stations.

[Insert Figure 14 here]

We divided the biomass-burning case study period into five sub-periods. The first
subperiod (I) goes from 1 to 18 September and is characterized by strong biomass-burning in the
lowlands with AODs of up to 3.2. The Angstrom parameters values of around 1.8 along with n >
0.9 indicate a predominance of fine particles. In this period there were no measurements at the
La Paz station until 15" September. However, AOD values at La Paz on this day are very low
suggesting weak transport of biomass-particles to the Andean Altiplano. The MODIS image for
September 17" (Figure 15a) shows the smoke plume had pushed toward the eastern regions
(Cuiaba, Ji Parana and Santa Cruz), while the areas close to Rio Branco, the foothills and the

highlands, look less turbid.

The second subperiod (II) from 18™ to 25™ September includes intense biomass-burning
events that reach the La Paz region. Smoke plumes can be seen to be bordering the highlands in
the MODIS image for 21% September (Figure 15b). In this subperiod, the largest AODs of the
entire database at La Paz were registered (up to 0.6), with a mean value of approximately 0.5. An
increase in 0(440-870) associated with the arrival of fine mode biomass-burning particles is also
evident in Figure 14. The values of rfine are relatively small (~0.19 um), robust and stable (low
scatter during this day). After the third day (21%' September), the decrease of a(440-870), the

increase of reff and the clear increase of rmne suggest fine mode aerosol aging (maybe
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accompanied by the presence of some coarse mode). This could be explained, for example, by
the growth effects (such as coagulation) induced by the accumulation of smoke particles over

several days (e.g. Reid et al., 2005a,b).

[Insert Figure 14 here]

The study of air-mass transport to the highlands was initially done by computing
backward trajectories using HYSPLIT. On 17" September air-masses arriving at 1500 m a.g.l.
originated over the Pacific Ocean (the backward-trajectories are provided in the supplement)
indicate prevailing westerly winds and explain the movement of the biomass plume towards the
East compared to what was observed on previous days. For the intense biomass-burning on 21st
September, the backward-trajectories arriving at 750 and 1500 m a.gl. (graphs in the
supplement) encounter the mountains producing an unrealistic calculation since the vertical
velocities are essentially zero. The same is observed on 17 September for the 750 m a.g.l.
backward-trajectory. To ameliorate this problem, HYSPLIT offers the possibility of coupling

backward-trajectory calculations with a Lagrangian dispersion component (Stein et al., 2015).

. Figure 16 shows the air
concentration of particles at La Paz station for integration periods of 5 days (120 hours). Model
initialization heights were 300 and 2000 m a.g.l. (approximately in and above the planetary

boundary layer), with a total of 25,000 particles.

[Insert Figure 16 here]
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Figures 16a and 16b show very similar patterns of the potential sources that could have
influenced concentrations at the two representative heights of 300 and 2000 m a.g.l .on 17"
September 2010.The largest concentrations are ~ 1E-13 units/m? in the area surrounding La Paz.
Other potential sources are located in the North and Northeast regions and in the transit area
between the highlands and lowlands (foothills that are locally known as 'Las Yungas'). The
backward air concentration evaluated every 6 hours (graphs shown in the supplement) reveal that
air masses that started in the previous 1-2 days had their origin in the region close to La Paz
while those further from the North and the Pacific Ocean are from the last 4-5 days. Such
complex patterns of air concentration are associated with the westerly winds from the Pacific at

high altitudes (> 1500 m a.g.l.) and slow winds at low altitudes (< 750 m a.g.1.).

Figures16cand 16d also show similar patterns for the two levels on 21" September 2010,
with almost no particles transported from the west region while the largest potential sources are
in the Amazonian lowlands to the east. Long-range transport is observed from the eastern regions
of Bolivia and its border with Brazil, and even, for the 300 m a.g.l. level, from more distant areas
in Brazil, northern Paraguay and Argentina. The backward air concentration evaluations for
every 6 hours (graphs shown in the supplement) reveal that the areas with lower concentrations
correspond approximately to the previous 3-5 days while larger concentration areas correspond

to the previous 1-3 days.

