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We study the possibility of having resonant interactions between three Rossby modes on a
coast or channel of arbitrary orientation. A Rossby mode comprises two propagating
Rossby waves (RWs) to satisfy the no normal flow through the boundary(ies). In each
geometry, we state the conditions, degrees of freedom, and RWs of the primary two modes
that could force a third mode. We discuss differences between zonal and non-zonal
orientation. Resonant interactions are only possible if all RWs participate in the zonal
case, while only three RWs in the non-zonal case. The non-zonality reduces the degrees of
freedom to solve the resonance conditions, and solutions are more restrictive for more
meridional orientations. In particular, there are no solutions if the coast or channel is
meridional. For the non-zonal coast, we find a family of solutions for given periods T1 and
T2 of the primary modes. Using multiple scales, we obtain a uniformly valid solution of the
QG potential vorticity equation (QGPVE), with the resonant modes exchanging energy in
space. There are no degrees of freedom for the non-zonal channel, and we develop a
graphical method to seek resonant solutions, finding some. We provide a bounded solution
of the QGPVE in case the primary modes excite one RW, not a channel mode, and the
modes do not exchange energy either in time or space. Regarding possible oceanographic
applications, we show solutions for the Hawaiian Ridge and inquire if there are solutions in
the Mozambique Channel, Tasman Sea, Denmark Strait, and the English Channel.

For publication in the Journal of Fluid Mechanics

1. Introduction

The interaction of a triad of dispersive waves is a fundamental process in the dynamics
of fluid flows; in particular, for geophysical flows, its significance is well established
(Craik 1988). In weakly nonlinear wave theories, there is considerable interest in studying
resonant interactions because they produce the largest amplitudes when compared to all
non-resonant interactions (Pedlosky 2013; Graef 1993; Garćıa & Graef 1998). In forced
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problems, out of all the modes that are excited with an imposed forcing, the dominant
mode, ie the one that exhibits the largest response, is the resonant mode (Graef 2016).

Our general interest is to investigate whether or not there is resonance in the weakly
nonlinear interaction of Rossby normal modes in different geometries on a β-plane. That
is, we are interested in bounded domains. Specifically, in this article, we study the
possibility of finding resonant triads of Rossby modes in two domains whose orientation
is arbitrary:
(i)A straight coast, ie, a domain being infinite in one horizontal direction and semi-infinite
in the other horizontal direction;

(ii)A rectilinear channel, ie, a domain being infinite in one horizontal direction and
bounded in the other horizontal direction.
The key question to answer here is: Does the nonlinear interaction between two Rossby
modes can excite a third mode? In other words, is it possible to find resonant triads of
Rossby modes in these geometries?

It is essential to distinguish between the self-interaction of a Rossby mode and the
interaction between Rossby modes. For instance, in the classical reflection problem of
Rossby waves at a straight coast (Pedlosky 2013), a mode is defined as an incident plus
the reflected wave, ie, a mode is composed of two propagating Rossby waves. The self-
interaction of a mode is the nonlinear interaction between an incoming and outgoing
wave (as in Graef 1993; Graef & Magaard 1994). In contrast, the interaction between
modes would be, in the simplest case, the nonlinear interaction between two modes, ie,
between four propagating waves (two of each mode). In a channel, a Rossby mode is also
composed of two propagating Rossby waves (RWs), whereas in a gulf or closed basin,
four propagating RWs comprise a mode. Therefore, if the weakly nonlinear interaction
between two Rossby modes excites a third mode, ie there is resonance among the three
modes, two RWs must be excited in the coast or channel, and four RWs in the gulf or
closed basin.

Longuet-Higgins & Gill (1967) work on resonant interactions between RWs on the
infinite β-plane set the tone for studying this type of interaction between planetary or
RWs. Although in previous works Stern (1961) and Kenyon (1964) discussed some special
cases of resonant interactions between these waves, Longuet-Higgins & Gill (1967) were
the first to establish the general conditions for three waves to resonantly interact. The
study of these interactions in an infinite ocean or open regions of the ocean is valid
if the wave scales are small compared to the size of the domain, and the waves can
travel for a long time before finding a boundary. One could also think that the waves
in an open region were generated elsewhere or maybe the product of reflection at one
or several boundaries. However, when one or more boundaries limit the flow domain,
new restrictions on the motion must be imposed to satisfy the boundary conditions. The
boundaries restrict the degrees of freedom in the search for solutions to the resonant
conditions. An essential aspect of these problems that has received little attention in
the literature is the geometry orientation. Graef (1993) and Garćıa & Graef (1998) dealt
with resonance in the self-interaction of a single Rossby mode in the reflection problem
at a straight wall and a channel, respectively. In these studies, the boundary’s orientation
plays a crucial role: resonance is possible only if 0 < | sinα| 6 1/3, where α is the angle
that the coast or channel makes with the circles of latitude (positive clockwise). In the
case of a rectangular basin with coasts oriented east-west and north-south, Serrano et al.
(1995) showed that the self-interaction of a Rossby normal basin mode could not produce
resonant forcing, whereas LaCasce & Pedlosky (2004) demonstrated that these modes
are vulnerable to baroclinic instability.

As far as we know, the study of resonant interactions between free Rossby modes,
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which are solutions of the linear problem of reflection at a straight coast or wall, has not
been reported. If there are two primary Rossby modes nonlinearly interacting, we could
ask the following two questions regarding resonance (aside from their self-interaction).
What if the nonlinear interaction between the RWs of modes 1 and 2 produces (A)
a free RW?; or (B) a third Rossby mode? It should be evident that problem (A) is
less restrictive than (B) and even the self-interaction problem. Indeed, in principle, it is
always possible to excite a free RW when considering the interaction between two Rossby
modes, regardless of the coastal orientation. However, the Fourier space of the resonance
conditions’ solutions does vary with α (one could find a few cases, for certain ambient
parameters and vertical mode numbers, for which there are no solutions). On the other
hand, for problem (B), which is the one we study in this paper, we may anticipate that
there will be constraints on the RWs’ parameters of the primary modes and α.

The occurrence of resonance between barotropic Rossby modes in a zonal channel
was studied by Plumb (1977), while Mysak (1978) studied resonant interactions between
topographic planetary waves in a continuously stratified fluid in a channel of arbitrary
orientation. The first-order linear solution in Mysak’s study does not consider the
planetary vorticity gradient (the β-effect is zero) and so the solution to this order is
valid on the f -plane. Therefore, to our knowledge, the question of whether or not there
are resonant interactions between Rossby modes in a channel of arbitrary orientation on
the β-plane is still open. To this end, we must first establish the resonance conditions,
and after that, we need to investigate if there are solutions.

Furthermore, there have been no studies to analyze the occurrence of resonance
between Rossby modes in a gulf or in a rectangular basin arbitrarily oriented on the
β-plane. Actually, in their seminal paper, Longuet-Higgins & Gill (1967) said as a final
conclusion: “For application to the ocean it is generally desirable to consider planetary
waves in closed basins. We know . . . in a rectangular basin on a β-plane . . . construct
solutions which consist of the sum of four progressive planetary waves . . . . The possibility
exists that for basins of certain size and orientation there may be resonance between three
modes of low order. An investigation of this possibility is in progress.” It is remarkable
that after more than 50 years, the problem of finding resonant modes in a rectangular
basin has not been tackled, or at least reported in the literature. The results of this
article will hopefully contribute or shed some light on it.

In table 1, we summarize all results regarding the existence of resonance in either the
nonlinear self-interaction of a Rossby mode or in the nonlinear interaction among Rossby
modes in different geometries. It includes those cases reported in the literature (providing
at least one reference), those not done to our knowledge, indicated by a question mark
(?), and, finally, the cases that we have done in this article. This exercise, hopefully,
serves to put our work in a more general context.

For the coast or channel, a Rossby mode is the superposition of two propagating RWs.
Thus, the nonlinear interaction between two Rossby modes in each geometry produces 12
forcing terms, which come about as follows. There are 4 RWs, so 6 interactions since each
one’s self-interaction is null, and each interaction produces two terms, one with the sum
and the other with the difference of the wave phases. For the rectangular gulf or basin,
a Rossby mode is the superposition of four propagating RWs. Therefore, two modes’
nonlinear interaction involves 8 RWs, so there will be 28 interactions and 56 forcing
terms. Of course, if the orientation is zonal, many forcings will vanish. One question
is: which of the forcing terms should we consider to form a third Rossby mode? This
question is non-trivial because we will need to analyze, among all possible interactions,
those that could excite two RWs (or four in the case of a gulf or basin) that precisely
form a free Rossby mode for each one of the geometries.



4 F. Graef and R. Garćıa

Geometry Orientation One mode Among modes

Unbounded No Yes, Longuet-Higgins & Gill (1967)
Coast Zonal No Yes

Non-zonal Yes, Graef (1993) Yes, this work
Channel Zonal No Yes, Plumb (1977)

Non-zonal Yes, Garćıa & Graef (1998) Yes, this work
Gulf Zonal No, Garćıa & Graef (1998) ?

Non-zonal Yes, Garćıa & Graef (1998) ?
Basin Zonal No, Serrano et al. (1995) ?

Non-zonal ? ?

Table 1. Resonant interactions of Rossby modes in different geometries and their orientation.
There is no reference for the zonal coast among modes because the problem is exactly as in
Longuet-Higgins & Gill (1967), but this fact was overlooked.

We organize the paper as follows. In the next section, we present general considerations
of the problem that apply equally to the straight coast and the channel. In section 3,
we analyze which of the forcing terms could produce a third mode for both geometries,
pointing out the differences between zonal and non-zonal orientations. The solution of
the resonance conditions between three Rossby modes in a non-zonal straight coast is
presented in Section 4, both analytically and graphically. Section 5 is devoted to finding
solutions to the resonance conditions between three Rossby modes in a non-zonal channel.
In these last two sections, we inquire if there are restrictions on the coast(s)’ orientation
α and comment on possible oceanographic applications. In section 6, we show the QG
potential vorticity equation (QGPVE)’s solution for the resonant forcing terms in the
coast, where we need to use multiple scales to obtain bounded solutions. In the channel,
we could only find a solution in the case of problem (A), in which a coastal mode is
excited. Finally, the last section provides a discussion and conclusions.

2. General considerations

Consider a β-plane with a coordinate system (x, y, z) in which x is parallel, y perpen-
dicular to the coast or channel and z vertically upwards (figure 1). For the coast, there
is a vertical wall at the plane y = 0 and for the channel of width W , there is another
vertical wall at the plane y = W . The origin is somewhere in a mid-latitude region. The
governing equation is the QGPVE, which in this coordinate system reads{ [ ] }

[∂ + J(ψ, ·)] ∇2 + ∂ (Γ 2
t z ∂z) + β(cosα∂x + sinα∂y) = 0 , (2.1)

where α is the angle that the coast makes with the circles of latitude (positive clockwise),
J(a, b) ≡ ∂xa ∂yb − ∂xb ∂ya the Jacobian operator, ∇2 = ∂x∂x + ∂y∂y, t is the time, ψ
is the QG streamfunction, β is the northward gradient of the planetary vorticity and
Γ 2(z) ≡ f20 /N

2(z), where f0 is the Coriolis parameter and N(z) is the Brunt-Väisälä
frequency.

