
  
  

  
   

  
    

   
  

  
  

   

1
2
3
4
5
6
7
8
9

10
11

Title: Assessment of bias and precision among simple closed population mark-
recapture estimators 

Author: Kyle Dettloff1 

1National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 
Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149, USA 
Email: kyle.dettloff@noaa.gov 

Keywords: bias correction; closed population; mark-recapture; Monte Carlo simulation; 
Schumacher-Eschmeyer 

mailto:kyle.dettloff@noaa.gov


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15

20

25

30

35

40

45

50

55

12 Abstract  
 

Mark-recapture methods  have been heavily studied and employed in fisheries and other  
wildlife sciences  over the past century to approximate population sizes for animal species of  
interest. This paper  focuses on the comparative statistical performance through simulation of  
common closed population mark-recapture estimators, including those of  Lincoln-Petersen,  
Chapman, Chao, Schnabel, and Schumacher-Eschmeyer.  A new bias-adjusted version of the  
Schumacher-Eschmeyer  estimator is proposed and is shown to exhibit superior  performance at  
small sample sizes  in comparison to the original estimator. Simulation results indicate  that 
Chapman’s method outperforms all  other two-visit  methods and that bias-adjusted versions of  
Schnabel and Schumacher-Eschmeyer differ slightly depending on bias or precision, but both 
perform well. Minimum sample sizes such that resulting estimates are approximately unbiased  
are proposed t o advise practitioners on the most appropriate use of these estimators for simple  
closed population mark-recapture data.  
 

1. Introduction  

Reliable population size  estimates are  fundamental to understanding the  ecology and 
conservation needs of animal populations. Procedures to derive these estimates differ  
fundamentally from that of traditional statistical survey methods in that there is no predetermined  
frame of individuals from which an investigator  can sample. The first solution to this  problem in 
the ecological literature dates back to 1896 when fishery scientist G.C.J. Petersen invented  a 
brass tag to attach to fish, recognizing that population size could be estimated when sufficient  
numbers of these tags  had been recaptured. The same method was later derived by  ornithologist  
Frederick Lincoln (1930) to estimate the size of North American waterfowl populations using  
banding data. These approaches  are collectively  known as the  Lincoln-Petersen method, the  
simplest and most well-known metric to estimate the size of a closed population, meaning a   
negligible effect of births, deaths, and movement during the study period. Animals are captured, 
marked, and released on the first visit, and, after being a llowed to mix with the full population, 
randomly sampled without replacement on a second visit, noting the number of marked 
individuals present from the first sample  in the second sample. This two-visit method was  
subsequently  expanded to apply to k  visits by Schnabel (1938)  and further  modified by  
Schumacher  and Eschmeyer (1943) to be formulated as a linear regression. More recently, 
Brittain and  Böhning ( 2009) used empirical data to compare the performance of the Chao (1987, 
1989) estimator, which relaxes the assumption of independence between visits, with the more  
common Chapman (1951) estimator, a bias-adjusted version of the two-visit Lincoln-Petersen.  
 Though more sophisticated model-based methods have been proposed to relax the  
assumptions of independence between captures (Otis et al. 1978; Huggins 1989, 1991) and 
closed populations (Seber 1982), this paper  focuses strictly on the theoretical performance of  
simple closed population estimators  for which identification of individuals  is not required. While  
sampling complexities such as variation in capture probabilities  and uncertain sampling area are 
known to impact bias and variance in mark-recapture studies  (Amstrup et  al. 2005, McNair  et al.  
2018), this study aims to assess the validity of these existing metrics under  conditions in which 
all assumptions are known to be met, allowing one to select a superior metric from a  purely  
statistical basis,  all other sampling considerations equal. For a study evaluating the performance 
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of various mark-recapture models on field data with known reference population sizes, including 
those allowing individual heterogeneity in capture probabilities, see Grimm et al. (2014). 

These simple estimators remain relevant within fisheries and conservation biology, 
returning over 1,650 articles since 2016 with reference to closed population mark-recapture in a 
Google Scholar search. Of these, 69 contain specific reference to the Schumacher-Eschmeyer 
estimator, which has been employed to estimate population size in a wide variety of fisheries, 
including endangered Atlantic sturgeon (Kahn et al. 2014, 2019; Hale et al. 2016), lake trout 
(Hansen et al. 2008), walleye (Spencer et al. 2002), American lobster (Rowe 2002), pirarucu 
(Castello 2004), and even for estimating angler counts in a creel survey (Hansen and Van Kirk 
2018). 

