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We study the possibility of having resonant interactions between three Rossby modes on a
coast or channel of arbitrary orientation. A Rossby mode comprises two propagating
Rossby waves (RWs) to satisfy the no normal flow through the boundary(ies). In each
geometry, we state the conditions, degrees of freedom, and RWs of the primary two modes
that could force a third mode. We discuss differences between zonal and non-zonal
orientation. Resonant interactions are only possible if all RWs participate in the zonal
case, while only three RWs in the non-zonal case. The non-zonality reduces the degrees of
freedom to solve the resonance conditions, and solutions are more restrictive for more
meridional orientations. In particular, there are no solutions if the coast or channel is
meridional. For the non-zonal coast, we find a family of solutions for given periods T} and
T of the primary modes. Using multiple scales, we obtain a uniformly valid solution of the
QG potential vorticity equation (QGPVE), with the resonant modes exchanging energy in
space. There are no degrees of freedom for the non-zonal channel, and we develop a
graphical method to seek resonant solutions, finding some. We provide a bounded solution
of the QGPVE in case the primary modes excite one RW, not a channel mode, and the
modes do not exchange energy either in time or space. Regarding possible oceanographic
applications, we show solutions for the Hawaiian Ridge and inquire if there are solutions in
the Mozambique Channel, Tasman Sea, Denmark Strait, and the English Channel.
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1. Introduction

The interaction of a triad of dispersive waves is a fundamental process in the dynamics
of fluid flows; in particular, for geophysical flows, its significance is well established
(Craik 1988). In weakly nonlinear wave theories, there is considerable interest in studying
resonant interactions because they produce the largest amplitudes when compared to all
non-resonant interactions (Pedlosky 2013; Graef 1993; Garcia & Graef 1998). In forced
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problems, out of all the modes that are excited with an imposed forcing, the dominant
mode, ie the one that exhibits the largest response, is the resonant mode (Graef 2016).

Our general interest is to investigate whether or not there is resonance in the weakly
nonlinear interaction of Rossby normal modes in different geometries on a S-plane. That
is, we are interested in bounded domains. Specifically, in this article, we study the
possibility of finding resonant triads of Rossby modes in two domains whose orientation
is arbitrary:

(i) A straight coast, ie, a domain being infinite in one horizontal direction and semi-infinite
in the other horizontal direction;

(ii)A rectilinear channel, ie, a domain being infinite in one horizontal direction and
bounded in the other horizontal direction.

The key question to answer here is: Does the nonlinear interaction between two Rossby
modes can excite a third mode? In other words, is it possible to find resonant triads of
Rossby modes in these geometries?

It is essential to distinguish between the self-interaction of a Rossby mode and the
interaction between Rossby modes. For instance, in the classical reflection problem of
Rossby waves at a straight coast (Pedlosky 2013), a mode is defined as an incident plus
the reflected wave, ie, a mode is composed of two propagating Rossby waves. The self-
interaction of a mode is the nonlinear interaction between an incoming and outgoing
wave (as in Graef 1993; Graef & Magaard 1994). In contrast, the interaction between
modes would be, in the simplest case, the nonlinear interaction between two modes, ie,
between four propagating waves (two of each mode). In a channel, a Rossby mode is also
composed of two propagating Rossby waves (RWs), whereas in a gulf or closed basin,
four propagating RWs comprise a mode. Therefore, if the weakly nonlinear interaction
between two Rossby modes excites a third mode, ie there is resonance among the three
modes, two RWs must be excited in the coast or channel, and four RWs in the gulf or
closed basin.

Longuet-Higgins & Gill (1967) work on resonant interactions between RWs on the
infinite S-plane set the tone for studying this type of interaction between planetary or
RWs. Although in previous works Stern (1961) and Kenyon (1964) discussed some special
cases of resonant interactions between these waves, Longuet-Higgins & Gill (1967) were
the first to establish the general conditions for three waves to resonantly interact. The
study of these interactions in an infinite ocean or open regions of the ocean is valid
if the wave scales are small compared to the size of the domain, and the waves can
travel for a long time before finding a boundary. One could also think that the waves
in an open region were generated elsewhere or maybe the product of reflection at one
or several boundaries. However, when one or more boundaries limit the flow domain,
new restrictions on the motion must be imposed to satisfy the boundary conditions. The
boundaries restrict the degrees of freedom in the search for solutions to the resonant
conditions. An essential aspect of these problems that has received little attention in
the literature is the geometry orientation. Graef (1993) and Garcia & Graef (1998) dealt
with resonance in the self-interaction of a single Rossby mode in the reflection problem
at a straight wall and a channel, respectively. In these studies, the boundary’s orientation
plays a crucial role: resonance is possible only if 0 < |sin | < 1/3, where « is the angle
that the coast or channel makes with the circles of latitude (positive clockwise). In the
case of a rectangular basin with coasts oriented east-west and north-south, Serrano et al.
(1995) showed that the self-interaction of a Rossby normal basin mode could not produce
resonant forcing, whereas LaCasce & Pedlosky (2004) demonstrated that these modes
are vulnerable to baroclinic instability.

As far as we know, the study of resonant interactions between free Rossby modes,



Resonant interactions of Rossby modes 3

which are solutions of the linear problem of reflection at a straight coast or wall, has not
been reported. If there are two primary Rossby modes nonlinearly interacting, we could
ask the following two questions regarding resonance (aside from their self-interaction).
What if the nonlinear interaction between the RWs of modes 1 and 2 produces (A)
a free RW?; or (B) a third Rossby mode? It should be evident that problem (A) is
less restrictive than (B) and even the self-interaction problem. Indeed, in principle, it is
always possible to excite a free RW when considering the interaction between two Rossby
modes, regardless of the coastal orientation. However, the Fourier space of the resonance
conditions’ solutions does vary with « (one could find a few cases, for certain ambient
parameters and vertical mode numbers, for which there are no solutions). On the other
hand, for problem (B), which is the one we study in this paper, we may anticipate that
there will be constraints on the RWs’ parameters of the primary modes and «.

The occurrence of resonance between barotropic Rossby modes in a zonal channel
was studied by Plumb (1977), while Mysak (1978) studied resonant interactions between
topographic planetary waves in a continuously stratified fluid in a channel of arbitrary
orientation. The first-order linear solution in Mysak’s study does not consider the
planetary vorticity gradient (the S-effect is zero) and so the solution to this order is
valid on the f-plane. Therefore, to our knowledge, the question of whether or not there
are resonant interactions between Rossby modes in a channel of arbitrary orientation on
the B-plane is still open. To this end, we must first establish the resonance conditions,
and after that, we need to investigate if there are solutions.

Furthermore, there have been no studies to analyze the occurrence of resonance
between Rossby modes in a gulf or in a rectangular basin arbitrarily oriented on the
B-plane. Actually, in their seminal paper, Longuet-Higgins & Gill (1967) said as a final
conclusion: “For application to the ocean it is generally desirable to consider planetary
waves in closed basins. We know ...in a rectangular basin on a (-plane ...construct
solutions which consist of the sum of four progressive planetary waves . ... The possibility
exists that for basins of certain size and orientation there may be resonance between three
modes of low order. An investigation of this possibility is in progress.” It is remarkable
that after more than 50 years, the problem of finding resonant modes in a rectangular
basin has not been tackled, or at least reported in the literature. The results of this
article will hopefully contribute or shed some light on it.

In table 1, we summarize all results regarding the existence of resonance in either the
nonlinear self-interaction of a Rossby mode or in the nonlinear interaction among Rossby
modes in different geometries. It includes those cases reported in the literature (providing
at least one reference), those not done to our knowledge, indicated by a question mark
(?), and, finally, the cases that we have done in this article. This exercise, hopefully,
serves to put our work in a more general context.

For the coast or channel, a Rossby mode is the superposition of two propagating RWs.
Thus, the nonlinear interaction between two Rossby modes in each geometry produces 12
forcing terms, which come about as follows. There are 4 RWs, so 6 interactions since each
one’s self-interaction is null, and each interaction produces two terms, one with the sum
and the other with the difference of the wave phases. For the rectangular gulf or basin,
a Rossby mode is the superposition of four propagating RWs. Therefore, two modes’
nonlinear interaction involves 8 RWs, so there will be 28 interactions and 56 forcing
terms. Of course, if the orientation is zonal, many forcings will vanish. One question
is: which of the forcing terms should we consider to form a third Rossby mode? This
question is non-trivial because we will need to analyze, among all possible interactions,
those that could excite two RWs (or four in the case of a gulf or basin) that precisely
form a free Rossby mode for each one of the geometries.
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Geometry  Orientation One mode Among modes
Unbounded No Yes, Longuet-Higgins & Gill (1967)
Coast Zonal No Yes
Non-zonal  Yes, Graef (1993) Yes, this work
Channel Zonal No Yes, Plumb (1977)
Non-zonal Yes, Garcia & Graef (1998) Yes, this work
Gulf Zonal No, Garcia & Graef (1998) 7
Non-zonal  Yes, Garcia & Graef (1998) 7
Basin Zonal No, Serrano et al. (1995) ?
Non-zonal 7 ?

TABLE 1. Resonant interactions of Rossby modes in different geometries and their orientation.
There is no reference for the zonal coast among modes because the problem is exactly as in
Longuet-Higgins & Gill (1967), but this fact was overlooked.

We organize the paper as follows. In the next section, we present general considerations
of the problem that apply equally to the straight coast and the channel. In section 3,
we analyze which of the forcing terms could produce a third mode for both geometries,
pointing out the differences between zonal and non-zonal orientations. The solution of
the resonance conditions between three Rossby modes in a non-zonal straight coast is
presented in Section 4, both analytically and graphically. Section 5 is devoted to finding
solutions to the resonance conditions between three Rossby modes in a non-zonal channel.
In these last two sections, we inquire if there are restrictions on the coast(s)’ orientation
« and comment on possible oceanographic applications. In section 6, we show the QG
potential vorticity equation (QGPVE)’s solution for the resonant forcing terms in the
coast, where we need to use multiple scales to obtain bounded solutions. In the channel,
we could only find a solution in the case of problem (A), in which a coastal mode is
excited. Finally, the last section provides a discussion and conclusions.

2. General considerations

Consider a -plane with a coordinate system (x,y, z) in which z is parallel, y perpen-
dicular to the coast or channel and z vertically upwards (figure 1). For the coast, there
is a vertical wall at the plane y = 0 and for the channel of width W, there is another
vertical wall at the plane y = W. The origin is somewhere in a mid-latitude region. The
governing equation is the QGPVE, which in this coordinate system reads

{[0: + T (¥, )] [V? + 0.(I°0,)] + B(cosady +sinady)} =0, (2.1)

where « is the angle that the coast makes with the circles of latitude (positive clockwise),
J(a,b) = 0,a0yb — 8;b0ya the Jacobian operator, V? = 9,0, + 9,0,, t is the time, v
is the QG streamfunction, § is the northward gradient of the planetary vorticity and
I'*(z) = f&/N?(z), where fy is the Coriolis parameter and N(z) is the Brunt-Viisili
frequency.