Figure 17 shows CALIPSO lidar attenuated backscatter at 532 nm and vertical feature
mask for 20" September 2010 when the instrument passed over South America close to the study
region. The plot also shows the mean height above sea level. For the study region we observe
intense attenuated backscatter that is classified by the feature mask algorithm (Omar et al., 2009)

as tropospheric aerosol. According to our analyses of Figure 15 and 16 such aerosol particles
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correspond to smoke particles. The attenuated backscatter values are close to that found in the
literature for smoke particles in Amazonia (e.g. Baars et al., 2012). It is clearly seen that the
mountains act as a natural barrier, with aerosol accumulating in the lowlands along the southern
and northern sides of the Andes Mountains. It is also observed that smoke plumes can reach the
high mountains, but with considerably lower amounts than in the lowlands. In fact, some of these
plumes have AOD values close to the detection limit of CALIPSO. All these findings agree with
our general analyses of smoke particles transported to Andean high mountains. Unfortunately,
CALIPSO did not cross over La Paz during the days of interest to this study and no direct

comparison with this station could be done.

[Insert Figure 17 here]

The third subperiod (III) from 26th to 29th September is also characterized by air-masses
with origins in the Pacific Ocean (backward-trajectories not shown). Very low AODs were
registered again in Rio Branco and La Paz (the western locations) and the MODIS image (Figure
15¢) shows that the smoke particles have apparently moved toward the east relative to the
MODIS image of Figure 15b. These findings again support the notion that strong westerly winds
cleaned the atmosphere. Large highland variability in a(440-870), retr and rfine, associated with
large uncertainties for low aerosol loads, is observed again. The presence of coarse mode
particles at the highland station is again inferred from smaller values of a(440-870) and larger
values of refr. The situation is however different to the East as indicated by the large AODs in

Cuiaba.

The fourth subperiod (IV) extends from 30" September to 3™ October and is

characterized by a change of the air-mass origin towards the northeast in the vicinity of Peru. For
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this case backward-trajectories (graphs included in the supplement) are not adversely affected by
the high mountains as they were for the other dates. During this period the most relevant factor is
the significant amount of cloud cover (as observed in the MODIS image of Figure 15d) both in

the Pacific and in the Amazonia basin.

The last subperiods (V & VI) of Figure 14 extends from 3™ to 31t October and was
generally characterized by the two different air-mass patterns identified above. In this subperiod
we note the considerably lower aerosol load at all the stations compared to the values registered
in September. In general the atmosphere was clean during this subperiod as illustrated by the
MODIS image on the 5" of October (Figure 15¢). For this day, air-masses encountered the
mountains and the backward dispersion air concentrations were again employed (see graphs in
the supplement), with patterns similar to these of Figures 16a and 16b and particles originating
from the northwest and southwest highlands and the Pacific Ocean. Therefore, no transport of
biomass-burning to La Paz was expected on October 5%, which is consistent with the weak
AODs of Figure 14 and the MODIS image (Figure 15¢). On the other hand, between 10th and
15th October were registered sparse lowland biomass-burning events with some AODs above
0.4, high values of a(440-870) (close to 1.8) and stable values of refr and rfine of 0.22 and 0.19
um. The MODIS Aqua image for October 13" (Figure 15f) supports the characterization of
"sparse" and shows more intense and homogeneous biomass-burning plumes to the east of La
Paz. Air concentration backward-trajectory analyses were again required: the long-range
transport from the lowlands in the Amazon is similar to that observed for the intense smoke
events of the 20" September at La Paz (see graphs in the supplement). In this case, however, no

important AOD enhancement was registered at the La Paz station. The main reason for this is
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likely the sparse (and probably low intensity) nature of fires in the lowlands during the 10th-15th

October period.

Although the analyses were for the particular biomass-burning
season of 2010, the results may be representative of the general patterns that favour/suppress the
transport of smoke particles in the tropical Andean region. More in depth studies would require
the use of very high temporal-resolution meteorological data, and a large dataset of
meteorological variable measurements for a more comprehensive evaluation of these patterns.
Profile analyses using active remote sensing measurements are also required (e.g.
multiwavelength lidar) to better understand the vertical profile of the transported smoke

particles.