For the coast, the kinematic boundary condition of no normal flow is ∂xψ = 0 at
y = 0; and for the channel it is ∂xψ = 0 at y = 0,W . Since the domain is partially open,
an explicit mass conservation constraint or time-independent circulation is not required
(Pinardi & Milliff 1989). Besides, for the type of solutions we will be considering (a sum
of Rossby modes), the coasts’ condition implies ψ = 0 there. The boundary conditions
in z are those for a flat bottom and a rigid lid, ie [∂t + J(ψ, ·)] ∂zψ = 0 at z = −H, 0,
where H is the constant water depth. These conditions will be automatically satisfied,
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Figure 1. Coordinate system. The rotated coordinate system has x parallel and y perpendicular
to the coast; α is measured positive clockwise. For the channel of width W , there is another
coast at y = W .

since the z-dependence of the Rossby modes is given in terms of eigenfunctions ϕnj (z)
of the familiar vertical Sturm-Liouville problem (Pedlosky 2013).

Without going into the details, the general approach to study the weakly nonlinear
interaction between two Rossby modes of a coast or a channel is as follows. One first
obtains the non-dimensional version of the QGPVE (2.1) by choosing suitable scaling
parameters. There appears a parameter ε = Uβ−1L−2 multiplying the nonlinear terms,
which is the β-Rossby number, where U and L are the scales for the horizontal velocity
and length. One then assumes ε� 1 and writes the solution as a perturbation expansion

= ψ(0) + εψ(1) + . . ..

Therefore, mathematically, the problem is to solve the (dimensional) equation:( [ ])
Lψ(1) = −J ψ(0),∇2ψ(0) + ∂z Γ 2∂zψ

(0) , (2.2)

where ( [ ])
L ≡ ∂t ∇2 + ∂z Γ 2∂z + β (cosα∂x + sinα∂y) , (2.3)

and ψ(0) is the leading order solution, chosen to be the superposition of any two free
Rossby modes for a straight coast or a channel:

ψ(0) (0) (0)
= ψ1 + 2∑2
= Ajϕnj (z) [cos (θ1j)− cos (θ2j)] (2.4)

j=1

(0) (0) (0) (0)≡ −11 ψ21 + −12 ψ22 .

In the last expression, we have defined the streamfunctions of the four RWs, two of each
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mode, given by

(0)
ψij = Ajϕnj (z) cos (θij)

≡ Ajϕnj (z) cos (kjx+ lijy − ωjt+ ϑj) , j = 1, 2; i = 1, 2 , (2.5)

where for the jth mode, Aj and ϑj are (real) amplitude and phase, respectively, kj is
the wavenumber parallel to the coast or channel and ωj is the frequency; and lij is the
wavenumber perpendicular to the coast or channel of the ith RW of the jth mode.

Our interest is to study the possibility of having resonant interactions between three
Rossby modes on a coast or channel of arbitrary orientation. Therefore, we ask whether
the forcing of (2.2), ie its RHS, with ψ(0) given by (2.4), could produce a third mode,
namely,

(1)
ψ3 = A3ϕn3(z) [cos (θ13)− cos (θ23)] , (2.6)

which is a solution (or free Rossby mode) in the geometry considered.
Of course, each Rossby mode, including the forced mode, must satisfy the relationships

2ωj l0j + β sinα = 0 (2.7)( )
ω k2 2
j j + l0j +∆2

j + â−2nj + β (kj cosα+ l0j sinα) = 0, (2.8)

or, in compact form, the relation

∆2 β2
( )2

β cosα
j = f −2

nj (kj , ωj) ≡ − ân −j kj + , (2.9)
4ω2

j 2ωj

for j = 1, 2, 3, where ânj is the baroclinic Rossby radius of the nj vertical mode. We
know that the component of the wavenumber vector perpendicular to the wall(s) that
form each of the modes, is determined by

l1j,2j = l0j ±∆j , j = 1, 2, 3, (2.10)

with l0j given by (2.7). In what follows, we will call l1j the incident wave and l2j
the reflected wave of the jth mode [this holds true for all orientations of the straight
coast if ∆j > 0—(see Graef & Magaard 1994)]. Obviously in the case of a channel the
terms incident and reflected make no sense; however, this denomination helps us not to
introduce new terms and clearly does not lead to confusions.

Finally, we note that upon using some trigonometric identities, the streamfunction of
the jth mode [see (2.4)] can be written as

(0)
ψj = −2Ajϕnj (z) sin (kjx+ l0jy − ωjt+ ϑj) sin(∆jy) (2.11)

ie the mode is “sort of” a standing wave in the direction perpendicular to the coast or
channel (y-direction), but still propagating in the (kj , l0j) horizontal direction. Also, for
a channel, it is ∆j = mjπ/W , where mj = 1, 2, 3, . . . and it is easy to see from (2.11)

(0)
that ψj satisfies the boundary condition at y = 0 for the coast, or at y = 0,W for the
channel.

3. Which forcings could produce a third mode?

We know that the nonlinear interaction between two waves produces forcing terms
with the sum and difference of the wave phases, and that to form a mode we need to
have two RWs, of equal wavenumber in the x-direction, same frequency and identical
vertical structure. We will now see which of the forcings (produced by the interaction of
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the waves of the “initial” or primary modes) should we consider to form a third Rossby
mode. For both problems (coast and channel), we will point out the difference between
the zonal and non-zonal orientation.

3.1. Forcings produced by the self-interaction of one or both modes

This case only applies when the geometries are not zonally oriented. First we analyze
the forcings produced by the self interaction of both primary modes. As the forced mode
must be the sum of two RWs of equal frequency and equal wavenumber component in the
x-direction, we obtain that ω3 = 2ω1 = 2ω2, and k3 = 2k1 = 2k2. Therefore, the modes
“initially” considered or primary modes are equal, and this has already been studied by
Graef (1993) for the straight coast and by Garćıa & Graef (1998) for the channel.

Now we analyze the case in which one of the forcings is produced by the self-interaction
of one mode, and the other forcing is produced by the interaction of one of the RWs of
one mode with one of the RWs of the other mode. In such situation we get}

ω3 = 2ω1 = ω1 ± ω2 =⇒ ω2 = ±ω1 , (3.1)
k3 = 2k1 = k1 ± k2 =⇒ k2 = ±k1 ,

where the ± sign indicates the sum or difference of the wave phases in the forcing terms
produced by the interacting waves. Again the primary modes match, and we are in the
previous case. Another possibility from (3.1) arises if we exchange ω1 and ω2, so that we
consider the self-interaction of mode 2. In such case }

ω3 = 2ω2 = ω1 ± ω2 =⇒ ω1 = 3ω2 , (3.2)
k3 = 2k2 = k1 ± k2 =⇒ k1 = 3k2 ,

where we chose the waves’ phase difference, otherwise we are in the case in which
the primary modes match. Let’s call ω2 = ω, then ω1 = 3ω and ω3 = 2ω. Then the
wavenumbers perpendicular to the coast or channel of mode 3 are: }

l13 = l12 + l22 = 2l02 (self-interaction of mode 2)
(3.3)

l23 = l11 − l12 .

If it is a mode, necessarily l13 + l23 = 2l03 = −β sinα/(2ω) = l02, since ω3 = 2ω [in fact
from (2.7) it follows that 3l01 = l02 = 2l03]. Thus l23 = −l02, which in combination with
the second equation of (3.3) yields l01 = ∆2−∆1, upon using (2.10). Also l13−l23 = 2∆3 =
3l02. Thus, between the variables ∆j , only one is independent, say ∆2. Therefore, for this
particular case in which the frequencies are multiples of ω, we have three equations, one
for each mode, ie (2.9) for j = 1, 2, 3, and three unknowns: ω, k and ∆2. If there is a
solution for the coast, it is unique (there are no degrees of freedom). For the channel, since
∆j = mjπ/W must be prescribed, there are two unknowns, the system is incompatible,
and there are no solutions. We will not consider this particular case in any further analysis
in what follows in this paper. Note, however, that only three RWs participate in exciting,
in principle, a third mode.

Thus, it follows from the above considerations that: For a channel, a third Rossby
mode can never be excited if we consider the forcing produced by the self-interaction of
anyone of the Rossby modes.

3.2. Forcings produced by the interaction of the four RWs

Let us take, without loss of generality, the forcing produced by the interaction of the
incident waves of each mode and the forcing produced by the interaction of the reflected
waves of each one. Thus, the four waves, two of each mode, participate in the formation
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of a third mode, whose wave parameters are given by 
ω3 = ω1 ± ω2 
k3 = k1 ± k2 (3.4)
l13 = l11 ± l12 
l23 = l21 ± l22 .

The sum of the last two relations of (3.4) establishes that

l03 = l01 ± l02, (3.5)

which is trivially satisfied if the coast or channel is zonal (sinα = 0). On the other hand,
if the coast or channel are not zonally oriented, (3.5) yields, upon substituting (2.7):

(ω2 ± ω1) (ω1 ± ω2)− ω1ω2 = 0, (3.6)

which is satisfied only if (1 √ )
ω2 = −1± i 3 ω1, (3.7)

2
if the sum of the phases is considered; or(1 √ )

ω2 = 1± i 3 ω1, (3.8)
2

if the difference of the phases is considered (in these solutions for ω2, the ± refers
obviously to the two roots). From (3.7) or (3.8), product of the sum or difference of
the wave phases, one can see that if the frequency of one of the modes is real (as it
must be), the frequency of the other is complex, which does not constitute a free Rossby
mode. The case ω1 = ω2 = 0 is not possible because we are in the non-zonal orientation
sinα = 0, in which stationary currents cannot be solutions of the QGPVE without an
external forcing.

Therefore, for a non-zonally oriented coast or channel, the forcings produced by the
interaction between the four RWs of the primary modes can never excite a third mode.

3.2.1. Zonal case

We already saw that the sum l13 + l23 from (3.4) is trivially satisfied if the coast or
channel is zonal. However the difference l13−l23 yields ∆3 = ∆1±∆2, which means that a
new horizontal structure is produced by the resonant interactions, ie there is “barotropic
transfer”. Therefore, for the zonal case, the kinematic conditions that must be satisfied
for resonance to occur between three Rossby modes are:( ) 

ωj k2j +∆2
j + â−2 

nj + βkj = 0 , j = 1, 2, 3 
ω3 = ω1 ± ω2 (3.9)
k 
3 = k1 ± k2 

∆3 = ∆1 ±∆2

These conditions are identical to those posed by Longuet-Higgins & Gill (1967) in their
study on resonant interactions between barotropic planetary waves. However, our case is
a generalization of that work, since here we consider a continuously stratified ocean and
the coupling between the vertical structure of the modes. Incidentally, we should mention
the work by Vanneste (1995), who treated the nonlinear interaction among normal modes
in a multilayer QG (zonal) channel.

In general, there are six equations and twelve variables: ωj , kj , ∆j and nj . The last
three (the nj) must be specified, and therefore we end up with a system with three degrees
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of freedom. It is convenient to note that the variables that define the third Rossby mode,
except for its vertical structure n3, may not be taken into account to determine the
degrees of freedom of the resonance conditions. In such case the last three relations of
(3.9) are eliminated, to obtain the system( ) 

ω1 (k21 +∆2 a−21 + n1 )+ βk1 = 0 [ ω k2 +∆2] −2
2 2 2 + an2

+ βk2 = 0 (3.10)
2 2

(ω1 ± ω2) (k −2 
1 ± k2) + (∆1 ±∆2) + an + β (k1 ±3

k2) = 0 . 
Now we have three equations and nine unknowns, but when we specify the discrete
variables nj , we get a system with three degrees of freedom.

