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33 Abstract  
Global climate change is  shifting the timing of life-cycle events, sometimes resulting in   

phenological mismatches between predators and prey. While phenological shifts and subsequent      

mismatches may be  consistent across populations, they could instead vary unpredictably across     

populations within the same species. For anadromous Pacific salmon (  Oncorhynchus  spp.), 

juveniles from thousands of locally-adapted populations migrate from diverse freshwater habitats     

to the Pacific Ocean every year. Both the timing of freshwater migration and ocean arrival ,  

relative to nearshore prey (phenological match/mismatch), can control marine survival and   

population dynamics. Here, we examined phenological change of 66 populations across     six  

anadromous Pacific salmon species throughout their range in western North America with the    

longest time series spanning 1951 -   2019. We show that different salmon species have different  

rates  of phenological change, but that there was substantial within-species variation that     was not  

correlated with changing environmental conditions or geographic patterns.  Moreover, 

outmigration phenologies have not track ed  shifts in the timing of marine primary productivity,  

potentially increasing the frequency of future phenological mismatches. Understanding  

population responses to mismatches with prey are an important part of characterizing overall   

population-specific climate vulnerability.   
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Main textIntroduction 

Shifts in the timing of life-history events, or phenology, are some of the most pervasive 

ecological impacts of climate change1,2. The magnitude and direction of phenological responses 

to climate change differ among species3, life histories4,5, and trophic levels6–8. Such differing 

rates of phenological change decrease the magnitude of overlap in species interactions9, which 

can reduce the fitness and survival of consumers, if the timing of important consumer life history 

events becomes decoupled from their prey (i.e., match/mismatch hypothesis)10–13. Thus, 

consumers that track prey phenology should be less vulnerable to this dimension of climate 

change. To date, the focus of the field of phenological change and mismatch has been on species-

specific phenological shifts1,8, whereas intra-specific diversity in phenological change and 

mismatch remains poorly described14. Yet intra-specific diversity is foundational for species 

resilience to anthropogenic stressors like climate change15. Specifically, inter-population 

variation in phenology and thus mismatch could provide response diversity15 to climate change 

and thus resilience and stability to the aggregate (e.g., metapopulation). Within a given 

population, higher variability in phenology may lead to increased resilience to shifts in prey 

phenology as they have a broader window of phenological expression and increased likelihood 

of continued overlap with prey16. Thus, understanding inter- and intra-specific variation in 

phenological change and mismatch remains a key challenge for identifying species- and 

population- level vulnerability to global change. 

Every year, hundreds of billions of juvenile Pacific salmon (Oncorhynchus spp.) migrate 

from freshwater environments to the ocean, and their survival can depend upon how well their 

timing of ocean arrival aligns with peak prey abundance17–19. Despite this common challenge, 

Pacific salmon occupy a vast diversity of freshwater habitats ranging from warm arid regions of 
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California to the Arctic Circle, requiring seaward migrations of tens to thousands of kilometers 

from inland spawning streams. Consequently, there exists remarkable intra-specific diversity in 

local adaptations, life histories, and phenology20,21. The timing of juvenile salmon emigration 

varies greatly across populations and can depend upon both heritable and plastic traits22 that 

respond to species- and population-specific proximate and ultimate cues, including temperature, 

photoperiod, barometric pressure, and flow rates23. Both peak outmigration timing and within-

population phenological diversity of Pacific salmon may be changing as a result of climate 

change3. Indeed, climate change may be impacting the freshwater conditions that cue salmon 

emigration timing, such as water temperatures, differently than the marine conditions that control 

phenologies of marine prey (e.g., boreal copepods, euphausiids, larval fish) 7,24,25. Differential 

rates of change between salmon ocean arrival and prey availability could lead to phenological 

mismatches which could impact salmon marine survival and population productivity17,19,26. It is 

unclear if juvenile salmon outmigration timing is keeping pace with changes in marine prey 

phenology across their range3,27,28. 

Here we quantify change in smolt outmigration phenologies and potential temporal 

mismatches with marine prey for culturally, ecologically, and economically important Pacific 

salmon. Our goal was to quantify phenological change across populations from all five species of 

anadromous and semelparous Pacific salmon in western North America as well as steelhead trout 

(O. mykiss), determine whether phenological shifts could be predicted based on key biological, 

environmental, or geographic variables known to impact salmon outmigration phenology29,30, 

and examine the possibility of increasing phenological mismatches through time. We compiled 

and analyzed a unique dataset on smolt outmigration phenology containing data from 66 

populations (where population is considered a unique site-species combination) spanning 18 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

97 degrees latitude (~3500 km) from Alaska to Oregon, for a time series ranging between 1951 to     

2019 (a combined 1858 years of data). We paired this dataset with the spring phenology of       

coastal Pacific Ocean primary  productivity, as derived from satellite-inferred chlorophyll-a 

concentration (SeaWiFS, MODIS-A).  