For the coast, the kinematic boundary condition of no normal flow is d,% = 0 at
y = 0; and for the channel it is 0,1 = 0 at y = 0, W. Since the domain is partially open,
an explicit mass conservation constraint or time-independent circulation is not required
(Pinardi & Milliff 1989). Besides, for the type of solutions we will be considering (a sum
of Rossby modes), the coasts’ condition implies ¢» = 0 there. The boundary conditions
in z are those for a flat bottom and a rigid lid, ie [0; + J(¢,-)] 0,¢ = 0 at z = —H, 0,
where H is the constant water depth. These conditions will be automatically satisfied,
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FI1GURE 1. Coordinate system. The rotated coordinate system has = parallel and y perpendicular
to the coast; a is measured positive clockwise. For the channel of width W, there is another
coast at y = W.

since the z-dependence of the Rossby modes is given in terms of eigenfunctions ¢, (2)
of the familiar vertical Sturm-Liouville problem (Pedlosky 2013).

Without going into the details, the general approach to study the weakly nonlinear
interaction between two Rossby modes of a coast or a channel is as follows. One first
obtains the non-dimensional version of the QGPVE (2.1) by choosing suitable scaling
parameters. There appears a parameter ¢ = US~!L~2 multiplying the nonlinear terms,
which is the 8-Rossby number, where U and L are the scales for the horizontal velocity
and length. One then assumes ¢ < 1 and writes the solution as a perturbation expansion

— w(o) + 5¢(1) N

Therefore, mathematically, the problem is to solve the (dimensional) equation:

L™ = —J (w“’), V2 1 g, [F23z¢<0>]) : (2.2)
where

L=0,(V*+0.[I?0.]) + B(cosad, +sinad,) , (2.3)

and ¥ is the leading order solution, chosen to be the superposition of any two free
Rossby modes for a straight coast or a channel:

0 0
p©@ =@ 4

2
> Ajpn, (2) [cos (615) — cos (62)] (2.4)
j=1
_ 0 0 0 0
= %1) - é1) + gz) - wgz)'

In the last expression, we have defined the streamfunctions of the four RWs, two of each
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mode, given by

v = Ajipn, (2) cos (0;)
= Ajpn, (2)cos (kjr + iy —wit +9;), 1=1,2;i=1,2, (2.5)

where for the jth mode, A; and ¥, are (real) amplitude and phase, respectively, k; is
the wavenumber parallel to the coast or channel and w; is the frequency; and [;; is the
wavenumber perpendicular to the coast or channel of the ith RW of the jth mode.

Our interest is to study the possibility of having resonant interactions between three
Rossby modes on a coast or channel of arbitrary orientation. Therefore, we ask whether
the forcing of (2.2), ie its RHS, with () given by (2.4), could produce a third mode,
namely,

) = Agpn, (2) [cos (613) — cos (623)] (2.6)
which is a solution (or free Rossby mode) in the geometry considered.
Of course, each Rossby mode, including the forced mode, must satisfy the relationships

ijlgj + BSiHO& = 0 (27)
wj (kf +15;+ A2+ d;f) + B (kjcosa + lp; sina) = 0, (2.8)
or, in compact form, the relation
B2 N B cosa 2
A% =f, (kjw)=——a,°— (ki + —=———] , 2.9
j f ]( J w.]) 4WJ2 a’n] J + 200] ( )

for j = 1,2,3, where a,,; is the baroclinic Rossby radius of the n; vertical mode. We
know that the component of the wavenumber vector perpendicular to the wall(s) that
form each of the modes, is determined by

lijoj =l £4;, j=1,2,3, (2.10)

with lo; given by (2.7). In what follows, we will call [1; the incident wave and Iy,
the reflected wave of the jth mode [this holds true for all orientations of the straight
coast if A; > 0—(see Graef & Magaard 1994)]. Obviously in the case of a channel the
terms incident and reflected make no sense; however, this denomination helps us not to
introduce new terms and clearly does not lead to confusions.

Finally, we note that upon using some trigonometric identities, the streamfunction of
the jth mode [see (2.4)] can be written as

z/JJ(O) = =24, (2) sin (kjz + lojy — w;t + ;) sin(4;y) (2.11)

ie the mode is “sort of” a standing wave in the direction perpendicular to the coast or
channel (y-direction), but still propagating in the (k;,lo;) horizontal direction. Also, for
a channel, it is A; = m;n/W, where m; = 1,2,3,... and it is easy to see from (2.11)
that w§0) satisfies the boundary condition at y = 0 for the coast, or at y = 0, W for the
channel.

3. Which forcings could produce a third mode?

We know that the nonlinear interaction between two waves produces forcing terms
with the sum and difference of the wave phases, and that to form a mode we need to
have two RWs, of equal wavenumber in the z-direction, same frequency and identical
vertical structure. We will now see which of the forcings (produced by the interaction of
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the waves of the “initial” or primary modes) should we consider to form a third Rossby
mode. For both problems (coast and channel), we will point out the difference between
the zonal and non-zonal orientation.

3.1. Forcings produced by the self-interaction of one or both modes

This case only applies when the geometries are not zonally oriented. First we analyze
the forcings produced by the self interaction of both primary modes. As the forced mode
must be the sum of two RWs of equal frequency and equal wavenumber component in the
z-direction, we obtain that ws = 2w; = 2wq, and k3 = 2k; = 2k,. Therefore, the modes
“initially” considered or primary modes are equal, and this has already been studied by
Graef (1993) for the straight coast and by Garcia & Graef (1998) for the channel.

Now we analyze the case in which one of the forcings is produced by the self-interaction
of one mode, and the other forcing is produced by the interaction of one of the RWs of
one mode with one of the RWs of the other mode. In such situation we get

w3 = 2w =wtwy = wo==w, }

ks = 2ki=kitky — ko==k s <31)

where the + sign indicates the sum or difference of the wave phases in the forcing terms
produced by the interacting waves. Again the primary modes match, and we are in the
previous case. Another possibility from (3.1) arises if we exchange wy and ws, so that we
consider the self-interaction of mode 2. In such case

s Zasuibe = woa ) (32)

k‘3 = 2ky=k1 ks =— k‘1:3]€2,

where we chose the waves’ phase difference, otherwise we are in the case in which
the primary modes match. Let’s call wy = w, then w; = 3w and w3z = 2w. Then the
wavenumbers perpendicular to the coast or channel of mode 3 are:

l13 = 12+ log = 2lpy (self-interaction of mode 2)
(3.3)
lagz = 11 —l2.
If it is a mode, necessarily l13 + log = 2lp3 = —fsina/(2w) = lp2, since w3 = 2w [in fact
from (2.7) it follows that 3lo; = lpa = 2lp3]. Thus log = —lp2, which in combination with

the second equation of (3.3) yields lo; = As— A, upon using (2.10). Also l13—le3 = 243 =
3lo2. Thus, between the variables Aj;, only one is independent, say Ay. Therefore, for this
particular case in which the frequencies are multiples of w, we have three equations, one
for each mode, ie (2.9) for j = 1,2,3, and three unknowns: w, k and As. If there is a
solution for the coast, it is unique (there are no degrees of freedom). For the channel, since
A; = mym /W must be prescribed, there are two unknowns, the system is incompatible,
and there are no solutions. We will not consider this particular case in any further analysis
in what follows in this paper. Note, however, that only three RWs participate in exciting,
in principle, a third mode.

Thus, it follows from the above considerations that: For a channel, a third Rossby
mode can never be excited if we consider the forcing produced by the self-interaction of
anyone of the Rossby modes.

3.2. Forcings produced by the interaction of the four RWs

Let us take, without loss of generality, the forcing produced by the interaction of the
incident waves of each mode and the forcing produced by the interaction of the reflected
waves of each one. Thus, the four waves, two of each mode, participate in the formation
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of a third mode, whose wave parameters are given by

w3 = w1 Ews
ks = ki Lk
3.4
lhis = lnxhe (34)
lag = o1l
The sum of the last two relations of (3.4) establishes that
log = 101 + 102, (35)

which is trivially satisfied if the coast or channel is zonal (sin @ = 0). On the other hand,
if the coast or channel are not zonally oriented, (3.5) yields, upon substituting (2.7):

(wg + QJ1) (wl + wg) — Wiy = 0, (36)
which is satisfied only if
1 .
w2 =5 (—1 + ’L\/g) w1, (3.7)

if the sum of the phases is considered; or
1
wy =5 (1 + z\/§) W, (3.8)

if the difference of the phases is considered (in these solutions for ws, the =+ refers
obviously to the two roots). From (3.7) or (3.8), product of the sum or difference of
the wave phases, one can see that if the frequency of one of the modes is real (as it
must be), the frequency of the other is complex, which does not constitute a free Rossby
mode. The case w; = wy = 0 is not possible because we are in the non-zonal orientation
sin = 0, in which stationary currents cannot be solutions of the QGPVE without an
external forcing.

Therefore, for a non-zonally oriented coast or channel, the forcings produced by the
interaction between the four RWs of the primary modes can never excite a third mode.

3.2.1. Zonal case

We already saw that the sum ;3 + la3 from (3.4) is trivially satisfied if the coast or
channel is zonal. However the difference l13—I23 yields A3 = Ay £+ Ay, which means that a
new horizontal structure is produced by the resonant interactions, ie there is “barotropic
transfer”. Therefore, for the zonal case, the kinematic conditions that must be satisfied
for resonance to occur between three Rossby modes are:

wj(k§+A§+a;f)+ﬁkj -0, j=1,23
w3 = W1 :|:w2 (3.9)
ks = kit ko
Ay = A+ A,

These conditions are identical to those posed by Longuet-Higgins & Gill (1967) in their
study on resonant interactions between barotropic planetary waves. However, our case is
a generalization of that work, since here we consider a continuously stratified ocean and
the coupling between the vertical structure of the modes. Incidentally, we should mention
the work by Vanneste (1995), who treated the nonlinear interaction among normal modes
in a multilayer QG (zonal) channel.