4.- Conclusions

We carried out an analysis of columnar aerosol properties in the South American tropical
region within 10-20° South and 50-70° West. The area includes the Amazon (lowlands), the high
mountain regions (highlands) and the transition between the two (foothills). Precipitation in the
region occurs mainly in the December-March period while the June-October period is very dry.
The most important geo-atmospheric factor is the strong altitude gradient between the lowlands
and the highlands, which implies change in vegetation and in water vapor concentration. The

contrast of aerosol properties between the lowlands and highlands is studied using the 2000-2014
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AERONET measurements across the lowland stations of Rio Branco, Ji Parana, Cuiaba (stations

in Brazil) and Santa Cruz (Bolivia) and the highlands station of La Paz (Bolivia).

For the lowlands, an enhanced annual cycle in aerosol optical depth (AODs) and
Angstrom parameter (a(440-870)) was observed during the biomass-burning season (August-
October) across all the stations. Year to year variability, with maximum AODs in 2005, 2006,
2007 and 2010 was observed and directly linked to biomass burning activity. Using TRMM
satellite data, precipitation links were studied within the context of precipitation anomalies
defined as the difference between annual and climatological values for the wet (November-
March) dry (April-July) and biomass-burning (August-October) seasons. Positive anomalies
during the wet season influence the amount of vegetation available to be burned, while negative
anomalies in the dry period favours fire activity. This hypothesis was found for the intense
biomass-burning seasons in 2005, 2006, 2007 and 2010, while the opposite happens in 2009 with
lower fire activity. After 2010, however, we did not observe such links with precipitation. Other
factors, such as the influence of government policies on burning practices could have had an
impact on our proposed relationship between rainfall anomaly and AOD and thus future

investigations are needed.

The analyses during the biomass-burning season in the lowlands showed, as expected, a
large predominance of fine mode particles. We also demonstrated an increase, predominantly in
the fine mode, of particle radius, as AOD increases. This demonstration was achieved because
we used the much more numerous retrievals of particle radius from spectral AOD measurements
in spite of the larger uncertainties compared to AERONET standard retrievals. Such a finding is
likely associated with the accumulation of particles. The study of the single scattering albedo

(SSA) also revealed interesting findings: for the years of intense biomass-burning activity, values
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of SSA (~ 0.93) are homogeneous with very similar values among all the stations. However, for
the years with less intense activity, such as 2008, intra-lowland differences arise with the SSA
being larger (~0.95) at the northern stations of Rio Branco and Ji Parana and lower at the
southern stations of Cuiaba and Santa Cruz (SSA values with mean of ~ 0.85 and minimum
values even below 0.75). In the northern locations, the biomass burning of the rainforest
predominates while in the other locations cerrado and agricultural burning is more dominant. The
type of vegetation/rainforest burned could explain some of the differences observed in SSA.

More investigation is needed to confirm or reject this hypothesis.

The La Paz highlands data also showed an annual AOD cycle with maximums during the
biomass-burning season. These maximum values, ranging up to 0.5, are high for this region
where the mean AOD is approximately 0.12. Ongoing studies with in-situ instrumentation are
revealing the presence of anthropogenic particles during the whole year, and the only sources in
the Bolvian Altiplano of such particles are the local industry and road traffic in the La Paz
region. Also, the natural sources of highland aerosols are associated with dust from the
Altiplano, which is present during the whole year. Therefore, the seasonal enhancement of AOD
is associated with the transport of lowland smoke. However, it was found that this transport is
sporadic in nature. Highland particle radii showed important differences compared to lowland
values: For the effective radius (refr), which is sensitive to fine and coarse particles,
systematically larger La Paz values were likely influenced by the continuous presence of dust
particles from the Altiplano. The lowland station of Santa Cruz has shown the presence of coarse
particles which we suggested was associated with wind-driven river bed erosion. Systematically
larger values of fine mode radius (rfine) Were observed at La Paz over the whole year. Because

changes in rfine are attributable to changes in the fine mode, these differences were thought to be
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due to fine mode particle aging, a mechanism that is probably favoured by the high mountain
wind regimes. Transport of smoke particles to the highlands was associated with larger highland

values of particle size (both rrne and rerr were larger) whose growth was attributed to particle

aging.