Comparing these historically important and still common estimators within a consistent 
framework and across a range of simulations offers clarity as to which methods are most 
appropriate under known sampling scenarios, with the equal benefit of indicating which 
estimators should be confidently discontinued from use in favor of superior alternatives. 
Consequently, these simulations are also able to suggest approximate minimum sample sizes 
needed to generate reliable estimates of population size among the best performing methods. 

2. Materials and methods 

A collection of common closed population mark-recapture estimators prevalent in the 
ecological literature were selected and compared in performance through simulation. 
Comparisons were conducted for both two-visit methods and multi-visit methods. All methods 
analyzed assume: 

1. Closed populations (no change in population size between sampling events) 
2. Independence between visits (marking does not influence the probability of recapture) 
3. Independence between individuals (complete mixing occurs between sampling events) 
4. Individuals are sampled without replacement 
5. No marks are lost between sampling events 

A brief overview of the various estimators is provided followed by the simulation study 
methodology. 

2.1 Overview of estimators 

2.1.1 Lincoln-Petersen estimator (2 visits) 
Also known as the Lincoln Index, Lincoln-Petersen (Petersen 1896, Lincoln 1930) is the 
simplest and most intuitive of the estimators, and is the maximum likelihood estimator (MLE) of 
N. It is given by (Eq. 1), 

𝑀𝑀𝑀𝑀 𝑁𝑁� = (1) 
𝑚𝑚 

where: 
M = number of animals marked on the first visit; 
n = total number of animals captured on the second visit; 
m = number of marked animals recaptured on the second visit. 
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This equation implies that the proportion of marked individuals captured in the second sample 
(m/n) is equal to the proportion of the total population (N) that has been marked in the first 
sample (M/N). Lincoln-Petersen forms the basis for all estimators that follow. 

2.1.2 Chapman estimator (2 visits) 

At small sample sizes, (Eq. 1) produces biased estimates of population size (Chapman 1951). 
Several modifications have been suggested to reduce this bias, the most common being the 
Chapman (1951) estimator, given by (Eq. 2). 

(𝑀𝑀+1)(𝑀𝑀+1)𝑁𝑁� = − 1 (2) 
(𝑚𝑚+1) 

This estimator, based on the hypergeometric distribution, possesses finite moments, as the 
denominator cannot be zero, which is possible in Lincoln-Petersen when M + n < N. A method to 
obtain robust confidence intervals around Chapman estimates of population size is provided by 
Sadinle (2009). 

2.1.3 Chao estimator (2 visits) 

Chao (1987, 1989) proposed an estimator that relaxes the assumption of independence in capture 
probability between visits. Brittain and Böhning (2009) show that for the two-visit, equal capture 
probability scenario, this estimator can be formulated as (Eq. 3). 

(𝑀𝑀+𝑀𝑀−2𝑚𝑚)2 

𝑁𝑁� = + 𝑀𝑀 + 𝑛𝑛 − 𝑚𝑚 (3) 
4𝑚𝑚 

In the case of M = n, it can be seen that (Eq. 3) reduces to the Lincoln-Petersen estimator (Eq. 1). 

2.1.4 Bayesian estimator (2 visits) 

The final two-visit estimator considered is a Bayesian formulation which estimates the posterior 
mean based on the hypergeometric distribution, analogous to the Chapman estimator. The 
derivation is presented in Webster and Kemp (2013), and results in (Eq. 4). 

(𝑀𝑀−1)(𝑀𝑀−1)𝑁𝑁� = for m > 2 (4) 
(𝑚𝑚−2) 

2.1.5 Schnabel estimator (> 2 visits) 

Schnabel (1938) published the first mark-recapture estimator designed for more than two 
sampling visits, generalizing the traditional two-visit Lincoln-Petersen approach. The equation is 
formulated as a weighted average of Lincoln-Petersen estimates across the series of visits (Eq. 
5), 

∑𝑘𝑘 𝑀𝑀𝑘𝑘𝑀𝑀𝑘𝑘 𝑁𝑁� = for k > 2 (5) ∑𝑘𝑘 𝑚𝑚𝑘𝑘 
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where: 
Mk = total number of marked animals in the population prior to visit k; 
nk = total number of animals captured on visit k; 
mk = total number of marked animals recaptured on visit k. 

