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Abstract

Context Seagrass landscapes vary substantially in

extent and pattern, resulting from depth zonation and

hydrodynamic stress gradients and may exhibit

threshold behavior in response to changes in physical

drivers. Seagrass landscapes persist in a delicate

balance between processes of disturbance and recov-

ery and therefore may exhibit behavior typical of

classic critical systems.

Objectives Examine how hydrodynamic drivers and

physical setting influence seagrass landscape compo-

sition and configuration. Determine if seagrass patch

size distributions typify patterns observed for critical

systems.

Methods We used landscape metrics to quantify the

spatial configuration of seagrass and then modeled the

response of these metrics to wave energy, tidal current

speed, and water depth at 62 estuarine sites in North

Carolina, USA. Seagrass landscapes were representa-

tive of cover types observed in the estuary generated

by wave energy.

Results Percent cover, patch size, and number of

patches all declined with increasing wave energy.

Threshold behavior occurred at wave energy change

points between 675–774 J m-1. Seagrass landscapes

differed in spatial configuration and physical setting,

above and below change points. There was moderate

support for a power law relationship for patch size

distribution across a wide range of seagrass landscape

cover and wave energy.

Conclusions With weather extremes on the rise,

much of this estuarine seagrass will be exposed to

increased wave energy. Where seagrass exists just

below the wave energy change points, increases in

wave energy could tip those habitats into a new

stable state of lower cover resulting in less cover

overall in the estuary.

Keywords Seagrass � Spatial configuration �
Hydrodynamics � Ecological thresholds � Alternate
state � North Carolina
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Introduction

Ecological systems that experience well-mixed dis-

turbances (the disturbance agent is fast or large

compared to recovery processes) may exhibit classical

critical behavior where local processes of disturbance

and recovery lead to the emergence of large-scale

spatial pattern (Pascual and Guichard 2005). Classical

critical systems may exhibit threshold behavior where

slight changes in environmental drivers produce

abrupt responses in ecosystem qualities and properties

(Groffman et al. 2006) often leading to a state (phase)

transition at the critical point, or threshold (Scheffer

and Carpenter 2003; Solé 2011; Kéfi et al. 2014). Near

such thresholds, spatial pattern emerges in which the

statistical distribution of organisms exhibits scale

invariance, i.e., the absence of an emergent, or

defining spatial scale. In critical systems, the fre-

quency distribution of cluster (patch) sizes of organ-

isms comprising the landscape exhibits power law

behavior where all patch sizes are present with no

dominant size (Solé 2011). Thus, a scale-invariant

distribution of organisms (e.g., vegetation cover) may

suggest that the system is approaching a critical point

of landscape cover and pattern change, and this type of

spatial pattern could serve as an indicator of a system

on the verge of transition to an alternate state (Rietkerk

et al. 2004; Kéfi et al. 2007).

Understanding the relative importance of drivers of

landscape pattern and whether landscape pattern

exhibits threshold behavior in response to drivers

remain key challenges in landscape ecology (Turner

and Gardner 2015). Threshold behavior is likely

specific to each driver-response combination, and a

number of statistical methods exist for identifying

thresholds or change points (that is, the value or

restricted range of values of the controlling driver at

which point substantial ecosystem change is observed;

Qian et al. 2003; Toms and Lesperance 2003;

Guénette and Villard 2004, 2005; Qian and Cuffney

2012). Change point identification has important

resource management implications as it provides a

quantitative reference point or decision criteria that

prompts management action (Suding and Hobbs 2009;

Samhouri et al. 2011) and can serve as a forewarning

indicator of impending change (Sasaki et al. 2015).

It is possible that classical criticality underpins

landscape cover and pattern in seagrass systems.

Seagrass landscapes vary substantially in extent and

pattern, and they persist given a delicate balance

between processes of disturbance and recovery (den

Hartog 1971; Fonseca et al. 1983). The spatial

heterogeneity in seagrass landscapes results from

depth zonation and localized hydrodynamic stress

gradients (i.e., wind-wave exposure, tidal currents).

The development of seagrass landscapes is tightly

coupled with light availability, which decreases with

water depth (Dennison et al. 1993). Most estuarine

seagrass landscapes occur in shallow waters (e.g.

1–3 m) rather than deeper, light-limited waters, a

result of water column turbidity from terrestrial runoff.

A large, contiguous (one patch) seagrass meadow can

develop in the absence of disturbance and in locations

where current velocity, wave action, or biological

disturbance (e.g., burrowing, grazing) are relatively

low. Where current velocity and wave action are low

but biological disturbance is high, a contiguous

meadow may develop but with small gaps of bare

sediment interspersed (Suchanek 1983; Valentine and

Heck 1991; Christianen et al. 2014). In contrast,

numerous small seagrass patches characterize loca-

tions where disturbances are more frequent, or current

velocity, wave action, and perhaps bioturbation are

relatively high. In addition, seagrasses ‘migrate’

across the seascape in response to sedimentary

processes including erosion and sediment accretion,

leading to temporal pattern dynamics (Patriquin 1975;

Ferguson et al. 1993; Marba and Duarte 1995;

Ferguson and Korfmacher 1997; Robbins and Bell

2000; Fonseca et al. 2008). These patterns likely

develop as a dynamic equilibrium among seagrass

colonization and recovery capabilities and the distur-

bance regime (den Hartog 1971; Patriquin 1975;

Fonseca et al. 1983; Fonseca and Bell 1998; Koch

et al. 2006; Walker et al. 2006).

Seagrass landscapes that exist at or near a hydro-

dynamic threshold or change point may be more

susceptible to acute disturbances that can push the

system beyond the threshold causing a state transition

to one of less, or even no cover. Fonseca and Bell

(1998) proposed threshold values for hydrodynamic

drivers (wind-wave exposure and tidal current speed)

and physical setting (water depth), above and below

which noticeable differences in seagrass percent cover

and perimeter to area ratio as well as sediment

composition were observed. Following the passage

of an extreme wind event, low percent cover seagrass

landscapes consisting of small patches were observed
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to experience higher seagrass loss via erosion at patch

edges and complete loss of vegetative cover was

observed in some cases (Fonseca and Bell 1998;

Fonseca et al. 2000). Thus, the composition and spatial

configuration of seagrass patches generated by phys-

ical drivers has implications for the maintenance of

seagrass landscapes over time, particularly in response

to acute disturbances like tropical cyclones (Fonseca

and Bell 1998; Fonseca et al. 2000; Gera 2013;

Gurbiscz et al. 2016). However, differences in

seagrass spatial configuration across hydrodynamic

gradients have not been well-described nor have

thresholds in physical drivers been evaluated for the

presence of telling, scale-invariant patterns. Sea-

grasses provide myriad ecosystem services including

supporting (e.g., nutrient cycling, primary produc-

tion), provisioning (e.g., marine life habitat, seafood),

regulating (e.g., carbon sequestration, water quality),

and cultural (e.g., recreation, economics), valued at

$78–104 million USD per hectare depending on

service type and valuation method (Dewsbury et al.