The transported smoke particles to the highlands had lower values of SSA: large relative
(and specific) humidity in the lowlands favours particle growth by hygroscopicity with an
attendant decrease in optical absorption. In the highlands, however, relative (and specific)
humidity is quite low and it is likely that water, previously absorbed by the particles, evaporates.
The SSA retrieval numbers are, however, relatively small and it has not been possible to verify
this hypothesis. Comprehensive field campaigns will be needed to further identify the impact of
transported biomass-burning particles, preferably including simultaneous lowland and highland
measurements. These kinds of investigations are desired as future activities of the Global
Atmospheric Watch activities focussed on the station at Mount Chacaltaya(5240 m a.s.l.) in

Bolivia.
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Figure 1: Study region including the AERONET stations used. Horizontal line in the map represents the
region of the elevation profile.
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Figure 2: Temporal evolution of daily averaged AOD, including these of the fine and coarse mode.

Reference wavelength is 500 nm.
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Figure 3: Angstrom exponent versus AOD for the measured points of Figure 2.
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Figure 4: Frequency histograms of aerosol optical depth at 500 nm (AOD(500)) for (a) no biomass-

burning and (b) biomass-burning seasons.
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Figure 5: Box-Whisker plots during the biomass and no biomass-burning seasons of the Angstrom
parameter a(440-870) and fine mode for the lowlands stations (Cuiaba Miranda, Ji Parana, Rio Branco
and Santa Cruz) and highlands station (La Paz). In the Box-Whisker plots, the mean is represented by a
very small open square within a given rectangle. The horizontal line segment in the rectangle is the
median. The top limit (top of the rectangle) represents the 75" percentile (P75) and the bottom limit the
25" percentile (P25). The lines perpendicular to the boxes are the 1% (P1) and 99" (P99) percentiles, and
the crosses represent the maximum and minimum values respectively.
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Figure 8: Mean columnar volume size distributions for the lowland stations and highland (La Paz), both

for biomass and no biomass-burning seasons.
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Dust particles from river beds

Figure 9: True color image of South America from the composition of images from MODIS (Aqua and
Terra) and VIIRS space-systems for 12" September 2016. A zoom is made on the lowlands in Bolivia.
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Figure 10: Box-Whisker plots during the biomass and no biomass-burning seasons of the effective radius
(refr) and fine mode effective radius (rsi,e) for the lowland stations (Cuiaba Miranda, Ji Parana, Rio Branco
and Santa Cruz) and the highland station (La Paz). In the Box-Whisker plots, the mean is represented by
a very small open square within a given rectangle. The horizontal line segment in the rectangle is the
median. The top limit (top of the rectangle) represents the 75" percentile (P75) and the bottom limit the
25" percentile (P25). The lines perpendicular to the boxes are the 1% (P1) and 99" (P99) percentiles, and
the crosses represent the maximum and minimum values respectively.
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Figure 13: Single scattering albedo (SSA) versus aerosol optical depth (AOD) for the complete AERONET
level 2.0 database in the lowlands.
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Figure 14: Temporal evolution of aerosol optical at 500 nm (AOD), Angstrom parameter (a(440-870)),
effective radius (res) and effective radius of the fine mode (rf,e) for the period August-October 2010.
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Figure 15: MODIS images for (a) 17/09/2010 (b) 21/09/2010 (c)26/09/2010 (d) 03/10/2010
(e) 05/10/2010 and (f) 13/10/2010
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Figure 16: Air concentration backward dispersion for the city of La Paz for 17/09/2010 and 21/09/2010
for two altitude intervals: 0 to 300 m a.g.l. (left hand plots) and 0 to 2000 m a.g.l. (right hand plots). La
Paz is identified by the tiny black empty star.
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Figure 17: Attenuated backscatter and vertical feature mask for CALIPSO data acquired on 20"
September 2010 over South America. Data were acquired between 18:11:49 and 18:25:18 UTC.