For a channel of constant width W , however, the variables ∆1 = m1π/W and ∆2 =
m2π/W need to be specified. Thus, the system (3.10) has only one degree of freedom.
This case is similar to the study of Plumb (1977).

Finally, we note the following fact. In the zonal case, and this is true for the coast or
channel, if the nonlinear interaction between one RW of mode 1 and one RW of mode

(0) (0) (0)
2 excites a free RW, ie if for example {ψ11 , ψ12 , ψ }13 form a resonant triad, then it
follows that the interaction between the other RW of mode 1 and the other RW of

(0) (0) (0)
mode 2, also forces another free RW, ie {ψ21 , ψ22 , ψ }23 also form a resonant triad; and
further, these two new waves form a third mode. In other words, the forcing of a third
mode occurs automatically. This does not happen in the non-zonal case. Therefore, the
zonal orientation is less restrictive to find resonance among modes.

3.3. Forcings produced by the interaction of three RWs

Let us now consider the forcing that is produced by the interaction of one of the RWs
of one mode with the two RWs of the other mode. In that case, without loss of generality,
we have 

ω3 = ω1 ± ω2 
k3 = k1 ± k2 (3.11)
l13 = l11 ± l12 
l23 = l11 ± l22

The sum of the last two relations of (3.11) yields

l03 = l11 ± l02 (3.12)

= l01 +∆1 ± l02 , (3.13)

which in terms of the frequencies, ie using (2.7), is( )
±ω2

3 − ω1ω2
∆1 = β sinα . (3.14)

2ω1ω2ω3

Equation (3.14) that relates ω1, ω2 and ∆1, is additional to the three equations (one
for each Rossby mode), and distinguishes the non-zonal case from the zonal case. It also
reduces the degrees of freedom.

If the coast or channel is zonally oriented, from (3.14) it follows that ∆1 = 0, but
this implies that l11 = l21 = 0, ie only one RW with the group velocity parallel to the
coast and whose solution is ∼ y cos(kx − ωt), physically there is no reflection; and for
the channel it means that there is no mode 1 (see Graef 2017). Thus, the interaction of
three RWs cannot produce a third mode in the zonal case.

On the other hand, the difference of the last two relations of (3.11) yields

l13 − l23 = ± (l12 − l22) =⇒ ∆3 = ±∆2 . (3.15)



10 F. Graef and R. Garćıa

Therefore, the horizontal structure of the “standing” part of the forced mode is identical
to that of the mode whose two RWs participate in the interaction (mode 2 in this case).
Resonant interactions do not produce new horizontal structure in the non-zonal case.

From the results obtained above it follows that:
(i)If the coast or channel is zonally oriented, we need the participation or interaction
of the four RWs, two of each mode, to excite a third Rossby mode that can resonantly
interact with the modes that originate it.

(ii)If the coast or channel is not zonally oriented, only three waves (of the four RWs) can
participate in exciting, in principle, a third mode that can resonantly interact with the
modes that originate it.

(iii)Only in the zonal case a new horizontal structure is created, ie there is “barotropic
transfer”.

In the non-zonal case, the kinematic conditions for resonance to occur between three
Rossby modes can be written as:( )2

β cosα β2

k1 + +∆2
1 − + â−2 0

2ω 2
1 4 n1

= (3.16)
ω( ) 1

2
β cosα β2

k2 + +∆2 − + â−2
2ω 2 4ω2 n2

= 0 (3.17)[ ] 2 2
2

β cosα 2

(k1 ± k 2 β −2
2) + +∆ − + a = 0 (3.18)

2 (ω1 ± ω ) 2 2 n3
2 4 (ω1 ± ω2)[ ]2

2
(ω1 ± ω2) ∓ ω1ω2

∆2
1 − β2 sin2 α = 0 (3.19)

4ω2 2 2±1ω2 (ω1 ω2)

Thus, unlike the zonal case, in the non-zonal case we have a system with nine unknowns:
k1, k2, ∆1, ∆2, n1, n2, n3, ω1, and ω2, but four equations. Once we specify the nj , we have
a system with two degrees of freedom. For a channel of width W , where ∆1 = m1π/W
and ∆2 = m2π/W need to be specified, the system (3.16)–(3.19) is compatible and
determined; that is to say, there are no degrees of freedom. If a solution exists, it is
unique.

The solutions of (3.16)–(3.19), for both geometries, will be discussed in the next two
sections.

4. Resonant interactions of Rossby modes in a straight coast

We will only treat the non-zonal orientation since, as discussed before, the case of a
zonal coast is identical to the work done by Longuet-Higgins & Gill (1967). The resonant
conditions (3.16)–(3.19) can be rewritten as:

∆2
1 = fn1 (k1, ω1) (4.1)

∆2
2 = fn2 (k2, ω2) (4.2)

∆2
2 = fn3 (k1 ± k2, ω1 ± ω2) (4.3)

∆2
1 = g (ω1, ω2) , (4.4)

where

β2 β cosα
f −2
n (k, ω) ≡ − â − k +

4ω2 n (4.5)
2ω

( )2
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and [ ]2
2

(ω1 ± ω2) ∓ ω1ω2

g (ω1, ω2) ≡ β2 sin2 α . (4.6)2
4ω2

1ω
2
2 (ω1 ± ω2)

Equating (4.1) and (4.4) to eliminate ∆1, we get a quadratic in k1:

4ω2ω2ω2k2 + 4ω ω2ω2β (cosα) k + ω4 2
1 2 3 1 1 2 3 1 3β sin2 α+ ω2ω

2
3×[ ]

4ω2
1ω2â

−2
n −1

(ω2 ± 2ω )β2 sin2 α + ω2 2
1ω

2
1 2β sin2 α = 0 , (4.7)

where the variable ω3 has been left in (4.7) for simplicity. Solving for k1, after substituting
ω3 by ω1 ± ω2, and some algebra and simplifications, we obtain[ ( ) ]1/2

β 2
(1,2) cosα 1 sin
k − ± 2 cos2 α sin α 2

− − − β2
2 α−1 = β 4â

2ω 2 n1
. (4.8)2

1 ω1 ω2 (ω1 ± ω 2
2 2)

(1) (2)
Thus, there are two roots or solutions: k1 and k1 , corresponding to the + and − in
front of 1 [. . .]1/2, respectively, for the phase sum (ω1 + ω2), or for the phase difference2
(ω1−ω2). We could not find a condition that only involves the coast orientation α to have
(1,2)
k1 real. However, it is easy to see that there are no real solutions for a meridional coast
(α = π/2). The real solutions are restricted to more zonally oriented coasts. We need
real wavenumbers parallel to the coast, otherwise, the solution blows up as x −→ ±∞.

(1,2)
A necessary condition to have k1 real is:[ 2

(1 r)2 r2
]1/±| sinα| 6 (4.9)

(1 + r2)(1± r)2 + r2

where r = ω2/ω1 = T1/T2 and T1 = 2π/ω1, T2 = 2π/ω2 are the primary modes’ periods.
This condition is in terms of | sinα| as in previous works (Graef 1993; Garćıa & Graef
1998), and one can easily see special cases. For example, if r = 1 (initial modes have
equal frequency) it reduces to | sinα| 6 2/3 [see (4.11) below] and if r = 2 (ie ω2 = 2ω1)
| sinα| 6 6/7.

Figure 2 shows the function X±(r, α) = | sinα|2 − (1± r)2 r2/[(1 + r2)(1± r)2 + r2] in
which the yellow regions are prohibited (X± > 0); note the region around a meridional

(1,2)
coast (α = 90◦). If k1 are real then r and α must be in the green and blue regions
where X± < 0. Large values of r or T1 � T2 favour real solutions for more meridionally
oriented coasts [α ∈ (70, 85) or α ∈ (95, 110) degrees].

To complete the story, however, we still need to calculate the wavenumber k2 of the
second mode. This is accomplished by equating (4.2) and (4.3) to eliminate ∆2, but this
time the term k22 drops out, and we get a linear equation in k2:( )

β cosα β cosα β2 sin2 [ ]
α 1 1±2k1 ± − k2 = − +

ω1 ± ω ω2 4 (ω1 ω2)22 ± ω2
2

â−2
β cosα

n − â−2n −3
k21 −2

k1 . (4.10)
ω1 ± ω2

(1,2) (1,2)
From (4.10) we can easily solve for k2 and substitute the roots k1 to obtain k2 for
either the sum or phase difference. It is worth remarking that both (4.8) and (4.10) are
necessary conditions to have solutions of the system (4.1)–(4.4). That is, with the roots
(1,2) (1,2)
k1 we have to go back to (4.1) to calculate ∆2

1; similarly with k2 we go back to
(4.2) or (4.3) to calculate ∆2

2. Thus, the whole solution is obtained.
In the previous section, we showed that we have two degrees of freedom in this problem.
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Figure 2. The function X±(r, α), where r = ω2/ω1 and α is the angle between the eastern
(1,2)

direction and the coast (in degrees). If k1 are real, then r and α must be in the green and
(1,2)

blue regions X± < 0. Yellow regions have X± > 0, for which k1 are complex. Left panel is
X+; right panel is X−.

Given the frequencies of the primary modes ω1 and ω2, we can get the wavenumbers along
(1,2) (1,2)

the coast of the first mode k1 and second mode k2 , for either the sum or phase
(1,2)

difference of the interacting RWs. Thus, for each ω1 and ω2, there are two solutions k1p
(1,2)

for the phase sum and two solutions k1m for the phase difference.
(1,2)

In figure 3 we show the real solutions k1p,m as a function of the modes’ periods T1
and T2 for values appropriate for the Hawaiian Ridge: reference latitude φ0 = 21◦ and
α = 25◦; we choose a first baroclinic mode n1 = 1 for Rossby mode 1. Note that the
(T1,T2) space of real solutions is more restrictive (T1 > T2) for the phase difference than
for the phase sum. Due to (4.10), if k1 is complex, then k2 is complex. Thus the white
regions of figure 3 will be exactly the same for the wavenumber k2 of the second mode.

To give an idea of the Rossby waves of each mode of the resonant triad, we calculate
their wavelengths as a function of T1 and T2 for values of the Hawaiian Ridge and vertical
mode numbers n1 = 1, n2 = 1 and n3 = 2 (see figures 4, 5, 6 and 7). A few notes about
these four figures are in order. First, the allowed (T1,T2) space is reduced further for
the wavelengths (as compared to the one for k1 of figure 3) because we only permit
solutions that yield real wavenumber components perpendicular to the coast (otherwise
the solution blows up as y −→ ∞). That is, the fact that the k’s are real does not
guarantee that the l’s are real, so when calculating the l’s, we must require ∆2

2 > 0 [see
(2.9) and (2.10)]; note that ∆2

1 > 0 by (4.4) and (4.6) and we have ∆2
3 = ∆2

2. Therefore,
the approach to correctly understand figures 4–7 is to choose the periods (T1, T2) such
that they fall on coloured regions in all 6 panels of each figure. Figures 4 and 5 show the
wavelengths of the incident and reflected RW of the three modes corresponding to the

(1) (1)
solution k1p and k1m, respectively. For the phase sum ω1 + ω2 (figure 4), the range of
wavelengths for the first mode is . 1000 km for the incident RW (note the white wedge
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(1,2)
Figure 3. The solutions for the wavenumbers k1 from (4.8) as a function of the mode periods
T1 and T2 in years. Upper (lower) panels correspond to the phase sum (difference), left (right)

(1) (2)
panels are k1 (k1 ). The white regions yield complex solutions. Reference latitude φ0 = 21◦,
α = 25◦, which are values appropriate for the Hawaiian Ridge; n1 = 1.

in modes 2 and 3) and . 50 for the reflected RW; for the second mode the range is
[100,240] km and [20,120] km, respectively; and for the third mode it is [100,1400] km
and [. 50,200] km, respectively. Note, though, that in general the space for the larger
wavelengths is squeezed in a very small region. For the phase difference ω1 − ω2 (figure
5), the range of wavelenghts is: . 1000 (note the small white wedge in modes 2 and 3 for
very small T2) and [. 20,100]; [. 50,200] and [20,140]; and [. 100,2000] and [. 20,120],
for the incident and reflected and for modes 1, 2 and 3, respectively.

