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Abstract

The primary prey of humpback whales in the southwestern Gulf of Maine is sand lance.
Despite this established relationship, we lack models to further understand the influence
of sand lance on humpback whales or to predict humpback abundance or distribution in
response to climate-related changes in sand lance abundance or distribution. We used
a subset of long-term standardized survey data (2013-2019) from Stellwagen Bank
National Marine Sanctuary and a Bayesian hierarchical modelling approach to explore
the influence of sand lance on humpback whales at multiple spatial and temporal scales
while accounting for sampling variability and propagating uncertainty. We developed
zero-inflated Poisson mixed effects models for both sand lance and humpbacks, using
modelled sand lance abundance as a predictor in the whale model. Results showed a
statistically clear positive correlation between sand lance and humpback whales.
Regional mean abundances of both species increased from north to south, though site-
level variation within regions showed more variability. Results suggest annual variation
in abundance of both species, with potentially different influences. We demonstrate one
management application of our method by examining entanglement risk for humpback
whales. Whale aggregations were more likely to occur in a high density area of fixed
fishing gear that overlaps with an area of higher sand lance abundance. Our work
suggests that humpback whale distribution in the larger Gulf of Maine may be impacted
by climate-related fluctuations in sand lance abundance. Predicting future distributions
of humpback whales is important for ecosystem-based management, including
mitigation of human impacts, and our work serves as a foundation for further model
development.
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Introduction

In the southwestern Gulf of Maine (GOM), the preferred prey of humpback whales
(Megaptera novaeangliae) is sand lance (Ammodytes spp.). Shifts in the abundance
and distribution of humpbacks into and out of the southwestern GOM have been linked
with fluctuations in the abundance of sand lance during several time periods since the
late 1970s. Steady increases in humpback whale densities from 1978-1982 correlated
with increased sand lance densities (Payne et al. 1986). Fluctuations in humpback
whale abundance followed fluctuations in sand lance abundance from 1982-1988
(Payne et al. 1990) and a decline in humpback whale abundance on Stellwagen Bank
from 1988-1994 was concurrent with a decline in presumed sand lance density and an
increase in humpback abundance on nearby Jeffrey’s Ledge, where humpbacks feed
predominately on herring (Weinrich et al. 1998).

While the link between humpbacks and sand lance in the southwestern GOM is clear,
current evidence is limited to linear correlations. We lack statistical models to further
understand the strength of this relationship over time and space, or to predict changes
in the abundance and distribution of either species in response to climate change.

Here, we aimed to advance our understanding of the sand lance-humpback relationship
by using a Bayesian hierarchical modeling approach to account for: spatial and
temporal variability, uncertainty in the association of humpback abundance with latent
abundance of sand lance, and the observation process. We fit zero-inflated Poisson
mixed effects models to a subset of a unique, long-term dataset of humpback whale and
sand lance counts from seasonal standardized surveys in Stellwagen Bank National
Marine Sanctuary, a federal MPA in the southwestern GOM. The sanctuary is a critical
foraging area for humpbacks and in some years, hosts the highest sand lance densities
in the GOM (Richardson et al. 2014), providing an ideal location to further explore the
relationship between these species and to work toward building a predictive modeling
framework.

Methods
Data collection

Field work was described in Silva et al. (2020). Briefly, 13 seasonal surveys for sand
lance and humpback whales were conducted from 2013 - 2019 (Fall: September —
November; n=5; Spring: April — June, n=6; Summer: July, n=2) in Stellwagen Bank
National Marine Sanctuary. The survey included 44 sites (~1 km apart in most areas) in
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3 blocks (north, central, south) across Stellwagen Bank designed to sample all potential
sand lance habitat (Fig. 1A).

Sand lance are a benthopelagic species that spend time both in the water column and

in the sediment (Robbards 2000). We sampled sand lance in the sediment using the
U.S. Geological Survey Seabed Observation and Sampling System (SEABOSS)
(Blackwood & Parolski, 2001), equipped with a modified Van Veen benthic grab sampler
(0.1m3). At each site, the SEABOSS was deployed to the sea floor to sample sediment
and the number of sand lance in each sample was recorded. We assumed the number
of sand lance recorded in each grab sample was representative of the total number of
sand lance at each site (water column + sediment).

