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International Challenge to Predict the Impact of Radioxenon Releases from Medical Isotope Production 1 

on a Comprehensive Nuclear Test Ban Treaty Sampling Station 2 

Abstract 3 

The International Monitoring System (IMS) is part of the verification regime for the Comprehensive 4 

Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations 5 

will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear 6 

explosions, and then the full network may be populated with xenon monitoring afterward. An 7 

understanding of natural and man-made radionuclide backgrounds can be used in accordance with the 8 

provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of Treaty) for the 9 

effective implementation of the verification regime. 10 

Fission-based production of 99Mo for medical purposes also generates nuisance radioxenon isotopes that 11 

are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical 12 

isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are 13 

available, and atmospheric transport modeling.  Recently, individuals from seven nations participated in a 14 

challenge exercise that used atmospheric transport modeling to predict the time-history of 133Xe 15 

concentration measurements at the IMS radionuclide station in Germany using stack monitoring data 16 

from a medical isotope production facility in Belgium. Participants received only stack monitoring data 17 

and used the atmospheric transport model and meteorological data of their choice. 18 

Some of the models predicted the highest measured concentrations quite well. A model comparison rank 19 

and ensemble analysis suggests that combining multiple models may provide more accurate predicted 20 

concentrations than any single model. None of the submissions based only on the stack monitoring data 21 

predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities 22 
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with smaller releases than medical isotope production facilities may be important in understanding how to 23 

discriminate those releases from releases from a nuclear explosion. 24 

Keywords 25 

Medical isotope production; 133Xe; source-term estimation; atmospheric modeling; CTBTO 26 

1. Introduction 27 

The International Monitoring System (IMS) is part of the verification regime for the Comprehensive 28 

Nuclear-Test-Ban-Treaty Organization (CTBTO, 2014). The verification regime is designed to detect 29 

nuclear explosions no matter where they occur on the earth. When complete, 80 of the IMS stations will 30 

have aerosol measurement systems sensitive enough to detect releases from nuclear explosions at great 31 

distances. At entry-into-force, half of the 80 stations will also have equipment that measures 32 

concentrations of four radioactive xenon isotopes (131mXe, 133Xe, 133mXe, and 135Xe) produced in a nuclear 33 

explosion, and following entry-into-force, a plan to add xenon monitoring capabilities to the other 40 34 

stations will be reviewed (Comprehensive Nuclear-Test-Ban Treaty, 1996).  An understanding of natural 35 

and man-made radionuclide backgrounds can also be used in accordance with the provisions of the treaty 36 

(such as event screening criteria in Annex 2 to the Protocol of Treaty) for the effective implementation of 37 

the verification regime. 38 

A number of studies of the release and transport of radioxenon from nuclear explosions, nuclear power 39 

plants, and medical isotope production facilities have been published (Becker et al., 2010; Eslinger et al., 40 

2014; Hoffman et al., 2009; Kalinowski et al., 2008; Saey et al., 2010b; Wotawa et al., 2010; Wotawa et 41 

al., 2003; Zähringer et al., 2009). These studies confirm that fission-based production of 99Mo for medical 42 

purposes is the largest routine contributor of radioxenon to worldwide background levels. The 99Mo (half-43 

life of 66 hours) decays into 99mTc (half-life of 6 hours) and the resulting 99mTc is used in approximately 44 
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30-40 million medical procedures per year (Peykov and Cameron, 2014) and the demand is expected to 45 

increase in the future. 46 

A reduction in radioxenon releases to relatively low levels (Bowyer et al., 2013) has the potential to 47 

reduce background radioxenon to levels that don’t significantly impact treaty verification activities.  48 

However, medical isotope production facilities meet regulatory release requirements and their releases 49 

don’t pose public health risks, thus the operators have no financial incentive to reduce releases.   Another 50 

way of mitigating the impact on treaty verification activities is to use stack monitoring data, if they are 51 

available, and atmospheric transport modeling.  In the modeling context, one could attempt to model 52 

background sources accurately enough to subtract a background contribution from any sampled value.  53 