Results  

Changes in smolt outmigration phenology  

To determine the rate of phenological change for each population, we modelled yearly      

smolt emigration peak timing and temporal range (the number of days between the 25    th   and 75th   

percentile) and determined the rate of change for each metric across the timespan of the data  (20 

years minimum). A sensitivity analysis revealed that the 20-year minimum time series was   

sufficient to capture trends  (Extended Data Fig. 1, Supplementary Information 1.1). Using a  

hierarchical  state-space model framework,  we estimated the peak outmigration date and   its  rate  

of change across years separately for each population. Seventeen s  ite-specific variables (e.g.,   

distance to the ocean, rate of spring temperature change)  were used to determine if any variables  

correlated with the rate of change of smolt phenologies. We also examined how the temporal    

range in outmigration changed across years, to test the possibility that the outmigration range       

was narrowing (Fig. 1).  

Some species exhibited high rates of phenological change  in peak timing, while others did 

not change substantially over the observed period (Fig. 1). Chum (O. keta) and pink (O. 

gorbuscha) salmon, which emigrate soon after emergence, had the fastest average rate of 

advancement in outmigration timing (mean = 7.8 days/decade and 5 days/decade earlier, 

respectively; Fig. 1). Coho salmon and steelhead trout, which generally spend one or more years  
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in freshwater after emergence, had much lower average rates of peak change (mean = 0.1 

days/decade and 0.5 days/decade earlier, respectively). 

Other than species, no other environmental factors clearly and consistently correlated with 

shifts in peak change. Comparison of weighted linear regressions demonstrated that the most 

parsimonious model included species, trap elevation, and an interaction between species and trap 

elevation (Extended Data Table 1). In this model, there was a significant effect of trap elevation 

and interaction between trap elevation and species on the rate of change in peak outmigration. 

The relationship between trap elevation and peak change for Chinook was positive (0.997 

days/decade later for every increase in 1 unit log(m)) whereas relationship between trap 

elevation and peak change for steelhead was negative (-0.377 days/decade earlier for every 

increase in 1 unit of log(m)) (Extended Data Fig. 2). Despite the significance of the interaction 

between trap elevation and species, these variables contributed little predictive power. Cross 

validation showed that the species-only model had the same root mean square error (RMSE = 

0.30) as the model with species, trap elevation, and an interaction (RMSE = 0.30) indicating that 

the additional variable did not increase the predictive power. Thus, we discovered that, across 

their North American range, different salmon species have different average rates of 

phenological change which were not strongly associated with measured factors. 

We discovered higher variation in phenological change within species than among species, 

with intra-specific variation accounting for 60% of the total variation among populations, 

whereas inter-specific variation accounted for 40% (Fig. 2). Overall, 46 of the 66 observed 

salmon populations were emigrating earlier with 16 of those being statistically significant (95% 

confidence intervals did not span 0). As a result, average spring migration phenology was 

becoming earlier by 1.4 days/decade across all populations but was highly variable in both the 
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magnitude and direction of shifts within species. For example, while on average coho salmon did 

not exhibit any substantial phenological changes in outmigration timing (mean = 0.1 

days/decade), 17 of 26 populations were trending towards advancing phenology, whereas 9 

populations had the opposite pattern in phenology. Thus, while there were species-level patterns, 

perhaps due to different intrinsic or extrinsic drivers of migration timing, there was even greater 

fine-scale population variation in migratory phenological change. 

The two species with the greatest diversity of life histories – steelhead trout and Chinook 

salmon – showed the greatest reduction in breadth of timing of migration. Specifically, steelhead 

trout and Chinook salmon exhibited changes in smolt outmigration range (Fig. 1), of which 11 of 

15 steelhead trout populations (8 significantly), and 5 of 9 Chinook salmon populations (4 

significantly) were trending narrower. 

Phenological mismatch in juvenile salmon with prey 

We paired our smolt outmigration phenology dataset with satellite-derived estimates of 

spring phytoplankton phenology (SeaWiFS, MODIS-A; chlorophyll-a) to quantify the potential 

mismatch between salmon and the phenology of ocean prey. Trophic dynamics in the North 

Pacific are largely driven by bottom-up forcings31. As such, phytoplankton phenology was used 

as a proxy for salmon phenology. We compared the rate of change in peak smolt outmigration 

phenology between 1999 – 2019 to the rate of change in the spring phytoplankton bloom across 

the 20-year time span, in each corresponding coastal region, to determine if there were any 

phenological mismatches (Fig. 3). Phenological mismatches appear to be growing in the 