During each SEABOSS deployment, trained observers (typically 1 on either side of the
vessel) recorded the number of humpback whales in an 800 m radius around the vessel
for 10 minutes. We chose the sampling distance and observation period based on our
ability to reliably identify species and to limit the possibility of double counting
individuals (based on typical humpback dive durations of ~5 minutes, Wiley unpublished
data). Distances were estimated using a hand-held, fixed interval range finder calibrated
using laser range finders and a buoy at known distance in relation to the horizon
(Heinemann, 1981).

Some cruises resulted in no observations of sand lance or whales or very small total
species counts (two individuals). We excluded these data from analysis. We also
excluded summer data since there were only two cruises. Here we used data from five
cruises (n=164), with sampling effort spread over four years and fairly equally across
seasons and sites (Table 1, Table S1).

Modeling

Model structure

Count data for sand lance and humpback whales contained mostly zeroes (Fig. 1B, C)
and preliminary models using Poisson and negative binomial distributions fit poorly. We
implemented a zero-inflated Poisson mixed effects model using a Bayesian hierarchical
framework. Several aspects of our study make it well suited for this approach. First, our
study design includes simple categorical covariates that are nested within several
spatial and temporal scales, inviting a hierarchical structure as well as random effects
(Hobbs & Hooten 2015). Second, this framework allows us to incorporate sampling
variability, which we believe is important given our data collection method (Pavanato et
al. 2017). Third, we can propagate uncertainty throughout prey and predator models.
Lastly, Bayesian methods allow for inference using true probability statements, which



107  better represent ecological data and are more useful for managers making decisions
108  (Wade 2000).

109

110 Sand lance sub-model

111 We modeled sand lance counts,sl;j, at site i in block j in year k, using a zero-inflated
112 mixture model,

0
113 sliix~ { sl
jk
ss (4 k) f Zuk
114  where ASlk is the mean number of sand lance per sediment sample at site /in block jin
115 year K,
116 Uk is a random variable describing seasonal zero-inflation in sand lance availability:

117 Uk ~ Ber ull ((j)m(uk))
118 Ponijiy ~ (0,1

119  where ¢>f,ﬁ(ijk) is the probability of success (sand lance captured) for season mand 1 -

120 ¢f,ﬁ(ijk) is the probability of zero inflation . Sand lance in Stellwagen Bank National

121 Marine Sanctuary exhibit seasonal differences in behavior. In fall, sand lance spend

122 more time on or in the sediment in estivation prior to spawning (Suca et al. 2021). We
123 hypothesized that these seasonal differences in bottom time would influence the chance
124  of sand lance capture in sediment grabs. If z = 0, the mean number of sand lance

125 equaled zero. If z = 1, the number of sand lance in the count was distributed as a

126  Poisson random variable with mean /11],( (Fig. 2).

127  We described ASlk as a log linear function of block, site, and year,

128 In(A5h) = BY + B + BY
129 BP~ N(0,10)
130 B ~N(0,03)
131 BY ~ N(0,72)
1
132 — ~ Gamma(0.01,0.01)
sl
1
133 — ~ Gamma(0.01,0.02)
Ts1
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Data exploration suggested that sand lance counts differed substantially by block (Fig.
1B, C). Our model structure assumed that each block had an overall mean number of
sand lance, with site- and annual-specific effects. Site and year were treated as random
effects to capture spatial and temporal variation in expected sand lance counts. We had
no existing knowledge to inform choice of priors, therefore we used vague priors on all
parameters. For site- and year- level variance, we used the conjugate gamma prior on
the precision of normal distributions. After initial model runs, we chose to increase the

precision (decrease variance) for Tiz to 0.02 in order to decrease initial autocorrelation in
sl
MCMC chains.