Given the uncertainties (source terms, modeling), simulated peaks may not accurately represent reality. 54 

Thus, alternately, when a xenon peak is observed, one could check whether the simulated background 55 

increases during the same period (synchronization in time).  If that is the case, the observed peak could be 56 

linked to the rise of the radioxenon background. 57 

Unfortunately, the details of the stack monitoring data needed, such as the time resolution, the accuracy, 58 

and whether or not local weather data are needed is not well known.  There have been questions about 59 

whether stack data would be useful in a practical way at all, depending on the type of data made available 60 

and when it could be made available from a producer.  To date, only one published study (Schöppner et 61 

al., 2013) has addressed the impacts the time resolution of stack monitoring data have on predicted 62 

concentrations at an IMS station location.  The minimum source term resolution considered in that study 63 

was one day.  Atmospheric modeling studies using inert tracers have been conducted since the early 64 

1980s (Ferber et al., 1986; Gudiksen et al., 1984).  This study addresses the difficult nuance of whether 65 

atmospheric models currently in wide use can yield information on the accuracy and timing of the source 66 

term data needed to faithfully reproduce sampling data. 67 
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This paper describes a challenge exercise formulated to start to answer some of these questions. Namely, 68 

to ascertain the level of agreement that can be achieved between atmospheric transport models using stack 69 

monitoring data and xenon isotopic concentration measurements at IMS stations. An evaluation criterion 70 

is used to measure the level of agreement. However, the real value of the exercise is in discussions 71 

resulting from the challenge without over-analyzing the evaluation criterion. The challenge is expected to 72 

spark discussions on what techniques are best, what gaps exist in our knowledge, and what type of data 73 

fidelity is needed from stack monitors. In general, this challenge will help inform the international treaty 74 

verification community of the status of the current capability. 75 

The general approach of the exercise was to challenge atmospheric transport modeling groups to 76 

reproduce the time-history of 133Xe measurements at an IMS station using stack monitoring data from a 77 

medical isotope production facility. Participants received stack monitoring data that included the location, 78 

UTC date and time of releases, the measured activity concentrations of 133Xe in Bq m-3, an average stack 79 

flow rate (80,000 m3 hr-1), and the height (m above ground level) of the release. All other data were 80 

gathered by the participants. Each participant used the atmospheric transport model and the associated 81 

meteorological data of their choice. The individuals participating in the challenge are identified in Table 82 

1.  Participants were asked not to use the IMS sampling data, if they had access to them, until after 83 

completing the modeling exercise. 84 

2. Atmospheric transport models and meteorological data 85 

The participants used several transport codes and several different sources for meteorological data. 86 

Several participants submitted results for more than one model. Some of the submissions were averages 87 

of other models or low and high resolution runs for the same model. Model metadata are provided in 88 

Table 2.  Although the analysis considers all twenty six submissions, a subset of the submissions was 89 

selected to discuss common model characteristics. The reduced set of submissions is identified in the last 90 

column of Table 2. Some submissions are not specifically identified in Table 2. The submission Hof 3 91 
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was an average of the submissions Hof1 and Hof2.  Submissions Sei4, Sei5 and Sei6 were slight 92 

variations, including different release height assumptions, on submissions Sei 1, Sei2, and Sei3.  Ros2 93 

was a low resolution (smaller number of particles) version of submission Ros1 and Mau1 was a low 94 

resolution version of Mau3. 95 

The participants used five different atmospheric transport models. The models, in order of the number of 96 

uses by participants are the following: FLEXPART (Stohl et al., 2005; Stohl et al., 1998), a Lagrangian 97 

particle dispersion model; HYSPLIT (Draxler and Hess, 1998, 2010) a hybrid single particle Lagrangian 98 

integrated trajectory model; Eulerian ldX (Tombette et al., 2014) which is part of IRSN’s (French 99 