All individuals captured on each visit are marked and released into the population, with no need 
to distinguish between marks made on different visits. Note that the estimator becomes 
equivalent to Lincoln-Petersen (Eq. 1) in the case of k = 2 visits. 

An improved small sample bias correction given in (Eq. 6) was proposed by Chapman 
(1952), noting that each mk is approximately Poisson distributed with parameter Mknk/N. This 
correction has been recommended by multiple sources, and its performance is evaluated here 
alongside the original estimator. 

∑𝑘𝑘 𝑀𝑀𝑘𝑘𝑀𝑀𝑘𝑘 𝑁𝑁� = (6) ∑𝑘𝑘 𝑚𝑚𝑘𝑘+1 

2.1.6 Schumacher-Eschmeyer estimator (> 2 visits) 

A similar estimator which employs the same sampling methodology as Schnabel to handle 
multiple recapture events was proposed by Schumacher and Eschmeyer (1943), taking the form 
of (Eq. 7). 

∑𝑘𝑘 𝑀𝑀𝑘𝑘
2𝑀𝑀𝑘𝑘 𝑁𝑁� = for k > 2 (7) ∑𝑘𝑘 𝑀𝑀𝑘𝑘𝑚𝑚𝑘𝑘 

The logic behind this formula is that the proportion of marked individuals on the kth visit (mk/nk) 
plotted against the number of individuals previously marked (Mk) should be linear and pass 
through the origin with a slope of N-1 under the basic assumptions outlined above. (Eq. 7) uses 
linear regression techniques to estimate N based on this rationale. 

Following the bias-adjusted formulation of the Schnabel estimator in (Eq. 6), a similar 
small sample bias correction to the Schumacher-Eschmeyer equation is proposed here as (Eq. 8) 
based on the Chapman correction (Eq. 2). 

𝑘𝑘∑ (𝑀𝑀𝑘𝑘+1)2(𝑀𝑀𝑘𝑘+1)𝑘𝑘=2 𝑁𝑁� = − 2 (8) ∑𝑘𝑘 𝑀𝑀𝑘𝑘(𝑚𝑚𝑘𝑘+1) 

The performance of this estimator is evaluated alongside the original through simulation in the 
present study. 

2.2 Simulation study 

A series of Monte-Carlo simulations were run using the R programming language 
(v4.2.0; R Core Team, 2022) to evaluate the behavior of each estimator outlined above. Code is 
provided in Supporting Information for readers to run these simulations under their own selected 
parameters. 
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2.2.1 Estimator performance  
 
Fixed populations of known size  N  were generated and randomly sampled  without replacement  
using the  sample  function, according to the  capture and marking methodology for each 
procedure. For each estimator, this was repeated 10,000 times for all sample sizes  M and n  
increasing from very small to large for both cases  of  M  = n2…k and M  ≠ n2…k. Estimates  𝑁𝑁� and 
SE(𝑁𝑁�) were calculated by taking the sample mean  and standard deviation, respectively,  from all  
simulations producing finite values. The resulting estimates were plotted  against the  geometric  
means of  the marked individuals and the total numbers  of captured individuals during subsequent  
visits  to evaluate how each estimator’s bias and variance changes with increasing sample size.  
Likewise, the scaled root-mean-square  error  (RMSE) (9) of each estimator was plotted over the  
range of sample sizes to  visualize performance in  terms of a metric that combines the effect of  
bias and variance.  
 