2016; Nordlund et al. 2016). Seagrasses are facing

rapid declines worldwide (Orth et al. 2006; Waycott

et al. 2009). Therefore, identifying thresholds in

physical drivers and telling changes in landscape

pattern in seagrass ecosystems is important because

these can serve as forewarning indicators of impend-

ing change that may warrant management and con-

servation actions.

We studied two hydrodynamic drivers of seagrass

landscape configuration (wave energy and tidal cur-

rent speed) and one aspect of physical setting (water

depth) in a lagoonal estuarine system with two

codominant species. We analyzed effects of wave

energy, tidal current speed, and water depth on

seagrass landscape composition and configuration

for seagrass landscapes of approximately

100 9 100 m. Specifically, we asked: (1) Which

physical drivers most influence seagrass spatial pat-

tern, (2) Do physical drivers exhibit threshold behav-

ior where abrupt changes in seagrass pattern occur? (3)

Is seagrass spatial pattern quantitatively different

above and below physical driver thresholds? (4) Do

seagrass landscapes exhibit scale-free pattern in patch

size distributions?

Methods

Study area

The study was conducted in the Albemarle-Pamlico

Sound Estuary System in North Carolina, the largest

lagoonal estuarine system in the United States,

bordered on the east and south by a chain of barrier

islands (Outer Banks; Fig. 1). Exchange of seawater

with the Atlantic Ocean occurs through eight active

inlets that are highly dynamic and migratory. In

addition to lunar tides, the system is characterized by

variable and unpredictable wind-driven tides. Broad

shallows, less than 2 m deep at mean lower low water,

are punctuated by relatively few deeper basins and

channels and feature fringing salt marshes and marsh

islands, oyster reefs, and beds of seagrass. Near the

mainland shoreline, fine silts and mud dominate the

benthos (Kenworthy et al. 1982; Fonseca and Bell

1998), resulting in highly colored and turbid waters

(reduced light penetration) which limits seagrasses to

about 1.2 m depth (Biber et al. 2008). Moving away

from the shoreline, sediments become more coarse

(quartz sand; Kenworthy et al. 1982; Fonseca and Bell

1998), light penetration increases, and seagrasses can

extend their depth limit to about 2 m (Ferguson and

Korfmacher 1997; Biber et al. 2008). Seagrasses along

this portion of the North Carolina coast cover an area

of * 554 km2 behind the extensive barrier island

system (APNEP 2012).

A mixture of two species co-dominate the system

seasonally. The temperate Zostera marina (eelgrass)

achieves peak biomass in winter to early summer

while the tropical-subtropical Halodule wrightii

(shoalgrass) attains highest biomass in late summer

to early fall. Coastal North Carolina is the only known

overlap in distribution of Z. marina and H. wrightii in

the world (Thayer et al. 1984) with the Albemarle-

Pamlico Sound Estuary System encompassing the

greater part of this overlap. This overlapping distri-

bution is very near the southern limit of Z. marina

along the eastern seaboard of the United States and

represents the northern limit of H. wrightii.

Seagrass landscape pattern in this system is largely

the result of hydrodynamic forcing (Fonseca et al.

1983; Fonseca and Bell 1998; Fig. 2). Where current

velocity and wave action are low, large, contiguous

(one patch) seagrass meadows develop. In contrast,

numerous small seagrass patches characterize
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locations where current velocity and wave action are

relatively high. In areas of the estuary with greater

hydrodynamic forcing, both species invest in subsur-

face anchoring versus canopy cover as evidenced by

much lower aboveground to belowground biomass

ratios (Townsend and Fonseca 1998; AVU pers. obs.).

However, increased rhizome depth in response to

hydrodynamic forcing has not been observed (range

1–5 cm; Townsend and Fonseca 1998; AVU pers.

obs.). Bioturbation may also contribute to observed

seagrass landscape patterns in this system as patchy

seagrass landscapes are vulnerable to seasonal feeding

activities by cownose rays (Rhinoptera bonasus) that

target the edges of intermediate-sized patches, expos-

ing roots and rhizomes and leaving patches more

susceptible to erosion (Townsend and Fonseca 1998;

Peterson et al. 2001; Fig. 2).

For both species, survival and maintenance of

parent patches occurs through asexual propagation via

rhizome elongation from existing patch margins, or

sexually from short-distance dispersal of seeds

(Fig. 2). Z. marina in this system exhibits both

perennial and annual life history strategies as well as

a combination of the two and can form transient seed

banks (Jarvis et al. 2012, 2014); however, seed banks

for H. wrightii have not been documented in this

system. Z. marina seed densities in the Albemarle-

Pamlico Sound Estuary System are lower in patchy

seagrass landscapes as well as in small patches versus

large patches (Livernois et al. 2017). Although

vegetative shoots from both species may detach and

disperse, it remains to be seen whether these fragments

can successfully establish to form new patches and

promote population growth (Ewanchuk and Williams

Fig. 1 Location of the 62 seagrass landscapes (yellow points)

distributed throughout the southern portion of the Albemarle-

Pamlico Sound Estuary System, North Carolina (Back and Core

Sounds). Image from Google Earth (Landsat/Copernicus Data

SIO, NOAA, U.S. Navy, NGA, GEBCO, 34.581644 N

76.380885 W)
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1996; Hall et al. 2006). However, reproductive shoots

of Z. marina can detach and drift tens of kilometers

(Harwell and Orth 2002; Reusch 2002), delivering

viable seeds for subsequent patch colonization. Z.

marina seeds ingested by fish, turtles, and seabirds can

also be transported 100s to 1000s of meters prior to

excretion (Sumoski and Orth 2012), providing an

additional potential mechanism of long distance

dispersal for this species.

Site selection via representative wave energy

We selected 62 seagrass landscapes (100 9 100 m)

located at the southern end of the Albemarle-Pamlico

Sound Estuary System in two smaller sounds (Core

and Back Sounds; Fig. 1). Previous work on seagrass

in this estuary utilized landscape extents of

50 9 50 m (Fonseca and Bell 1998; Fonseca et al.