Northern California Current, driven by the spring phytoplankton bloom becoming earlier relative 

to smolt migration (Fig. 3, Extended Data Figure 3). But these regional patterns in phenological 

mismatch were not significant (95% confidence interval of the difference in the rate of change 
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spans 0, where 0 indicates that salmon and phytoplankton phenology are shifting at the   same 

rate; Fig. 3). In fact, while both the spring phytoplankton bloom and salmon populations have       

exhibited phenological shifts over the 20-year period (Extended Data Fig. 3), there was little   

correlation between them (correlation = 0.17), indicating that  salmon outmigration timing is not   

tracking shifts in spring primary productivity. For example, salmon often had phenologies that   

were shifting while the corresponding spring phytoplankton bloom in their region was not   

shifting (Fig. 3, Extended Data Figure 3). Where phytoplankton phenologies were changing,  

more salmon are lagging behind spring phytoplankton phenological change rather than outpacing 

it. Specifically, 13 of 60 populations had substantially increasing temporal mismatches (greater     

than 8 days per decade difference in the rate of phenological shifts between 1999 – 2019)     

throughout our truncated time series, with salmon outmigration phenology of 12 populations    

lagging behind the advancement of the spring phytoplankton bloom, and the remaining    

population outpacing the spring phytoplankton bloom. Our study indicates that salmon    

outmigrations are not tracking changes in phytoplankton phenology, a potential harbinger of    

future phenological mismatches and decreased marine  survival under climate change.   

Discussion  

Here we reveal that the impacts of climate change are manifesting differently among 

populations within economically-  and culturally-important migratory fish. In fact, while there  

were differences across species, idiosyncratic intra-specific diversity comprised the majority of 

variation in phenological change. The outmigration phenology of juvenile salmon relative to 

ocean prey can determine growth and survival in the early marine period  17–19, and declines in 

marine survival have been implicated in collapses of many populations and their associated 

fisheries32. While population-level response diversity in the face of global change could increase  
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species resilience, unpredictable changes could complicate broad assessments of climate 

vulnerability and prescriptive management of populations. 

Peak outmigration phenology changed at different rates across species, a result consistent 

with smaller-scale studies of salmon outmigration phenology3,27,28. Chum and pink salmon 

shifted their peak phenology more quickly than other species. However, chum and pink salmon 

were represented by a small number of sample sites due to limited funds for expensive long term 

monitoring programs. Despite the small sample sizes, individual chum populations had higher 

rates of change than individual populations within other species, indicative of species-level 

increased rates of phenological shifts. The deficiency in data collection on pink and chum 

salmon limits understanding of climate change-driven impacts on these widely distributed and 

important species. While pink and chum salmon had shifting phenologies, on average coho 

salmon phenologies were not shifting, consistent with previous studies. For example, peak 

outmigration timing of Auke Creek, Alaska odd-year pink salmon advanced by 4.9 days/decade3, 

whereas peak outmigration of Auke Creek coho salmon did not change over a 37-year period. 

Thus, we discovered that, across their North American range, different salmon species have 

different average rates of phenological change. 

A combination of changes in environmental cues, shifts in life history, and genetic 

selection could be driving these species-specific shifts in smolt migration timing 22,33. For 

example, because pink and chum salmon migrate to the ocean soon after hatching, their 

outmigration phenologies are tightly related to both freshwater incubation temperatures and 

shifts in adult migration/spawn timing27. Warmer overwinter incubation temperatures could lead 

to earlier outmigration timing in the spring. In addition to shifts in life history, other plastic 

responses to environmental change, or genetic selection due to freshwater or marine survival 
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could also result in changes in migration timing. For instance, because pink and chum salmon 

have smaller juveniles that feed on lower trophic level prey than other salmon, they are likely to 

be more strongly impacted by shifts in marine zooplankton phenology and so may be subject to 

stronger selection on outmigration timing in the early marine life stage26. 

Despite species-specific shifting in outmigration timing, much of the variation in shifts in 

outmigration timing remained unexplained. Of the 17 watershed-level characteristics we tested, 

only species was a strong predictor of population-level phenological change. Ice-off date, water 

temperature, photoperiod, among other factors have all been correlated to smolt outmigration 

timing within individual populations20. However, proxies such as air temperature and latitude 

were not correlated across populations. It is likely that watershed complexity, local adaptations, 

and different local manifestations of climate change create response diversity that cannot be 

predicted by these data15. For example, in response to warming temperatures, most, but not all, 

populations had earlier outmigration timing. For 84% of populations, the slope of relationship 

between annual peak and mean air temperature three months before migration was negative 

while for the other 16% of populations the slope was positive, demonstrating that most 

populations have earlier migrations in warm years, but a few had later migrations in warm years 

(Fig. 4). Thus, a similar change in temperature could cause phenological shifts of different 

magnitudes and directions across populations, a form of response diversity to climate warming. 

This suggests that while phenology and phenological change of well-studied populations could 

be predicted 3,27, those results are unlikely to generalize across populations or species. 

Phenological change is generally studied at the population level, but too commonly reported as a 

species-level change, neglecting potential local drivers of population variability14. Furthermore, 

management often relies on indicator populations which are thought to be representative of other 
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populations of the same species, however, our results suggest that indicator populations may not 

represent phenological changes in other populations. Our results reveal that broad-scale climate 

change will manifest unpredictably in species with a high degree of local adaptation that use 

diverse habitats, such as Pacific salmon. 