Humpback whale sub-model

The humpback whale sub-model was similar to the sand lance model. We modeled humpback
whale counts,w; ;. at site i in year k, using a zero- inflated mixture model,

Wijk sS (/1‘{5'1( fzi.,}{k -1

where z;}, is a random variable describing if whales were observed (z=1) or not (z=0) and 1} is

the mean number of whales at site i in year k (Fig. 2). We used a Bernoulli distribution with a
uniform prior for z,

zi"}{k ~ Ber ull ((;b;’,‘;(ijk)
Pmaje ~ (0,1)

where ¢y ;i) in season m represents the probability of success (whales observed) and 1-
¢7",Vl(ijk) is the probability of zero inflation. The annual migratory cycle of humpback whales
consists of arrival on higher latitude feeding grounds (including the sanctuary) in spring and
departure from feeding grounds to lower latitude breeding grounds in fall (Clapham et al. 1993).
We hypothesized that whale presence in SBNMS, and therefore, sampling variability, may be
influenced by their migratory cycle. If z = 1, the number of whales was distributed as a Poisson
random variable with a mean, 4. If z = 0, the number of whales equaled zero.

Based on the established correlations between sand lance and humpbacks (Payne et al. 1986,
Payne et al. 1990), we hypothesized that humpback whale counts were correlated with sand
lance abundance and included expected sand lance abundance as a covariate in the humpback
model. We described 1}, for each data point as a log linear function of expected sand lance

abundance, site, and year (Fig. 2),
In(AY) = aqln(Ah) + 67 + 67, where

ag~ N(0,10)
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07 ~ N(0,032)

07 ~ N(0,72)

1
— ~ Gamma(0.01,0.01)
o,

w

1
=~ Gamma(0.01,0.02)

w

Since we assume humpback counts were correlated with sand lance counts, and the
mean number of sand lance was assumed to vary by block, we did not include block as
a covariate in the whale model. We included site and year as random effects to capture
spatial and temporal variation in whale counts that may not be attributable to sand
lance. We had no existing knowledge to inform choice of priors, therefore we used
vague priors on all parameters as in the sand lance sub-model.

Modéel fitting and analysis

Models were implemented using Markov chain Monte Carlo (MCMC) algorithms in
JAGS (Just Another Gibbs Sampler; Plummer 2003) called from R using the package
rjags (Plummer 2011). We ran four chains with 1 million iterations, a burn-in of 50,000,
adaptation period of 50,000 and a thinning parameter of 1/1000 to account for high
autocorrelation in the chains. The total sample size consisted of 3800 draws (4 chains *
((1 million iterations — 50,000 burn-in) / 1000))).

We assessed convergence by inspecting trace plots to ensure well-mixed chains
(Hobbs and Hooten 2015) and calculating Gelman-Rubin statistics (Rhat) (Gelman and
Rubin 1992) for all parameters using the MCMClvis package (Youngflesh 2018). Rhat
values close to 1 indicate convergence with values less than 1.2 acceptable (Gelman
1996, Zuur et al. 2012).

We assessed model fit using posterior predictive checks, which evaluate the ability of a
model to generate new observations that resemble our observed data. We simulated
new data for sand lance and whale counts based on the posterior predictive
distributions for the mean number of sand lance and whales. We defined the mean,
variance and proportion of zeroes in our simulated datasets as test statistics. Goodness
of fit was evaluated using Bayesian p values (Ps), the probability that the test statistic
calculated from our simulated data is more extreme than the test statistic calculated
from observed data. Very large or very small Pg (<0.1 or >0.9) indicate poor model fit.
We conducted posterior predictive checks for each species and also summarized
results by block, season and year.

Applications

We used model results to examine two applications that could have potential
management implications: locating sand lance ‘hot-spots’ and exploring entanglement
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risk to humpback whales. We used posterior probability distributions for the site
parameter to find the probability that a site had a greater than block average number of
sand lance. To explore entanglement risk, we estimated the probability of a whale
aggregation at each site and examined overlap between sites and fixed fishing gear
locations. To estimate site probabilities of whale aggregations, we used the new counts
of whales generated for posterior predictive checks and found the proportion of those
values that were greater than our arbitrarily chosen aggregation size (n=5). We explored
potential overlap between whale aggregations and fixed fishing gear by creating a
density map of trap-pot gear locations from 2014-2016 from Vessel Trip Report (VTR)
data (NOAA Fisheries) using the spatstat package (Baddeley et al. 2015).