2002). Fonseca et al. (2002) suggested that increasing

Fig. 2 Conceptual diagram of the influence of wave energy and

bioturbation on seagrass landscape pattern in the Albemarle-

Pamlico Sound Estuary System, North Carolina. a Bioturbation
by sting rays exposes seagrass roots and rhizomes resulting in

the uprooting, breaking, and dislodgement (green curved arrow)

of seagrass shoots located along patch edges, impeding

vegetative expansion. b In high wave energy environments,

erosion (tan arrow) occurs at the margins of patches causing

mobilization of sediment (brown corkscrew arrow) also

resulting in the uprooting, breaking, and dislodgement (green

curved arrow) of seagrass shoots located along patch edges,

impeding vegetative expansion. c Diagrammatic representation

of the wave energy gradient and associated seagrass landscape

pattern. Solid blue line depicts high wave exposure (from left to

right) at average water depth sites. The dashed blue line depicts a

similar wave energy gradient but at shallower sites, where

emersion of seagrass plants at low tide may additionally impede

seagrass growth through tissue desiccation (red blade tips).

Seagrass rhizome runners extend from bed margins showing

vegetative propagation and patch expansion. Seed set (tan

ovals), is a sporadic source of new seafloor colonization. A sting

ray and ray pits at bed margins are shown in the patchier

environments where ray disturbance (a, above) inhibits patch

expansion. d Representative seagrass landscape (100 9 100 m)

patterns observed in this study arising from the combined effects

of hydrodynamic forcing and bioturbation
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the spatial extent of seagrass landscapes would

improve prediction of seagrass percent cover as a

function of hydrodynamics. The size of our seagrass

landscapes represents a fourfold increase in extent and

greatly exceeds the spatial extent over which scale-

dependent changes in seagrass percent cover occur in

this area (10–20 m; Fonseca 1996; Fonseca et al.

2002). Landscapes were chosen by displaying

2013-acquired digital aerial imagery (30 9 30 cm

resolution) of the Core-Back Sound area in ESRI�

ArcMapTM v. 10.2.1 (ESRI 2014), overlain with an

existing polygon shapefile of manually-mapped sea-

grass habitat (APNEP 2012) together with a hindcast

of representative wave energy (RWE) generated using

the Wave Exposure Model (WEMo; Malhotra and

Fonseca 2007), a GIS-based hydrodynamic model.

RWE represents the total wave energy in one wave-

length per unit wave crest length in units of J m-1.

RWE is based on linear wave theory and ray tracing

techniques. Using local wind speed data, WEMo

computes wave height and generates waves that are

propagated in the same direction along each of 56

fetch rays that are weighted to account for shoreline

irregularities. Local bathymetry data are used to

determine wave dissipation along the fetch rays

through shoaling, wave breaking, and bottom friction.

Thus, RWE represents the combined effect of wave

generation, propagation, and dissipation.

Wind data were obtained from the National Data

Buoy Center, Coastal-Marine Automated Network

station CLKN7 (Cape Lookout, North Carolina). The

ultimate spatial structure of seagrass landscapes is

largely determined by wind events considered as

extreme (sensu Gaines and Denny 1993; Fonseca and

Bell 1998; Fonseca et al. 2000, 2002, 2008). There-

fore, we used exceedance wind speeds (top five

percent of wind events by wind speed; Keddy 1982),

rather than averages, observed during the 3-year

period May 2010 through May 2013 to compute

RWE. We used the three prior years of wind data

following Fonseca and Bell (1998) to encompass the

lifespan of seagrasses (Z. marina and H. wrightii)

found in our landscapes as captured by the aerial

imagery. A spatially registered RWE grid layer was

created (20 m resolution) based on existing NOAA

shoreline shapefiles and bathymetry data and the wind

data with each point of the grid having a value for

RWE in units of J m-1. Quartiles for RWE were

calculated in SAS v9.4 (SAS Institute 2013) and color-

coded within the grid layer.

The seagrass polygon layer served as a boundary

for clipping out all seagrass habitat from the 2013

imagery together with the respective color-coded

RWE grid points. Using the Random Selection Tool

in ArcMap, 15 random points were selected from

within each RWE quartile. The random point served as

a starting point for digitizing a square polygon with

dimensions of 329 9 329 pixels (100 9 100 m). This

resulted in each polygon containing 36 RWE points,

each having an associated water depth (meters), from

which site averages were calculated. Care was taken to

ensure that all RWE points encompassed by the

polygon were contained within the same quartile.

Where quartile overlap occurred within the boundaries

of seagrass habitat, the starting point for digitizing the

polygon was adjusted by randomly choosing a direc-

tion (N-S-E-W) and selecting the next relevant

quartile-specific RWE point until all RWE points

encompassed by the polygon were contained within

the same quartile. Two additional RWE points were

chosen from the 75% quartile to adequately capture

very high values for RWE. Lastly, the extent of each

100 9 100 m square polygon served as a boundary for

clipping out the associated 2013 aerial imagery further

to produce the representative seagrass landscapes.

Determination of tidal current speed

For each seagrass landscape, tidal current speed

(cm s-1) was estimated by collecting four replicate

measurements of the time required for a neutrally

buoyant Cyalume� ChemLight� light stick to float a

linear distance of one meter at roughly 60% water

depth. Current speed measurements were recorded

from within the center of the seagrass landscapes. It

was not possible to conduct simultaneous current

speed measurements across all 62 sites or to collect

current speed data at exactly peak flow (either during a

tide cycle or during the year). Therefore, a number of

corrections were applied to determine the maximum

possible tidal current speed experienced at a given site

within the tidal cycle of observations as well as the

annual maximum.

Tidal current predictions were downloaded from

NOAA’s Center for Operational Oceanographic Prod-

ucts and Services (http://tidesandcurrents.noaa.gov/

noaacurrents/Regions) for two subordinate current

123

2258 Landscape Ecol (2018) 33:2253–2272

http://tidesandcurrents.noaa.gov/noaacurrents/Regions
http://tidesandcurrents.noaa.gov/noaacurrents/Regions


profiler stations in the Albemarle-Pamlico Sound

Estuary System: Middle Marshes (ACT6406) and

Carrot Island (ACT6401). The amount of time

between flood and ebb tide for the time frame

encompassing the actual time of observation was

computed.