The range in outmigration timing decreased in Chinook salmon and steelhead trout, 

indicating lost phenological diversity. This lost diversity could be driven by changing freshwater 

cues, selection against early or late migrants, or loss of life-history diversity3 due to habitat 

contraction, decreased population abundance, and hatchery practices34. Indeed, abundance of 

many populations of steelhead trout and Chinook salmon has decreased dramatically over the 

observed period32 and populations have suffered widespread non-random habitat losses34. For 

example, headwater streams are more likely to become disconnected or lost from the watershed, 

leading to a loss of diverse populations that depend on that habitat34. Furthermore, hatchery 

propagation could erode diversity; we excluded hatchery-origin fish and focused on datasets 

enumerating natural-origin (unmarked) fish, given clearer linkages to environmental change. 

However, adult hatchery-origin fish that spawned naturally in the wild produce natural-origin 

juveniles encountered in some of the study populations. Widespread hatchery propagation can 

alter genetic variation and outmigration timing35. Human activities that decrease phenological 

diversity and narrow the outmigration window are likely to erode population-level resilience to 

phenological shifts in marine prey by increasing the likelihood of mismatches 36. 

Using satellite-derived chlorophyl-a as a proxy for ocean productivity, we showed that 

salmon are shifting their phenologies independently from the spring marine phytoplankton 

bloom, which could lead to future phenological mismatches. While satellite derived chlorophyl-

a can be used to estimate the timing of phytoplankton productivity, it cannot differentiate 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

257 between phytoplankton species and is up to several trophic levels removed from salmon prey. 

Preferred prey of juvenile salmon differs across ocean ecosystems, estuaries, and species. For 

example, pink and chum salmon, which enter estuaries at smaller sizes tend to eat  large  

zooplankton, while steelhead trout, which enter estuaries at larger sizes tend to eat larval fish, 

decapod larvae, and euphausiids37. Regardless, the timing of the spring phytoplankton bloom  

indicates the onset of primary productivity that cascades upward through trophic levels, to the  

zooplankton, ichthyoplankton, and larval fish that collectively compose juvenile salmon diets   

37,38. Indeed, the timing of the coastal ocean phytoplankton bloom can impact population  

productivity in pink salmon 26   and timing of zooplankton biomass peak can impact survival of 

coho salmon17   and steelhead trout19. Thus, timing of the phytoplankton bloom can be indicative  

of phenological mismatch between juvenile Pacific salmon and their prey which can influence     

marine survival, recruitment, and population productivity17,19,26.  

Here we show that populations are changing their phenology at different  and unpredictable  

rates. This lack of predictability in population-level responses is likely driven by complex local     

manifestations of broad-scale climate patterns such as differences in local adaptions, life  

histories, or unassessed natal watershed characteristics. With sufficient investment in monitoring   

and management, a more placed-based management strategy, with a strong focus on life-history  

traits and demographic trends in individual populations, could increase the likelihood of  

detecting and managing for climate driven changes for specific populations39. Yet, these findings  

also suggest that the specific predictions that come from well-monitored indicator populations  

may not be transferable to other populations. Therefore, management systems of salmon will    

need to be robust to unpredictable population responses to climate change.   Conservation 

approaches that promote response diversity, such as conservation of the diverse genetics, life    -
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histories, and habitats, will foster resilience in this era of ongoing climate change 36,40. While   

globally coherent patterns of climate-driven phenological shifts reshuffle species interactions, 

local manifestations of climate change may be quite unpredictable  as complex systems evolve  

and adapt.  
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Methods   

Smolt migration datasets  

Pacific salmon smolts are monitored annually throughout their range in North America, from     

Alaska to California, with smolts counted as they emigrate from natal  freshwater rearing 

watersheds before entering the ocean. Smolts generally emigrate from rearing   lakes, rivers, and  

streams during the spring or fall, after spending between several   weeks to several years in 

freshwater. Federal, State, Provincial, and Indigenous governments in the United States and  

Canada, as well as community groups, have been monitoring smolt emigration since the mid-

1950s. These monitoring programs intercept and enumerate smolts during the migration season,  

using a variety of techniques such as full fence weirs, in which all fish  were counted, or using  

mark-recapture methods where a subset of fish  were captured in traps (e.g., inclined plane trap,  

floating trap, rotary screw trap) or seines, and marked, released, and captured again to determine  

abundance. Here, we collated data from 41 sites representing six species (66 site-species  

combinations or populations) of natural-origin (predominantly wild/unmarked), spring  

emigrating Pacific salmon populations that had been monitored for >20 years, primarily seeking 

those that had limited hatchery influence, and counted natural-origin smolts separately from  

hatchery produced smolts (1858 cumulative years across all sites and species). We refer to each  
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302 unique  site-species combination as a population throughout the manuscript, but recognize that  

some site-species combinations, particularly those at river mouths represent metapopulations,  

while those in the headwaters may represent partial populations.  