Institute for Radiation protection and Nuclear Safety) C3X operational platform; the Weather Research 100 

and Forecasting (WRF) model (Done et al., 2004; Michalakes et al., 2001) and MLDP0  (D'Amours et al., 101 

2015; D'Amours et al., 2010) a Lagrangian particle dispersion model designed for long-range problems 102 

associated with events of regional, continental and global consequences. 103 

The participants used six different meteorological data sets, some of which are available in different 104 

spatial and time resolutions. Meteorological analysis data are created by assimilation of a forecast model 105 

to observational data. Reanalysis data (i.e. GDAS) are produced later to have a consistent standardized 106 

gridded product of past weather patterns. 107 

Thirteen of the submissions used global analysis data from the European Centre for Medium-Range 108 

Weather Forecasts (ECMWF) (Simmons et al., 1989). The U.S. National Oceanic and Atmospheric 109 

Administration’s (NOAA) National Weather Service’s National Centers for Environmental Prediction 110 

(NCEP) (Environmental Modeling Center, 2003) produces operational forecasts and a series of computer 111 

analyses. NCEP’s Global Forecast System (GFS) produces pressure level data that can be used in 112 

FLEXPART (NCEP tag in Table 2). It also produces the GDAS (Global Data Assimilation System) 113 

reanalysis data which can be used in HYSPLIT (Kanamitsu et al., 1991). Five submissions used NCEP 114 

data and three submissions used GDAS data. Two submissions used the Weather Research and 115 
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Forecasting (WRF) model (Done et al., 2004; Michalakes et al., 2001; Skamarock et al., 2008). One 116 

participant used the global model ARPEGE (Action de Recherche Petite Echelle Grande Echelle) from 117 

the French meteorological office (Météo-France) (Déqué et al., 1994; Déqué and Piedelievre, 1995). One 118 

participant used the global meteorological analyses provided by the Canadian Meteorological Centre 119 

(CMC).  CMC runs operationally a complete integrated suite of numerical weather prediction (NWP) 120 

models under an infrastructure called the Global Environmental Multiscale (GEM) system (Côté et al., 121 

1998). The GEM system executed in a global configuration is called the GDPS: Global Deterministic 122 

Prediction System (Buehner et al., 2015; Buehner et al., 2013; Charron et al., 2012). The GDPS includes 123 

a 4D vibrational data assimilation system and is run twice a day (00 and 12 UTC) with a horizontal grid 124 

mesh defined at ~25 km (0.23° horizontal resolution). This global meteorological analyses database is 125 

used to drive MLDP0. 126 

The spatial resolution of the meteorological grids in Table 2 is typically expressed in units of degrees.  A 127 

1° grid for meteorological data in this region of the world has a north-south spacing of approximately 111 128 

km and an east-west spacing of 78 km.  Similarly, a 0.5° grid has a spacing of 55 and 39 km, and a 0.2° 129 

grid has a spacing of about 22 and 16 km.  130 

3. Comparison measures 131 

The purpose of this challenge was to ascertain the level of agreement one can achieve between simulated 132 

concentrations and IMS measurements using only the stack data and an atmospheric transport model, as 133 

might be expected for situations in which there was a detection of radioxenon at an IMS station and very 134 

little other information. Concentration estimates from this modeling exercise are expected to be quite 135 

variable (Draxler et al., 2015), thus it is useful to explore the general characteristics of the models with 136 

the closest agreement with the sampled data. Researchers have proposed a number of different 137 

performance measures for comparing the outputs of atmospheric transport models. For purposes of this 138 
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analysis, five statistical measures described by other researchers (Chang and Hanna, 2004; Draxler, 2006) 139 

are used. 140 

A brief introduction of each statistical measure is provided here. Additional information is given in the 141 