(2) (2)
Figures 6 and 7 show the wavelengths corresponding to the solution k1p and k1m,

respectively. It is noteworthy the dramatic reduction in allowable (T1,T2) space for the
solution superscript (2). This is mainly due to the fact that for western coasts facing

(2) (1)
north, such as the Hawaiian Ridge, α ∈ (0, 90) degrees, cosα > 0 and |k |1 > |k |1

(2) (1)
[see (4.8)], so that in general |k |2 > |k | 2

2 , making ∆2 negative in a much larger region
of the (T1,T2) space, thus reducing the space for real l’s. The real solutions for both k
and l lie only within the very tiny region (resembling a slice of a pie), with T2 > T1 for

(2) (2)
solution k1p and T1 > T2 for k1m. In both figures all the wavelengths are small: they
range approximately between 20 and 200 km.

We produced figures 4–7 for a reference latitude φ0 = 21◦ and a coastal orientation
α = 25◦, which are values appropriate for the Hawaiian Ridge. We conclude that, in this
case, the nonlinear interaction between two n1 = 1 (first-mode baroclinic) annual Rossby
modes cannot excite a semi-annual n3 = 2 Rossby mode. However, if instead, we consider
that the third or excited mode is barotropic with a free surface n3 = 0 (depth H = 4000
m), then those annual modes can resonantly interact to force a semi-annual mode (not
shown here).
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Figure 4. Wavelengths (in km) of the incident (left panels) and reflected (right panels) Rossby
waves of mode 1 (upper panels), mode 2 (middle panels) and mode 3 (lower panels) corresponding

(1)
to the solution k1p as a function of the mode periods T1 and T2 in years. φ0 and α appropriate
for the Hawaiian Ridge and the vertical mode numbers are n1 = 1, n2 = 1, n3 = 2.

A general characteristic emerges by looking at different coastal orientations: the (T1,T2)
space of real solutions is smaller for the phase difference than for the phase sum.

4.1. Modes of equal frequency

If the initial modes have equal frequencies, the number of variables is reduced by one
(from 6 to 5), but the number of equations remains the same (4). There is still one degree
of freedom, and we can exploit it to examine the possibilities to find resonance easily. This
case is compelling because of its similarity to resonance occurring in the self-interaction
of a Rossby mode (Graef 1993).
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(1)
Figure 5. As in figure 4, but for the solution k1m.

For ω1 = ω2 = ω, the solution (4.8), which only makes sense for the sum of the phases,
is given by [ 1/2

(1,2) β cosα 2
( ) ]

β 9
k1 = − ± 1− sin2 α − â−2

2ω 4ω2 4 n1
. (4.11)

(1,2)
It is obvious that to have k1 real it is necessary that | sinα| 6 2/3. Again, the
orientation of the coast or wall imposes a restriction for resonance to occur. We note
that this value (of | sinα|) is twice that obtained by Graef (1993) when considering the
self-interaction of a Rossby mode in a coast.

As can be observed from figure 4, there are solutions for T1 = T2 (ie ω1 = ω2) because
a good part of the diagonal straight line lies within the coloured regions of all panels.
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(2)
Figure 6. As in figure 4, but for the solution k1p .

But there are no solutions ω1 = ω2 for figure 6, since the diagonal is outside the coloured
regions for modes 2 and 3.

5. Resonant interactions of Rossby modes in a channel

In a channel, we already showed that there are no degrees of freedom. Once the
5 discrete variables (ie the three vertical mode numbers nj , j = 1, 2, 3 and the two
horizontal mode numbers m1 and m2) are specified, the kinematic conditions (3.16)–
(3.19) or (4.1)–(4.4) form a closed system for the four unknowns: ω1, ω2, k1 and k2. If
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(2)
Figure 7. As in figure 4, but for the solution k1m.

a solution exists, it is unique. The presence of a second boundary, as compared to the
straight coast case (only one boundary), makes it a much more restrictive problem.

We tried but did not succeed in arriving at a single equation for any one of the
four unknowns. However, using the solutions for the straight coast (4.8) and (4.10),
we developed the following graphical method to seek for solutions:

(1)First, we give the mode number m1 (ie ∆1) and ω1. Then from (4.4) we solve for ω2,
yielding: ( )−1

±ω2 1 2∆1
2 + ω1ω2 ± ω1 − = 0 , (5.1)

ω1 β sinα
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whose solution is [ ]1/2
ω1 ω2

( )−1
ω2 = ∓ ± 1 1 2∆1− ω1 − (5.2)

2 4 ω1 β sinα

in which, as usual, the ∓ in front of ω1/2 corresponds to the RWs’ phase sum (upper sign)
and difference (lower sign), and the ± in front of the square root refers to the roots of ω2.
A necessary and sufficient condition to have the frequency ω2 real is 2∆1ω1 > β sinα,
ie T1 < 4π∆1/(β sinα). This condition [which could be derived by noting that for a
non-zonal channel, α ∈ (0, π) covers all possible orientations so that sinα > 0] imposes
a restriction on large periods for the first mode, but at the same time from the Rossby
mode dispersion relation, equations (4.1) and (4.5), we need to have β > 2ω1∆1 or
T1 > 4π∆1/β. The conditions are opposed, showing us how restrictive it would be to
find real solutions.
Now, using (4.8), upon substituting (5.2), we draw the curves k1 = F(ω1) [there will be

(1,2)
four curves corresponding to the two roots k1 and the two roots of (5.2) for the phase
sum, and other four curves for the phase difference, eight curves total].
(2)From (4.10) we have k2 as a function of k1. Draw the curve k2 = G(k1) = G[F(ω1)], ie
k2 as a function of ω1 only.
(3)Now k2 of step 2, for it to be a solution, must also satisfy (4.2) or (3.17), which is the
equation for mode 2, quadratic in k2. That is, given m2 (ie ∆2) and substituting ω2 from
(5.2) of step 1 into (3.17), we could draw the curve fn2

(k2, ω2) = ∆2
2 of this mode for

each ω1.
(4)The intersections of the curves of step 2 and step 3, if there are, are the solutions for
k2 (it could be for more than one frequency ω1 if there is more than one intersection).
(5)The solutions for k1 would correspond to the same abscissas ω1 at which the curves
for k2 intersect, but on the curve of step 1: k1 = F(ω1).

In figures 8, 9 and 10 we show an example of the graphical method just described,
where we have chosen the period of the first mode T1 as the independent variable instead
of the frequency ω ◦

1. The chosen parameters are: φ0 = 20 , α = 15◦, channel width
W = 500 km, horizontal mode numbers m1 = 2, m2 = 1 (recall m3 = ±m2) and vertical
mode numbers nj = (0, 0, 0), ie a fully barotropic case with a free surface and a depth
H = 4000 m. Figure 8 shows solution (5.2) in terms of the periods, ie T2 as a function of
T1. There are four curves, two in each panel, which correspond to the positive (blue) and
negative (red) root of ω2 (or T2). The upper (lower) panel refers to the RWs’ phase sum
(difference). Note that, for the chosen parameters, T1 cannot be larger than 0.9 years
[recall the restriction 4π∆1/β < T1 < 4π∆1/(β sinα)].

As regards to the solution of the resonance conditions, we observe that for the phase
sum (figure 9), there is only one solution, since the k2-curves of steps 2 and 3 (blue and
red, respectively) intersect in one panel only (upper left). Such solution corresponds to

(1) (1)
the along channel wavenumbers k1p1 of mode 1 and k2p1 of mode 2, where the additional
subscript (1 or 2) in k1 and k2 refers to the (+ or −) root of ω2 in (5.2).

On the other hand, for the phase difference (figure 10), there are three solutions, since
the k2-curves of steps 2 and 3 (blue and red, respectively) intersect in three panels (upper

(1) (1) (2) (2)
left, upper right and lower right), corresponding to solutions (k1m1, k2m1), (k1m1, k2m1)

(2) (2)
and (k1m2, k2m2), respectively. However, the solutions of the upper and lower right panels
represent the same Rossby modes (same mode parameters), but with mode 2 in one panel
being mode 3 in the other panel, and vice versa. This can be seen by realizing that the
solutions of these panels have identical T1 (the blue and red curves intersect at the same
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Figure 8. Periods T2 of the second mode as a function of T1 (years) from solution (5.2).
φ0 = 20◦, α = 15◦, channel width W = 500 km, horizontal mode number m1 = 2 and vertical
mode number n1 = 0 (free surface, depth H = 4000 m). Upper (lower) panel for the phase sum
(difference). Blue (red) curve refers to the positive (negative) root of ω2.

abscissa) and identical k1, so both solutions have equal first mode parameters. Also, the
(2) (2)

solution of the upper right panel (k1m1, k ≈ − −1
2m1) has m2 = 1, k2 0.02 km from the

graph, m3 = −1 (recall ∆3 = −∆2 for the phase difference) and k3 = k1 − k2 ≈ 0;
whereas the solution of the lower right panel has m2 = −1, k2 ≈ 0, m3 = 1 and k3 =
k1 − k2 ≈ −0.02 km−1. Thus, mode 2 of the upper right panel is mode 3 of the lower
right panel and vice versa; they are symmetric solutions with respect to modes 2 and 3.

Curiously enough, the only solution of the phase sum (upper left panel of figure 9) and
the solution of the phase difference corresponding to the upper left panel of figure 10,
also represent the same Rossby modes, but with the parameters of mode 2 in one panel
(or solution) being equal to minus the parameters of mode 3 in the other panel, and vice
versa. We call these anti-symmetric solutions concerning modes 2 and 3. We explain. One
solution is phase sum (subscript p) and the other is phase difference (subscriptm), thus we
have k2p = −k3m, ω2p = −ω3m and l12,22 = −l13,23. Now, if one computes the eastward
phase speed CE = ω/kE of the RWs of each mode (2 and 3), where kE = k cosα+ l sinα
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Figure 9. Along channel wavenumbers [km−1] k1 (black) from step 1 and k2 from steps 2 (blue)
and 3 (red) of the graphical method (see text) as a function of T1 (years). Upper left panel is
(1)
k1p1, where the additional subscript (1 or 2) in k1 refers to the (+ or -) root of ω2 in (5.2),
obtained from (4.8) and (5.2), and the corresponding k2 from (4.10) (blue) and from (3.17)

(2) (1) (2)
(red). Upper right panel is for k1p1 and lower left (right) panel is for k1p2 (k1p2). If the blue and
red curves intersect (step 4), there is a real solution (as in the upper left panel). Parameters as
in figure 8, with n1 = 0, n2 = 0, n3 = 0 (free surface, H = 4000 m) and m1 = 2, m2 = 1.

is the eastward wavenumber, the result is that the CE of mode 2 of the solution p are
equal to the CE of mode 3 of the solution m and vice versa, and negative, ie all RWs have
westward phase speed, as it should be. Thus, the anti-symmetric solutions with identical
Rossby mode 1 and Rossby modes 2 and 3 exchanged have one of the modes (2 or 3)
with the slowness circle on the kE < 0 space (if the frequency is positive) and the other
mode (3 or 2) on the kE > 0 space (if the frequency is negative).