Measuring population- specific phenological shifts   

We modeled annual emigration for each population to identify peak and breadth of outmigration    

(i.e. peak width), and simultaneously fit a trend in peak day through time. In some populations, 

multiple juvenile life history forms with unique outmigration timing had been previously 

described (e.g. ocean type fry that migrate soon after hatching vs. r iver type smolts that migrate  

to the ocean more than a year after emerging), and so we provide separate estimates for them  

based on a date cut-off. Thus, several sites have two peaks described, one for each life history  

type. For each species and site, log daily abundance (either as raw counts, or as mark-recapture     

expanded estimates, depending on capture methodology and which count was  believed to be the  

best estimate of abundance) for each year was modeled throughout the migration window using 

one of four state-space hierarchical models. We used state-space models to distinguish a data or 

observation model from the latent phenological trend. We considered  four alternative process  

models for each dataset. Our simplest model used a normal approximation to describe the shape     

of the outmigration distribution.  

�(�)  =  ������(�, �!)   eq (1)  

Second, we used a Student-t distribution, which differs from the normal distribution in that when 

the degrees of freedom parameter is small,  the Student-t distribution can have more extreme tails.  

�(�)  =  �������-�(�,  �,  �!)   eq (2)  
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321 Application of either the normal or Student-t models assumes symmetry in the distribution of 

outmigration before and after the peak. As a third model, we relaxed the assumption of 

symmetry and used a double normal distribution as a process model. The double normal  

distribution is widely used in fisheries to model quantities like selectivity41. This distribution 

involves fitting two truncated normal distributions, joined by a common mean, but allowed to 

have different variances.  

������6�, �! 7,  �  <  �  eq (3)
�(�) !

 
  =  5 :   

������6�, �!"7,  �  >  �)

For the purposes of our application, this translates to the shape of outmigration before and after 

peak to be different. Finally, as a fourth model, we extended the  double normal concept to a  

double Student-t distribution. This double Student-t differed from the double normal in allowing 

both the variance and degrees of freedom to differ between pre- and post- peak curves.  

�������  − �(�, �", �!!),  � < �  eq (4) 
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Equations (1-4) describe process models fit to daily smolt abundance in a single year,  

modeled by a distribution with a peak �, and variance  �!. Because each dataset in our analysis  

includes multiple years, the means, variances, and degrees of freedom  �   in these equations can 

be further subscripted by year, allowing the parameters to change through time. For simplicity,  

we did not consider time-varying degrees of freedom for the Student-t or double Student-t model  

in equations (2) and (4). For the mean and variance parameters, we considered two hierarchical  

models. First, we developed models that allowed the means and standard deviations to be  

estimated as random effects,  
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ln	  (�$)~������(ln	  (�%), �&)   eq (5)  

ln6�$7  ~������(ln(�%)  ,  �')   eq (6)  

where  ln(�$)   is the log of the peak location parameter in year y, �%   is the estimated global mean 

across years, and �&   is the variation in peak dates. For the variance model, we also modeled 

random effects in log space so that  �$is the standard deviation in year y  (for example for models  

1 – 2 above),   ln(�%)   is the mean shape parameter, and �'   is the standard deviation among shape  

parameters. Because both trends are modeled in log space, these can be interpreted as  

exponential change in normal space. Treating either the means  �$  	or variance parameters  �$   

hierarchically assumes that these parameters are drawn from a common distribution.  

 While these random effects models are flexible, the focus of our inference is estimating 

phenological shifts, so we evaluated a separate series of random effect models that include trends   

in the mean and variance of these distributions,  

�$~������(�%  +  �&  ⋅  �,  �&)   eq (7)  

ln6�$7~������(ln(�%) + �'  ⋅ �, �')   eq (8)  

All other parameters are as before, but the inclusion of �&   and �'   allows for linear trends in the  

location and shape of these distributions through time. Equations  7 – 8 describe changes for    

symmetric models with a single variance parameter (equations  1 – 2 above) – our models for    

asymmetric distributions allowed the pre- and post-peak shape parameters to have different  

estimated trends.  

 All models were fit separately to each dataset using maximum likelihood approaches, 

implemented in Template Model Builder42   and R43. We used Akaike’s Information Criterion 

(AIC44) to identify models most supported by the data. In a few cases, the models did not      
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358 converge (generally because of too many missing years) and were excluded from consideration. 

We summarized output from these best fit models by computing the quartiles of the distribution 

in each year (the dates when 25% and 75% of fish had been counted), from now on we refer to  

the number of days between the 25th   and 75th   quartiles as the range of the data for each year.   The  

annual trend in peak width was modeled in a separate weighted linear model, where weight was   

assigned based on the inverse square of the variance.  

Patterns in phenological shifts  

We examined geographic, environmental, and biological variables for correlation with rate of 

change in peak outmigration phenology. Geographic variables were  selected based upon prior 

research linking variables to phenology29,30,35, and were determined from ArcGIS using 30 m   

rasters and delineated watersheds. These variables included latitude of the trap, distance to the  

ocean (distance between trap and the ocean in km  following river polylines), trap elevation and  

mean and maximum elevation of watershed above the smolt trap (in m), gradient (elevation of 

trap divided by distance to the ocean), and watershed area above the smolt trap (in km2).  