�𝑣𝑣𝑠𝑠𝑣𝑣( �)𝑀𝑀𝑅𝑅𝑅𝑅 𝑁𝑁 +𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠(𝑁𝑁�)2 
𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =           (9)  

𝑁𝑁 
 
2.2.2 Minimum sample sizes  
 
The Chapman estimator  has been shown to be  exactly unbiased when the sum of the sample sizes  
is at least as large as the population size, or  M + n  > N (Robson and Regier, 1964; Wittes 1972).  
A less stringent condition for the estimator to be  approximately  unbiased, with negative bias less  
than 2%, was noted by Robson and Regier (1964)  in cases when:  
 
√𝑀𝑀𝑛𝑛 ≥ 2√𝑁𝑁              (10)  
 
That is, when the geometric mean of the marks and captures is at least twice the square root of  
the population size. The derivation of the degree  of bias in the estimator leading to this  
approximate threshold is provided in Chapman (1951) using  Stirling’s  formula with the  
hypergeometric distribution. Based on the results  of 2.2.1, the bias-corrected version of Schnabel  
(Eq. 6) was  analyzed across various simulation scenarios, suggesting  a generalization of (Eq. 10)  
produces a similarly acceptable rule of thumb for the  minimum sample size  needed relative to  
the population size for resulting estimates to be approximately unbiased (Eq. 11). 
 
𝑘𝑘�𝑀𝑀 ∏𝑘𝑘    2√𝑁𝑁

𝑏𝑏=2 𝑛𝑛𝑏𝑏 ≥             (11)  
𝑘𝑘−1 

 
Percent error,  calculated  according to (Eq. 12), was used to evaluate stability  in bias at the  
proposed approximate minimum sample sizes, based on 100,000 simulations with known 
population sizes  N ranging from 102 to 106.  
 

. 𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 100(𝑁𝑁
�

𝑃𝑃𝑃𝑃𝑃𝑃  −𝑁𝑁 
 )            (12)  

𝑁𝑁 
 
Similar exploration was  conducted for the bias-adjusted Schumacher-Eschmeyer (Eq. 8).  
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3. Results 

3.1 Estimator performance 

While simulations were conducted for a wide range of population sizes, results below are only 
presented for the case of N = 1,000, as similar patterns held across all sizes evaluated. 

3.1.1 Two-visit methods 

Fig. 1 displays simulation results for the Lincoln-Petersen, Chapman, Chao, and Bayesian 
estimators in the case of M < n, or fewer individuals marked than recaptured. All four are biased 
low at very small sample sizes, which can be easily confirmed using simple arithmetic on 
hypothetically small M and n. This is due to the fact that either there will be no recaptures and 
thus no valid estimate, or if there is an unlikely recapture, the resulting estimate will be a gross 
underestimate of population size. While it is already well known that Chapman is an 
improvement over Lincoln-Petersen in terms of bias, it was seen clearly here that Lincoln-
Petersen becomes biased high for an intermediate range of sample sizes after exhibiting this 
known low bias at very small sample sizes. Lincoln-Petersen also exhibits a higher variance than 
Chapman even at sample sizes where Chapman is already approximately unbiased. Likewise, the 
Chao and Bayesian estimators all eventually become biased high before approaching 
approximately unbiased states at larger sample sizes. The Chao estimator retains a high bias for 
much longer than any of the others in this case, while also being more variable than Lincoln-
Petersen. The Bayesian estimator clearly has higher bias and variance at small sample sizes than 
Lincoln-Petersen or Chao. In contrast, the Chapman estimator never becomes biased high, and 
approaches the value of the true population size much faster than the other three estimators while 
also exhibiting lower variance. Similar outcomes were observed with n < M and n = M, so 
simulation results are only presented for M < n to illustrate a scenario where the Lincoln-
Petersen and Chao estimates differ. 

Fig. 2 demonstrates how the RMSE for each method changes with increasing sample size 
plotted on the x-axis as the geometric mean of M and n for a hypothetical population of size N = 
1,000. The Bayesian estimator has the highest RMSE at low sample sizes, eventually 
approaching that of the other methods at larger sample sizes, while the Chao estimator retains a 
much higher RMSE even as the sample size increases. It is clear again that the Chapman 
estimator exhibits superior performance, having a much lower RMSE than the others at sample 
sizes even above the point at which the extreme downward-bias present in all methods begins to 
disappear (represented by the dashed vertical line in Fig. 2). 

3.1.2 Multi-visit methods 

Simulation results are presented for both the original and bias-adjusted variations of Schnabel 
and Schumacher-Eschmeyer with M = n2 = n3 (Fig. 3). For brevity, results are only displayed for 
k = 3 visits, as similar scaled patterns were observed under increased k. As with the two-visit 
methods, all estimates are biased low at very small sample sizes with negative bias decreasing as 
sample size increases. Similar to Lincoln-Petersen, both of the original unadjusted estimators 
eventually become biased high before turning approximately unbiased at larger sample sizes. 
Between the original versions, the unadjusted Schnabel estimator possesses noticeably lower 
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variability and slightly less small sample bias than the unadjusted Schumacher-Eschmeyer (Figs.  
3 and 4).  