In general, there are six equations and twelve variables: w;, kj, A; and n;. The last
three (the n;) must be specified, and therefore we end up with a system with three degrees
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of freedom. It is convenient to note that the variables that define the third Rossby mode,
except for its vertical structure ns, may not be taken into account to determine the
degrees of freedom of the resonance conditions. In such case the last three relations of
(3.9) are eliminated, to obtain the system

w1 Ek%JrA%Jra;f +Bkr = 0
wy (k3 + A3 +a,?) + Bk = 0 (3.10)
(wl + OJQ) |:(k‘1 + k2)2 + (Al + A2)2 + a;ﬂ + 3 (k‘1 + k‘g) = 0.

Now we have three equations and nine unknowns, but when we specify the discrete
variables n;, we get a system with three degrees of freedom.

For a channel of constant width W, however, the variables A; = my7/W and Ay =
mam /W need to be specified. Thus, the system (3.10) has only one degree of freedom.
This case is similar to the study of Plumb (1977).

Finally, we note the following fact. In the zonal case, and this is true for the coast or
channel, if the nonlinear interaction between one RW of mode 1 and one RW of mode
2 excites a free RW, ie if for example {@bg), 8), %g)} form a resonant triad, then it
follows that the interaction between the other RW of mode 1 and the other RW of
mode 2, also forces another free RW, ie {¢£q), 53), 1/)52)} also form a resonant triad; and
further, these two new waves form a third mode. In other words, the forcing of a third
mode occurs automatically. This does not happen in the non-zonal case. Therefore, the
zonal orientation is less restrictive to find resonance among modes.

3.3. Forcings produced by the interaction of three RWs

Let us now consider the forcing that is produced by the interaction of one of the RWs
of one mode with the two RWs of the other mode. In that case, without loss of generality,
we have

w3y = Wi + w2
ks = kitko
3.11
his = lnxhe (3:11)
los = b1 £l
The sum of the last two relations of (3.11) yields
los =111 £ lo2 (3.12)
=lg1 + Ay £z, (3.13)
which in terms of the frequencies, ie using (2.7), is
+wd —
4= (R fsina, (3.14)
2&)1&12&)3

Equation (3.14) that relates wy, we and Aj, is additional to the three equations (one
for each Rossby mode), and distinguishes the non-zonal case from the zonal case. It also
reduces the degrees of freedom.

If the coast or channel is zonally oriented, from (3.14) it follows that A; = 0, but
this implies that i;; = l3; = 0, ie only one RW with the group velocity parallel to the
coast and whose solution is ~ ycos(kxz — wt), physically there is no reflection; and for
the channel it means that there is no mode 1 (see Graef 2017). Thus, the interaction of
three RWs cannot produce a third mode in the zonal case.

On the other hand, the difference of the last two relations of (3.11) yields

llg — 123 == (112 — 122) — Ag = :l:AQ . (315)
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Therefore, the horizontal structure of the “standing” part of the forced mode is identical
to that of the mode whose two RWs participate in the interaction (mode 2 in this case).
Resonant interactions do not produce new horizontal structure in the non-zonal case.
From the results obtained above it follows that:
(i)If the coast or channel is zonally oriented, we need the participation or interaction
of the four RWs, two of each mode, to excite a third Rossby mode that can resonantly
interact with the modes that originate it.
(i))If the coast or channel is not zonally oriented, only three waves (of the four RWs) can
participate in exciting, in principle, a third mode that can resonantly interact with the
modes that originate it.
(iii)Only in the zonal case a new horizontal structure is created, ie there is “barotropic
transfer”.
In the non-zonal case, the kinematic conditions for resonance to occur between three
Rossby modes can be written as:

Bcos o 2 s B,
k A7 — — = 1
( 1t ) A =0 (3.16)
Bcos 2 s B,
k A5 — — = 1
< 2 + 0 + A3 4w§ +a,, =0 (3.17)
Beosa r 5 52 5
I T W Y ot ) 3.18
(k1 £ k) 2 (w1 £ wy) ? 4(wy £uwo)? : (3.18)

2
|:(w1 +ws)? F wl‘*’Z}
A2 ) >— ?sin® a = 0 (3.19)
dwiws (w1 £ wa)

Thus, unlike the zonal case, in the non-zonal case we have a system with nine unknowns:
k1, ko, A1, Ag, n1, na, n3, wi, and wa, but four equations. Once we specify the n;, we have
a system with two degrees of freedom. For a channel of width W, where A; = mym/W
and Ay = mam/W need to be specified, the system (3.16)—(3.19) is compatible and
determined; that is to say, there are no degrees of freedom. If a solution exists, it is
unique.

The solutions of (3.16)—(3.19), for both geometries, will be discussed in the next two
sections.

4. Resonant interactions of Rossby modes in a straight coast

We will only treat the non-zonal orientation since, as discussed before, the case of a
zonal coast is identical to the work done by Longuet-Higgins & Gill (1967). The resonant
conditions (3.16)—(3.19) can be rewritten as:

AT = [, (k1,w1)
Ag = fnz (k23w2)
A3 = fry (k1 £ ko, w1 £ wo)
AT = g (w1, w2),

R R

~ o~~~
N
NENG AN NI

where

2
I (k,w) = % —a;? - (k + ﬂ;fa> (4.5)
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and
) 2
(wl + wg) F W1UJ2}
4202 (w1 & ws)?

Equating (4.1) and (4.4) to eliminate Ay, we get a quadratic in ky:

g (wy,w2) = B%sin’ o . (4.6)

4wwdwik? + dwiwiw? B (cos a) ky + wi % sin? o + wow? X
[Awiwadn? — (wo £ 2wp) B2 sin® o] + wiwiB?sina =0, (4.7
where the variable w3 has been left in (4.7) for simplicity. Solving for k1, after substituting
w3 by wy £ we, and some algebra and simplifications, we obtain

1/2

KD — _ Beosa :I:% [52 (6052a sin2a> e B2 sin® o (4.8)

a _posm oo
21 w? w3 " (wr Fwe)?

Thus, there are two roots or solutions: kil) and kf), corresponding to the + and — in
front of 1[...]'/2, respectively, for the phase sum (w; + ws), or for the phase difference
(w1 —wsz). We could not find a condition that only involves the coast orientation a to have
k§1’2) real. However, it is easy to see that there are no real solutions for a meridional coast
(o = 7w/2). The real solutions are restricted to more zonally oriented coasts. We need
real wavenumbers parallel to the coast, otherwise, the solution blows up as © — =4o0.

A necessary condition to have kgl’Q) real is:

(1£7)2r2 1/2

ino| <
smal S | Ty i+

(4.9)

where r = wy /w1 = T1 /T2 and Ty = 27 /wy, Ty = 27 /wy are the primary modes’ periods.
This condition is in terms of |sin«| as in previous works (Graef 1993; Garcia & Graef
1998), and one can easily see special cases. For example, if » = 1 (initial modes have
equal frequency) it reduces to |sina| < 2/3 [see (4.11) below] and if r = 2 (ie we = 2w1)
|sina| < 6/7.

Figure 2 shows the function X4 (r,a) = |sina|?> — (1 £7)272/[(1 +r3) (1 £7)? +r?] in
which the yellow regions are prohibited (X4 > 0); note the region around a meridional
coast (o = 90°). If k§1’2) are real then r and o must be in the green and blue regions
where X1 < 0. Large values of r or 177 > T5 favour real solutions for more meridionally
oriented coasts [ € (70,85) or o € (95,110) degrees].

To complete the story, however, we still need to calculate the wavenumber ks, of the
second mode. This is accomplished by equating (4.2) and (4.3) to eliminate Ay, but this
time the term k3 drops out, and we get a linear equation in k:

Lok + B cos a _ﬁcosa ey = (%sin? a 1 _% n
wy £ wa wWo 4 (w1 £w2)?  wi
I 5 Pceosa
- — ki — k1. 4.10
a’n,g a’ng 1 OJ]_j:WQ 1 ( )

From (4.10) we can easily solve for ks and substitute the roots k?’” to obtain kél’z) for
either the sum or phase difference. It is worth remarking that both (4.8) and (4.10) are
necessary conditions to have solutions of the system (4.1)—(4.4). That is, with the roots
k§1’2) we have to go back to (4.1) to calculate A?; similarly with kél’g) we go back to
(4.2) or (4.3) to calculate A3. Thus, the whole solution is obtained.

In the previous section, we showed that we have two degrees of freedom in this problem.
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X, =sinfa— (1 +r)/[(1+r)(1+7)* +r%) X =sin’a —r*(1—r)*/[(1 +7°)(1 —r)? +17]

0 5 10 15 20

r=wafw r=wyfwy

FIGURE 2. The function X4 (r,a), where r = ws/wi1 and « is the angle between the eastern
direction and the coast (in degrees). If k§1’2) are real, then » and a must be in the green and

blue regions X+ < 0. Yellow regions have X4+ > 0, for which kim) are complex. Left panel is
X4 ; right panel is X_.

Given the frequencies of the primary modes w; and ws, we can get the wavenumbers along
the coast of the first mode k§1’2) and second mode kél’Q), for either the sum or phase

difference of the interacting RWs. Thus, for each w; and ws, there are two solutions kg;’m
for the phase sum and two solutions kﬁf) for the phase difference.

In figure 3 we show the real solutions k&’i}b as a function of the modes’ periods T}

and T5 for values appropriate for the Hawaiian Ridge: reference latitude ¢y = 21° and
o = 25°; we choose a first baroclinic mode n; = 1 for Rossby mode 1. Note that the
(T1,T») space of real solutions is more restrictive (77 > T») for the phase difference than
for the phase sum. Due to (4.10), if k; is complex, then ko is complex. Thus the white
regions of figure 3 will be exactly the same for the wavenumber ks of the second mode.

To give an idea of the Rossby waves of each mode of the resonant triad, we calculate
their wavelengths as a function of 77 and 75 for values of the Hawaiian Ridge and vertical
mode numbers ny =1, ng = 1 and n3 = 2 (see figures 4, 5, 6 and 7). A few notes about
these four figures are in order. First, the allowed (77,T%) space is reduced further for
the wavelengths (as compared to the one for ki of figure 3) because we only permit
solutions that yield real wavenumber components perpendicular to the coast (otherwise
the solution blows up as y — o0). That is, the fact that the k’s are real does not
guarantee that the I’s are real, so when calculating the I’s, we must require A3 > 0 [see
(2.9) and (2.10)]; note that A? > 0 by (4.4) and (4.6) and we have A% = A3. Therefore,
the approach to correctly understand figures 4-7 is to choose the periods (77,73) such
that they fall on coloured regions in all 6 panels of each figure. Figures 4 and 5 show the
wavelengths of the incident and reflected RW of the three modes corresponding to the

solution k&) and kﬁfl, respectively. For the phase sum w; + wo (figure 4), the range of

wavelengths for the first mode is < 1000 km for the incident RW (note the white wedge
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FIGURE 3. The solutions for the wavenumbers k§1’2) from (4.8) as a function of the mode periods
Ty and T» in years. Upper (lower) panels correspond to the phase sum (difference), left (right)

panels are k§1) (k§2)). The white regions yield complex solutions. Reference latitude ¢o = 21°,
«a = 25°, which are values appropriate for the Hawaiian Ridge; n1 = 1.

in modes 2 and 3) and < 50 for the reflected RW; for the second mode the range is
[100,240] km and [20,120] km, respectively; and for the third mode it is [100,1400] km
and [< 50,200] km, respectively. Note, though, that in general the space for the larger
wavelengths is squeezed in a very small region. For the phase difference wy — wo (figure
5), the range of wavelenghts is: < 1000 (note the small white wedge in modes 2 and 3 for
very small T5) and [< 20,100]; [< 50,200] and [20,140]; and [< 100,2000] and [< 20,120],
for the incident and reflected and for modes 1, 2 and 3, respectively.