Environmental variables included the rates of minimum, mean, and maximum air temperature  

and precipitation change between  the first year of monitoring and 2013 (see Table S1 in   

supplementary information). Water temperatures were not available throughout the range of our  

sites, but water temperature and air temperature over open water are highly correlated and thus  

air temperatures can roughly approximate water temperature conditions 45. Air temperature and  

precipitation were calculated using the program ClimateNA (v.5.21)   46. Briefly, latitude,  

longitude and elevation were estimated for random points that were placed in each watershed (1 

for every 2 km2   of watershed area, with points placed at least 500  m apart) using GIS. 

Watersheds were delineated using GIS with the trap as the outlet point. Latitude, longitude, and       
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381 elevation for each point were used by ClimateNA to extrapolate monthly minimum, mean, and 

maximum air temperature and precipitation. We then averaged each variable for the summer 

(July to September; growing season), fall (October to December; spawning), winter (December 

to February; incubation), and premigration period (3 months before peak outmigration for each 

population) for each year. Using  a linear model approach, we determined rate of change as the   

slope of the relationship between seasonal variable (temperature or precipitation) across years.   

Biological variables included species and a categorical variable describing scale of local hatchery   

production. Species grouped all populations, no matter their age group, into one species. 

Hatchery influence was determined using a scale where 0 indicated no hatchery in the watershed,  

no history of hatchery influence, and the nearest hatchery  was in a distant basin > 100 km away;  

Category 1 had no current hatchery production of  the  target species in the watershed, but either  

(a) hatchery production in a nearby watershed < 100 km away allowing for a low level of    

hatchery-origin strays, (b) some within basin hatchery production of the target species in the   

distant past (e.g., > 25 years ago), or both (a) and (b); Category 2 had ongoing, within basin 

hatchery production of the target species in which natural-origin fish typically outnumber ed  

hatchery-origin fish on the spawning grounds (proportion of Hatchery Origin Spawners [pHOS]   

< 50%), and/or the number of natural-origin juveniles  were comparable to, or greater than, the  

number of juveniles released from the hatchery. All or nearly all hatchery-origin fish were  

marked. Conservation hatchery programs employing a high proportion of natural-origin 

broodstock would likely be in this category; Category 3: Long history (multiple decades) of 

large-scale hatchery production in which hatchery-origin fish routinely outnumbered  hatchery 

origin fish on the spawning grounds (i.e., pHOS > 50%), and/or the number of fish released from  

hatcheries  was considerably greater than the number of natural-origin juveniles. Marking of 
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404 hatchery-origin fish allows for assessment of hatchery demographics compared to natural  

population demographics.  

We compared weighted linear models containing key geographic (e.g., latitude of the capture  

location, distance between the capture location and the ocean, watershed area), environmental  

(e.g., rate of change of mean, minimum, and maximum seasonal air temperatures, and 

precipitation) and biological (e.g., species, scale of hatchery influence) variables. Linear models  

were weighted by the inverse of the variance in estimated rate of peak change, such that  

populations with higher variance in peak change estimate were weighted less than those with 

lower variance. Since species could be responding differently, we included interactions between 

species and other predictor variables. For the rare cases when traps were upstream of other traps,    

and therefore fish could be counted twice, we excluded the upstream trap from the analysis. This   

impacted only a few locations, and results did not differ if all populations or only mainstem 

populations were used. All populations were considered independent because most populations    

were the only monitored population in the watershed,   so  random effects models could not be fit. 

Apart from an interaction between species identity and trap elevation, no other variables or 

interactions explained variability in the rate of change in peak smolt outmigration timing 

(Extended Data Table 1, Extended Data Fig. 2). Post hoc comparison of rates of change of   

species showed on coho and chum salmon were changing at significantly different rates  

(Extended Data Table 2). We evaluated predictive performance of the top models using Monte   

Carlo cross-validation where the models were trained on 90% of the dataset and tested on the     

remaining 10%. This was completed 1000 times (each iteration assigning at random 90% of 

observations to the training set and 10% of observations to the test set). The overall RMSE was  

calculated by averaging the RMSE values from the 1000 test sets.  
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427 We examined time series length to determine how time series length may influence  rate of peak 

change. A sensitivity analysis revealed that the 20-year minimum time series was sufficient to 

capture trends (Extended Data Fig. 1, Supplementary Information 1.1). We found no evidence to  

support an effect of time series length on rate of change in peak (Extended Data Table 3,  

Extended Data Figure 4) or evidence that different biological or environmental correlates    

impacted rate of peak change determined using the truncated time series  (Extended Data Table  

4).  

We  quantified  within and across population variation, using an intercept-only random effects  

model which included species as a random effect to compare variance that was explained by all     

species vs. total residual variance (variance of the species intercept divided by the sum of the      

species intercept and individual population residual variance estimate, multiplied by 100)  

(sensu47). A value close to 100 suggests that among-species variation explains almost all of the    

total variation, such that two populations from the same species are likely to be more similar that     

two individuals from different species. A value near zero suggests that the among-species    

variation is relatively low, such that two  populations from different species are equally likely to 

be similar than two populations from the same species.  