AOD | Alpha | AODjine | AODcoarse | Eta | AOD | Alpha | AODjine | AODcoarse | Eta
Biomas-Burning Season No Biomass-Burning Season
Mean 0.55 | 1.56 | 0.48 0.06 082 | 0.13 | 1.15 | 0.08 0.04 0.64
STD 061 | 0.30 | 0.55 0.06 0.14 | 0.09 | 032 | 0.08 0.03 0.14
Cuiaba | Median | 0.35 | 1.63 | 0.29 0.05 0.85 | 0.11 | 1.15 | 0.07 0.04 0.64
Max. 631 | 2.12 | 5.20 0.77 099 | 021 | 2.15 | 0.19 0.24 0.99
Min. 0.07 | 1.41 | 0.03 0.00 024 | 0.03 | 095 | 0.01 0.00 0.54
Mean 089 | 1.71 | 0.80 0.05 089 | 0.13 | 1.15 | 0.06 0.04 0.58
STD 079 | 0.25 | 0.79 0.05 0.12 | 0.09 | 0.29 | 0.04 0.02 0.11
JiParana | Median | 0.50 | 1.75 | 0.50 0.04 093 | 0.11 | 1.14 | 0.05 0.04 0.57
Max. 436 | 2.15 | 3.99 0.42 099 | 0.24 | 1.97 | 0.20 0.16 0.89
Min. 0.07 | 1.55 | 0.04 0.01 054 | 0.03 | 095 | 0.01 0.01 0.20
Mean 052 | 1.67 | 047 0.04 089 | 0.11 | 0.84 | 0.09 0.04 0.72
) STD 0.46 | 0.29 | 0.45 0.07 0.12 | 0.08 | 031 | 0.06 0.03 0.15
Br:':co Median | 0.36 | 1.74 | 031 0.02 093 | 0.09 | 0.82 | 0.08 0.02 0.75
Max. 3.53 | 240 | 3.22 0.92 099 | 019 | 1.92 | 0.15 0.18 0.98
Min. 006 | 1.54 | 0.04 0.01 022 | 002 | 062 | 0.02 0.00 0.20
Mean 052 | 1.64 | 0.53 0.04 087 | 013 | 131 | 0.09 0.05 0.64
STD 053 | 0.25 | 0.57 0.03 0.12 | 0.09 | 037 | 0.09 0.02 0.16
s@,’:ff Median | 033 | 1.69 | 029 | 003 | 092 | 011 | 136 | 006 | 003 | 0.64
Max. 3.53 | 2.15 | 3.48 0.17 099 | 024 | 24 0.20 0.21 0.98
Min. 0.06 | 1.49 | 0.05 0.00 0.18 | 0.03 | 1.05 | 0.01 0.01 0.17
Mean 0.12 | 095 | 0.07 0.05 055 | 0.09 | 0.84 | 0.04 0.04 0.48
STD 0.06 | 0.30 | 0.06 0.02 0.15 | 0.04 | 031 | 0.03 0.02 0.13
LaPaz | Median | 0.11 | 0.95 | 0.05 0.05 053 | 0.08 | 0.82 | 0.04 0.04 0.48
Max. 046 | 1.69 | 0.4 0.13 095 | 0.16 | 1.92 | 0.14 0.08 0.89
Min. 0.03 | 0.74 | 0.01 0.01 0.17 | 0.02 | 062 | 0.01 0.01 0.17

Table 1: Mean, standard deviation (STD), median and maximum (Max.) and minimum (Min.) values of

aerosol optical depth (AOD), Angstrom parameter (a) between 440 and 870 nm, fine (AODsne) and

coarse(AODcoarse) Mode aerosol optical depths and relative contribution of fine mode to total optical

depth (n). Data are presented for biomass and non biomass-burning seasons for the stations in the

lowlands (Cuiaba, Ji Parana, Rio Branco and Santa Cruz) and in the highlands (La Paz). Reference
wavelength for AOD, AODsine, AODcoarseand n is 500 nm.




Rainfall Anomaly (mm) for different seasons Mean AERONET
Wet Dry Biomass-Burning AOD during

(199.70 mm) (42.97 mm) (67.16 mm) Biomass-Burning

Season

2000 2.74 -3.64 -2.06 0.39+0.29
2001 -9.46 3.56 4.74 0.47 £0.30
2002 -16.16 1.91 -5.02 0.49+0.37
2003 -20.75 2.81 12.32 0.42+0.27
2004 -2.97 -4.99 -4.35 0.44 £0.38
2005 12.08 -4.05 5.28 0.80+0.70
2006 1.69 -9.01 0.72 0.62 £ 0.59
2007 35.70 -12.51 -6.5 1.18 £1.00
2008 9.20 -12.07 -1.30 0.43+0.29
2009 10.02 7.27 0.17 0.20+0.11
2010 3.41 -11.91 -5.91 0.95 +0.67
2011 5.77 -11.57 -6.70 0.32+0.21
2012 -13.08 7.28 -12.94 0.40+0.27
2013 41.18 9.13 15.94 0.29+0.19