Figures 6 and 7 show the wavelengths corresponding to the solution kg) and %%

1m>
respectively. It is noteworthy the dramatic reduction in allowable (77,T%) space for the
solution superscript (2). This is mainly due to the fact that for western coasts facing
north, such as the Hawaiian Ridge, a € (0,90) degrees, cosa > 0 and |k§2)| > |k§l)|
[see (4.8)], so that in general |k§2)| > |kél)|, making A3 negative in a much larger region
of the (T1,T») space, thus reducing the space for real I’s. The real solutions for both k
and [ lie only within the very tiny region (resembling a slice of a pie), with Tp > T3 for
solution kg? and 17 > T for kﬁz In both figures all the wavelengths are small: they
range approximately between 20 and 200 km.

We produced figures 4-7 for a reference latitude ¢g = 21° and a coastal orientation
« = 25°, which are values appropriate for the Hawaiian Ridge. We conclude that, in this
case, the nonlinear interaction between two ny = 1 (first-mode baroclinic) annual Rossby
modes cannot excite a semi-annual n3 = 2 Rossby mode. However, if instead, we consider
that the third or excited mode is barotropic with a free surface nzg = 0 (depth H = 4000
m), then those annual modes can resonantly interact to force a semi-annual mode (not
shown here).
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FIGURE 4. Wavelengths (in km) of the incident (left panels) and reflected (right panels) Rossby
waves of mode 1 (upper panels), mode 2 (middle panels) and mode 3 (lower panels) corresponding

to the solution k&) as a function of the mode periods 71 and 7% in years. ¢9 and « appropriate
for the Hawaiian Ridge and the vertical mode numbers are n1 = 1, ne = 1, nz = 2.

A general characteristic emerges by looking at different coastal orientations: the (77,7%)
space of real solutions is smaller for the phase difference than for the phase sum.

4.1. Modes of equal frequency

If the initial modes have equal frequencies, the number of variables is reduced by one
(from 6 to 5), but the number of equations remains the same (4). There is still one degree
of freedom, and we can exploit it to examine the possibilities to find resonance easily. This
case is compelling because of its similarity to resonance occurring in the self-interaction
of a Rossby mode (Graef 1993).
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FIGURE 5. As in figure 4, but for the solution kﬁi

For wy = we = w, the solution (4.8), which only makes sense for the sum of the phases,

is given by
1/2
(1,2) _ Beosa B2 9 ., 9
kY = — + [4w2 1- gsinTa) =y . (4.11)

It is obvious that to have k§1,2) real it is necessary that |sina| < 2/3. Again, the
orientation of the coast or wall imposes a restriction for resonance to occur. We note
that this value (of |sin«|) is twice that obtained by Graef (1993) when considering the
self-interaction of a Rossby mode in a coast.

As can be observed from figure 4, there are solutions for 77 = T» (ie w1 = ws) because
a good part of the diagonal straight line lies within the coloured regions of all panels.
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FIGURE 6. As in figure 4, but for the solution kﬁ)

But there are no solutions w; = wy for figure 6, since the diagonal is outside the coloured
regions for modes 2 and 3.

5. Resonant interactions of Rossby modes in a channel

In a channel, we already showed that there are no degrees of freedom. Once the
5 discrete variables (ie the three vertical mode numbers n;, j = 1,2,3 and the two
horizontal mode numbers m; and ms) are specified, the kinematic conditions (3.16)—
(3.19) or (4.1)—(4.4) form a closed system for the four unknowns: wy, wa, k1 and ko. If



Resonant interactions of Rossby modes 17

[JJ . 2
Ay [kms], k By i) Mip [kms], k= {km{ Loy )

140

100
120
100 80
80 e &0
60 e

40
40
20 20

2 4 6 8

_f|_ _}1_ Vi ._\'1'.
Agi [kms], K = (k) i) Age [kms), K = (k). Lysy)
80
80 70
8 8
60
. 60 -
=) 6 -:1 6 50
" o 0
Ty 40 g
30
2 - 20 2 20
10
2 4 6 8 2 4 6 8
T .\'1'. Ve .\'1'.
. (a2 |‘J (2 (2
Ay [ms), £ = (k2 — 62 1, g [kms], F = (62 — k@ 1,0 )
250 100
8 200 8 80
26 150 26 60
T4 100 T4 40
-
2 - 50 2 - 20
2 4 6 8 2 4 6 8
.fl }-'l'j 1[ yr

FIGURE 7. As in figure 4, but for the solution kﬁ,)l

a solution exists, it is unique. The presence of a second boundary, as compared to the
straight coast case (only one boundary), makes it a much more restrictive problem.

We tried but did not succeed in arriving at a single equation for any one of the
four unknowns. However, using the solutions for the straight coast (4.8) and (4.10),
we developed the following graphical method to seek for solutions:

(1)First, we give the mode number m; (ie A1) and wy. Then from (4.4) we solve for wo,

yielding:
1 2A; \ !
+o? dop [ - 22U} = 1
w3 + wiwg + wy (w1 Bsina) 0, (5.1)



18 F. Graef and R. Garcia

_4q1/2
Wi (L 2 1 (5.2)
4 "\w  Bsina '

in which, as usual, the F in front of w; /2 corresponds to the RWs’ phase sum (upper sign)
and difference (lower sign), and the =+ in front of the square root refers to the roots of ws.
A necessary and sufficient condition to have the frequency ws real is 2A;w; > Bsina,
ie Ty < 4wA;/(Bsina). This condition [which could be derived by noting that for a
non-zonal channel, a € (0, 7) covers all possible orientations so that sin« > 0] imposes
a restriction on large periods for the first mode, but at the same time from the Rossby
mode dispersion relation, equations (4.1) and (4.5), we need to have 8 > 2w;A; or
Ty > 4w A;/B. The conditions are opposed, showing us how restrictive it would be to
find real solutions.

Now, using (4.8), upon substituting (5.2), we draw the curves k; = F(w;) [there will be

whose solution is

(
four curves corresponding to the two roots k§1,2) and the two roots of (5.2) for the phase
sum, and other four curves for the phase difference, eight curves total].

(2)From (4.10) we have ks as a function of k1. Draw the curve ko = G(k1) = G[F(w1)], ie
ko as a function of wy only.

(3)Now kz of step 2, for it to be a solution, must also satisfy (4.2) or (3.17), which is the
equation for mode 2, quadratic in ky. That is, given mo (ie Ay) and substituting we from
(5.2) of step 1 into (3.17), we could draw the curve f,,(ks,ws) = A% of this mode for
each wi.

(4)The intersections of the curves of step 2 and step 3, if there are, are the solutions for
ko (it could be for more than one frequency w if there is more than one intersection).
(5)The solutions for k; would correspond to the same abscissas w; at which the curves
for ko intersect, but on the curve of step 1: k1 = F(wy).

In figures 8, 9 and 10 we show an example of the graphical method just described,
where we have chosen the period of the first mode T} as the independent variable instead
of the frequency w;. The chosen parameters are: ¢o = 20°, @ = 15°, channel width
W = 500 km, horizontal mode numbers m; = 2, my = 1 (recall mg = +my) and vertical
mode numbers n; = (0,0,0), ie a fully barotropic case with a free surface and a depth
H = 4000 m. Figure 8 shows solution (5.2) in terms of the periods, ie T3 as a function of
T . There are four curves, two in each panel, which correspond to the positive (blue) and
negative (red) root of we (or T3). The upper (lower) panel refers to the RWs’ phase sum
(difference). Note that, for the chosen parameters, 77 cannot be larger than 0.9 years
[recall the restriction 47 A1/ < 11 < 4nA;/(Bsina)].

As regards to the solution of the resonance conditions, we observe that for the phase
sum (figure 9), there is only one solution, since the ko-curves of steps 2 and 3 (blue and

red, respectively) intersect in one panel only (upper left). Such solution corresponds to

the along channel wavenumbers kﬁ))l of mode 1 and k'é]lg)l of mode 2, where the additional

subscript (1 or 2) in ky and kg refers to the (+ or —) root of we in (5.2).
On the other hand, for the phase difference (figure 10), there are three solutions, since
the ko-curves of steps 2 and 3 (blue and red, respectively) intersect in three panels (upper

left, upper right and lower right), corresponding to solutions (kﬁil, kézl), (kgr)d, k‘éi)ﬂ)

and (kgfy)ﬂ, k:éf,)l2)7 respectively. However, the solutions of the upper and lower right panels
represent the same Rossby modes (same mode parameters), but with mode 2 in one panel
being mode 3 in the other panel, and vice versa. This can be seen by realizing that the

solutions of these panels have identical T} (the blue and red curves intersect at the same
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Ty vs 17 (phase sum). ¢y =20°, a =15, W =500 kms; m; =2
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FIGURE 8. Periods T> of the second mode as a function of T} (years) from solution (5.2).
¢o = 20°, a = 15°, channel width W = 500 km, horizontal mode number m; = 2 and vertical
mode number ny = 0 (free surface, depth H = 4000 m). Upper (lower) panel for the phase sum
(difference). Blue (red) curve refers to the positive (negative) root of wa.

abscissa) and identical k1, so both solutions have equal first mode parameters. Also, the
solution of the upper right panel (kﬁ)ﬂ, k:gi)ﬂ) has mo = 1, ky ~ —0.02 km ™! from the
graph, ms = —1 (recall A3 = —A, for the phase difference) and ks = k1 — ko = 0;
whereas the solution of the lower right panel has mo = —1, kg = 0, mg = 1 and kg =
k1 — ky ~ —0.02 km™'. Thus, mode 2 of the upper right panel is mode 3 of the lower
right panel and vice versa; they are symmetric solutions with respect to modes 2 and 3.