Satellite-derived Chlorophyll a  

Remote-sensing satellite-derived chlorophyll-a concentration (mg/m 3) estimates were used as a   

proxy for salmon prey phenology. We used level-3 processed daily global composites (9 km  ×   9 

km) of surface chlorophyll-a concentration from two satellites, Sea-viewing Wide Field-of-view   

Sensor (SeaWiFS; 1999 - 2010) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS-Aqua; 2003 - 2019) from the Goddard Space Flight Center 

(http://oceancolor.gsfc.nasa.gov). Global daily composites were subset to 29 2o   ×   2o   grid cells  
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460

465

470

along the coast between 42 – 60  oN, 161.5 – 124.5  oW (Extended Data Fig. 5). We concatenated  

daily composites into 8-day composites to limit missing data due to clouds. Finally, the 8-day 

composite surface chlorophyll-a concentration estimates for each 9 km  ×   9 km pixel were  

averaged to create an 8-day average for each grid cell. For overlapping years between 2003 –  

2010, we compared 8-day average chlorophyll-a for each grid cell between SeaWiFS and 

MODIS-Aqua. Coefficients for grid cells were consistent with other studies 26,48. Therefore, for 

the overlapping years we used the average of composites from both satellites. Satellite 

chlorophyll-a estimates generally correspond with field observations of phytoplankton except  

during extremely high phytoplankton concentrations, which would not effect our estimate of 

spring phenology49. However, satellite-derived bloom estimates are unable to distinguish 

between dominant phytoplankton species  and may mask divergent or species- specific  

phytoplankton phenology changes, which have been previously documented 22. We used 2o   ×   2o   

grid cells, as these regions would encompass a large proportion of the early marine period for 

salmon (Extended Data Fig. 5). Additionally, coastal regions are prone to high spectral    

reflectance for SeaWiFS  and MODIS-Aqua satellites49. Using this method, we created sequential    

8-day chlorophyll-a concentration estimates from Jan 1 to Aug 1 for 20 years spanning 1999 –  

2019 for each grid cell.  

We determined the annual spring phytoplankton bloom for each grid cell, and then calculated the  

rate of change in the bloom date across years. Spring phytoplankton bloom was defined as the   

first 8-day composite that was 5% above the annual mean for that grid cell50. We used spring  

phytoplankton phenology as an indicator of the beginning of spring productivity in the ocean, 

and the initialization of a surge of spring productivity that spans trophic levels. However, trophic  

levels may have different rates of phenological change, which our approach would not capture 6,7. 
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473 Rate of change in spring phytoplankton bloom date was then determined with a li near model of 

spring bloom date by year.   

Changes in smolt outmigration phenology were then determined using only years between 1999    

– 2019 (corresponding to availability of spring phytoplankton bloom data)    (Extended Data Fig 

5). Only populations with more than 10 years  of data were used, as populations with less than  

this generally did not produce valid estimates of rates of change (see Exte nded Data Fig. 1). Of 

the original populations included only 60 populations had greater than 10 years of data collected   

between 1999 – 2019, as we included present and historic smolt datasets in our data collection.   

Comparison of shifts in outmigration timing using full vs. truncated datasets can be found in the  

supplementary information. Each salmon population was paired with the coastal region in which 

they would enter the ocean (i.e., marine entrance; Table S1).  

Ethics and Inclusion Statement   

Where necessary, data agreements were formed with data owners to maintain data sovereignty.  

The formal and informal agreements outlined the data and results sharing aspects of the project. 

Regardless of data agreements all data contributors (individuals, groups, organizations) were  

included in the study design phase, development of questions, and interpretation of the results.   

This was done through written proposals, webinars, and informal and formal written project  

updates.  

All data contributors were provided an initial written project proposal and invited to a webinar  

where the project proposal was presented, and feedback was invited. The project proposal     

included questions, study design, aim and scope, and outlined expectations for authorship.  All 

data contributors were welcome to authorship, given they met the following criteria: i) provided 
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495 data and/or ideas or assisted with analyses, ii) provided feedback on proposal through attendance  

of the webinar and/or written feedback, iii) provided feedback on  the manuscript in a timely  

manner. Regardless of authorship status all data contributors were invited to a final webinar 

where results were presented, and there was an opportunity for feedback. A final report was  

distributed to all data contributors which shared analyses, main findings, and plan for 

publication.  

When data was collected by Indigenous groups, data sharing agreements were made that  

respected data ownership/data sovereignty. These also included the mode of knowledge sharing 

preferred by data owners. Most data for this project were collected under the  purview of Federal, 

Provincial, and State governments. However, we recognize that all of the data used in this project  

was collected on the traditional ancestral territories of Indigenous Peoples  that have used and  

stewarded salmon for millennia. Increased revitalization of Indigenous -led fisheries programs  

has begun in the last 10 – 20 years 39, but in most cases these programs were too recent (too few  

years of data) to be included in our analyses.   
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509 Data Availability  

Data will be available on Github or some other platform (Dryad). Data provided will be   
summarized yearly peak data and calculated peak change and peak range data.  511 

512 Code Availability  
Model code is available as an R package “phenomix” by Eric Ward on github at “ericward-
noaa/phenomix”.  