Results
Sand lance sub-model

Trace plots and Gelman-Rubin statistics confirmed convergence of most parameters.
Twelve 2{},values had Rhat values between 1.2 and 1.3. These values correspond to
sites that never had sand lance observations, suggesting the model could not separate
true vs. false zeroes for these data points. Two z,values also had Rhat > 1.2 & < 1.3.

For all fixed effects and variance components, Rhat values were <1.1 and effective
sample sizes (n.eff) were > 3200.

Overall posterior predictive checks for the mean, variance and proportion of zeroes for
sand lance showed no evidence of lack of fit (Bayesian p-values: mean = 0.53, variance
= 0.73, proportion of zeroes = 0.79; Fig. S2). Posterior predictive checks summarized by
block (Bayesian p-value range: 0.52 — 0.84), year (Bayesian p-value range: 0.38 —
0.90), and season (Bayesian p-value range: 0.50 — 0.82) also showed no obvious lack
of fit (Figs. S3 — S5).

Predicted sand lance abundance varied by block and increased from north to south,
with median estimates of 0.07 sand lance / block (north), 0.73 sand lance / block
(central), and 3.74 sand lance / block (south) (Fig. 3A, Table 2). Some annual
differences in abundance were observed (credible intervals overlapped in most years),
with the largest fluctuations in abundance occurring in the south. Median sand lance
estimates for the south in most years (2014, 2015, 2016) was greater than average,
while median estimates for the central block were at or below average in these years.
Highest abundances in all blocks occurred in 2016. Abundance estimates for the north
showed little to no difference by year with median annual estimates essentially the
same as the near-zero block average (Fig. 3A). In the south and central blocks, median
abundance estimates were below average in 2018 (Fig. 3A).

Parameter values suggested site-level variation in sand lance abundance (Fig. 4A,
Table 2). Above average sand lance abundance was predicted for one northern site,
two central sites, and one southern site (Fig. 4A). The 95% credible intervals of the
marginal posterior for three additional sites (one northern, 2 southern) were almost
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entirely above zero. Southern and central blocks had mixtures of sites with median
estimates above and below average expected abundance, while all but three northern
median estimates were predicted to have below average abundance (Fig. 4A), which
was not surprising given that sand lance were only observed at 2 sites in the northern
block throughout the study period (Fig. S1).

The probability of sand lance availability was slightly greater in the fall (median = 0.42,
95% CIl = 0.29 — 0.59) than the spring (median = 0.33, 95% CI = 0.17 — 0.56) (Table 2),
though overlapping credible intervals suggest little difference between seasons.

Humpback whale sub-model

Trace plots and Gelman-Rubin statistics confirmed convergence of most parameters.
One 17}, value and seven z;j, values had Rhat values between 1.2 and 1.3. For all fixed

effects and variance components, Rhat values were <1.1 and effective sample sizes
(n.eff) were > 3200.

Overall posterior predictive checks for the mean, variance and proportion of zeroes for
humpbacks showed no evidence of lack of fit (Bayesian p-values: mean = 0.51,
variance = 0.78, proportion of zeroes = 0.71; Fig. S2). Posterior predictive checks
summarized by block (Bayesian p-value range: 0.27 — 0.86), year (Bayesian p-value
range: 0.31 — 0.90) and season (Bayesian p-value range: 0.48 — 0.91) also showed no
obvious lack of fit (Figs. S3 — S5).

Humpback whales showed a statistically clear positive correlation with sand lance
(median = 0.35, 95% credible interval = 0.05 — 0.70; Fig. 4C, Table 2). Using this
relationship, estimated humpback abundance also increased from north to south, with
highest expected abundances in every year occurring in the south (Fig. 4B). Some
annual differences in humpback abundance were observed, but year-to-year variation
differed from sand lance. Median values for predicted humpback abundance in all sites
alternated from below average in 2014 and 2016, to at or above average in 2015 and
2018, respectively (Fig. 4B).