The graphical method of searching for the intersections of the k2-curves of steps 2 and
3 (ie a change of sign of the difference between the k2-curves) proved efficient in finding
the solutions numerically. By choosing a sufficiently small time step of 10−5 year for the
period T1, we achieved numerical errors in the solutions for modes 1 and 2 of O(10−18)
and mode 3 of O(10−10). The solution corresponding to the upper left panel of figure 9
is: (T1, T

−1
2, T3) = (0.67, 0.52, 0.29) years, (k1, k2, k3) = (−0.0010, 0.0002,−0.0008) km

and the wavelengths are: (1894,286) km, (6254,464) km and (2713,604) km for modes 1,
2 and 3, respectively. And the solution corresponding to the lower right panel of figure
10 is: (T1, T2, T3) = (0.26,−0.84, 0.200) years, (k1, k2, k3) = (−0.0203,−0.0011,−0.0192)
and the wavelengths are: (283,242) km, (349,1139) km and (296,322) km for modes 1, 2
and 3, respectively.
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(1) (2)
Figure 10. As in figure 9, but for the phase difference, ie k1m1 and k1m1 for the upper left and

(1) (2)
right panel, respectively, and k1m2 and k1m2 for the lower left and right panel, respectively. Note
that the blue and red curves intersect in the upper left, upper right and lower right panels, so
there are real solutions.

If we just change the inclination of the channel to α = 5◦, ie a more zonally oriented
channel, and leave the rest of the input parameters used in figures 8, 9 and 10 unchanged,
we get intersections (solutions) in the same four panels. However, the periods are larger
than the case α = 15◦, but the wavelengths are similar.

As a possible oceanographic application, we searched for solutions in four channels
with parameters resembling the Mozambique Channel (φ0 = 19.5◦S, α = 115◦, W = 750
km, H = 3292 m), the Tasman Sea (φ0 = 38◦S, α = 110.5◦, W = 1750 km, H = 2500
m), the Denmark Strait (φ0 = 67◦N, α = 146.5◦, W = 300 km, H = 400 m) and
the English Channel (φ0 = 49◦N, α = 157◦, W = 150 km, H = 63 m) (Graef 2017)
and for the vertical and horizontal mode numbers used to produce figures 8, 9 and
10, namely nj = (0, 0, 0) (all three modes barotropic, free surface) and m1 = 2, m2 = 1.
There were no (real) solutions for the Mozambique Channel and the Tasman Sea because
these channels are too inclined with respect to the eastern direction. However we found
solutions for the Denmark Strait and the English Channel. Again there were four solutions
(two and their mirror or symmetric or anti-symmetric solution with identical Rossby
mode 1 and Rossby modes 2 and 3 exchanged) in each case, although the intersections of

(2) (2) (1)
the curves (solutions) were for k1p1 and its mirror or anti-symmetric k1m1, and for k1m1

(1)
and its mirror or symmetric k1m2 (ie in different panels than in figures 9 and 10). The
Rossby mode periods for the Denmark Strait are between 0.54 and 1.30 years, and the

(2)
wavelengths between 167 and 2724 km. The second mode period of solution for k1p1 is
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1.00 year with wavelengths of 273 and 2724 km, which is also the period and wavelengths
(2)

of the third mode of the solution k1m1. Thus, if barotropic Rossby modes get excited
in the Strait, out of all possible nonlinear interactions among them, the annual Rossby
mode m2 = 1 would have a larger amplitude since it is in resonance with two other
modes of periods 0.56 and 1.24 years. The periods range between 0.79 and 2.47 years for
the English Channel, and the wavelengths range between 79 and 1696 km.

After obtaining solutions for other parameters, in particular for various α’s, ie, for a
diversity of channel orientations, the following picture emerges:
•There were always four solutions: one for the RWs’ phase sum and three for the

RWs’ phase difference. The solutions came in pairs: a solution and its anti-symmetric or
symmetric companion.
•The solution and its anti-symmetric or symmetric companion always correspond to

(1) (2)
the same root of k1, either k1 or k1 . They represent the same Rossby modes, but with
modes 2 and 3 exchanged.
•The anti-symmetric solution arises from solutions corresponding to the RWs’ phase

sum and phase difference, ie k1p and k1m.
•The last two characteristics of the solutions are because ∆3 = ±∆2, which is a

consequence of the non-zonal orientation and our choice that wave 1 of mode 1 (ie l11)
be the one that interacts with the two waves of mode 2 to produce a third channel mode.
Had we chosen that the single wave is one of mode 2, then ∆3 = ±∆1, and the solution
pair would come with modes 1 and 3 exchanged.

Therefore, we have found real solutions of the resonance conditions for three Rossby
modes in a non-zonal channel, for both the RWs’ phase sum or difference. Because of
the symmetric solutions, we could say that there are only two independent solutions for
the waves’ phase difference. However, we must realize that even though the symmetric
solutions represent the same channel Rossby modes (with modes 2 and 3 exchanged), the
amplitudes of modes 2 and 3 are different if we calculate the resonant solutions of the
QGPVE at O(ε).

Finally, we note that in a non-zonal channel, the interaction of two Rossby modes
of equal frequency can never excite a third Rossby mode. This is simply because when
two unknowns of the system (3.16)–(3.19) or (4.1)–(4.4) are made equal, the number of
unknowns is reduced by one (from 4 to 3), but the number of equations remains the same
(4). For instance, if ω1 = ω2 = ω, the solution of (5.1) for ω = 0 is ω = 3β sinα/(4∆1),

(1,2)
which can be plugged into (4.11) to get k1 = F (∆1). Up to here, (3.16) and (3.19)
would be satisfied, but we are left with two equations, (3.17) and (3.18), and only one
remaining unknown k2. Now since ∆2 is given (by virtue of having to specify m2),
k2 = G(∆2, ∆1) could be computed from (3.17), but this k2 will not satisfy in general
(3.18). Thus, it is generally impossible to satisfy the resonance conditions.

The last result that there is no resonance between three channel modes if two of them
have equal frequencies has the following implication. The self-interaction of a gulf Rossby
mode (which is the superposition of two channel modes of equal frequency and vertical
mode number) can never excite a third channel mode. Also, it corroborates one result
obtained by Garćıa & Graef (1998).

6. Solution in the resonant case

In this section, we show the solution for the resonant forcings, based upon the works
of Graef (1993), Garćıa & Graef (1998), and Graef (2017).

The streamfunctions of the three RWs of the initial modes 1 and 2 that nonlinearly
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interact in exciting the third mode, for both the straight coast and the channel in the
non-zonal case, are, upon dropping the superscript (0) for simplicity:

ψ11 = A1ϕn1
(z) cos θ11 and ψi2 = A2ϕn2

(z) cos θi2 , i = 1, 2 , (6.1)

where recall that θij = kjx+ lijy−ωjt+ϑj , j = 1, 2, 3. The difference between the coast
and the channel is that in the latter, ∆1 and ∆2 are fixed, ie, wavenumbers perpendicular
to the channel take on discrete values. Therefore the resonant forcings are:

Fres = J (ψ11, q12) + J (ψ{ 12, q11)− J (ψ11, q22)− J (ψ22, q11)

= −ϕn1
(z)ϕn2

(z) B112 [cos (θ11 − θ12)− cos (θ11 + θ12)]−}
B122 [cos (θ11 − θ22)− cos (θ11 + θ22)] , (6.2)[ ]

where qij ≡ ∇2 + ∂ 2
z(Γ ∂z) ψij , the minus sign in the last two Jacobians is due to the

minus sign of RW 2 of mode 2: ψ2 = ψ12 − ψ22, and the coupling coefficients are, for
i = 1, 2:

1 ( )
B1i2 = A1A2 k22 + l2i2 + â−2n −2

k2 2
1 − l11 − â−22 n1

(k1li2 − k2l11) . (6.3)

We studied both possibilities: (i) the forced mode corresponding to the phase sum of the
RWs, ie ∼ cos(θ11 + θ12) and ∼ cos(θ11 + θ22); and (ii) the forced mode corresponding
to the phase difference of the RWs, ie ∼ cos(θ11 − θ12) and ∼ cos(θ11 − θ22). Note that
unless l12 = l22, which implies that ∆2 = 0, the coefficients of the forced RWs of mode
3 are different. But ∆2 = 0 means that there is no reflection or the group velocity of the
single RW in this case is parallel to the coast, and there is no mode 2 for the channel
(see Graef 2017).

6.1. The straight coast

Taking here the barotropic case for simplicity, we need a solution for

Lψ(1) = −B112 cos(θ11 + θ12) = −B112 cos θ13 , (6.4)( )
where L is given by (2.3), but replacing the operator ∂ 2 y 2

z Γ ∂z b −â−0 (where â0 is
the barotropic Rossby radius).

Following Graef (2017), we put the ansatz ψ(1) = G1(y) cos θ13 in (6.4) and since
ω3 = σ0(k3, l13), where σ0(k, l) ≡ −β(k cosα+l sinα)/(k2+l2+â−20 ) is the RW dispersion
relation, ie the forcing is resonant (a free RW), we end up with:

−B112 y
(2ω3l13 + β sinα)G′1 = −B112 =⇒ G1(y) = , (6.5)

2ω3l13 + β sinα

ie the particular solution grows linearly in the offshore coordinate. Note tha
α = 0 because we precisely require that ∆3 = 0, ie th
l13 = l23. In an identical way, the solution for the oth
nal to cos(θ11 + θ22) is:

t the denom-
inator 2ω3l13 + β sin at the forced
mode be a mode or er forced RW
of mode 3 proportio

B122 y
G2(y) = . (6.6)

2ω3l23 + β sinα

The solution for the forced mode ψ(1) = G1(y) cos θ13 +G2(y) cos θ23 obviously satisfies
the boundary condition at the coast. An analogous procedure can be done for the RWs
of the forced mode corresponding to the phase difference.

Therefore, the solution for forced mode 3 is unbounded, and we reject it on physical
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grounds. To obtain uniformly valid solutions, we need to invoke the method of multiple
scales, as was done in Graef (1993) for the resonant case of the self-interaction of a single
mode.