513 
514 

516 Acknowledgements   
This project would not have been possible without the dedication and fortitude of scientists and 

technicians from Alaska Department of Fish and Game, Fisheries and Oceans Canada,   

Washington Department of Fish and Wildlife, Oregon Department of Fish and Wildlife, 

University of Washington, University of Oregon, Confederated Tribes of Warm Springs , and the  

United States Forest Service that collected the 41 long term datasets used in this project.     Please 

see the Extended Acknowledgment in the Supplementary Information file for detailed list of 

acknowledgements. We also thank the Chelan County Public Utility District, King County  

Cooperative Watershed Management grant program, the WRIA 8 technical committee,  Seattle 

Public Utilities, Puget Sound Energy, Bonneville Power Administration, Dingell-Johnson 

Sportfish Restoration Act, Washington State Salmon Recovery Funding Board, Washington 

State General Fund, Seattle City Light, and Habitat Conservation Trust Foundation for  

supporting these monitoring projects. Funding for S.M.W. was provided by Vanier Canada  

Graduate Scholarship, Weston Family Scholarship, and Steven Berkeley Marine Conservation 

Fellowship. Additional funding from the Liber Ero Foundation was for J.W.M. We also thank  T. 

D. Williams, L. Crozier, A. Dufault, N. Dulvy, N. Mantua, J. Reynolds, and members of the     

Salmon Watersheds Lab for feedback on the early manuscript.  We also thank Xingli Giam and 

517 

518 

519 

521 

522 

523 

524 

526 

527 

528 

529 

531 

532 



 

 

 
 
 

 
  

533 two anonymous reviewers for their helpful and constructive feedback during the peer review  

process.  534 

535 Author Contributions Statement    
S.M.W collated data and completed analysis. S.M.W and J.W.M. designed the study and wrote   
the manuscript. E.J.W. developed models. All authors contributed to data collection and writing.  

536 
537 

538 Competing Interests Statement  
The authors declare no competing interests.  539 



 
  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

540

545

550

555

560

565

570

575

Figure Legends  
541 

542 Figure 1: Location of smolt enumeration facilities (right) and posterior distribution of the mean 
shift in outmigration peak phenology (left, top) and breadth of outmigration window (left,    
bottom) of six species of North American anadromous Pacific salmon (coho = green, pink = 
pink, chum = blue, steelhead = orange, sockeye = vermillion, Chinook = black). Left top panel:   
more negative values  indicate species phenologies  are shifting to be earlier  in the year, whereas  
more positive values are shifting to be later in the year. Left bottom panel:  more negative values   
indicate outmigration distributions of species are becoming narrower, whereas those with more      
positive values are becoming broader. (1/2 pg; 180 x 115mm)     

Figure 2: Shift in peak outmigration phenology (left) and change in breadth of outmigration 
distribution (right) of populations of six species of North American anadromous Pacific salmon 
(coho = green, chum = blue, steelhead = orange, sockeye age 1+ = vermillion, sockeye age 2+ =   
dark vermillion, Chinook age 1+ = black, Chinook age 0+ = grey, odd year pink = dark pink,    
even year pink = light pink). Horizontal lines (error bars) represent 95% confidence interval,  
points represent mean. Where 95% confidence interval overlaps 0 (vertical dashed line), 
populations are not significantly changing outmigration date.  Populations with more negative   
values are shifting to be earlier  in the year or have narrower range in timing, whereas those with    
more positive values are shifting to be later in the year/wider outmigration window. Sites ordered 
by latitude (north to south, top to bottom), more information on sites, including sample size,  is 
located in Table S1. (1/2 pg horizontal; 180 x 115 mm)     

Figure 3: Differences in the rate of phenological mismatch between the spring phytoplankton 
bloom and salmon outmigration timing. Where modelled distribution of differences in rates  
(95% confidence interval) overlaps 0 (vertical dashed line) species phenologies are matching 
(shifting at the same rate), and departure from 0 indicates differing rates of phenological change  
and widening mismatch. Negative change (y<0) indicates that either 1) the spring phytoplankton 
bloom is becoming earlier relative to smolt migration or 2) the smolt outmigration is becoming 
later relative to the spring phytoplankton bloom, while positive change (y>0) indicates salmon 
outmigration is getting earlier relative to spring plankton phenology. Colours indicate the salmon 
species against which the rate of spring phytoplankton bloom phenology change was measured 
(coho = green, pink = pink, chum = blue, steelhead = orange, sockeye = vermillion, Chinook = 
black). Sites ordered by latitude (north to south, top to bottom), more information on sites is  
located in Table S1. (1/4 page vertical, 89 x 125 mm)  

Figure 4: Response diversity of salmon populations to change in air temperature (in  °C). Colours  
represent species and shade of line represents different populations. Grey shaded region 
represents 95% confidence region for slope of the relationship between average air temperature  
three months before migration and annual peak outmigration. A negative slope indicates that  
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577 peak outmigration timing was earlier in warmer years, where a positive slope indicates peak 
outmigration was later in warmer years.   578 
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