The posteriors for the parameter values suggested site-level variation in humpback
abundance (Fig. 4B). Above average humpback abundance was predicted for two
central sites and three southern site (Fig. 4B). The range of 95% credible intervals for
three additional sites (one central, two southern) were almost entirely above zero. No
northern sites showed clear differences in humpback abundance, though median and
50% Bayesian credible intervals were above average for two northern sites. Southern
and central blocks had mixtures of sites with median estimates above and below
average (Fig. 4B). Only one site (C6) showed clear, above average estimates for both
humpbacks and sand lance (Fig. 4A, B).

The probability of humpback availability was slightly greater in the fall (median = 0.53,
95% credible interval = 0.36 — 0.71) than the spring (median = 0.47, 95% credible
interval = 0.3 — 0.66) (Table 2), though overlapping credible intervals suggests little
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difference between seasons. The median probability of observing whales was greater
than the probability of observing sand lance in both seasons (Table 2).

Applications

Sites that were likely to have greater than average sand lance abundance, or sand
lance ‘hot-spots’, were identified in all blocks (Fig. 5). The probability that a site had
greater than block-average sand lance abundance was >0.75 for two northern sites,
four central sites, and five southern sites (Fig. 5).

Probabilities of at least 5 whales at a site ranged from 0 — 0.34, with whale aggregations
being most likely in the southern block at site S11 (Fig. 6). The three (S10, S11, S14)
sites with the highest probabilities of whale aggregations overlapped with a high density
area of trap-pot gear on the SW corner of Stellwagen Bank. The probability of >3
whales at sites was greater with sites S11 and S14 having probabilities of whale
aggregations = 0.5.

Discussion

Ecology

We demonstrated a statistically clear, positive correlation between sand lance and
humpback whales, supporting findings from previous work and confirming persistence
of this relationship over time (Payne et al. 1986, Payne et al. 1990, Weinrich et al.
1998). While prior studies linked shifts in humpback distributions with fluctuations in
sand lance abundance at broad scales across large feeding areas, we showed
relationships at an intermediate (block) scale within a single feeding area. This result is
consistent with Silva et al. (2020) that applied spatial metrics to the same dataset and
found high spatial collocation between humpbacks and sand lance in southern
Stellwagen Bank.

The clear relationship between humpbacks and sand lance suggests that relative
effects of sites and year would vary similarly for both species, but this was not the case.
Only one site (C6) had a positive effect on both sand lance and humpback abundance.
Differences in site effects for sand lance and humpbacks are likely due to a combination
of scale mismatch and habitat selection by sand lance. Correlations between predators
and prey are often scale-dependent (Rose & Legget 1990, Fauchald et al 2000). Our
site-level observations of sand lance and humpbacks are collected at very different
spatial scales — 0.1 m2 for sand lance and an 800 m radius for humpbacks. Further,
sand lance benthic distributions are highly patchy, ranging from 0 to 44 fish in a single
grab sample (Table S1). Humpback counts within 800 m are likely not reflective of sand
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lance counts in 0.1 m2which may be further complicated by the patchy benthic
distribution of sand lance. While benthic habitat selection by sand lance is likely based
on preferred sediment grain size (coarse grain sand) and sufficient oxygen flow (Meyer
et al 1979, Robards 2000), the average patch size of sand lance on the bottom is
unknown. ldentifying correlations between predators and prey at the scale of prey
patches would likely require observations at the scale of an individual humpback whale
(Redfern et al. 2006). Hazen et al. (2009) and Kirchner et al. (2018) associated
humpback foraging with individual pelagic sand lance schools using data from 3D
motion sensor tags on individual whales and prey data from echosounders.
Alternatively, conducting multiple sand lance grabs at a site, within an 800 m radius may
show better agreement between site effects for sand lance and humpbacks.

The complex behavior of sand lance could also contribute to differences in site
parameter estimates. We assumed that the number of sand lance in each grab sample
reflects the relative total number of fish at a site (water column + sediment), which may
not be true. Sand lance are generally thought to spend daytime periods feeding in the
water column and to return to the bottom at night, during periods of low light, during
estivation, and/or in response to predators (Robards 2000). While our findings of sand
lance in the sediment during the day provide evidence that diel behavior of sand lance
is actually more complex, it is likely that pelagic sand lance abundance is greater than
benthic sand lance abundance during the day. This may lead to observations of whales
at a site, but not of sand lance, even though sand lance may be present in the water
column. Sampling pelagic sand lance abundance may improve correlations at the site
level. Nevertheless, the site-level variation in abundance of humpbacks and sand lance
shown here suggest that scale considerations in future modeling or management
actions could be important.