Performance was very similar between the adjusted versions, however,  offering  
improvements in both bias and variability. In each, bias  approaches zero as the sample size 
increases  without ever becoming positive. At small sample sizes, the adjusted Schnabel becomes  
unbiased slightly faster, while the adjusted Schumacher-Eschmeyer is less variable, resulting in a  
lower RMSE for the adjusted Schumacher-Eschmeyer within a small range of sample sizes  
before the two become effectively equivalent at larger sample sizes  (Fig. 4).  While of limited  
practical impact, simulation results revealed that taking the ceiling of the adjusted Schnabel 
estimator provides a more appropriate estimate of  population size, with slightly reduced bias  
across all sample sizes. The adjusted Schumacher-Eschmeyer  estimator presented in (Eq. 8) 
exhibited the fastest reduction in bias at small sample sizes while remaining  exactly  unbiased at  
large sample sizes among a variety of  alternate formulations considered. That is,  it was seen to  
satisfy  that:  

 

𝑅𝑅𝑁𝑁[𝑁𝑁�] →   
𝑘𝑘

 𝑁𝑁 𝑎𝑎𝑎𝑎 �𝑀𝑀 ∏𝑘𝑘  
𝑏𝑏=2 𝑛𝑛𝑏𝑏 → 𝑁𝑁         (13)   

 
All patterns were essentially the same in the case of  M  > n2 = n3, and the only apparent  

difference when  M  < n2 = n3  is even higher variability in the unadjusted Schumacher-Eschmeyer  
estimator at small sample sizes. Notice that the  slightly lower  RMSE of the adjusted 
Schumacher-Eschmeyer  is driven by lower variability  at small sample sizes, even though the  
absolute bias of the adjusted Schnabel decreases slightly  faster (Fig. 5).  
 
3.2 Minimum sample size  
 
Simulations confirmed the minimum sample sizes  (Eq. 10) suggested by Robson and Regier  
(1964) for the Chapman estimator to produce approximately unbiased estimates. This threshold 
is represented by a dashed vertical line in  Fig.  2.  Relative bias (Eq. 11) at these minimum 
suggested sample sizes was less than  2% for  cases  M  = n, M  < n, and M  > n  across all population 
sizes N  from 102  to 106.  
 Likewise,  the  approximate minimum sample size rule (Eq. 11) proposed for the bias-
adjusted Schnabel estimator, following the logic in (Eq. 10)  and confirmed based on examination 
of simulation results,  reveals that  the  geometric mean of the sample sizes across all visits should  
be at least twice the square root of the population size divided by one less the number of visits. 
Relative bias at this sample size was observed to  generally range between  approximately  -10%  
and -3% for population sizes  N  ranging from 102  to 106, respectively, increasing slightly with the  
number of visits (Table  1).  A corresponding  simple  rule of thumb to achieve a consistent bias  
threshold relative  to population size was not readily apparent for the bias-corrected Schumacher-
Eschmeyer estimator.  
 
4. Discussion  
 

The methods described in this paper have been well studied over the decades since they  
have been published and are still widely  encountered today, including in introductory ecology  
textbooks (Krebs 1999) and statistical programming packages (Nelson, 2023, >100 K total 

281 
282 
283 
284 

286 
287 
288 
289 

291 
292 
293 
294 

296 
297 
298 
299 

301 
302 
303 
304 

306 
307 
308 
309 

311 
312 
313 
314 

316 
317 
318 
319 

321 
322 
323 
324 



   
   

  
   

     
  

  
 

  
     

  
  

  
   

  
   

   
  

 
   

  
  

   
      

      
   
       

   
   

  
    

    
   

   
    

     
     

    
  

     
  

  
    

  
  

    

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

downloads; Ogle et al., 2023, >550 K total downloads). The comparison of these multiple 
common methods side by side under known conditions provides insight into the exact behavior 
of the estimators across a complete range of sample sizes. 