6.1.1. Multiple scales

The main idea behind multiple scales is that the mode amplitudes are slowly varying
functions of the offshore coordinate y, namely Y1 = εy. Generalizing the work by Graef
(1993), the leading order solution is written as a superposition of the three modes
participating in the resonant triad, allowing their otherwise constant amplitudes to be
functions of Y1, ie

ψ = ϕn1(z) [A11(Y1) cos θ11 −A21(Y1) cos θ21] + ϕn2(z)[A12(Y1) cos θ12 −
A22(Y1) cos θ22] + ϕn3(z) [A13(Y1) cos θ13 −A23(Y1) cos θ23]∑3 ∑2

= (−1)i+1ϕnj (z)Aij(Y1) cos θij . (6.7)
j=1 i=1

With the new dependence on Y1, there will be additional forcing terms on the RHS of
(2.2) besides the Jacobians, namely −2∂t∂yY1

ψ−β sinα∂Y1
ψ, to O(ε). To find a solution

to (2.2), ψ(1) is expanded in terms of the complete set of eigenfunctions {ϕq(z)}:∑∞
ψ(1) = Φq(x, y, t)ϕq(z) , (6.8)

q=0∫ 0
where Φ = (1)

q − ψ ϕq(z) dz. The equation governing Φq is obtained by multiplying
H

(2.2) by ϕq(z), integrating over the depth and using the b.c.’s in z; the result is, after
substituting (6.7) into the RHS of the QGPVE (2.2):∑2 {

L′Φq = − (−1)iξn1n2q B11i2 [cos (θ11 − θi2)− cos (θ11 + θi2)] +
i=1

(−1)iξn1n3q B11i3 [cos (θ11 − θi3)− cos (θ11 + θi3)] +

(−1)iξn2n3q B12i3 [cos (θ12 − θi3)− cos (θ12 + θi3)] +}
(−1)i+1ξn2n3q B22i3 [cos (θ22 − θi3)− cos (θ22 + θi3)] +

∑3 ∑2
(−1)iδnjq (2ωj lij + β sinα) (∂Y1Aij) cos θij + NRF , (6.9)

j=1 i=1

where

L′
(

≡ ∂ ∇2 − â−
)

2
t q + β (cosα∂x + sinα∂y) , (6.10)∫ 0

ξpql ≡ ϕp(z)ϕq(z)ϕl(z) dz (6.11)
−H

is the interaction between vertical eigenfunctions (Flierl 1977), and the coupling coeffi-
cients between the modes’ RWs are, for i = 1, 2:( ) 
B = 1 2

2 A11Ai2 k2 + l211 i2 + â−2i n −2
k2 2
1 − l11 − â−2n1

(k1li2 − k2l11) ,2 ( ) 
B = 1A A k2 + l2 + â−2 − k2 − l2 − â−2 (k l − k l ) , 
11i3 11 i3 1 1 i32 3 i3 n3 11 n 3 11( 1 ) (6.12)
B = 1A A k2 + l2 + â−2 − k2 − l2 − â−2i3 12 i3 3 n 12 n2

(k2li3 −3 2 k3l 
12 i3 12) ,2 ( ) 
B = 1A A k2 + l2 + â−2 2 2 −2 
22i3 22 i3 3 k2 − l22 −3 ân2

( 3 k3l22) .2 i n − 2l −3
k i
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NRF refers to the non-resonant forcing terms, which include the interactions between
the RW of amplitude A21 (reflected of mode 1) with the other modes’ four RWs, and the
self-interaction of each mode. The self-interaction gives rise to a steady flow parallel to
the coast and a transient flow oscillating at twice the frequency of each mode (Graef &
Magaard 1994).

If we consider the phase sum and difference θi3 = θ11±θi2, then the secular terms on the
RHS of (6.9) [homogeneous solutions of (6.9)] are: ∼ cos(θ11±θi2) if q = n3 because they
are vertical mode n3 RWs; ∼ cos(θ11−θi3) = cos(∓θi2) if q = n2 because they are vertical
mode n2 RWs; ∼ cos(θ12∓ θi3) = cos(∓θ11), for i = 1, and ∼ cos(θ22∓ θi3) = cos(∓θ11),
for i = 2, if q = n1 because they are vertical mode n1 RWs; and for all these we must
have ξn1n2n3 = 0. Finally we have the secular terms with a Kronecker’s delta factor, but
only when q = nj . The requirement ξn1n2n3 = 0 physically means that to have resonance,
each vertical mode ϕnj (z) must have a non-zero projection on the product of the other
two vertical modes, which is the vertical structure of the forcing that produces the j-th
mode. In summary, we have secular terms only when q = nj , j = 1, 2, 3 (all other q’s do
not produce secular terms).

Therefore, there are six secular terms on the RHS of (6.9) proportional to cos θij ,
i = 1, 2, j = 1, 2, 3, with θi3 = θ11 ± θi2, noting that the term ∼ cos θ11 has two
contributions: one from the interactions of RW A12 with RWs Ai3, and other from the
interactions of RW A22 with RWs Ai3.

We note that

2ωj lij + β sinα = (−1)iωj (l2j − l1j) = (−1)i+1 ωj 2∆j , (6.13)

which follows from (2.7) and (2.10), and which is non-zero if we have a mode (ie, an
incident-reflected RW pair) for a non-zonal coast (and also a mode for the channel).

Finally, we remove the secular terms by requiring that the coefficient of any homo-
geneous solution of (6.9) be zero, leading to the following system of six (actually five)
first-order nonlinear ODEs: 

(2ω1l11 + β sinα) ∂Y1A11 = ±ξn1n2n3 [B1213 + B2223] , 
∂Y1

A21 = 0 ,
(6.14)

(2ω2li2 + β sinα) ∂Y1
Ai2 = ξn1n2n3

B11i3 , i = 1, 2 , 
(2ω3li3 + β sinα) ∂Y1

Ai3 = ∓ξn1n2n3
B11i2 , i = 1, 2 ,

where the upper (lower) sign in the equations for A11 and Ai3 refers to the phase sum
(difference). The system (6.14) is subject to the boundary conditions A1j = A2j = Aj ,
j = 1, 2, 3, at Y1 = 0, ie at y = 0, to warrant no normal flow at the coast. The second
equation implies that A21 = constant = A1. This system is relatively more complicated
than the typical one found in three-wave resonance problems. Here, the coast’s non-
zonality obliges that only three RWs (not four as in the zonal case) of the primary modes
participate in forcing the third mode. That is why five RWs (out of six RWs of the three
modes) have their amplitudes slowly varying in the offshore coordinate to have a bounded
solution when the modes are in resonance.

After substituting the coupling coefficients, the dispersion relations and (6.13), the
system (6.14) becomes 

∂Y1A11 = ξ ∆3
n1n2n3

(γ12A12A13 − γ22A22A23) ,∆1


∂Y1
A21 = 0 ,

(6.15)
∂Y1

Ai2 = ξn1n2n3
γi2A11Ai3 , i = 1, 2 , 

∂Y1
Ai3 = −ξn1n2n3

γi2A11Ai2 , i = 1, 2 ,
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which is valid for both the phase sum and difference, where ∆3 = ±∆2, γi2 = ±γi3 and( )
1 k23 + l2 −2 − 2 − 2 − −2 −i3 + ân3

k1 l11 ân1
(k1li3 k3l11)

γi2 = 2

2ω l + β sinα( 2 i2 )
± 1 k2 2

2 2 + l2i2 + â−2n −2
k2 −2
1 − l11 − ân1

(k1li2 − k2l11)
= = ±γi3 . (6.16)

2ω3li3 + β sinα

The details are given in the appendix.
There are three functionally independent first( integrals )of system (6.15). For example,

the last four equations directly imply that ∂ 2 2
Y1 Ai2 +Ai3 = 0 for i = 1, 2 (two integral

constraints). Also, multiplying the first equation by ∆1A11(/∆3, minus the third equation)
times A12, plus the fourth equation times A22 yields ∂ 2 2 2( )Y1

∆1A11/∆3 −A12 +A22 = 0;

analogously we can obtain ∂Y ∆1A
2

1 11/∆3 +A2
13 −A2

23 = 0. However only three of these
four first integrals of system (6.15) are independent.

In figures 11 and 12 we show the numerical solution of the wave amplitudes of the
resonant quintet for parameters of the Hawaiian Ridge and for (n1, n2, n3) = (1, 1, 0)

(1) (2)
and (T1, T2) = (1, 1.7) years, corresponding to solution k1p and k1p , respectively. The
solution (1) with larger wavelengths exhibits a clear periodic behavior in A22 and A23,
whereas A12 and A13 vary much more slowly, which is because γ12 � γ22 in this case,
and A11 oscillates at a higher frequency but with a lower amplitude. If we extended
the integration farther, say to Y1 = 105 km, one could see that A11, A12 and A13 are
also periodic. Solution (2) shows clearly that all four RW amplitudes of modes 2 and 3
oscillate with similar frequencies (equal for Ai2 and Ai3) and equal amplitudes, whereas
A11 displays a rather different behavior as in solution (1), but it is periodic.

We plot the wavenumber vectors and the slowness circles (ie the curves of constant
ωj for given nj) of the resonant quintet corresponding to figures 11 and 12, in figures
13 and 14, respectively. There we indicate the coastal orientation (parallel to the k-axis)
and one can see graphically that indeed ki3 = k11 + ki2 for i = 1, 2, and that ∆3 = ∆2.

In general, the envelope of the incident wave packet A11 is nowhere zero. The envelopes
of incident RW packets (of modes 2 and 3) oscillate around zero out of phase and at
the same frequency; this is also true for the reflected RW packets, but with a different
frequency. Because we choose the b.c. of zero amplitude of mode 3 at the coast, it starts
there and grows approximately linearly near the coast, as indicated by the straightforward
expansion (6.5) and (6.6). The incident (reflected) RW packet of mode 3 reaches an
extreme when the incident (reflected) packet of mode 2 is zero.

After running several cases, we observe that if the b.c.’s at Y1 = 0 are A11 = A12 =
A = A and A = A = 0, the solution for another b.c. A′ = dA is simply A′22 1 13 23 1 1 ij(Y1) =
dAij(Y1/d). This is because multiplying the b.c. by d means that ε gets multiplied by d,
and Y1 = εy. Thus, it is convenient to simply set A1 = 1 (in units of km2/day, appropriate
to typical RW length and time scales).

An interesting situation occurs if the primary Rossby modes 1 and 2 have an annual
period (the rest of parameters as in figure 11) so (T1, T2, T3) = (1, 1, 1 ) years. In this2
case γ12 ≈ 0 which implies that A12 ≈ A1 and A13 ≈ 0, so the incident RW amplitudes
of modes 2 and 3 remain almost constant (equal to the b.c.), whereas the reflected
RW amplitudes oscillate at the same frequency. The resonant interaction is such that it
preferably excites the reflected RWs.

As an aside remark, it can be shown that, unless the coast is zonal, particular solutions
∼ t cos θi3, i = 1, 2, which satisfy the forced QGPVE, cannot satisfy the boundary
condition at the coast y = 0. The forced or excited mode 3 cannot grow linearly in
time, which ultimately is why the wave amplitudes cannot be slowly varying functions of
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Figure 11. Wave amplitudes of a resonant quintet of RWs, which are solution of system (6.15),
as a function of Y1 = εy. Upper panel: A11 (blue); A12 (red); A22 (dashed red). Lower panel:
A13 (magenta); A23 (dashed magenta). The corresponding wavelengths are indicated on each
curve. The amplitude’s value at the coast of modes 1 and 2 is 1 km2/day, which corresponds
to a maximum horizontal particle speed of the mode 1 incident RW U11 = 0.038 km/day and
ε11 = U11|k11|2/β = 0.03. More realistic values can be adjusted accordingly. Parameters: φ0

and α for the Hawaiian Ridge, vertical mode numbers are (n1, n2, n3) = (1, 1, 0) and the Rossby
(1)

mode periods are (T1, T2, T3) = (1, 1.7, 0.63) years for solution k1p .

time. The speculation of Graef (1993) “on what would happen if three modes are taken,
allowing each mode amplitude to be slowly varying in time”, failed in the non-zonal case.