Differences in year effects between species could reflect challenges with sampling, but
may also suggest true differences driven by different environmental factors. Our
sampling is conducted once per season in any year, capturing a small snapshot of
animal abundance. Counts used here and resulting parameter estimates may not be
representative of actual annual trends in abundance. For example, opportunistic
sightings data collected from whale watching and research cruises in the sanctuary
during this time period show that humpback whale abundance was relatively high in
2016 (Robbins, unpublished data), concurrent with the highest sand lance abundance in
our study. It is possible that whales were not present at the time of our survey, or that
they were present, but were outside our 800m observation radius. However, different
year effects between species could also reflect true differences in animal abundance.
Predicted sand lance abundance was lowest in 2018 when predicted humpback
abundance was highest. It is possible that humpbacks were targeting other prey during
this time. Humpbacks in the GOM also eat herring and mackerel (Hain et al. 1982,

10
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Geraci et al. 1989). Without direct observations of surface feeding, it is not possible to
determine what whales were targeting as prey or if they were foraging at all during our
surveys. More frequent surveys or sampling for additional forage fish species may
better explain yearly differences.

We clarify here that because site and year were treated as random effects, it is a
common approach to only interpret differences between sites and years using only the
magnitude of their variance components and not the individual random effects.
However, it is also common for the values for the random effects themselves to also be
of interest, and our estimation approach also allows us to quantify the uncertainty
associated with their estimates via their credibility intervals. However, because the block
specific means vary, the relative effect of the same magnitude site effect on the sand
lance and whale densities will vary by blocks. We also fit a model with block-specific
variances for site effects. This had minimal influence on the results, but did lead to
decreased precision in site parameter estimates particularly for N sites where few sand
lance and whales were observed. We emphasize that the site comparisons we do
make, particularly in the identification of sand lance hot-spots in the application below,
are relative to block-specific mean abundances and are only relevant within their
respective blocks (not across blocks). We also note that based on the current model
and our approach to use random site effect values to identify hot-spots, there is little
reason to believe that these same sites will persist as hot-spots in the future.
Modeling

Our model performed well in predicting the overall mean counts of whales and sand
lance from our dataset, but tended to underestimate both the proportion of zeroes and
the variance in counts for each species (posterior predictive checks, Figs S2 - S5). The
underestimate of variance may be due to underestimation of zeroes. This may be
partially driven by fewer observations in the north or some northern sites with no sand
lance observations, leading to an overestimate of the mean in the northern block, while
underestimating the variance and proportion of zeroes.

A preliminary zero-inflated negative binomial model performed slightly better in
estimating the proportion of zeroes and variance for both sand lance and humpbacks
(Bayesian p value range: 0.35 — 0.54), but performed slightly poorer in estimation of
mean abundance (Bayesian p values: 0.43, 0.45). Results from the zero-inflated
negative binomial were similar to those presented here and given a marginally better
performance, we chose to present the simpler zero-inflated Poisson model.

We attempted to account for zero-inflation due to seasonal sampling variability by
including season as a covariate in the zero-inflation portion of the model. Successful
observation (whale presence) of whales and capture of sand lance was more likely in
the fall, though overlapping credible intervals and the tendency of the model to
underestimate zero-inflation suggests that additional factors may influence zero-
inflation.

11
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Further model developments and extensions

The current model structure is specific to Stellwagen Bank National Marine Sanctuary.
Our survey design and sampling method is neither directly applicable to other
geographic areas or methodologies, nor suited for future prediction or forecasting.
However, the current model demonstrates value in using simple geographic covariates
to gain understanding of species distributions and the utility of a Bayesian hierarchical
framework for representing ecological relationships. Model results here provide insight
into variation in abundance and distribution over several spatial and temporal scales
that can inform selection of environmental covariates to further model development. We
first discuss potential ways to extend the model for SBNMS based on our results, and
then briefly mention additional factors known to influence sand lance and humpback
abundance on broader scales that should be considered for model expansion to larger /
new geographic areas.