Curiously enough, the only solution of the phase sum (upper left panel of figure 9) and
the solution of the phase difference corresponding to the upper left panel of figure 10,
also represent the same Rossby modes, but with the parameters of mode 2 in one panel
(or solution) being equal to minus the parameters of mode 3 in the other panel, and vice
versa. We call these anti-symmetric solutions concerning modes 2 and 3. We explain. One
solution is phase sum (subscript p) and the other is phase difference (subscript m), thus we
have kop = —k3pm, wap = —wsm, and liz 20 = —l13,23. Now, if one computes the eastward
phase speed Cp = w/kg of the RWs of each mode (2 and 3), where kg = k cos o+ I sin «
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FIGURE 9. Along channel wavenumbers [km™'] k1 (black) from step 1 and ks from steps 2 (blue)
and 3 (red) of the graphical method (see text) as a function of T1 (years). Upper left panel is

kﬁ))l, where the additional subscript (1 or 2) in ki refers to the (4 or -) root of ws in (5.2),
obtained from (4.8) and (5.2), and the corresponding ks from (4.10) (blue) and from (3.17)
(red). Upper right panel is for kﬁ)l and lower left (right) panel is for ki;g (kﬁ)Q) If the blue and

red curves intersect (step 4), there is a real solution (as in the upper left panel). Parameters as
in figure 8, with n1 =0, nz = 0, ng = 0 (free surface, H = 4000 m) and m1 = 2, mz = 1.

is the eastward wavenumber, the result is that the C'r of mode 2 of the solution p are
equal to the C'r of mode 3 of the solution m and vice versa, and negative, ie all RWs have
westward phase speed, as it should be. Thus, the anti-symmetric solutions with identical
Rossby mode 1 and Rossby modes 2 and 3 exchanged have one of the modes (2 or 3)
with the slowness circle on the kg < 0 space (if the frequency is positive) and the other
mode (3 or 2) on the kg > 0 space (if the frequency is negative).

The graphical method of searching for the intersections of the ks-curves of steps 2 and
3 (ie a change of sign of the difference between the ko-curves) proved efficient in finding
the solutions numerically. By choosing a sufficiently small time step of 10~° year for the
period T3, we achieved numerical errors in the solutions for modes 1 and 2 of O(10718)
and mode 3 of O(1071%). The solution corresponding to the upper left panel of figure 9
is: (T1, Ty, Ts) = (0.67,0.52,0.29) years, (ki, ks, ks) = (—0.0010,0.0002, —0.0008) km~*
and the wavelengths are: (1894,286) km, (6254,464) km and (2713,604) km for modes 1,
2 and 3, respectively. And the solution corresponding to the lower right panel of figure
10 is: (Th, T2, T3) = (0.26,—0.84,0.200) years, (k1, ko, k3) = (—0.0203, —0.0011, —0.0192)
and the wavelengths are: (283,242) km, (349,1139) km and (296,322) km for modes 1, 2
and 3, respectively.
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FIGURE 10. As in figure 9, but for the phase difference, ie kil)l and kfgl for the upper left and

m

right panel, respectively, and kzﬁl) 5 and Icg,)ﬂ for the lower left and right panel, respectively. Note

that the blue and red curves intersect in the upper left, upper right and lower right panels, so

there are real solutions.

If we just change the inclination of the channel to v = 5°, ie a more zonally oriented
channel, and leave the rest of the input parameters used in figures 8, 9 and 10 unchanged,
we get intersections (solutions) in the same four panels. However, the periods are larger
than the case o = 15°, but the wavelengths are similar.

As a possible oceanographic application, we searched for solutions in four channels
with parameters resembling the Mozambique Channel (¢ = 19.5°S, e = 115°, W = 750
km, H = 3292 m), the Tasman Sea (¢ = 38°S, a = 110.5°, W = 1750 km, H = 2500
m), the Denmark Strait (¢9 = 67°N, o = 146.5°, W = 300 km, H = 400 m) and
the English Channel (¢9 = 49°N, a = 157°, W = 150 km, H = 63 m) (Graef 2017)
and for the vertical and horizontal mode numbers used to produce figures 8, 9 and
10, namely n; = (0,0, 0) (all three modes barotropic, free surface) and mq = 2, mg = 1.
There were no (real) solutions for the Mozambique Channel and the Tasman Sea because
these channels are too inclined with respect to the eastern direction. However we found
solutions for the Denmark Strait and the English Channel. Again there were four solutions
(two and their mirror or symmetric or anti-symmetric solution with identical Rossby
mode 1 and Rossby modes 2 and 3 exchanged) in each case, although the intersections of

the curves (solutions) were for k;f)

pl
and its mirror or symmetric k:S%Q (ie in different panels than in figures 9 and 10). The

Rossby mode periods for the Denmark Strait are between 0.54 and 1.30 years, and the

and its mirror or anti-symmetric kjﬁ)ﬂ, and for k‘&)ﬂ

wavelengths between 167 and 2724 km. The second mode period of solution for kg)l is
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1.00 year with wavelengths of 273 and 2724 km, which is also the period and wavelengths
of the third mode of the solution kgr)u Thus, if barotropic Rossby modes get excited
in the Strait, out of all possible nonlinear interactions among them, the annual Rossby
mode my = 1 would have a larger amplitude since it is in resonance with two other
modes of periods 0.56 and 1.24 years. The periods range between 0.79 and 2.47 years for
the English Channel, and the wavelengths range between 79 and 1696 km.

After obtaining solutions for other parameters, in particular for various «’s, ie, for a
diversity of channel orientations, the following picture emerges:

eThere were always four solutions: one for the RWs’ phase sum and three for the
RWs’ phase difference. The solutions came in pairs: a solution and its anti-symmetric or
symmetric companion.

eThe solution and its anti-symmetric or symmetric companion always correspond to
the same root of k1, either k%l) or k%z). They represent the same Rossby modes, but with
modes 2 and 3 exchanged.

eThe anti-symmetric solution arises from solutions corresponding to the RWs’ phase
sum and phase difference, ie k1, and kqyy,.

eThe last two characteristics of the solutions are because A3 = +A,, which is a
consequence of the non-zonal orientation and our choice that wave 1 of mode 1 (ie l11)
be the one that interacts with the two waves of mode 2 to produce a third channel mode.
Had we chosen that the single wave is one of mode 2, then A3 = +A;, and the solution
pair would come with modes 1 and 3 exchanged.

Therefore, we have found real solutions of the resonance conditions for three Rossby
modes in a non-zonal channel, for both the RWs’ phase sum or difference. Because of
the symmetric solutions, we could say that there are only two independent solutions for
the waves’ phase difference. However, we must realize that even though the symmetric
solutions represent the same channel Rossby modes (with modes 2 and 3 exchanged), the
amplitudes of modes 2 and 3 are different if we calculate the resonant solutions of the
QGPVE at O(e).

Finally, we note that in a non-zonal channel, the interaction of two Rossby modes
of equal frequency can never excite a third Rossby mode. This is simply because when
two unknowns of the system (3.16)—(3.19) or (4.1)—(4.4) are made equal, the number of
unknowns is reduced by one (from 4 to 3), but the number of equations remains the same
(4). For instance, if w; = we = w, the solution of (5.1) for w = 0 is w = 3Fsin«/(44;),
which can be plugged into (4.11) to get k;m) = F(A;). Up to here, (3.16) and (3.19)
would be satisfied, but we are left with two equations, (3.17) and (3.18), and only one
remaining unknown ks. Now since A, is given (by virtue of having to specify ms),
ky = G(Aq, Ay) could be computed from (3.17), but this k2 will not satisfy in general
(3.18). Thus, it is generally impossible to satisfy the resonance conditions.

The last result that there is no resonance between three channel modes if two of them
have equal frequencies has the following implication. The self-interaction of a gulf Rossby
mode (which is the superposition of two channel modes of equal frequency and vertical
mode number) can never excite a third channel mode. Also, it corroborates one result
obtained by Garcia & Graef (1998).

6. Solution in the resonant case

In this section, we show the solution for the resonant forcings, based upon the works
of Graef (1993), Garcia & Graef (1998), and Graef (2017).
The streamfunctions of the three RWs of the initial modes 1 and 2 that nonlinearly
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interact in exciting the third mode, for both the straight coast and the channel in the
non-zonal case, are, upon dropping the superscript (0) for simplicity:

¢11 = Al(pnl (Z) COS 911 and wiQ = AQ(pn2 (Z) COS oig ,i = 1, 2 y (61)

where recall that 0;; = kjz +1;;y —w;t +9;, j = 1,2, 3. The difference between the coast
and the channel is that in the latter, A; and A, are fixed, ie, wavenumbers perpendicular
to the channel take on discrete values. Therefore the resonant forcings are:

Fres = J (Y11, q12) + J (Y12, q11) — J (Y11, q22) — J (Y22, q11)
= i (2)9na(2) { Bura [cos (611 — b12) = cos (611 + b12)] -

Bioa [COS (911 — 922) — COS (011 + 922)] } R (62)

where ¢;; = [V2 + 0, (F28z)] ;5, the minus sign in the last two Jacobians is due to the
minus sign of RW 2 of mode 2: 13 = 112 — 192, and the coupling coefficients are, for
1=1,2:

1 L L
Biio = 5141142 (k3 +15+a,? — ki — 13 —a,?) (kiliz — kal11) - (6.3)

We studied both possibilities: (i) the forced mode corresponding to the phase sum of the
RWs, ie ~ cos(f11 + 6012) and ~ cos(611 + 0a2); and (ii) the forced mode corresponding
to the phase difference of the RWs, ie ~ cos(f11 — 612) and ~ cos(f11 — 622). Note that
unless l15 = loo, which implies that Ay = 0, the coefficients of the forced RWs of mode
3 are different. But As = 0 means that there is no reflection or the group velocity of the
single RW in this case is parallel to the coast, and there is no mode 2 for the channel
(see Graef 2017).

6.1. The straight coast

Taking here the barotropic case for simplicity, we need a solution for
Ew(l) = —Bi1o COS((911 + 912) = —Bj12 cos b3 R (64)

where £ is given by (2.3), but replacing the operator 9, (F282) by —ag? (where ag is
the barotropic Rossby radius).