In the zonal coast, the incident and reflected RWs’ wavelengths of each mode are
equal, and their wavenumber vectors satisfy the relations k11 × k12 = −k21 × k22 and
k11×k22 = −k21×k12. Thus the coupling coefficients of the four interactions k11 ↔ k12,
k11 ↔ k22, k21 ↔ k12, and k21 ↔ k22 are such that the forced mode 3 satisfies the
boundary condition at the coast y = 0. So, when applying multiple scales, it is sufficient
to allow for each mode’s amplitude to be a slowly varying function of time.

6.2. The channel

For the channel, the solution for the forced mode 3 is uncertain; we could not find it.
However, if the resonant forcing given by (6.2) is such that only one RW is excited, ie
we do not excite a channel Rossby mode, then we could easily find a solution. Suppose,
without loosing generality, that the excited RW is proportional to cos(θ13) = cos(θ11 ±
θ12). This is equivalent to say that the resonant triad is {ψ11, ψ12, ψ13}. The solution is,
adapted from Garćıa & Graef (1998) and Graef (2017):[

W (
Φ iθ13

eil13W
])

iθ13 iθµ3
n3

= ∓A1A2ξn1n2n3
γ13 Re y e + e − e , (6.17)

eiµW − eil13W



28 F. Graef and R. Garćıa

(2)
Figure 12. As in figure 11, but for solution k1p .

where the upper (lower) sign refers to to the phase sum (difference), µ is the other root
(besides l13) of the RW dispersion relation ω1 ± ω2 = σn3

(k1 ± k2, µ) or ω3 = σn3
(k3, µ)

and θµ3 = (k3x+ µy − ω3t+ ϑ3). It is easy to see that Φn3
= 0 at y = 0,W . It is worth

remarking that l13 is not −β sinα/(2ω3) +m3π/W , ie the excited RW ψ13 is not a wave
of a channel mode, or equivalently ∆3 = m3π/W . But we need the other RW ∼ eiθµ3 in
order to fulfill the boundary condition at y = W . This physically means that a coastal
mode gets excited, not a channel mode, because eiθ13 − eiθµ3 is just a coastal mode.

The resonant solution (6.17) is bounded, and there is no need to do multiple scales.
It consists of a term proportional to y cos θ13, plus a term proportional to the real part
of C(eiθ13 − eiθµ3), where C is a complex constant, which is a coastal mode (it vanishes
at y = 0, but not at y = W ). This solution is reminiscent of the solution when there is
resonance in the self-interaction of a channel Rossby mode (Garćıa & Graef 1998).

7. Discussion and conclusions

In this paper, we studied whether or not there are resonant interactions between three
Rossby modes in two bounded geometries: a coast and a channel, whose orientation
is non-zonal. The fact that the boundaries are not along circles of latitude is a new
ingredient in these problems, not reported in the literature.

As the superposition of two propagating RWs forms a Rossby mode in a coast or a
channel, the nonlinear interaction between two modes produces 12 forcing terms. We
first analyzed which of those 12 terms, or which RWs, could excite a third mode. In the
zonal case, we need the participation or interaction of the four RWs, two of each mode.
However, if the orientation is non-zonal, only three RWs (of the four) can participate in
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Figure 13. The wavenumber vectors and the slowness circles of the resonant quintet of RWs
corresponding to figure 11. We indicate the coastal orientation (parallel to the k-axis) making
an angle α with respect to the eastern direction. In blue, the RW (n1, ω1,k11) of mode 1; in red
the RWs (n2, ω2,ki2), i = 1, 2 of mode 2; and in magenta the RWs (n3, ω1 + ω2,ki3), i = 1, 2 of
mode 3. Note that ki3 = k11 + ki2 for i = 1, 2, and that ∆3 = ∆2.

forcing, in principle, the third mode. This difference has two significant consequences in
the non-zonal case. First, the horizontal structure of the “standing” part of the forced
mode proportional to sin(∆3y) is identical to the mode whose two RWs participate in
the interaction. Second, there appears an additional constraint (equation), which reduces
the number of degrees of freedom available to solve the resonance conditions (see table
2). Thus, finding resonant triads is more restrictive in the non-zonal case.

When one considers the interaction between two modes in a zonal coast or channel,
the initial modes may have ∆1 = ∆2 or ∆1 = ∆2, but the excited mode is ∆3 = ∆1±∆2

(if ∆1 = ∆2, we can only excite the mode produced by the sum). We always excite a new
horizontal structure, so there is “barotropic transfer” in the resonant interaction. This
was the case, for example, studied by Plumb (1977), for a zonal channel in a barotropic
ocean. However, if we want to excite a third mode in a non-zonal coast or channel, only
three RWs can participate, and the excited mode must have the horizontal structure of
one of the initial modes (∆3 = ±∆2 or ∆3 = ±∆1). One cannot excite a new ∆, and
there is no “barotropic transfer”.
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(2)
Figure 14. As in figure 13, but corresponding to figure 12, ie for solution k1p . The frequencies
and vertical mode numbers are those of figure 13, but the wavenumbers k11, ki2 and ki3 are
different. Note the larger scale here, which is why the whole circles appear in the graph. This
graph is a zoom out of figure 13.

As shown in table 2, the non-zonality and the number of boundaries decreases the
number of degrees of freedom to solve the resonance or kinematic conditions for the
existence of resonant triads. For instance, for a non-zonal coast or wall, the resonance
conditions pose a problem with four equations and nine variables: ωi, ki, ∆i, i = 1, 2
and nj , j = 1, 2, 3. However, the last three are discrete and must be specified. Thus,
we end up with two degrees of freedom: 6 unknowns minus 4 equations. In the case of
a non-zonal channel, it is similar but ∆1 = m1π/W and ∆2 = m2π/W are fixed, thus
there are no degrees of freedom.

For the non-zonal coast, we derived analytic expressions for the wavenumbers along
the coast k1 and k2 of modes 1 and 2, respectively, which are necessary conditions to
have solutions of the system (4.1)–(4.4). Although, in general, it is not possible to find
a condition to have k1 real that only involved α, the equation for k1 reveals that a
meridional coast is prohibited, ie there are no real solutions. The more meridionally
oriented the coast is, the more restrictive the problem of finding real solutions become.
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Geometry Orientation Var. D.V. Eqs. D.F.

Coast Zonal 9 3 3 3
Non-zonal 9 3 4 2

Channel Zonal 9 5 3 1
Non-zonal 9 5 4 0

Table 2. The number of variables (Var.), discrete variables (D.V.), equations (Eqs.) and degrees
of freedom (D.F.) of the resonance conditions, for each geometry (coast or channel) and its
orientation (zonal or non-zonal).

For example, we found that if the period of mode 1 is much larger than the period of
mode 2 (T1 � T2), it favors real solutions for the more meridionally oriented coasts [say
α ∈ (70, 85) or α ∈ (95, 110) degrees for western coasts; or with α + 180◦ for eastern
coasts]. In the particular case ω1 = ω2, a necessary condition to have real solutions
is | sinα| 6 2/3, which is twice the value obtained by Graef (1993) when considering
resonance in the self-interaction of a Rossby mode at a coast. Therefore, although the
orientation of the coast or wall restricts resonance to occur, it is less restrictive in the
case of resonance between Rossby modes (with ω1 = ω2) than in the self-interaction of a
Rossby mode.

The family of solutions for given mode periods T1 and T2 (recall we have two degrees
of freedom) was shown by plotting the wavelengths of the six RWs (one incident and one
reflected per mode) that participate in the resonant triad of modes. And for each T1 and
T2, there are two solutions for the initial RWs phase sum (ω3 = ω1 + ω2, k3 = k1 + k2,
l13 = l11+l12 and l23 = l11+l22) and two solutions for the phase difference (ω3 = ω1−ω2,
k3 = k1 − k2, l13 = l11 − l12 and l23 = l11 − l22). By looking at solutions with different
coastal orientations, there are two general characteristics of the solutions: a) the larger
wavelengths are squeezed in a very small region of the (T1, T2)-space; and b) the space of
solutions is more limited for the phase difference and it is always T1 > T2. In fact, even
for more zonally oriented coasts, some of the real solutions lie only within a very tiny
region (resembling a thin slice of a pie) of the (T1, T2)-space.

As a possible oceanographic application and because it has received significant atten-
tion since the pioneering work of Mysak & Magaard (1983) regarding the North Hawaiian
Ridge Current (White 1983; Oh & Magaard 1984; Sun et al. 1988; Price et al. 1994;
Qiu et al. 1997; Firing et al. 1999), we showed the solutions for ambient parameters
appropriate for the Hawaiian Ridge (figures 4, 5, 6, and 7). The wavelengths of the

(1) (1)
incident RWs of the first mode corresponding to solutions k1p and k1m are the largest:
. 1000 km, whereas for the third mode, there is a wide range between 100 and 2000
km, and for the second mode they are very short: between less than 50 and 240 km.
The wavelengths of the reflected RWs of all modes are short: between 20 and 200 km.
There is a significant reduction in the allowable (T1, T2)-space (very tiny slices of a pie)

(2) (2)
for the other solutions, ie for k1p and k1m, and all wavelengths (even the incident RWs)
are quite short, between 20 and 200 km. We conclude that two annual Rossby modes
(n1 = n2 = 1) cannot resonantly interact to force a semi-annual n3 = 2 Rossby mode.
However if we choose n3 = 0 (not shown here), so that the forced mode (mode 3) is
barotropic with a free surface (depth H = 4000 m), then such resonant interaction is
possible. Also, it is not possible to have resonance if one of the initial modes (first mode
baroclinic) has a period in the broad peak range from 0.7 to 2.5 years, and the other
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mode has a period of 6.7 years [these are spectral peak periods of Rossby wave energy
for a 5◦ square east of the Hawaiian Islands (see Magaard 1983)].

For the non-zonal channel, the resonance conditions form a closed system (four equa-
tions and four unknowns: ωi, ki, i = 1, 2), so there are no degrees of freedom. We could
not arrive at a single equation for any one of the four unknowns. However, we developed a
graphical method to seek solutions using the analytic expressions for k1 and k2 derived for
the coast, which are also valid for the channel. A meridional channel is prohibited (no real
solutions). However we found real solutions for other orientations, like the hypothetical
example shown in figures 8, 9 and 10 for a tilted channel with α = 15◦, width W = 500
km, at a reference latitude φ0 = 20◦, horizontal mode numbers m1 = 2, m2 = 1 and
vertical mode numbers n1 = n2 = n3 = 0 (all barotropic with a free surface and depth
H = 4000 m). In this example, the mode periods were less than a year, and the RWs’
wavelengths of the modes had a wide range: between a few hundreds to more than 6,000
km. As with other examples that we explored, particularly for other α’s, there were
always four solutions to the resonance conditions: one for the RWs’ phase sum and three
for the RWs’ phase difference. The four solutions were related: two symmetric and two
anti-symmetric, with modes 2 and 3 exchanged. The anti-symmetry comes about because
σn(k, l) = −σn(−k,−l) in the RW dispersion relation.