Appendix. The fractional bias (FB) is a measure of the bias between measured and predicted values. The 142 

correlation coefficient R is used to represent the linear relationship between measured and predicted 143 

values. The fraction of predicted values within a factor of five of the measured value (F5) is also used. 144 

The Kolmogorov–Smirnov (KS) statistic quantifies the differences between the distribution of unpaired 145 

measured and predicted values. The normalized mean square error (NMSE) is a measure of the difference 146 

between paired measured and predicted values. 147 

The five statistical model comparison measures implicitly assume that all of the 133Xe measured at the 148 

IMS sampling station in originated from the IRE facility. Although IRE is the largest emitter of 133Xe in 149 

the region, it is not the only one. Nuclear power plants emit low levels of 133Xe (Kalinowski and Tuma, 150 

2009; Saey, 2009) and a number of nuclear power plants in Europe were in operation during this time 151 

period. Another medical isotope production facility in the Netherlands (Tyco Healthcare) releases about 152 

0.1% of the amount of 133Xe (Saey, 2009) as released from IRE on an annual basis. The medical isotope 153 

production facility in Chalk River, Canada, annually releases from three to four times as much 133Xe 154 

(Saey, 2009) as IRE and under suitable meteorological conditions, may produce a measurable 155 

contribution to the 133Xe levels across Europe. In spite of these other sources, this is a realistic test case 156 

when data are only available from a single facility. In other words, for real world scenarios, we are testing 157 

the hypothesis that a single larger emitter may dominate the concentrations observed at an IMS facility. 158 

Based on approaches suggested by other researchers (Chang and Hanna, 2004; Draxler, 2006), we 159 

combine four of the statistics into a single model ranking parameter as follows: 160 

 ���� = �� + �1 − |�
|
� � + �5 + �1 − ��� 161 
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The model rank ranges from 0 (a model with no predictive ability) to 4 (a perfect model).  162 

It is desirable to have contributors to an overall rank that measure different aspects of disparity.  For 163 

example, a data set could have an R2 value of 1.0 but have a large magnitude of FB.  There is some 164 

concern that FB and F5 measure similar aspects of disparity.  However, for this data set, other than the 165 

four submissions with the lowest F5, the values for F5 and FB do not seem to be correlated.  166 

4. Release and detection data 167 

Participants in the modeling challenge received 133Xe stack emission data from the Institut des 168 

Radioéléments (IRE) radiopharmaceutical plant in Fleurus, Belgium. Releases from IRE have a 169 

measurable influence on 133Xe concentrations collected at DEX33 (Saey et al., 2010a) which is located 170 

376 km from the IRE stack. The emission data covered the period 10 Nov 2013 through 8 Dec 2013. The 171 

measured concentration values for the stack data are based only on the 81 keV decay energy and have an 172 

uncertainty (one sigma) of approximately 10% of the measured values. The stack air flow rate was 8×104 173 

m3 h-1, without any uncertainty estimate. The concentrations of 133Xe in the exhaust stack air were 174 

provided for 2784 contiguous 15-min release periods.  The amount released (concentration multiplied by 175 

the air flow rate) in each 15 minute period is shown in Fig. 1.  Release quantities may vary by as much as 176 

two orders of magnitude for different 15-min duration periods in the same day. 177 

The German national authority Bundesamt für Strahlenschutz (BfS) provided the 133Xe activity 178 

concentration data collected at the IMS noble gas sampler at Radionuclide Station RN33 (DEX33) at 179 

mount Schauinsland, Germany for the challenge. This sampling station is located at 1205 m above sea 180 

level on a mountain in the Black Forest.  Surrounding low-level terrain ranges in elevation from 200 to 181 

600 m.  The SPALAXTM system (Fontaine et al., 2004) at this station uses a sample collection period of 182 