The forecast change in current speed over the time

from ebb to flood (or vice versa) was computed based

on an assumption of a linear increase (ebb to flood) or

decrease (flood to ebb) of tidal current speed with time

as indicated by visual inspection of the tidal current

speed prediction plots for each subordinate current

profiler station (http://tidesandcurrents.noaa.gov/

noaacurrents/Regions). The observed current speed

was proportionally increased by a ratio, based on time

to the next peak current speed. If an ebb tide, where

velocity would be decreasing, the proportional amount

the current speed had decreased (again, based on what

percentage of the flood to ebb time period had

elapsed), was added back to the observed current

speed to get the forecast site maximum. To compute

the predicted annual maximum current speed at a site,

the ratio between the maximum current speed for that

tide frame (flood, ebb) on the day of observation, and

that of the annual maxima for the subordinate station

was computed; the percentage increase in current

speed was then applied to the observed maximum

predicted current speed at that site.

Landscape pattern analysis

Seagrass cover (raster) maps for each landscape were

generated using a linear spectral unmixing technique

(LSU) combined with a pixel proportion threshold

approach (Uhrin and Townsend 2016). Briefly, each

seagrass landscape image was subjected to a forward

Minimum Noise Fraction transformation (MNF,

Green et al. 1988; Boardman and Kruse 1994) to

increase image dimensionality. LSU was performed

on each layer-stacked site image (original three band

image of R, G, B ? selected MNF layers) using

representative sand and seagrass endmembers identi-

fied directly from images. In LSU, the measured

spectrum of a mixed pixel is decomposed into its

constituent endmembers and a set of corresponding

image fraction planes that indicate the proportion of

each endmember present in the pixel are generated.

Thus, vegetation endmember fractions are propor-

tional to the areal abundance of projected canopy

cover (Roberts et al. 1993; Williams and Hunt 2002).

We used a threshold approach (Arnot et al. 2004;

Frazier andWang 2011; Uhrin and Townsend 2016) to

transform the sub-pixel seagrass fraction plane data

into a discrete format. Statistics generated from the

seagrass fraction plane were consulted to build masks

(selected areas = ‘‘on’’) by grouping pixels with

values greater than or equal to designated thresholds

resulting in seagrass cover maps that were exported as

rasters for use in pattern analysis. Because LSU cannot

discriminate between Z. marina and H. wrightii, the

seagrass maps represent the combined percent cover

of both species. LSU and thresholding were performed

in ENVI� v5.0 (ENVI 2012).

We selected a subset of available landscape metrics

(McGarigal et al. 2012) that are ecologically relevant

in seagrass systems and may affect seagrass habitat

persistence as well as benthic organism distribution.

Proportion of landcover (PLAND) describes seagrass

landscape composition. Configuration metrics

included: (1) area and edge metrics: total linear edge

(TE) and area-weighted mean patch area

(AREA_AM); and (2) an aggregation index describing

subdivision: total number of patches (NP). For addi-

tional details on the computation and interpretation of

each metric, please refer to McGarigal et al. (2012).

Landscape metrics were calculated for each of the 62

seagrass maps using Fragstats 4.2 (8-neighbor rule,

McGarigal et al. 2012). Area-weighted mean patch

area was highly correlated with the proportion of

landscape in seagrass cover and number of patches

(Table 1); however, we analyzed all four metrics

because each may potentially respond to different

physical drivers.

Statistical analysis

Physical drivers and seagrass landscape pattern

The spatial structure of the four landscape metrics

among the 62 seagrass landscapes was preliminarily

evaluated using diagnostics derived from ordinary

least squares regression in the software package

GeoDa v1.12 (Anselin et al. 2006) and included the

spatial distribution of model residuals and Moran’s I.

The distribution of residuals from the ordinary least

squares regression displayed weak positive autocor-

relation for percent cover and area-weighted mean

patch size, which was corroborated by the Moran’s I
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(0.12 and 0.09, respectively). The distribution of

residuals for total edge and number of patches

displayed weak negative autocorrelation, again cor-

roborated by the Moran’s I (- 0.048 and - 0.024,

respectively). As no spatial structure was detected, we

performed multiple linear regression using PROC

REG in SAS 9.4 (SAS Institute Inc. 2013) to

determine the explanatory power of representative

wave energy, tidal current speed, and mean water

depth on each of the four landscape metrics. Because

of the close coupling between representative wave

energy and water depth (Robbins and Bell 2000; Koch

2001), we tested the interaction between representa-

tive wave energy and mean water depth for all

landscape metrics prior to model selection. Where

the interaction was significant (a = 0.05), it was

included as an explanatory variable.

We compared models based on Akaike’s informa-

tion criteria (AIC; Akaike 1973; Burnham and

Anderson 2002). We evaluated and ranked all possible

models using a second-order bias adjustment for small

sample size (AICc; Hurvich and Tsai 1989) and

developed a subset of models having Di\ 2 for model

averaging. To meet assumptions of normality and

homogeneity, all landscape metrics required transfor-

mation. Proportion of seagrass landscape was logit

transformed (Warton and Hui 2011), total edge and

number of patches were square root transformed, and

area-weighted mean patch size was log transformed.

Thresholds in physical drivers

To identify potential thresholds in physical drivers, we

first inspected scatter plots for those explanatory

variables identified as significant in the best model for

each seagrass landscape metric. If scatterplots sug-

gested nonlinear responses in landscape metrics, we

tested for its significance by comparing AIC values

from the linear models to those fitted using three

nonlinear functions: exponential, sigmoid logistic, and

step. Nonlinear models with lower AIC values than the

linear model were suggestive of a nonlinear response.

Where nonlinear responses occurred, we used non-

parametric deviance reduction analysis to detect

change points on untransformed data (Qian et al.