We pointed out that because there are no degrees of freedom for the resonance
conditions in a non-zonal channel, the interaction of two Rossby modes of equal frequency
can never excite a third Rossby mode. This result has implications for finding resonant
triads in a non-zonal gulf (and by extension in a non-zonal rectangular basin). Since
a gulf Rossby mode is the superposition of an incident-reflected channel mode pair at
the head of the gulf (Graef 2016), it follows that if there are resonant triads between
gulf modes, the excited waves cannot be the product of either mode’s self-interaction. In
other words, the forced mode cannot have a frequency equal to two times the frequency
of either one of the primary modes.

Looking at the worlds oceans, the most conspicuous mid-latitude channels for which
planetary wave motion could matter are the Mozambique Channel, the Tasman Sea,
the Denmark Strait, and perhaps (because of their irregularity and or size) the South
China Sea, the Caribbean Sea, and the English Channel (Graef 2017). As a possible
oceanographic application, we searched for solutions of the resonance conditions in four of
these channels with nj = (0, 0, 0) (all three modes barotropic, free surface) and m1 = 2,
m2 = 1. There were no solutions for the Mozambique Channel and the Tasman Sea
because these channels are too inclined relative to the eastern direction, but we found
solutions for the Denmark Strait and the English Channel. Because the annual signal
always comes to mind when one thinks about Rossby wave motion, an interesting result
for the Denmark Strait was that the second mode period of one solution is 1.00 year
with wavelengths of 273 and 2724 km. This solution suggests that if barotropic Rossby
modes get excited in the Strait, out of all possible nonlinear interactions among them,
the annual Rossby mode m2 = 1 would have a larger amplitude (being in resonance with
two other modes of periods 0.56 and 1.24 years). For the English Channel, the smallest
and largest of the mode periods were 0.79 and 2.47 years, and of the wavelengths were
79 and 1696 km, respectively, for all modes and the two independent solutions. However,
because the lengths of the Denmark Strait and the English Channel are much smaller
than some of the mode’s wavelengths (≈ 2000 km), most probably we cannot apply our
results to these channels.

The solution of the forced QGPVE, when the third mode is in resonance with modes
1 and 2, is unbounded in the coast’s case. The pedestrian or straightforward expansion
leads to a linear growth in the offshore coordinate y, which we rejected on physical
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ptable “near the coast”. To obtain a bounded solution in the wholegrounds; it is acce
half-plane domain, we used multiple scales, generalizing the work of Graef (1993). First,
we wrote the solution of the QGPVE, to leading order in ε, as the superposition of
the three Rossby modes in resonance, but allowing the RWs’ amplitudes (constant in
the straightforward expansion) to be slowly varying functions of the offshore coordinate,
namely functions of Y1 = εy. Second, we computed all forcing terms that are secular
and removed them by requiring that the coefficient of any homogeneous solution of the
equation be zero. This requirement led to a system of five first-order nonlinear ODEs
for the RWs’ amplitudes that participate in the resonant triad (three of the primary
modes and two of the forced third mode). In the appendix, we were able to show that
the factors multiplying the amplitudes’ products, which involve the coupling coefficients,
are all related, and only two factors (out of six) are independent. We showed examples
(figures 11 and 12) of the wave amplitudes’ numerical solution, which exhibit periodic
behavior. For parameter values of the Hawaiian Ridge and if the primary modes 1 and 2
have an annual period (so the third mode is semi-annual), the incident RWs’ amplitudes
of modes 2 and 3 are nearly constant. In contrast, those corresponding to the reflected
waves oscillate at the same frequency (in space), indicating that resonant interactions
lead to more variability in smaller scales, ie westward intensification. As in Graef (1993),
the energies of the modes oscillate in the offshore direction. There is an energy exchange
in space with the three resonant modes giving and receiving it, satisfying the boundary
condition at the coast, and maintaining the solution bounded as y −→∞.

We included two figures (13 and 14) to help the reader locate the resonant modes’
incident and reflected waves together with the coastal orientation. We plotted the
wavenumber vectors of the resonant quintet on the slowness circles corresponding to
the examples of the wave amplitudes’ numerical solution. In these figures one could see
graphically that ki3 = k11 + ki2 for i = 1, 2, and that ∆3 = ∆2.

The solution of the QGPVE for the channel, when the third mode is in resonance
with the primary modes 1 and 2, is uncertain, and unfortunately, we could not find it.
However, we provided a solution if the nonlinear interaction between a RW of mode
1 and a RW of mode 2 forces or excites a single RW. The excited RW is not a wave
belonging to a channel mode (if the channel is zonal, this is impossible: the excited
RW is a wave of mode 3 with m3 = m1 ±m2, and also, the other RW of mode 3 gets
automatically excited). This resonance is an example of problem (A) mentioned in the
introduction. The resonant solution shows that (i) a coastal mode gets excited, needed
to satisfy the boundary condition at both coasts; (ii) it is bounded, and there is no need
to do multiple scales; (iii) the two channel modes and the coastal mode, although in
resonance, do not exchange energy in time or space due to the constraint of the motion
imposed by the boundary conditions at the channel’s non-zonal coasts or walls; and
(iv) it is reminiscent of the solution when there is resonance in the self-interaction of
a channel Rossby mode (Garćıa & Graef 1998). Why is this lack of energy exchange?
First, there is no solution growing linearly in time when there is resonance (this is true
if the coast or channel is non-zonal). Second, but this is speculation, is that enstrophy
is not conserved in a non-zonal channel. Indeed, in the reflection of RWs from a non-
zonal wall, enstrophy is not conserved (Pedlosky 2013) since the incident and reflected
wave’s wavelengths are different. In a non-zonal channel, the RWs that comprise a mode
have different wavelengths, and by generalization, enstrophy will not be conserved. It is
only for a zonal coast or channel (where enstrophy is conserved) that the resonant triad
modes’ amplitudes depend slowly on time, so there is energy exchange among the triad
members, as shown by Plumb (1977) for a zonal channel.

Regarding possible oceanographic applications, we should keep in mind that our coast
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or channel is idealized and that bottom topography and irregular coastlines would
change these solutions. There is no intention or attempt to compare our solutions with
observations. Despite our idealized geometries, the analytical results presented here could
provide a dynamic basis to help explain observations. Furthermore, analytical solutions
are, in general, a handy tool to test numerical models. Beyond these benefits, we believe
in having contributed to the advancement of knowledge in Geophysical Fluid Dynamics.

Acknowledgments. Three anonymous referees provided helpful comments for improving
an earlier version of this article. We wish to acknowledge the support of CICESE through
its internal project 621-111. RFG was supported under the auspices of the Cooperative
Institute for Marine and Atmospheric Studies (CIMAS), a cooperative institute of the
University of Miami, cooperative agreement NA10OAR4320143, with additional support
from the NOAA Atlantic Oceanographic and Meteorological Laboratory.

Appendix A

In this appendix we show the calculations to go from the ODE’s system (6.14) to (6.15)
and the relations between the factors multiplying the RW amplitudes’ products.

The last four equations of (6.14) are, upon substituting B11i3 and B11i2 given by (6.12):( )
1A A ξ k2 + l2 + â−2 − k2 − l2 − â−211 i3 n1n2n3 3 n 1 11 n (k1li3 −1

k
∂ 2 i3 3 3l11)
Y1
Ai2 =

2ω2li2 + β sinα

≡ γi2 ξn1n2n3
A11Ai3 , i = 1, 2 , (A 1)( )

∓ 1A 2 2 −2 2 −
11Ai2 ξ

2 2
n1n∂ A = 2 2n3

k2 + l − −i2 + ân −2
k1 l11 ân1

(k1li2 − k2l11)
Y1 i3

2ω3li3 + β sinα

≡ ∓γi3 ξn1n2n3A11Ai2 , i = 1, 2 . (A 2)

We now show that γi2 = ±γi3, where the + (−) refers to the phase sum (difference).
Using the dispersion relations( )

ωj k2j + l2ij + â−2nj + β (kj cosα+ lij sinα) = 0 , i = 1, 2 , j = 1, 2, 3 , (A 3)

which follows from (2.9), (2.10) and (2.7), and the relation (6.13), we have that[ ]
1 −β (k3 cosα+ li3 sinα)ω1 + β (k1 cosα+ l11 sinα)ω3

γi2 = (k1li3 − k3l11) . (A 4)
2 ω1ω3ω2 (−1)i+1 2∆2

Substituting the resonance conditions ki3 = k11 ± ki2, ie (k3, li3) = (k1 ± k2, l11 ± li2)
[see relations (3.11)], the numerator within square brackets becomes

−β (k1 cosα+ l11 sinα) (ω1 − ω3)∓ β (k2 cosα+ li2 sinα)ω1 =

±β (k1 cosα+ l11 sinα)ω2 ∓ β (k2 cosα+ li2 sinα)ω1 (A 5)

since ω3 = ω1 ± ω2. Finally, note that k11 × ki3 = ±k11 × ki2. Thus,[ ]
1 ±β (k1 cosα+ l11 sinα)ω2 ∓ β (k2 cosα+ li2 sinα)ω1

γi2 = (±1) (k1li2 − k2l11)
2 ω1ω ω3 (−1)i+1

2 2∆[ 2

1 k2 2 −2 2 2 −2 ]
2 + li ân −2 +

2
k1 − l11 − ân= 1 (k1li2 − k2l11)

2 ω3 (−1)i+1 2∆2

= ±γi3 (A 6)
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because ∆3 = ±∆2. Therefore, ∂Y1Ai3 = ∓γi3ξn1n2n3A11Ai2 = −γi2ξn1n2n3A11Ai2, for
both the phase sum and difference.

The first equation of (6.14) takes the form, upon substituting B12i3 for i = 1, and B22i3
for i = 2, from (6.12):

∂Y1
A11 = ξn1n2n3

(γ111A12A13 + γ112A22A23) , (A 7)

where ( )
1 k2 + l2 −

3 i + â 2
n − 2

3 3
k2 − l2 −i2 â−2n2

(k2li3 − k3li2)
γ i = 2
11 , i = 1, 2. (A 8)

2ω1l11 + β sinα

In a similar fashion, using (A 3), (6.13), substituting the resonance conditions, and noting
that ki2 × ki3 = ki2 × k11, we obtain[ ]

1 β (k2 cosα+ li2 sinα)ω1 − β (k1 cosα+ l11 sinα)ω2
γ11i = (k2l11 − k1li2)

2 ω2ω ω 1+1
3 1 (−1) 2∆[ ] 1

1 k2 −2
2 + l2 −2 − 2 − 2 −i2 + ân k1 l11 ân= 2 1 (k1li2 − k2l11)

2 ω3 2∆1

∆3
= (−1)i+1γi3 . (A 9)
∆1

Therefore, the system of ODE’s for the wave amplitudes that is valid for both the phase
sum and difference is: 

∂ ∆3
Y1A11 = ξn1n2n3

(γ12A12A13 − γ22A22A23) ,∆1


∂Y1A21 = 0 ,
(A 10)

∂Y1
Ai2 = γi2 ξn1n2n3

A11Ai3 , i = 1, 2 , 
∂Y1

Ai3 = −γi2 ξn1n2n3
A11Ai2 , i = 1, 2 ,

where ∆3 = ±∆2 and γi3 = ±γi2.
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