While we demonstrate a clear relationship between humpbacks and sand lance in the
sanctuary, data on the availability of alternative prey sources is necessary to fully
understand variation in humpback abundance and distribution and the threshold
abundance of various prey species that influence humpback movements into and out of
areas. There may years where sand lance abundance is low (such as 2018 here), but
alternative prey is able to support a small number of humpbacks.

The site-level variation in sand lance abundance seen here is likely partially driven by
preferred sediment grain sizes. The USGS has produced extensive, fine-scale sediment
data for SBNMS (Valentine 2019). Our survey sampled multiple sand types (very coarse
to medium sand), but grain size data suggest that fewer northern sites are classified as
coarse grain sand (0.5 — 1 mm), the preferred sediment size of sand lance, which may
contribute to decreased benthic sand lance abundance in the northern block (Robards
et al. 2000). Grain size should be incorporated into future models. Given the seasonal
behavioral changes exhibited by sand lance, grain size may be more important for sand
lance in the fall as they spend more time in the sediment, suggesting a need for an
interaction between season and grain size. Further, the distribution of sand lance likely
reflects a balance between suitable benthic habitat and prey availability (Van der Kooij
et al. 2008). Copepods, primarily of the genus Calanus, primarily compose sand lance
diets where they have been studied (Meyers et al. 1979, Danielsen et al.2016,
Staudinger et al. 2020, Suca et al. 2021). On Stellwagen Bank, Calanus finmarchichus
was primary prey of sand lance during most months when feeding occurs (Suca et al.
2021). Sand lance abundance across the northeast Shelf was also correlated with
lagged Calanus finmarchicus abundance (Suca et al. 2021) Including Calanus
abundance in future models may help explain both site-level and block-level variation in
sand lance abundance.
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Year to year and block-level variation in sand lance abundance suggests that additional
dynamic environmental covariates should be included in future models. One potential
factor is the strength of the Western Maine Coastal Current, a current driven by fresh
water runoff and local wind forcing that flows southwestward around the Gulf of Maine
with peak inputs during the spring (Bigelow 1927, Geyer et al. 1992). The Western
Maine Coastal Current is an important source of Calanus to Massachusetts Bay and
inter-annual variability in transport, combined with local wind forcing, can impact both
primary productivity and zooplankton abundance (Jiang et al. 2007, McManus et al.
2014, Suca et al. 2021). Metrics related to the strength of the Western Maine Coastal
Current may help explain changes in sand lance abundance.

In addition to prey abundance, hydrology and predation influence sand lance
abundance on broad scales (Suca et al. 2021). In the northwest Atlantic, sand lance
abundance oscillates out of phase with the abundance of herring and mackerel, which
are known to prey on larval sand lance (Staudinger et al. 2020, Suca et al 2021).
Lagged herring abundance and the proportion of warm slope water were linked in
declines in sand lance abundance (Suca et al. 2021). Other studies have found
correlations between sand lance and oceanographic variables such as bottom
temperature and salinity (Van der Kooij et al. 2008). Model adaptation for areas larger
should consider these variables.

One limitation to further study of sand lance abundance in general is lack of data. Sand
lance data collected in the Gulf of Maine are sparse (Richardson et al. 2014) and to our
knowledge, no data exists at a scale as fine as our survey. Given the importance of
sand lance to humpbacks, as well as commercial fishes and seabirds (Staudinger et al.
2020), collecting additional sand lance data throughout the Gulf of Maine should be a
priority, particularly given the push towards ecosystem based management (Koehn et
al. 2020).

Application

We applied our results to examine overlap between humpback whale aggregations and
fixed gear to demonstrate one potential management application. Over 75% of GOM
humpbacks show scarring consistent with entanglement (Robbins 2012) and
entanglement remains a serious threat, including within the sanctuary (U.S. Department
of Commerce 2010). We show that sites more likely to have whale aggregations overlap
with an area of high density trap-pot gear on southern Stellwagen Bank. Wiley et al.
(2003) used standardized survey data to show that whales had the highest risk of
interaction with fixed fishing gear in the same location (southern Stellwagen Bank). Our
results show that the location of highest entanglement risk for humpbacks has remained
consistent for almost two decades, but also provides tangible probabilities that whale
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aggregations are present in areas of high risk. Further, our hierarchical model structure
shows two potential spatial scales for management options, regional (block) and small
scale (~1km), based on a clear relationship between humpbacks and sand lance and
identification of both sand lance hotspots (where whales could be) and whale
aggregation sites.