It is clear that among the two-visit methods, the Chapman estimator is superior in terms 
of both bias and variance. The estimator of Bailey (1951, 1952), originally proposed for 
sampling with replacement and not presented here due to its similarity to Chapman, behaves 
much the same but retains a slightly larger downward bias across all sample sizes, which can be 
inferred from a simple examination of the equation. The Chao and Bayesian estimators can 
easily be eliminated as viable options for data of this type in that the Chao estimator possesses a 
large upward bias when M ≠ n and the Bayesian estimator possesses much higher bias and 
variance at small sample sizes than the other methods. The unidirectional bias of the Chapman 
estimator is appealing, but it should be noted that a strong downward bias is still present at very 
small sample sizes, and therefore it is not recommended to be used when sample sizes are 
smaller than that approximated by (Eq. 10). This recommendation is paradoxical in that the 
approximate minimum sample size depends on an estimate of the population size, which one is 
aiming to estimate to begin with. Therefore, it should be seen as a way of avoiding inaccurate 
estimates from absurdly small sample sizes based on an educated guess of the order of 
magnitude of the size of the population being sampled. 

Likewise among multi-visit methods, the bias-adjusted estimators of Schnabel and 
Schumacher-Eschmeyer clearly exhibited superior performance at small sample sizes, with no 
reduction in performance at large sample sizes. Krebs (1999) suggested thresholds for when the 
small sample adjusted Schnabel should be used, however based on the present simulation results 
it is recommended that the adjusted estimators are used in place of the originals in all scenarios. 
The bias-adjusted form of the Schumacher-Eschmeyer estimator presented here can be especially 
impactful on population size estimates of species with low sample sizes and numbers of 
recaptures (e.g., only two recaptured Atlantic sturgeon among 17 marked in a study by Kahn et 
al. (2014)). Application can also extend to calculating more robust closed population estimates 
for threatened species either directly or indirectly impacted by fishing pressure, such as Indo-
Pacific humpback dolphin (Zhou et al. 2007), or juvenile marine turtle species observed to 
exhibit high fidelity to distinctive foraging areas (Wildermann et al. 2019). 

Deviation from assumptions in field scenarios can lead to additional limitations of these 
estimators to accurately estimate population size that extend beyond small sample bias. First and 
foremost, if a population is assumed to be closed but in fact immigration and emigration are 
occurring, population size may be overestimated since there are fewer marked individuals 
present to be captured at any given time. Conversely, large numbers of individuals with low 
capture probabilities within a closed population are assumed to lead to underestimation of 
population size among all estimators evaluated (Amstrup et al. 2005). However, Grimm et al. 
(2014) observed that a multiple Lincoln-Petersen estimator (with Chapman correction), similar to 
the multi-visit methods evaluated here but with data from all subsequent visits pooled, performed 
well on field data even with heterogeneous capture probabilities among individuals. This led 
them to conclude it is a viable estimator of minimum population size provided a sufficient 
number of individuals with high catchability are sampled, as capture probability increases and 
heterogeneity decreases over multiple capture periods. Additionally, Seber (1982) noted the 
regression-based Schumacher-Eschmeyer is expected to be the most robust multi-visit method 
regarding violations of assumptions at the expense of loss in efficiency, which was observed in 
the present study in terms of higher small sample variability when assumptions were exactly met. 
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371 This lends support to favoring the  adjusted Schumacher-Eschmeyer both in terms of  theoretical 
performance  and robustness to violations of assumptions.  

A generalization of (Eq. 10), (Eq. 11) can provide a rough approximation of the  
minimum sample size necessary to avoid a strong dow nward theoretical  bias in estimates from 
the adjusted multi-visit  methods. Note, however, that the downward bias  at this precise threshold 
will be slightly larger  for the adjusted Schnabel (Table  1) than for the two-visit Chapman  
estimator  with  the trade-off of decreased variability at equal total sample sizes, and larger still for  
the adjusted Schumacher-Eschmeyer  (Fig. 5). T his may be something to consider  when selecting  
an estimator  depending on the relative risks associated with over vs. under-estimating a  given 
population size, noting that the approximate  sample size  provided by  (Eq. 11) should be seen 
even  more as a lower bound when using the adjusted Schumacher-Eschmeyer.  