24 hours. The time tag for each sample is the beginning of the sample collection period and the reported 183 

concentration is an average value decay-corrected to the beginning of the sample collection period. The 184 
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measured data at DEX33 and their uncertainties (one sigma) are shown in Fig. 2.  The uncertainties range 185 

from 2.3% of the largest measured value to approximately 40% of the smallest values. 186 

5. Model comparison results 187 

Thirteen participants submitted 26 solutions containing modeled concentrations of 133Xe at the sampler 188 

(DEX33) in Germany on the time periods used by the sampler. A plot of modeled concentrations for all 189 

26 submissions and the concentrations at the sampler (black dots connected by a dotted line) is provided 190 

in Fig. 3. One submission had two predicted concentration values larger than 100 mBq m-3, but the upper 191 

limit on this plot partially obscures that fact.  Some of the values were zero, thus they cannot be 192 

represented on a log plot and the lines for adjacent nonzero values give the appearance of discontinuous 193 

data.  However, the data were discrete values for each day and the lines on this plot are provided to aid in 194 

tracing of the time sequence of individual submissions. 195 

The measured concentrations show five peaks separated in time and most modeled concentrations also 196 

show five peaks separated in time. There are three time periods (Nov. 17-19, Nov. 26-27 and Dec. 8-9) 197 

where most or all of the modeled concentrations are smaller than the measured concentrations. Data 198 

collected at DEX33 when IRE was not operating (Saey et al., 2010a) show that approximately 90% of the 199 

historical samples have concentrations above 0.1 mBq m-3. Thus, it is reasonable to expect detectable 200 

background concentrations of 133Xe at this sampler from other sources even when the wind is blowing 201 

releases from IRE in a different direction. 202 

Although the measured concentrations are influenced by releases from IRE, the highest concentrations in 203 

the plume often bypassed the sampling station during the time period shown in Fig. 3. The sample 204 

collection period of the first sample from DEX33 used in this study starts only 6 h after the first IRE 205 

release data, but it is 15 h before the first large release.  Earlier simulations suggest that releases from IRE 206 

in the previous 3 d move to the northeast and almost all of the plume bypasses the sampler.  An example 207 
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modeled 133Xe plume using the HYSPLIT computer code and GDAS data (3 h temporal resolution, 1° 208 

spatial resolution) corresponding to the time of the sample with collection start at 0600 UTC on 209 

November 14 is shown in Fig. 4. The plume is truncated on the south in Fig. 4 to minimize the output file 210 

size. This particular model run slightly underestimates the sampler concentration for this time period but 211 

it still illustrates the sharp gradients on the edges of the main body of the plume. As a consequence, 212 

relatively small discrepancies in the direction of movement between the modeled plume and the real 213 

plumes can lead to large concentration discrepancies at sampling locations. 214 

5.1 Statistical performance measures 215 

The values of the individual statistics and the ranking parameter are provided in Table 3 for every 216 

submitted solution. The entries in the table are sorted by descending rank. The best values for the 217 

individual performance measure are highlighted in bold text. The mean square error (MSE) between the 218 

modeled and predicted values is also provided because it is used in the ensemble calculation in the next 219 

section. 220 

The only difference between Mau1 and Mau3 is that Mau3 used 4×107 particles while Mau1 used 3×106 221 

particles. The accuracy of predictions improved significantly using more particles. The submission with 222 

the largest rank (Sch) used background source estimates (average releases from other medical isotope 223 

production facilities and nuclear power plants) in addition to the releases from IRE in the calculation. 224 

This submission illustrates the effect additional sources can have on the KS statistic, because it is highly 225 

influenced by the additional sources (fewer predicted concentrations are near zero). The F5 statistic is 226 

influenced by the additional sources to a lesser extent. 227 

5.2 Ensemble performance measures 228 

Rather than comparing the results of individual models, one can attempt to combine them in an optimal 229 

way to provide a better prediction.  A number of researchers (Kolczynski et al., 2009; Solazzo and 230 
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Galmarini, 2015) have started using ensembles of the individual models in an effort to produce better 231 

modeled concentrations.  One of the justifications for using ensembles is to overcome the high sensitivity 232 

to the direction of plume movement illustrated in Fig. 4. 233 

An ensemble reduction technique based on minimizing the mean square error between the measured and 234 

predicted concentrations is now available (Stein et al., 2015) in the HYSPLIT suite of codes. Using this 235 

approach, we calculate the average of all possible model combinations composed by increasing the 236 

number of ensemble members from 1 to 25 and estimate their MSE. The combination with the minimum 237 