Following Graef (2017), we put the ansatz (") = G;(y)cosf3 in (6.4) and since
ws = oo(ks, l13), where oo (k, 1) = —B(k cos a+Isin a)/(k*+1%+ag ?) is the RW dispersion
relation, ie the forcing is resonant (a free RW), we end up with:

—Bi12y

(2wshs + fsina) Gy 2 = Gily) 2wzly3 + Bsina

(6.5)
ie the particular solution grows linearly in the offshore coordinate. Note that the denom-
inator 2wsli3 + Bsina = 0 because we precisely require that Az = 0, ie that the forced
mode be a mode or ly3 = l33. In an identical way, the solution for the other forced RW
of mode 3 proportional to cos(f11 + 622) is:
Bi2a Y
G = 6.6
2(y) 2ws3las + [ sina (6.6)
The solution for the forced mode ") = G (y) cos 013 + G2(y) cos B3 obviously satisfies
the boundary condition at the coast. An analogous procedure can be done for the RWs
of the forced mode corresponding to the phase difference.
Therefore, the solution for forced mode 3 is unbounded, and we reject it on physical
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grounds. To obtain uniformly valid solutions, we need to invoke the method of multiple
scales, as was done in Graef (1993) for the resonant case of the self-interaction of a single
mode.

6.1.1. Multiple scales

The main idea behind multiple scales is that the mode amplitudes are slowly varying
functions of the offshore coordinate y, namely Y; = ey. Generalizing the work by Graef
(1993), the leading order solution is written as a superposition of the three modes
participating in the resonant triad, allowing their otherwise constant amplitudes to be
functions of Y7, ie

w = @n, (Z) [All(Yl) COS 911 — A21(Y1) COS 921] + Png (Z)[A12(Y1) COS 912 —
A22 (Yl) COSs 922] =+ Qﬁnd(z) [Alg(Yl) COS 913 — A23 (Yl) COS 923}

3 2
=D (1), (2) A (Y1) cos B . (6.7)

j=1i=1

With the new dependence on Y7, there will be additional forcing terms on the RHS of
(2.2) besides the Jacobians, namely —20,0,v, ¥ — B sin a0y, ¥, to O(e). To find a solution
to (2.2), 9V is expanded in terms of the complete set of eigenfunctions {¢,(2)}:

DI CARINOR (6.8)
q=0
where &, = fE o Y1) @, (2) dz. The equation governing &, is obtained by multiplying
(2.2) by @q(2), integrating over the depth and using the b.c.’s in z; the result is, after
substituting (6.7) into the RHS of the QGPVE (2.2):

2
L', =— Z {(_1)i£n1n2q Bi1iz [cos (011 — 0i2) — cos (611 + 0i2)] +

i=1
( l)ifnlngq 81113 [COS (911 - 913) — COS (611 + 913)]
(=1)° §n2n3q Bi2i3 [cos (012 — 0;3) — cos (B12 + 0;3)] +

(—1) €n2n3q 6221‘3 [COS (922 — 913) — COS (922 + 97,3)] } +

3 2
Z Z(_l)ién]‘q <2leij + Bsin a) (81/1 A”) coS Gij + NRF, (69)
j=1i=1

where

L£'=08,(V?—a;%) + B(cosad, +sinad,) , (6.10)
0
b= [ eeal) i (6.11)

is the interaction between vertical eigenfunctions (Flierl 1977), and the coupling coeffi-
cients between the modes’ RWs are, for ¢ = 1,2:

Biiiz = 1AnAp (k3 +12+a,2 — k3 — 13 —a,?) (kilia — kali
Biiis = 2AnAp (k3 +132+a,2— ki —13 —a,?) (kilis — ksl
13( + B +an2—k3—13,—a,2) (

(K3 + U5 + g — k3 — 155 — a;.7) (

)

)

)

) (6.12)
k2li3 - k3112) )

)

Bl2i3 =

5
Baziz = % Az kaoliz — k3lao
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NRF refers to the non-resonant forcing terms, which include the interactions between
the RW of amplitude As; (reflected of mode 1) with the other modes’ four RWs, and the
self-interaction of each mode. The self-interaction gives rise to a steady flow parallel to
the coast and a transient flow oscillating at twice the frequency of each mode (Graef &
Magaard 1994).

If we consider the phase sum and difference 6;3 = 611 %6;2, then the secular terms on the
RHS of (6.9) [homogeneous solutions of (6.9)] are: ~ cos(f11 +6;2) if ¢ = n3 because they
are vertical mode ng RWs; ~ cos(011 —6;3) = cos(Fb;2) if ¢ = na because they are vertical
mode ny RWs; ~ cos(012 F 0;3) = cos(Fb11), for i = 1, and ~ cos(baz F 0;3) = cos(Fb11),
for i = 2, if ¢ = ny because they are vertical mode n; RWs; and for all these we must
have &, n,ns = 0. Finally we have the secular terms with a Kronecker’s delta factor, but
only when ¢ = n;. The requirement &,,,,,,r, = 0 physically means that to have resonance,
each vertical mode ¢, (2) must have a non-zero projection on the product of the other
two vertical modes, which is the vertical structure of the forcing that produces the j-th
mode. In summary, we have secular terms only when ¢ = n;, j = 1,2,3 (all other ¢’s do
not produce secular terms).

Therefore, there are six secular terms on the RHS of (6.9) proportional to cos6;;,
i = 1,2, j = 1,2,3, with ;3 = 017 £ 0,5, noting that the term ~ cosf;; has two
contributions: one from the interactions of RW A1, with RWs A;3, and other from the
interactions of RW Asy with RWs A;3.

We note that

2&)]'11‘]‘ + ﬂSiHO& = (71)1-0.)]‘ (lgj - llj) = (71)i+1 Wy QAJ 5 (613)

which follows from (2.7) and (2.10), and which is non-zero if we have a mode (ie, an
incident-reflected RW pair) for a non-zonal coast (and also a mode for the channel).

Finally, we remove the secular terms by requiring that the coefficient of any homo-
geneous solution of (6.9) be zero, leading to the following system of six (actually five)
first-order nonlinear ODEs:

(Z(A)llll + BSIH O{) 6Y1A11 = ignrﬂgng [61213 + 62223] ,

Oy Az = 0,
(2walio + Bsina) Oy, Ais = Enynons Bz, 1=1,2, (6.14)
(2wsliz + Bsina) Oy, Aizs = FényngnsBitiz, i=1,2,

where the upper (lower) sign in the equations for A;; and A;s refers to the phase sum
(difference). The system (6.14) is subject to the boundary conditions A1; = As; = Aj,
j=1,2,3at Y7 =0, ie at y = 0, to warrant no normal flow at the coast. The second
equation implies that Aoy = constant = A;. This system is relatively more complicated
than the typical one found in three-wave resonance problems. Here, the coast’s non-
zonality obliges that only three RWSs (not four as in the zonal case) of the primary modes
participate in forcing the third mode. That is why five RWs (out of six RWs of the three
modes) have their amplitudes slowly varying in the offshore coordinate to have a bounded
solution when the modes are in resonance.

After substituting the coupling coefficients, the dispersion relations and (6.13), the
system (6.14) becomes

OviAis = —EninonsVizA11di2, i@

Ov, Al = §n1n2n3%(ﬁ’12A12A13—72214221423),
Oy Ay = 0

, ‘ 6.15
Ovidiz = &ninongVizA11diz, i=1,2 (6.15)

)
727
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which is valid for both the phase sum and difference, where Az = +A,, v, = +7;3 and
3 (B3 + 154 a,2 —k — 13 —a,?2) (klis — ksl)
2wslio + Bsina
5 (k3 + 1% + 4,7 — K — 1) — a,) (kiliz — koln)

20.)3li3 + 5 sin a i3 ( )

Yi2 =

The details are given in the appendix.

There are three functionally independent first integrals of system (6.15). For example,
the last four equations directly imply that dy, (A% + A%) = 0 for i = 1,2 (two integral
constraints). Also, multiplying the first equation by A; A1 /Asz, minus the third equation
times Ajz, plus the fourth equation times Asy yields dy, (A1 A3, /Az — A3, + A%,) = 0;
analogously we can obtain Oy, (A1 A}, /A + A3 — A35) = 0. However only three of these
four first integrals of system (6.15) are independent.

In figures 11 and 12 we show the numerical solution of the wave amplitudes of the
resonant quintet for parameters of the Hawaiian Ridge and for (nq,ne,n3) = (1,1,0)
and (T1,T,) = (1,1.7) years, corresponding to solution k&) and kzﬁ), respectively. The
solution (1) with larger wavelengths exhibits a clear periodic behavior in Agy and Asg,
whereas A1o and A;3 vary much more slowly, which is because 712 < 792 in this case,
and Aj; oscillates at a higher frequency but with a lower amplitude. If we extended
the integration farther, say to ¥; = 10° km, one could see that Ay, A2 and A;3 are
also periodic. Solution (2) shows clearly that all four RW amplitudes of modes 2 and 3
oscillate with similar frequencies (equal for A;s and A;3) and equal amplitudes, whereas
Aj; displays a rather different behavior as in solution (1), but it is periodic.

We plot the wavenumber vectors and the slowness circles (ie the curves of constant
w; for given n;) of the resonant quintet corresponding to figures 11 and 12, in figures
13 and 14, respectively. There we indicate the coastal orientation (parallel to the k-axis)
and one can see graphically that indeed k;3 = k11 + k;2 for i = 1,2, and that Az = A,.

In general, the envelope of the incident wave packet Ap; is nowhere zero. The envelopes
of incident RW packets (of modes 2 and 3) oscillate around zero out of phase and at
the same frequency; this is also true for the reflected RW packets, but with a different
frequency. Because we choose the b.c. of zero amplitude of mode 3 at the coast, it starts
there and grows approximately linearly near the coast, as indicated by the straightforward
expansion (6.5) and (6.6). The incident (reflected) RW packet of mode 3 reaches an
extreme when the incident (reflected) packet of mode 2 is zero.

After running several cases, we observe that if the b.c.’s at Y; = 0 are A1; = Ao =
Ags = Ay and A3 = Agz = 0, the solution for another b.c. A} = dA; is simply A;j ) =
dA;;(Y1/d). This is because multiplying the b.c. by d means that € gets multiplied by d,
and Y7 = ey. Thus, it is convenient to simply set A; = 1 (in units of km? /day, appropriate
to typical RW length and time scales).

An interesting situation occurs if the primary Rossby modes 1 and 2 have an annual
period (the rest of parameters as in figure 11) so (11,73, T3) = (1,1, 3) years. In this
case Y12 &~ 0 which implies that Ao = A; and A3 =~ 0, so the incident RW amplitudes
of modes 2 and 3 remain almost constant (equal to the b.c.), whereas the reflected
RW amplitudes oscillate at the same frequency. The resonant interaction is such that it
preferably excites the reflected RWs.