Otis et al. (1978) and Evans, Kim, and O'Brien (1996) outline the problems with using  
traditional normal approximation based methods to  construct confidence intervals for mark-
recapture estimates, especially  at small sample sizes, which fail to capture asymmetry  around  
estimates and are known to result in coverage below nominal levels. Buckland and Garthwaite  
(1991) give general  approaches to obtain confidence intervals for recapture data using parametric 
bootstrapping techniques, which are shown to provide more robust estimates. Tyers (2021)  
implements a bootstrap method shown to be robust for two-visit data, in which data  m  for the  
second sampling  event are resampled  with replacement using a binomial distribution with size  
parameter  n  and probability parameter  m/n. These  or similar bootstrap techniques can be  
extended to the multi-visit methods outlined here, which also have the  advantage  of being valid 
for the exact form of the estimator used.  

Other sources have provided rules of thumb as to the number of  recaptures  needed to 
achieve  approximately unbiased estimates for  closed population mark-recapture methods (Bailey  
1951, Ricker 1975, Krebs 1999), which may simplify sampling in certain scenarios. However, all 
results presented here treat the sample sizes as fixed and the number of recaptures as random, in 
accordance with the procedures evaluated. It should also be noted that the present  evaluation of  
performance  relates to the intrinsic theoretical bias of the estimators when  assumptions are  
perfectly met, and should not be extended to sources of bias or variability arising from sampling  
methodology.  
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546 Fig.  1. Two-visit simulated estimates of population size  𝑁𝑁�  +/- standard errors across sample 
sizes, denoted as the geometric mean over all visits, from a population of  N  = 1,000 individuals, 
with  M  (i.e., n1) < n2.   
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549 Fig.  2. Scaled root mean square error  (RMSE) of the two-visit estimators across sample sizes,  
denoted as the  geometric  mean over  all visits, from a population of  N  = 1,000 and M  (i.e., n1) < 
n2. Dashed vertical line represents the sample size at which the Chapman estimator becomes  
approximately unbiased.   
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553 Fig.  3. Multi-visit (k  = 3) simulated estimates of population size  𝑁𝑁�  +/- standard errors across  
sample sizes, denoted as  the geometric mean over  all visits, from a population of  N  = 1,000 
individuals, with M  (i.e., n1) = n2  = n3.   
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556 Fig.  4. Scaled root mean square error  (RMSE) of the multi-visit estimators  across sample sizes,  
denoted as the  geometric  mean over  all visits, from a population of  N  = 1,000 and M  (i.e., n1) =  
n2  = n3. Dashed vertical line represents the sample size at which the adjusted Schnabel estimator  
becomes approximately  unbiased. 
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Fig. 5. Comparison of relative bias and standard error (SE) of the Chapman estimator with those 
of the adjusted multi-visit estimators across total sample size over all visits (k = 2 for Chapman, k 
= 3 for multi-visit estimators), from a population of N = 1,000 and M (i.e., n1) = n2 (= n3). 
Dashed vertical line represents the sample size at which the 2-visit Chapman estimator becomes 
approximately unbiased (Eq. 10). Note the Chapman estimator possesses slightly less downward 
bias at this threshold than the adjusted Schnabel for an equal number of total individuals sampled 
spread over 3 visits, with the advantage of lower variability in the adjusted Schnabel. The 
adjusted Schumacher-Eschmeyer possesses the lowest variability among methods at the expense 
of taking longest to become unbiased. 
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k = 3 k = 4 k = 5 

N �𝑁𝑁 Pct. Error �𝑁𝑁 Pct. Error �𝑁𝑁 Pct. Error 

100 89 -10.6 89 -10.8 87 -13.2 

1,000 935 -6.5 912 -8.8 904 -9.6 

10,000 9,394 -6.1 9,293 -7.1 9,138 -8.6 

100,000 94,792 -5.2 93,062 -6.9 91,832 -8.2 

1,000,000 948,038 -5.2 930,035 -7.0 916,636 -8.3 
570 
571 Tbl. 1. Relative bias in the adjusted Schnabel  estimator (Eq. 6) for  M (i.e., n1) = n2…k  at  

recommended minimum sample sizes from (Eq. 11) for k  = 3, 4 and 5 visits at various population 
sizes N, based on 100,000 simulations.  
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