MSE is then selected. In other words, we combine the 25 model outputs in 300 pairs, 2300 trios, etc., and 238 

determine which combination provides the minimum MSE. Fig. 5 shows the minimum MSE obtained as a 239 

function of the number of submissions in the reduced ensembles. The curve has a minimum at two 240 

ensemble members. In addition, the best ensembles with two, three or four members all have lower MSE 241 

than the single best model. This means that including more than about four members in the ensemble will 242 

produce a less accurate result. 243 

The MSE of an average of several submissions used to select the ensemble members is different than the 244 

performance measures shown in Table 3. The ensemble of four members yields an average value that has 245 

KS=0.42, R=0.98, FB=-0.25, F5=0.61, Rank = 3.03, NMSE=0.81 and MSE=2.74. As a comparison, the 246 

ensemble with only two members (Hof4 and Mau3) has KS=0.42, R=0.97, FB=0.01, F5=0.58, 247 

Rank=3.10, NMSE=0.31 and MSE=1.34.  The rank for the two member ensemble is better than the rank 248 

of the best submission and the rank of the four member ensemble is about equal to the rank of the best 249 

submission. The correlation (R) of the four member ensemble is higher than for the single best 250 

submission, but the fractional bias (FB) is worse. The modeled 133Xe concentrations for the ensemble 251 

members and the ensemble average for the minimum MSE ensemble of four members is provided in Fig. 252 

6. Two of the ensemble members used releases varying every 15 min while the other two used sources 253 

varying every 3 hr. These four models use four different meteorological data sets and two different 254 
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computer codes, implying independence between the four ensemble members. Independence among 255 

ensemble members is a necessary but not sufficient condition for building accurate ensembles 256 

(Kioutsioukis and Galmarini, 2014). 257 

This study, and historical sampling data from DEX33 when IRE was not operating (Saey et al., 2010a), 258 

suggests that the largest sample values are heavily dominated by releases from IRE. A comparison of 259 

measured and predicted concentrations are provided in Table 4 for the five largest sampled values for the 260 

submissions that scored the highest on individual statistical performance measures. The ensemble with 261 

four members is also included for comparison. The percentage values are the relative difference of the 262 

predicted and measured concentrations, and a negative value means the predicted value is smaller than the 263 

measured value. The Hof2 submission had a high correlation (0.97) between the sampled and measured 264 

concentrations, but also a large fractional bias. Some of the submissions predicted the largest 265 

concentrations to within 15%. The submission (Sau) did not have the best score on any specific statistical 266 

measure, but it was one of the four members of the minimum MSE ensemble and it has the smallest 267 

maximum relative error on the five largest measured concentrations. 268 

5.3 Comparisons using grouped submissions 269 

Ranks were calculated for several different combinations of the suite of submissions in addition to the 270 

minimum MSE ensemble approach. The ranks provided in Fig. 7 are based on the seventeen submissions 271 

identified in Table 2. Except for the single submission with the highest rank, the ranks were calculated 272 

using the average of each member of the group. The average of all the submissions has a lower rank than 273 

the average from the ensemble with four members. The rank for the group of HYSPLIT models is lower 274 

than the ranks for the FLEXPART and other models. Most of the FLEXPART models used ECMWF 275 

meteorological data while most of the HYSPLIT models used GDAS data. Thus, it is not surprising that 276 

the lower ranks using the HYSPLIT model correspond to the lower ranks for GDAS data as compared to 277 