As an aside remark, it can be shown that, unless the coast is zonal, particular solutions
~ tcosb;z, i = 1,2, which satisfy the forced QGPVE, cannot satisfy the boundary
condition at the coast y = 0. The forced or excited mode 3 cannot grow linearly in
time, which ultimately is why the wave amplitudes cannot be slowly varying functions of
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FIGURE 11. Wave amplitudes of a resonant quintet of RWs, which are solution of system (6.15),
as a function of Y1 = ey. Upper panel: A11 (blue); A1z (red); A2 (dashed red). Lower panel:
Ais (magenta); Ass (dashed magenta). The corresponding wavelengths are indicated on each
curve. The amplitude’s value at the coast of modes 1 and 2 is 1 km2/day, which corresponds
to a maximum horizontal particle speed of the mode 1 incident RW Uy1 = 0.038 km/day and
£11 = U11|k:11|2/ﬁ = 0.03. More realistic values can be adjusted accordingly. Parameters: ¢o
and « for the Hawaiian Ridge, vertical mode numbers are (n1,n2,n3) = (1,1,0) and the Rossby

mode periods are (T4, T%,T3) = (1,1.7,0.63) years for solution kﬁ,).

time. The speculation of Graef (1993) “on what would happen if three modes are taken,
allowing each mode amplitude to be slowly varying in time”, failed in the non-zonal case.

In the zonal coast, the incident and reflected RWs’ wavelengths of each mode are
equal, and their wavenumber vectors satisfy the relations k1 X k12 = —ko1 X koo and
k11 X koo = —koy X k12. Thus the coupling coefficients of the four interactions k11 <> k12,
ki1 < koo, ko1 < k12, and ko <> kos are such that the forced mode 3 satisfies the
boundary condition at the coast y = 0. So, when applying multiple scales, it is sufficient
to allow for each mode’s amplitude to be a slowly varying function of time.

6.2. The channel

For the channel, the solution for the forced mode 3 is uncertain; we could not find it.
However, if the resonant forcing given by (6.2) is such that only one RW is excited, ie
we do not excite a channel Rossby mode, then we could easily find a solution. Suppose,
without loosing generality, that the excited RW is proportional to cos(f13) = cos(611 £
f12). This is equivalent to say that the resonant triad is {11, ¥12,%13}. The solution is,
adapted from Garcia & Graef (1998) and Graef (2017):

WeilisW

i6 i6
W _ gil1aW (€% —ef) ) (6.17)

By = FALAsEp nyns713 Re [y et 4
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FIGURE 12. As in figure 11, but for solution kﬁ).

where the upper (lower) sign refers to to the phase sum (difference), p is the other root
(besides l13) of the RW dispersion relation wy £ wy = 0y, (k1 £ k2, pt) or wg = opy(ks, 1)
and 0,3 = (ksx + py — wst + J3). It is easy to see that &,, =0 at y =0, W. It is worth
remarking that {15 is not —fsin a/(2ws) + msgm /W, ie the excited RW 113 is not a wave
of a channel mode, or equivalently Az = mz7/W. But we need the other RW ~ €3 in
order to fulfill the boundary condition at y = W. This physically means that a coastal
mode gets excited, not a channel mode, because e?13 — 3 is just a coastal mode.
The resonant solution (6.17) is bounded, and there is no need to do multiple scales.
It consists of a term proportional to y cos 63, plus a term proportional to the real part
of C(e?13 — ¢¥u3) where C is a complex constant, which is a coastal mode (it vanishes
at y = 0, but not at y = W). This solution is reminiscent of the solution when there is
resonance in the self-interaction of a channel Rossby mode (Garcia & Graef 1998).

7. Discussion and conclusions

In this paper, we studied whether or not there are resonant interactions between three
Rossby modes in two bounded geometries: a coast and a channel, whose orientation
is non-zonal. The fact that the boundaries are not along circles of latitude is a new
ingredient in these problems, not reported in the literature.

As the superposition of two propagating RWs forms a Rossby mode in a coast or a
channel, the nonlinear interaction between two modes produces 12 forcing terms. We
first analyzed which of those 12 terms, or which RWs, could excite a third mode. In the
zonal case, we need the participation or interaction of the four RWs, two of each mode.
However, if the orientation is non-zonal, only three RWs (of the four) can participate in
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FIGURE 13. The wavenumber vectors and the slowness circles of the resonant quintet of RWs
corresponding to figure 11. We indicate the coastal orientation (parallel to the k-axis) making
an angle a with respect to the eastern direction. In blue, the RW (n1,w1, k11) of mode 1; in red
the RWs (n2, w2, ki2), © = 1,2 of mode 2; and in magenta the RWs (ns, w1 + w2, ki3), i = 1,2 of
mode 3. Note that k;3 = k11 + ks2 for i = 1,2, and that Az = As.

forcing, in principle, the third mode. This difference has two significant consequences in
the non-zonal case. First, the horizontal structure of the “standing” part of the forced
mode proportional to sin(Asy) is identical to the mode whose two RWs participate in
the interaction. Second, there appears an additional constraint (equation), which reduces
the number of degrees of freedom available to solve the resonance conditions (see table
2). Thus, finding resonant triads is more restrictive in the non-zonal case.

When one considers the interaction between two modes in a zonal coast or channel,
the initial modes may have A; = As or Ay = A, but the excited mode is A3 = Ay + A,
(if A; = Ay, we can only excite the mode produced by the sum). We always excite a new
horizontal structure, so there is “barotropic transfer” in the resonant interaction. This
was the case, for example, studied by Plumb (1977), for a zonal channel in a barotropic
ocean. However, if we want to excite a third mode in a non-zonal coast or channel, only
three RWs can participate, and the excited mode must have the horizontal structure of
one of the initial modes (A3 = +A5 or Az = +£A;). One cannot excite a new A, and
there is no “barotropic transfer”.
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FIGURE 14. As in figure 13, but corresponding to figure 12, ie for solution kﬁ). The frequencies

and vertical mode numbers are those of figure 13, but the wavenumbers ki1, ki2 and k;3 are
different. Note the larger scale here, which is why the whole circles appear in the graph. This
graph is a zoom out of figure 13.

As shown in table 2, the non-zonality and the number of boundaries decreases the
number of degrees of freedom to solve the resonance or kinematic conditions for the
existence of resonant triads. For instance, for a non-zonal coast or wall, the resonance
conditions pose a problem with four equations and nine variables: w;, k;, 4;, i = 1,2
and nj, j = 1,2,3. However, the last three are discrete and must be specified. Thus,
we end up with two degrees of freedom: 6 unknowns minus 4 equations. In the case of
a non-zonal channel, it is similar but A; = myn/W and Ay = mon/W are fixed, thus
there are no degrees of freedom.

For the non-zonal coast, we derived analytic expressions for the wavenumbers along
the coast k1 and ks of modes 1 and 2, respectively, which are necessary conditions to
have solutions of the system (4.1)—(4.4). Although, in general, it is not possible to find
a condition to have ki real that only involved «, the equation for k; reveals that a
meridional coast is prohibited, ie there are no real solutions. The more meridionally
oriented the coast is, the more restrictive the problem of finding real solutions become.
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Geometry Orientation Var. D.V. Egs. D.F.

Coast Zonal 9 3 3 3
Non-zonal 9 3 4 2
Channel  Zonal 9 5 3 1

Non-zonal 9 5 4 0

TABLE 2. The number of variables (Var.), discrete variables (D.V.), equations (Egs.) and degrees
of freedom (D.F.) of the resonance conditions, for each geometry (coast or channel) and its
orientation (zonal or non-zonal).

For example, we found that if the period of mode 1 is much larger than the period of
mode 2 (Ty > Tb), it favors real solutions for the more meridionally oriented coasts [say
a € (70,85) or o € (95,110) degrees for western coasts; or with a + 180° for eastern
coasts]. In the particular case w; = ws, a necessary condition to have real solutions
is |sina| < 2/3, which is twice the value obtained by Graef (1993) when considering
resonance in the self-interaction of a Rossby mode at a coast. Therefore, although the
orientation of the coast or wall restricts resonance to occur, it is less restrictive in the
case of resonance between Rossby modes (with w; = wy) than in the self-interaction of a
Rossby mode.

The family of solutions for given mode periods T and T (recall we have two degrees
of freedom) was shown by plotting the wavelengths of the six RWs (one incident and one
reflected per mode) that participate in the resonant triad of modes. And for each T} and
T5, there are two solutions for the initial RWs phase sum (w3 = wy + we, k3 = k1 + ko,
l13 = l11+112 and log = l11 +122) and two solutions for the phase difference (w3 = wq —ws,
ks = k1 — ko, li3 = l11 — l12 and log = l11 — la2). By looking at solutions with different
coastal orientations, there are two general characteristics of the solutions: a) the larger
wavelengths are squeezed in a very small region of the (T, Tz)-space; and b) the space of
solutions is more limited for the phase difference and it is always T7 > T5. In fact, even
for more zonally oriented coasts, some of the real solutions lie only within a very tiny
region (resembling a thin slice of a pie) of the (77, T3)-space.

As a possible oceanographic application and because it has received significant atten-
tion since the pioneering work of Mysak & Magaard (1983) regarding the North Hawaiian
Ridge Current (White 1983; Oh & Magaard 1984; Sun et al. 1988; Price et al. 1994;
Qiu et al. 1997; Firing et al. 1999), we showed the solutions for ambient parameters
appropriate for the Hawaiian Ridge (figures 4, 5, 6, and 7). The wavelengths of the

incident RWs of the first mode corresponding to solutions kﬁg) and kﬁ,zb are the largest:
< 1000 km, whereas for the third mode, there is a wide range between 100 and 2000
km, and for the second mode they are very short: between less than 50 and 240 km.
The wavelengths of the reflected RWs of all modes are short: between 20 and 200 km.
There is a significant reduction in the allowable (T7,T»)-space (very tiny slices of a pie)
for the other solutions, ie for k:g? and kgr)” and all wavelengths (even the incident RWs)
are quite short, between 20 and 200 km. We conclude that two annual Rossby modes
(n1 = ng = 1) cannot resonantly interact to force a semi-annual ng = 2 Rossby mode.
However if we choose ng = 0 (not shown here), so that the forced mode (mode 3) is
barotropic with a free surface (depth H = 4000 m), then such resonant interaction is
possible. Also, it is not possible to have resonance if one of the initial modes (first mode
baroclinic) has a period in the broad peak range from 0.7 to 2.5 years, and the other
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mode has a period of 6.7 years [these are spectral peak periods of Rossby wave energy
for a 5° square east of the Hawaiian Islands (see Magaard 1983)].