2003; King et al. 2005). Nonparametric deviance

reduction entails splitting a stressor-response dataset

into two groups at points along the ordered stressor

gradient and calculating the reduction in the response

variable deviance that results from the split. The split

that results in the largest reduction in the deviance is

the change point. This analysis will always find a

change point; thus, the identified change point must

have ecological relevance. We performed the approx-

imate Chi square test to judge whether the resulting

Table 1 Pearson product-moment correlation coefficients (r) for physical drivers and landscape metrics among the 62

(100 9 100 m) seagrass landscapes

Physical drivers Landscape metrics

RWE CURR MEANZ RWEZ PLAND NP TE AREA_AM

Physical drivers

RWE 1.0 – – – – – – –

CURR 0.13 1.0 – – – – – –

MEANZ 2 0.79 2 0.11 1.0 – – – – –

RWEZ 2 0.90 2 0.05 0.91 1.0 – – – –

Landscape metrics

PLAND 2 0.67 2 0.15 0.48 0.53 1.0 – – –

NP 0.65 0.08 2 0.57 2 0.59 2 0.79 1.0 – –

TE 0.28 0.19 2 0.34 2 0.27 2 0.50 0.64 1.0 –

AREA_AM 2 0.68 2 0.06 0.52 0.56 0.95 0.90 0.52 1.0

Bold coefficients indicate correlations r C 0.5. RWE representative wave energy, CURR mean current speed, MEANZ mean water

depth, RWEZ interaction between RWE and MEANZ, PLAND proportion of seagrass landscape, NP number of patches, TE total

edge, and AREA_AM area-weighted mean patch size
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change point was statistically significant. Uncertainty

in the change point estimate was evaluated using 95%

confidence intervals calculated through bootstrapping

(N = 1000). Nonparametric deviance reduction anal-

ysis was performed in R v3.4.1 using the custom

package, ‘ncpa’ (Qian et al. 2003; R Development

Core Team 2017).

Differences in seagrass landscape pattern

above and below thresholds

To determine whether seagrass landscape pattern

differed among landscapes from different physical

driver regimes, we split the data into two groups,

above and below the respective change points, and

averaged the landscape metric of interest. In this way,

replication across two categories of physical driver

(above and below the change point) was possible in

order to derive confidence intervals for comparison as

suggested by Remmel and Csillag (2003). When 95%

confidence intervals were overlapping, there was no

significant difference among landscapes.

Patch size distribution and alternative states

We tested whether the observed frequency distribution

of seagrass patch sizes in the Albemarle-Pamlico

Sound Estuary System follows a power law to evaluate

whether seagrass landscapes exhibit scale-free pat-

terns, characteristic of classic critical systems. As a

rule of thumb, patch size distributions that follow

power laws exhibit a linear relationship on a logarith-

mic scale; thus, we first visually examined the

frequency distribution of seagrass patch sizes within

each 100 9 100 m landscape using a log–log plot. We

then determined whether the power law distribution

was a plausible fit to the patch size data or whether an

alternative heavy-tailed distribution (e.g., many small

and few large patches), the log-normal, was a better fit

using the maximum likelihood method of the ‘poweR-

law’ package in R 3.4.1 (Clauset et al. 2009; Gillespie

2015; R Core Development Team 2017). We esti-

mated the scaling parameter (a) of the power-law

distribution, which represents the slope of the line, or

the rate of decline in the number of patches with their

sizes. For power laws, the scaling parameter typically,

but not always, lies in the range 2\ a\ 3 (Clauset

et al. 2009). We also determined the lower-bound to

power law behavior (scaling region), x min. For each

competing distribution, we plotted the complementary

cumulative density function (CDF) for the patch sizes

and calculated goodness of fit using the Kolmogorov–

Smirnov (K-S) statistic. To assess the plausibility of

power law versus log-normal, we used bootstrapping

(N = 2500) to generate power-law and log-normal

distributed data sets based on the values for a and x min

estimated from the observed data. K-S statistics were

calculated for each bootstrapped data set and resulting

p-values were equivalent to the proportion of time the

resulting K-S statistic was larger than that of the

empirical data. A distribution is considered plausible if

p[ 0.1 and the larger the p value (closer to 1), the

stronger the evidence that the distribution is a good

match to the data (Clauset et al. 2009). We also

directly compared the power law and log-normal

distributions based on log-likelihood ratios and sig-

nificance values (Clauset et al. 2009) where statistical

significance at p\ 0.1 indicates a poor fit compared to

the competing distribution.

Multimodality in the frequency distribution of

vegetation cover is a simple indicator of the existence

of alternative states (Scheffer et al. 2012). To assess

whether the potential for alternative seagrass states

exists in the Albemarle-Pamlico Sound Estuary Sys-

tem, we constructed a kernel density plot of the

frequency distribution of seagrass percent cover for all

62 seagrass landscapes using the density function in R

3.4.1 (R Core Development Team 2017). A Gaussian

smoothing kernel was used together with the band-

width selection method of Sheather and Jones (1991).

Results

Maps produced from linear spectral unmixing

revealed seagrass landscape patterns that ranged

from complete cover to isolated seagrass patches of

0.09 m2 separated by several meters of unvegetated

sand (Supplementary Material). Some of the

100 9 100 m seagrass landscapes were composed

of larger, irregularly shaped patches, with or without

connections to other similarly shaped patches (Sup-

plementary Material). Proportion of seagrass cover

ranged from 4 to 100% with higher cover ([ 50%)

observed for lower values of representative wave

energy (range 7–2347 J m-1; Supplementary

Material).
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Physical drivers and seagrass landscape pattern

The proportion of landscape occupied by seagrass and

the area-weighted mean patch size declined with

increasing representative wave energy as indicated by

the most supported models and model-averaged

parameter estimates (Tables 2, 3). Both representative

wave energy and the interaction term (representative

wave energy x mean depth) were negatively correlated

with proportion of landscape cover (Table 3).

Together, these two variables explained 45% of the

variation (Table 3). Representative wave energy

explained 46% of the variation in area-weighted mean

patch size. In contrast, the number of patches

increased with increasing representative wave energy

as indicated by the most supported models and model-

averaged parameter estimates (Tables 2, 3). Repre-

sentative wave energy explained 42% of the variation

in number of patches (Table 3). Total edge declined

with increasing mean water depth (Tables 2, 3). Mean

water depth was significantly negatively correlated

with total edge but explained only 10% of the variation

(Table 3).

Thresholds in physical drivers

Scatterplots revealed potential nonlinear relationships

between representative wave energy and three land-

scape metrics: proportion of landscape, number of

patches, and area-weighted mean patch size (Fig. 3).

For all three landscape metrics, the model fitted with a

sigmoid logistic function had the lowest AIC value

(sigmoid value vs linear value). Nonparametric

deviance reduction analysis suggested that changes

in both proportion of landscape and area-weighted

mean patch size occurred at a representative wave

energy value of 679 J m-1 (95% CI 675, 705; Fig. 3).

Changes in the number of patches occurred at a

representative wave energy value of 774 J m-1 (95%

CI 675, 1153; Fig. 3).