other data sets. Although the governing equations generally are time reversible, the implementations yield 278 
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slightly different concentration estimates depending on the time direction. The average of the forwards 279 

time runs had a slightly higher rank than the average of the backwards runs. The average of model runs 280 

using meteorological data with finer spatial resolution than 0.5° had higher rank than those using 0.5° 281 

resolution data. The average of model runs using 1.0° resolution meteorological data had a rank about 282 

equal to the average of finer resolution model runs, however, the normalized MSE for the 1.0° spatial 283 

resolution runs was 5.09 while that of the finer spatial resolution runs was 2.89. Those models that 284 

incorporated the source term on a 15-min timing basis had higher ranks than models using sources using 285 

longer source term aggregation periods. 286 

5.4 Additional sources 287 

The modeling exercise was formulated to consider the hypothesis that a single larger emitter may 288 

dominate the concentrations observed at an IMS facility.  However, one submission (Sch) included annual 289 

average emission rates for nuclear power plants and other medical isotope production facilities as an 290 

additional source term. The Sch results are compared to the four member ensemble average in Fig. 8. This 291 

submission suggests that the other releases are also influencing the sampler, and this result is consistent 292 

with historical data (Saey et al., 2010a). The transport runs done for submission Hof4 yielded effective 293 

atmospheric dilution factors that indicate releases from the medical isotope production facility in Chalk 294 

River, Canada, could potentially influence 18 of the 30 DEX33 samples.  No Chalk River source was 295 

introduced in the Hof4 submittal even though releases from the facility seem to have influenced some of 296 

the measured data at DEX33. 297 

6. Discussion 298 

The ranking and ensemble analysis in this paper suggests that combining multiple models may provide 299 

more accurate predicted concentrations than almost any single model. One ensemble selection technique 300 

was used in this paper. Further research is needed to identify optimal methods for selecting ensemble 301 
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members, and those methods may depend on the nature of the transport problem. Although this exercise 302 

only addressed release and transport of a nondepositing noble gas, other radionuclides of interest to the 303 

treaty monitoring community (such as 137Cs and 131I) deposit on the ground during transport, and models 304 

that work best for predicting air concentrations may not fare as well when predicting deposition on the 305 

ground (Draxler et al., 2015). 306 

Participants in this challenge predicted measured concentrations at a sampling station using only releases 307 

from one medical isotope production facility. Some of the models predicted the highest measured 308 

concentrations quite well (high rank or small MSE); however none predicted the small measured 309 

(background) concentrations very well. The one submission that included average release estimates from 310 

other nuclear facilities matched the small concentrations much better. If expected releases from future 311 

nuclear tests are small, such as releases from the 2013 test by the Democratic People’s Republic of Korea 312 

(Ringbom et al., 2014), then modeling of sources from nuclear facilities with smaller releases than 313 

medical isotope production facilities may also be important. 314 

The grouped model comparisons shown in Fig. 7 categorize prediction performance relative to several of 315 

the choices available to modelers.  For this exercise, the ranks for submissions using FLEXPART were 316 

higher than the ranks for submissions using FLEXPART.  However, most HYSPLIT runs used GDAS 317 

data while FLEXPART used other meteorological data.  Interpretation of the results must recognize that 318 

most of the categories are confounded with each other.  For example, all of the HYSPLIT model runs in 319 

comparisons in Fig. 7 did runs that were forwards in time.  In addition, the sampler at DEX33 used a 320 

collection interval of 24 h, and 24 h may be long enough to average out some of the differences in the 321 

time resolution of the source term.  The release data from IRE were provided with a time resolution of 15 322 

min. Two of the models in the four member minimum MSE ensemble used 15 min release data, but the 323 

other two aggregated releases to a 3 h basis. The average predicted concentrations for the models that 324 
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incorporated the source term on a 15-min timing basis had a higher rank than models using longer release 325 

periods. However, models using 3 h source averaging had a higher rank than those using 1 h averaging.   326 