Table 2: Precipitation anomaly for 'wet' (November-March), 'dry' (April-July) and biomass-burning
seasons (August-October). The mean climatological values are in parentheses. The anomaly is defined as
the difference between registered and climatological values for each season. All precipitation data were
acquired by the TRMM satellite and are the average over the area 10-20 South and 50-70 West. The
AOD column is the average, at 500 nm, across the biomass burning season for the lowland stations at
Cuiaba, Ji Parana, Rio Branco and Santa Cruz. The "Wet" column represents data whose November to
March period started in the previous year




Feff | rfine Feff | rfine

Blom.as- No Biomass
Burning
Mean 0.24 | 0.18 | 0.27 | 0.20
STD 0.05 | 0.03 | 0.07 | 0.04
Cuiaba Median | 0.23 0.18 | 0.27 0.20
Max. 093 | 031 | 0.99 | 0.38

Mean 0.22 | 0.17 | 0.29 | 0.16

STD 0.03 0.02 0.06 0.05
Ji Parana | Median 0.22 0.17 0.28 0.17
Max. 0.76 0.28 0.93 0.35

Mean 0.25 | 0.18 | 0.32 | 0.19

, STD 011 | 0.02 | 018 | 003
Br:':co Median | 0.22 | 0.17 | 027 | 0.18
Max. 1.05 | 032 | 1.01 | 038
Mean | 0.25 | 0.18 | 038 | 0.13
STD 008 | 0.03 | 0.19 | 0.06
s@,’:ff Median | 0.23 | 0.17 | 031 | 0.12
Max. 097 | 028 | 1.17 | 039
Mean | 0.34 | 022 | 038 | 0.24
STD 007 | 0.03 | 0.08 | 0.04
La Paz Median 0.34 0.16 0.37 0.23
Max. 1.14 | 035 | 1.08 | 051

Table 3: Mean, standard deviation (STD), median and maximum (Max.) values of effective radius (ref)
and effective radius of the fine mode (rsne). Data are presented for biomass and no biomass-burning
seasons for the lowland stations (Cuiaba, Ji Parana, Rio Branco and Santa Cruz) and the highlands (La
Paz).



SSA g m; m;
Mean 088 | 0.65 | 1.46 | 0.019
_ STD 005 | 0.02 | 0.06 | 0010
Culaba = ian | 088 | 0.65 | 147 | 0.017
<554>
Max. 100 | 072 | 1.6 | 0.060
Min. 071 | 059 | 1.34 | 0.001
Mean 092 | 0.65 | 1.48 | 0011
, STD 002 | 0.02 | 0.05 | 0.004
JiParana o | 093 | 065 | 148 | 0011
<492>
Max. 099 | 0.73 | 1.60 | 0.027
Min. 084 | 059 | 1.34 | 0.001
Mean 091 | 0.66 | 1.47 | 0015
Rio |STD 004 | 0.02 | 005 | 0.007
Branco Median 0.92 0.73 1.47 0.013
<4255 | Max. 1.00 | 0.66 | 1.60 | 0.044
Min. 079 | 0.60 | 1.34 | 0.001
Mean 091 | 0.67 | 1.48 | 0015
santa | STD 004 | 0.02 | 0.05 | 0010
Cruz | Median | 093 | 067 | 1.48 | 0011
<158> | Max. 098 | 0.71 | 1.60 | 0.065
Min. 073 | 0.61 | 1.34 | 0.003
Mean 087 | 0.68 | 1.50 | 0.016
STD 004 | 0.02 | 007 | 0.007
La Paz -
. | Median | 087 | 069 | 1.50 | 0015
Max. 093 | 0.72 | 1.60 | 0.036
Min. 078 | 0.61 | 1.35 | 0.007

Table 4: Mean, standard deviation (STD), median and maximum (Max.) and minimum (Min.) values of
aerosol single scattering albedo (SSA), asymmetry factor (g) and real (m;) and imaginary (m;) part of
refractive index. Data are presented only for biomass-burning data as most of the data that fulfill
AERONET requirements are acquired in this season. These values are the result of linearly interpolating
retrieval values at 440-670 to 500 nm. Data in brackets represent the number of retrievals for each

place.