Differences in seagrass landscape pattern

above and below thresholds

Seagrass landscapes differed in their spatial configu-

ration and in their physical environment, above and

below the representative wave energy change point of

679 J m-1 (Fig. 4). Above the change point, seagrass

landscapes experienced greater wave energy and were

deeper than landscapes below the change point

(Fig. 4). In addition, seagrass landscapes above the

change point had less proportional cover and more

patches that were smaller in size than landscapes

below the change point (Fig. 4). Tidal current speed

(not presented) was not different between seagrass

landscapes above and below the change point.

Patch size distribution and alternative states

Patch size distributions for individual seagrass land-

scapes formed power-law distributions over a broad

range of seagrass landscape proportion both above and

Table 2 Model selection

statistics for physical driver

effects on four seagrass

landscape metrics

The best approximating

model based on corrected

Akaike Information

Criterion (AICc) is followed

in rank order by those

models having substantial

support (Di\ 2). (Di= AIC

differences, xi= Akaike

weights)

Model AICc Di xi

Proportion of seagrass landscape

Wave energy, wave energy 9 mean depth 2 0.45 0 0.47

Wave energy 0.22 0.67 0.33

Wave energy, mean depth, wave energy 9 mean depth 1.24 1.69 0.20

Total edge

Mean depth 293.75 0 0.62

Current speed, mean depth 294.70 0.95 0.38

Area-weighted mean patch size

Wave energy 2 28.41 0 0.40

Wave energy, mean depth, wave energy 9 mean depth 2 27.94 0.47 0.31

Wave energy, wave energy 9 mean depth 2 27.77 0.64 0.29

Number of patches

Wave energy 2 11.20 0 0.61

Wave energy, wave energy 9 mean depth 2 10.27 0.93 0.39
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below the identified wave exposure change point

(Fig. 5). Of the 50 seagrass landscapes having suffi-

cient sample size (i.e., enough patch size frequencies)

to perform a power law analysis, 88% exhibited

plausibility of power-distributions (p[ 0.1) with

estimated scaling exponents falling within the range

typically observed in power law, 2\ a\ 3 (Fig. 5).

The frequency distribution of seagrass percent

cover appears bimodal, with peaks at both high and

low percent cover, corresponding to high and low

values for representative wave energy, and suggesting

the possible existence of alternative stable states in this

system (Fig. 6). Over intermediate values of repre-

sentative wave energy, including in the range of the

estimated threshold, the two states can coexist.

Discussion

We used fine-resolution data on seagrass cover of two

co-dominant species to identify thresholds in physical

drivers associated with qualitative changes in seagrass

spatial pattern. We identified a change point in

representative wave energy, a hydrodynamic driver

based on exceedance wind events, in the Albemarle-

Pamlico Sound Estuary System. The change point was

associated with changes in the composition and

configuration of seagrass landscapes, namely percent

cover, patch size, and number of patches. At the

change point and beyond, wave energy reaches a level

where presumably sediment erosion exceeds the

ability of seagrass to stabilize the seafloor with a

consequence of uprooting plants and loss of landscape

cover. Our identified wave energy change point

corroborates the observations of Fonseca and Bell

(1998), who, over two decades ago, suggested thresh-

olds in representative wave energy (range

450–750 J m-1) and tidal current speed (25 cm s-1)

in this system. These authors reported discernible

differences in seagrass percent cover, perimeter to area

ratio, and sediment composition when these thresholds

were exceeded. However, the authors deliberately

selected sites (50 9 50 m) based on visually per-

ceived gradients of seagrass patchiness observed from

aerial photographs and mapped the spatial pattern of

these landscapes in situ at 1 m2 resolution (Fonseca

and Bell 1998). Our study of seagrass landscapes in

this system substantially increased the number and

extent of landscapes and analysis of landscape pattern

was performed at over 3 9 the resolution, 4 9 the

extent per site and at 3.4 9 as many sites as the

previous work. Importantly, we chose our landscapes

via a stratified site selection process founded on

quartiles of representative wave energy, ensuring that

the relationship between wave energy and seagrass

landscape was not inherently biased. Here, previous

Table 3 Model-averaged parameter estimates (b), uncondi-

tional standard errors (SE), 95% lower (CIL) and upper (CIU)

confidence intervals, p values, and adjusted R2 (adj R2) for the

AICc-selected best model for physical driver effects on four

seagrass landscape metrics

b SE CIL CIU p adj R2

Proportion of landscape

Intercept 1.36 0.13 1.10 1.62 \ 0.0001 0.45

Wave energy 2 0.002 0.0003 2 0.002 2 0.001 \ 0.0001

Wave energy 9 mean depth 2 0.0005 0.0001 2 0.0007 2 0.0003 0.09

Total edge

Intercept 31.84 15.42 1.77 61.91 \ 0.0001 0.10

Mean depth 2 9.49 5.81 2 20.83 1.84 0.01

Number of patches

Intercept 4.38 2.07 0.35 8.41 \ 0.0001 0.41

Wave energy 0.004 0.002 0.0003 0.008 \ 0.0001

Area-weighted mean patch size

Intercept 2 2.83 1.35 0.19 5.47 \ 0.0001 0.46

Wave energy 2 0.001 0.0007 2 0.003 0.00002 \ 0.0001
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observations of apparent threshold behavior driven by

wind-wave exposure have now been clearly identified

and statistically verified apart from the influence of

tidal currents.

Seagrass percent cover increased nearly monoton-

ically with decreasing wave energy. Seagrass land-

scapes having very low wave energy and often located

in shallow waters adjacent to the mainland or fringing

large marsh islands, formed continuous meadows with

high percent cover (* 75%). However, there was a

slight trend of decreasing seagrass cover as water

depth became shallower, concomitant with a minor

positive interaction between the shallowest depths and

the highest representative wave energy that decreased

cover further. Thus, shallow shoals exposed to high

wave energy had the least seagrass cover, expressed as

small, well-dispersed patches. On these shoals, sea-

grass may be additionally influenced by high summer

temperatures and emersion, especially during extreme

low tides, as observed for other temperate seagrass

ecosystems (Moore and Jarvis 2008; van der Heide

et al. 2010; Carr et al. 2012a; Moore et al. 2014).

In the Albemarle-Pamlico Sound Estuary System,

Zostera marina and Halodule wrightii intermingle at

the sub-meter scale and sometimes down to the 1 cm

scale. Therefore, it is not possible to discriminate

Fig. 3 Nonlinear responses

of proportion of seagrass

landscape (percent cover),

area-weighted mean patch

size, and number of patches

to representative wave

energy. The left panels (a, c,
e) are scatterplots of each
landscape metric fitted by a

sigmoid logistic function.