Conclusion

We fit a Bayesian hierarchical model to a unique dataset to advance our understanding
of the sand lance - humpback whale relationship in the southwestern Gulf of Maine. Our
work explored this predator-prey relationship with a novel approach, extending our
knowledge past simple correlations and providing new insight into the abundance and
distribution of sand lance and humpbacks over multiple spatial and temporal scales that
can inform further model developments. Models to predict both sand lance and
humpback abundance in SBNMS and beyond will become crucial for understanding
potential changes to predator-prey dynamics and ecosystem structure due to climate
change. Sand lance appear especially vulnerable to increasing temperatures and ocean
acidification (Hare et al. 2016, Murray et al. 2019, Suca et al. 2021). Declines in sand
lance abundance and serious changes to the NE US forage fish complex are predicted
under current carbon emissions (Suca et al. 2021). Climate-induced shifts in the
abundance and distribution of sand lance will likely lead to shifts in the abundance and
distribution of humpbacks. Understanding how humpback whales will respond to
fluctuations in forage fish abundance is critical for predicting and mitigating human
impacts, like those from entanglement.
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Table 1. Summary of data used in the model (n=164). The number of sites sampled and
the total number of sand lance and humpback whales observed is given for each cruise.
The number of sites with and without observations of sand lance and whales is shown

to provide an idea of zero inflation.

Total Sites Sites with observations / sites without
sampled observations
Sand lance Whales
. Sand
Cruise lance Whales | N C S N C S N C S
2%?1”4 85 16 |4 5 13| 0/4 3/2 11/2|0/4 2/3 4/9
Sz%r;rgg 30 11 |12 14 7 |0/12 5/9 2/5|0/12 113 2/5
2':()5;”5 19 41 |14 12 14 |0/14 1/11 1/13|2/12 4/8 6/8
Fall

ooy 124 23 9 9 12 |2/7 0/9 7/5]|1/8 1/8 7/5
%%ﬂ%g 5 58 |12 13 14 |1/11 1/12 1/13| 3/9 6/7 8/6
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Table 2. Posterior medians, means, standard deviation and 95% credible intervals for
selected model parameters. Posterior summaries for site effects were omitted here
(shown in Fig. 4). Summaries for posterior distributions for other model parameters are
included in the supplementary material.

Sand lance sub-model

Bayesian Credible Interval

Parameter Median Mean SD 2.50% 97.50%
B 031 036  1.12 -2.74 1.73
g . 2.6 27 137 -5.69 -0.27
b
B 1.32 128  0.96 -0.73 3.15
Bo1s 0.15 0.18  0.84 -1.44 1.98
Blois 0.4 042  0.84 -1.21 2.2
Bbo1s 0.96 1 0.84 -0.6 2.81
Blo1s 143 149 0091 -3.46 0.12
J 2.49 289  1.77 0.82 7.33
sl
1.47 3.38  8.91 0.25 16.87
o
Bt 042 043  0.08 0.29 0.59
B 2pringCi 033 034 0.1 0.17 0.56

Humpback whale sub-model

Bayesian Credible Interval

Parameter Median Mean SD 2.50% 97.50%

ag 0.35 0.36 0.16 0.05 0.70
65014 -0.5 -0.55  0.39 -1.4 0.12
%15 0.07 0.05 0.32 -0.64 0.62
%016 -0.56  -0.62 042 -1.58 0.06
%018 0.66  0.68 0.39 -0.02 1.51
o2 ” 114  0.66 0.25 2.73

w
0.42 0.86 2.46 0.05 3.91

o
Braiin) 0.53 053  0.09 0.36 0.71
S <oringCiit 047 047  0.09 0.3 0.66
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