For the non-zonal channel, the resonance conditions form a closed system (four equa-
tions and four unknowns: w;, k;, i = 1,2), so there are no degrees of freedom. We could
not arrive at a single equation for any one of the four unknowns. However, we developed a
graphical method to seek solutions using the analytic expressions for k1 and ks derived for
the coast, which are also valid for the channel. A meridional channel is prohibited (no real
solutions). However we found real solutions for other orientations, like the hypothetical
example shown in figures 8, 9 and 10 for a tilted channel with o = 15°, width W = 500
km, at a reference latitude ¢y = 20°, horizontal mode numbers m; = 2, mo = 1 and
vertical mode numbers ny = ny = nzg = 0 (all barotropic with a free surface and depth
H = 4000 m). In this example, the mode periods were less than a year, and the RWs’
wavelengths of the modes had a wide range: between a few hundreds to more than 6,000
km. As with other examples that we explored, particularly for other «’s, there were
always four solutions to the resonance conditions: one for the RWs’ phase sum and three
for the RWs’ phase difference. The four solutions were related: two symmetric and two
anti-symmetric, with modes 2 and 3 exchanged. The anti-symmetry comes about because
on(k,l) = —0,(—k,—l) in the RW dispersion relation.

We pointed out that because there are no degrees of freedom for the resonance
conditions in a non-zonal channel, the interaction of two Rossby modes of equal frequency
can never excite a third Rossby mode. This result has implications for finding resonant
triads in a non-zonal gulf (and by extension in a non-zonal rectangular basin). Since
a gulf Rossby mode is the superposition of an incident-reflected channel mode pair at
the head of the gulf (Graef 2016), it follows that if there are resonant triads between
gulf modes, the excited waves cannot be the product of either mode’s self-interaction. In
other words, the forced mode cannot have a frequency equal to two times the frequency
of either one of the primary modes.

Looking at the worlds oceans, the most conspicuous mid-latitude channels for which
planetary wave motion could matter are the Mozambique Channel, the Tasman Sea,
the Denmark Strait, and perhaps (because of their irregularity and or size) the South
China Sea, the Caribbean Sea, and the English Channel (Graef 2017). As a possible
oceanographic application, we searched for solutions of the resonance conditions in four of
these channels with n; = (0,0, 0) (all three modes barotropic, free surface) and m; = 2,
mgy = 1. There were no solutions for the Mozambique Channel and the Tasman Sea
because these channels are too inclined relative to the eastern direction, but we found
solutions for the Denmark Strait and the English Channel. Because the annual signal
always comes to mind when one thinks about Rossby wave motion, an interesting result
for the Denmark Strait was that the second mode period of one solution is 1.00 year
with wavelengths of 273 and 2724 km. This solution suggests that if barotropic Rossby
modes get excited in the Strait, out of all possible nonlinear interactions among them,
the annual Rossby mode my = 1 would have a larger amplitude (being in resonance with
two other modes of periods 0.56 and 1.24 years). For the English Channel, the smallest
and largest of the mode periods were 0.79 and 2.47 years, and of the wavelengths were
79 and 1696 km, respectively, for all modes and the two independent solutions. However,
because the lengths of the Denmark Strait and the English Channel are much smaller
than some of the mode’s wavelengths (=~ 2000 km), most probably we cannot apply our
results to these channels.

The solution of the forced QGPVE, when the third mode is in resonance with modes
1 and 2, is unbounded in the coast’s case. The pedestrian or straightforward expansion
leads to a linear growth in the offshore coordinate y, which we rejected on physical
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grounds; it is acceptable “near the coast”. To obtain a bounded solution in the whole
half-plane domain, we used multiple scales, generalizing the work of Graef (1993). First,
we wrote the solution of the QGPVE, to leading order in €, as the superposition of
the three Rossby modes in resonance, but allowing the RWs’ amplitudes (constant in
the straightforward expansion) to be slowly varying functions of the offshore coordinate,
namely functions of Y7 = ey. Second, we computed all forcing terms that are secular
and removed them by requiring that the coefficient of any homogeneous solution of the
equation be zero. This requirement led to a system of five first-order nonlinear ODEs
for the RWs’ amplitudes that participate in the resonant triad (three of the primary
modes and two of the forced third mode). In the appendix, we were able to show that
the factors multiplying the amplitudes’ products, which involve the coupling coefficients,
are all related, and only two factors (out of six) are independent. We showed examples
(figures 11 and 12) of the wave amplitudes’ numerical solution, which exhibit periodic
behavior. For parameter values of the Hawaiian Ridge and if the primary modes 1 and 2
have an annual period (so the third mode is semi-annual), the incident RWs’ amplitudes
of modes 2 and 3 are nearly constant. In contrast, those corresponding to the reflected
waves oscillate at the same frequency (in space), indicating that resonant interactions
lead to more variability in smaller scales, ie westward intensification. As in Graef (1993),
the energies of the modes oscillate in the offshore direction. There is an energy exchange
in space with the three resonant modes giving and receiving it, satisfying the boundary
condition at the coast, and maintaining the solution bounded as y — oo.

We included two figures (13 and 14) to help the reader locate the resonant modes’
incident and reflected waves together with the coastal orientation. We plotted the
wavenumber vectors of the resonant quintet on the slowness circles corresponding to
the examples of the wave amplitudes’ numerical solution. In these figures one could see
graphically that k;3 = k11 + ko for i = 1,2, and that Az = As.

The solution of the QGPVE for the channel, when the third mode is in resonance
with the primary modes 1 and 2, is uncertain, and unfortunately, we could not find it.
However, we provided a solution if the nonlinear interaction between a RW of mode
1 and a RW of mode 2 forces or excites a single RW. The excited RW is not a wave
belonging to a channel mode (if the channel is zonal, this is impossible: the excited
RW is a wave of mode 3 with m3 = m; + ms, and also, the other RW of mode 3 gets
automatically excited). This resonance is an example of problem (A) mentioned in the
introduction. The resonant solution shows that (i) a coastal mode gets excited, needed
to satisfy the boundary condition at both coasts; (ii) it is bounded, and there is no need
to do multiple scales; (iii) the two channel modes and the coastal mode, although in
resonance, do not exchange energy in time or space due to the constraint of the motion
imposed by the boundary conditions at the channel’s non-zonal coasts or walls; and
(iv) it is reminiscent of the solution when there is resonance in the self-interaction of
a channel Rossby mode (Garcia & Graef 1998). Why is this lack of energy exchange?
First, there is no solution growing linearly in time when there is resonance (this is true
if the coast or channel is non-zonal). Second, but this is speculation, is that enstrophy
is not conserved in a non-zonal channel. Indeed, in the reflection of RWs from a non-
zonal wall, enstrophy is not conserved (Pedlosky 2013) since the incident and reflected
wave’s wavelengths are different. In a non-zonal channel, the RWs that comprise a mode
have different wavelengths, and by generalization, enstrophy will not be conserved. It is
only for a zonal coast or channel (where enstrophy is conserved) that the resonant triad
modes’ amplitudes depend slowly on time, so there is energy exchange among the triad
members, as shown by Plumb (1977) for a zonal channel.

Regarding possible oceanographic applications, we should keep in mind that our coast
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or channel is idealized and that bottom topography and irregular coastlines would
change these solutions. There is no intention or attempt to compare our solutions with
observations. Despite our idealized geometries, the analytical results presented here could
provide a dynamic basis to help explain observations. Furthermore, analytical solutions
are, in general, a handy tool to test numerical models. Beyond these benefits, we believe
in having contributed to the advancement of knowledge in Geophysical Fluid Dynamics.
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Appendix A

In this appendix we show the calculations to go from the ODE’s system (6.14) to (6.15)
and the relations between the factors multiplying the RW amplitudes’ products.
The last four equations of (6.14) are, upon substituting Bi1:3 and By given by (6.12):

LA A Enngn, (K3 + 15+ 6,2 — k2 — 13y — a4y 2) (kalis — kslin)

Oy, Ao =
Y1 i 2w2l12 + Bsina
=v2€ninons A11 i3, =12, (A1)
T3 AN AR Enynons (k3 + 15 + 4,2 — kF — 13, — a,2) (k1liz — kal11)
Oy, Aiz =

2wsl;3 + Bsin«
= FY3&nnans A11di2, =12 (A2)

We now show that ~;2 = +;3, where the + (—) refers to the phase sum (difference).
Using the dispersion relations

w;j (k§+l§j+a;f) +B(kjcosa+lsina) =0, i=1,2, j=1,2,3, (A3)

which follows from (2.9), (2.10) and (2.7), and the relation (6.13), we have that

(k1lis — ksli1) . (A4)

1 l:—ﬁ (]{13 cos a + l;38in O() w1+ B (kl cosa + ly1 sin a) w3
2

2=y wWiwzgwso (—1)i+1 2A2

Substituting the resonance conditions k1'3 = kll + k}ig, ie (kg, 173) = (kl + kQ, 111 + llg)
[see relations (3.11)], the numerator within square brackets becomes

—B(kicosa+l11sina) (w1 —ws) F B (kacosa + liasina)wy =
:l:ﬂ (k‘l cos « + l11 sin Oé) wo F /B (]CQ cos o + lig sin Oé) w1 (A 5)

since w3 = wy £ wy. Finally, note that ki1 X k;3 = k11 X kj2. Thus,

(£1) (k1lia — kal11)

{:I:ﬁ (k1 cosa+ Iy sina) wa F B (ko cos a + lig sin @) wy
V2

WiwaWws (— )Z+1 2A2

1
2
1[k3+ 1 +a;22 k3 =13 — a2
2
=ty

—1) 24, (k1lia — k2l11)
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because A3 = :I:AQ Therefore, 8y1 Aig = q:’YiB’gnlnzngAllAﬂ = _’Yi2£n1n2n3A11Ai2a for
both the phase sum and difference.

The first equation of (6.14) takes the form, upon substituting Bi9;3 for i = 1, and Bag;s
for ¢ = 2, from (6.12):

Ovy A1l = &ninans (M11412413 + 7112422 A423) (A7)

where

L2412, 4+ 672 — k2 — 12 — a-2) (kolys — ksl;
o 2 ( 3 i3 ang 2 i2 i anz) ( 2bi3 3 2) , 7= 172 (AS)
2w1l11 +,631n01

In a similar fashion, using (A 3), (6.13), substituting the resonance conditions, and noting
that kig X kl‘g = kig X ku, we obtain

1 B (ko cosa+ lipsina)wy — B (k1 cosa + 111 sina) we (ealis — ko)
i =g wawswn (1) 124, 2011 b2
| TRE 40 a2 — KD — 12 — a2
= - C n L kilio — kol
2|: LLJ32A1 ( 172 211)
Ag ;
= (1) A
1) (A9)

Therefore, the system of ODE’s for the wave amplitudes that is valid for both the phase
sum and difference is:

Ov, A1 = &ninang %f (712412413 — Y22 A22A23)
8y1A21 = 0

, . A10
Ovidiz = Y2&unansAndiz, 1=1,2, ( )
Ovidis = —Vi2&ninansA11di, 1=1,2,

where Az = £ A5 and ;3 = +42.
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