The right panels (b, d, f) are
the resulting change points

estimated by nonparametric

deviance reduction with

shaded 95% confidence

intervals estimated via

bootstrapping (N = 1000)
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species-specific effects on landscape pattern as related

to wave energy. Although multi-species seagrass

landscapes are not rare globally, it is rare that these

two particular species overlap. Although this study

focuses on a specific seagrass ecosystem, the approach

used here can be exported to other seagrass ecosys-

tems where the relationship between landscape pattern

and hydrodynamics is suggested and mapping data are

available.

The seasonal interplay of the two codominant

seagrass species of the Albemarle-Pamlico Sound

Estuary System might confer resilience or increase

vulnerability upon this seagrass ecosystem in the face

of extreme wind events. In locations where Z. marina

and H. wrightii coexist, their seasonal displacement of

peak growth periods results in a seagrass canopy and

rhizome mat that is present in an active state for much

of the year, enhancing sediment stabilization in those

areas. An additional boost to sediment stabilization is

the increased investment to belowground biomass

versus canopy cover observed for both species in areas

where hydrodynamic forcing is high (Townsend and

Fonseca 1998; AVU pers. obs.). Although peak

biomass is not simultaneous, there is some converging

abundance in early summer and early fall. During

those times of the year, it is possible that resilience to

storms is greater due to the combined biomass and the

comparable abilities of the two species for reducing

flow speed through their respective canopies (i.e.,

similar resistance to sediment movement; Fonseca and

Fisher 1986). Gurbiscz et al. (2016) demonstrated that

the effects of tropical cyclones were mitigated when

storms occurred during the simultaneous peak biomass

(summer) of four codominant species located in the

tidal freshwater upper Chesapeake Bay. Having

attained maximum plant height and density increased

the capability of the bed for attenuating wind-driven

wave energy, which reduced sediment resuspension

(less turbidity, greater light penetration) and diverted

flow around the bed which prevented erosion from

reaching into the core of the bed (Gurbiscz et al. 2016).

This mechanism not only reduced within-patch vul-

nerability, but was theorized to have conferred among-

patch resiliency through the ‘‘spillover’’ of clearer

water to adjacent impacted areas where plant loss was

more substantial (Gurbiscz et al. 2016).

In areas of the estuary where Z. marina and H.

wrightii exist monotypically, the capacity for resi-

lience may be reduced and vulnerability enhanced. It

is possible that shallow depths select against Z.

marina, leaving H. wrightii to be a seasonal dominant

(especially during hurricane season) and it is unknown

whether the absence of Z. marina could leave H.

wrightiimore vulnerable to disturbance. However, the

absence of Z. marina means that H. wrightii may

perhaps more fully exploit local resources (Micheli

Fig. 4 The 95% statistical

confidence intervals above

(gray) and below (white) the

identified change points for

representative wave energy

(a), mean depth (b),
proportion of seagrass

landscape (c), area-weighted
mean patch size (d), and
total number of patches (e).
Circles indicate the mean

value
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et al. 2008). We have observed monospecific H.

wrightii beds on the shallow, wave-influenced shoals

to have a prodigious belowground biomass not

apparent in low energy regimes (similarly for Z.

marina when it is monotypic, although shallow

monotypic Z. marina is not a persistent feature at this

limit of its distribution). In addition, Livernois et al.

(2017) reported a negative effect of H. wright shoot

density on the density of Z. marina seeds. The lost

‘benefit’ of a dual-species bed versus the ‘gain’

achieved via resource exploitation in a monotypic

bed may offset one another. This type of dual-species

influence warrants further investigation but may be

limited in that the presence of seagrass beds across

gradients of water depth and energy are not orthog-

onal; not all combinations of seagrass species, water

depth and wave energy exist in this estuary. To

confound the issue further, where the two species exist

in isolation, they experience a different suite of

environmental conditions that cannot inform what

they might do when they are interspersed. Thus, their

resilience and vulnerability may even out across these

gradients of conditions but this requires further

investigation.

Although not examined here, differential responses

to burial between Z. marina and H. wrightii may also

contribute to spatial patterning in seagrass landscapes.

Results from a handful of burial experiments indicate

that resilience to burial is species-specific, largely a

function of seagrass plant size and the ability of

unburied shoots to translocate resources to buried

shoots (Duarte et al. 1997; Cabaço et al. 2008; Ooi

et al. 2011). Mills and Fonseca (2003) conducted field

experiments where Z. marina in our study location

experienced 50% mortality when buried to 25% of

aboveground height. Surviving plants exhibited

decreased productivity and leaf length suggesting that

even low levels of burial, may inhibit compensatory

Fig. 5 Landscape percent cover and associated power law

analysis for a selection of seagrass landscapes in the Albemarle-

Pamlico Estuary System exhibiting power law bevavior. The left

side of each panel contains binary maps of seagrass percent

cover, in which black pixels indicate seagrass presence.

Landscape extent is 100 9 100 m with a resolution of 0.3 m.

The right side of each panel corresponds to the cumulative

distribution functions (CDFs; y-axis) and their maximum

likelihood power law fit for the frequency distribution of patch

sizes for a selection of seagrass landscapes examined in the

study
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recovery via leaf elongation (Mills and Fonseca 2003).

We are unaware of any burial studies specific to H.

wrightii. However, Ooi et al. (2011) reported on burial

in the congener, Halodule uninervis (tropical south-

east Asia) having similar morphology and physiology.

The overall effect of burial was a loss of shoots and a

reduction in the size of shoots and rhizomes with

significant effects apparent at burial depths greater

than 20% plant height (Oi et al. 2011). H. uninervis

was also unable to translocate sufficient resources

from unaffected shoots to buried shoots, suggesting a

reduced capacity for responding to burial events

compared to the other species examined (Ooi et al.

2011). Thus, plant responses to burial at various

temporal and spatial scales, as may occur during storm

events, may influence spatial heterogeneity in seagrass

landscapes, although the exact mechanisms remain

unidentified.

Patch size distributions from seagrass landscapes

across a wave energy gradient were examined as a

potential indicator of vulnerability to a landscape state

change. Our analysis of patch size distribution for

seagrass landscapes in the Albemarle-Pamlico Sound

Estuary System indicates moderate support for a

power law relationship across a wide range of

individual seagrass landscape covers and wave energy

regimes. Power laws have been used to reveal critical

thresholds in vegetation patterns that may signify

potential landscape degradation in various ecosystems

including arid scrubland/grassland (Kéfi et al. 2007;

Scanlon et al. 2007), neotropical and deciduous forests

(Kizaki and Katori 1999), intertidal mussel beds

(Guichard et al. 2003), intertidal mudflat diatom films

(Weerman et al. 2012), and Everglades sawgrass

(Casey et al. 2016). To our knowledge, power laws

have not been applied to patch-size distributions in

Fig. 6 Conceptual diagram showing potential bistability in

seagrass landscapes of the Albemarle-Pamlico Sound Estuary

System where landscapes near identified thresholds in repre-

sentative wave energy can have both high and low percent

cover. Inset: Kernel density estimation of the frequency

distribution of seagrass percent cover in 100 9 100 m grid

cells. There are two distinct nodes corresponding to contiguous

seagrass landscapes and those exhibiting high numbers of small

patches
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seagrass landscapes and this warrants further investi-

gation into how critical dynamics in this system might

generate the observed power law distribution and

whether power law adherence may presage a state shift

in coverage and abundance.

Patchiness in seagrass landscapes may also arise

from self-organizing processes, similar to patterns

observed in terrestrial vegetation, particularly for arid

systems (Rietkerk et al. 2002). Ruiz-Reynés et al.

(2017) developed a simple model based on clonal

plant growth that reproduced naturally occurring

seagrass patterns for Posidonia oceanica ranging from

isolated fairy circles (gaps), and bands to ‘‘leopard

skin’’ (small seagrass patches on a bare sand land-

scape). These patterns were a result of variable shoot

mortality along with facilitative and competitive

interactions among seagrass shoots (Ruiz-Reynés

et al. 2017). Regular banded patterns of Zostera noltii

observed in Saint Efflam Bay, France were attributed

to local positive and long-range negative feedbacks

between hydrodynamics and seagrass shoot growth

(van der Heide et al. 2010). High root density

improves anchoring and sediment stabilization and

prevents dislodgement while the canopy causes

scouring that intensifies with distance through a

banded patch. Although self-organizing processes

were not examined in our study, given the observation

of enhanced belowground biomass in seagrass patches

exposed to high hydrodynamic forcing, it is possible

that self-organization may contribute to spatial pat-

terning in this system.

Our observation of bimodality in the frequency

distribution of seagrass cover in the Albemarle-

Pamlico Sound Estuary System adds to mounting

evidence for the existence of alternative states (bista-

bility) in seagrass landscapes (van der Heide et al.

2007, 2010, 2011, 2012; Carr et al.

2010, 2012a, b, 2016; Christianen et al. 2014;

Maxwell et al. 2015; Adams et al. 2016). Alternative

states of continuous seagrass cover versus a spatial

mosaic (seagrass banded pattern) have been attributed

to feedbacks between seagrass presence, suspended

sediment, and benthic light availability (linked to

water depth and hydrodynamic regime; van der Heide

et al. 2010). Feedbacks have been modeled between

seagrass growth, biological activity (e.g., grazing),

and rates of sediment accretion/erosion that have

generated alternative states of bare landscapes versus a

spatial mosaic (water-saturated depressions

alternating with emmersed seagrass-vegetated hum-

mocks: van der Heide et al. 2012; unvegetated gaps:

Christianen et al. 2014). Although not directly exam-

ined in this study, it is possible that similar feedbacks

are operating in our study system. Cownose rays

foraging in seagrass landscapes target the edges of

intermediate-sized patches, exposing roots and rhi-

zomes and leaving patches more susceptible to erosion

(Townsend and Fonseca 1998; Peterson et al. 2001).

Thus, ray foraging may reduce the size of patches in an

already patchy landscape or eliminate patches alto-

gether creating additional bare substrate.

Identification of threshold behavior and alternative

states can inform seagrass ecosystem management

particularly under climate scenarios where the fre-

quency, duration, and intensity of extreme weather

events known to inflict seagrass loss are predicted to

increase (tropical cyclones: Knutson et al. 2010;

Christensen et al. 2013; Villarini and Vecchi 2013;

extreme warm temperatures: Coumou and Rahmstorf

2012; Perkins et al. 2012; Hobday et al. 2016). Many

coastal seagrass ecosystems, including the Albemarle

Pamlico Sound Estuary System, are susceptible to

tropical cyclones and winter storms, which can cause

rapid, catastrophic loss of seagrass cover and affect

resilience (Fonseca et al. 2000; Gera 2013; Gurbiscz

et al. 2016). Warm temperature extremes have also

been implicated in severe biomass loss in other

temperate seagrass ecosystems (Chesapeake Bay:

Moore and Jarvis 2008; Moore et al. 2014; Australia:

Thomson et al. 2015). Thus, the existence of many

small and few large seagrass patches could leave a

system vulnerable to future extreme climatic events

that could eliminate existing patchy seagrass land-

scapes within the estuary and shift remaining patch

size distribution to more and smaller patches, resulting

in more frequent changes among alternative states

from vegetated to unvegetated. Similar to the predic-

tive model of habitat suitability based on susceptibility

to storms by Kelly et al. (2001), this study revealed

that a substantial portion of the estuarine seafloor in

this region is composed of patchy seagrass beds and

that a threshold patchiness exists at a given wave

energy exposure. With climate change and its associ-

ated increases in weather extremes, much of this

estuarine seagrass coverage will be exposed to

increased wave energy disturbance. In fact, Kelly

et al. (2001) predicted that 16% of the seagrass in this

study area is highly susceptible to acute storm events.
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For those portions of the seafloor that have seagrasses

and are just below the wave energy threshold, such

increases in wave energy could tip those habitats into a

new stable state of lower cover resulting in less

seagrass cover overall in the estuary. Such a net

decline in seagrass cover may in turn lead to reduc-

tions in several ecosystem services associated with

seagrass (Nordlund et al. 2016) particularly as faunal

utilization appears to scale to seagrass acreage and less

so to patch size (Boström et al. 2006, 2011; Lefcheck

et al. 2016). Thus, understanding the distribution of

seagrass cover and its patchiness as indicators of

system change in the face of external drivers such as

climate change may in turn inform a cascade of

changes in ecosystem service availability.
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Guénette JS, Villard MA (2004) Do empirical thresholds truly

reflect species tolerance to habitat alteration? Ecol Bull

51:163–171
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