Other operational radioxenon samplers in the IMS use a shorter sample collection interval of 12 h 327 

(Prelovskii et al., 2007; Ringbom et al., 2003) and new generation radioxenon samplers under 328 

development (Hayes et al., 2013; Le Petit et al., 2015) can use collection periods of 6 or 8 h.  These 329 

shorter collection periods may show more sensitivity to the time resolution of a highly time-variable 330 

source term than the current sampler. 331 

Finally, the results of this single exercise indicate that the use of stack monitoring data to determine 332 

radionuclide concentrations at a distance of nearly 400 km can yield predicted large concentrations within 333 

+40% of the measured concentrations if an ensemble is used. Individual models have a larger spread than 334 

the ensemble results.  The uncertainties in the stack data do not appear to dominate the uncertainties in the 335 

modeled results.  However, the uncertainty in the air flow rate in the stack is not known, so the 336 

uncertainty in the release values may be significantly larger than the 10% uncertainty in the isotope 337 

concentration data in the stack.  More work will be needed to determine the achievable accuracy in other 338 

conditions, such as for larger source-receptor distances. We anticipate more exercises of this nature could 339 

help to define methods to understand the effect of emissions from fission-based medical isotope 340 

production on IMS sampling data. 341 
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Appendix 352 

In the following descriptions, let P denote predicted concentrations, M denote measured concentrations, 353 

an overbar denote an average over the data set, and i denote an index of the N sample values. The 354 

fractional bias (FB) is measure of the bias between measured and predicted values. The FB is normalized 355 

to the range -2 to 2 and positive values indicate predictions are larger than measured values. Small 356 

concentrations attributable to releases from facilities other than IRE have a small effect on this 357 

performance measure. The fractional bias is defined as: 358 

 �� = 2 �����
����� (1) 359 

The correlation coefficient R is used to represent the linear relationship between measured and predicted 360 

values where the summation is taken over all samples. Possible values for R range from -1 to 1. The 361 

correlation coefficient is calculated from: 362 

 � = ∑������������
�∑������ ������  (2) 363 

The fraction of predicted values within a certain factor of the measured value is often used in model 364 

comparisons. This statistic can be heavily influenced if some modeled values are near zero while nuisance 365 

sources cause the measured values to be at or just above a detection limit. We define the factor of five 366 

(F5) statistic as the fraction of sample values that satisfy: 367 

 0.2 ≤ ��
�� ≤ 5.0 (3) 368 
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The Kolmogorov–Smirnov (KS) statistic (Stephens, 1970) quantifies the differences between the 369 

distribution of unpaired measured and predicted values. The values are considered as samples from two 370 

different statistical distributions and KS is defined as the maximum difference between two cumulative 371 

distributions when Mk=Pk, where 372 

 �� = $�%|&�$'� − &�('�|. (4) 373 

In this case, D is the cumulative distribution of the measured and predicted concentrations over the range 374 

of k values such that D is the probability that the concentration will not exceed Mk or Pk. It measures the 375 

ability of the model to reproduce the measured concentration distribution regardless of when or where it 376 

occurred. The maximum difference between any two distributions cannot be more than 100%. This 377 

statistic can be heavily influenced if some modeled values are near zero while nuisance sources cause the 378 

measured values to be at or just above a detection limit. 379 

The normalized mean square error (NMSE) is a measure of the difference between paired measured and 380 

predicted values. The normalized mean square error is calculated from: 381 

 )$�* = �+,
� �  (5) 382 

where MSE is the mean square error defined as: 383 

 $�* = .
/ ∑�$0 − (0�� (6) 384 
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Fig. 1. Releases of 133Xe (Bq) in contiguous 15 minute intervals from the exhaust stack at the Institut des 

Radioéléments (IRE) radiopharmaceutical plant in Fleurus, Belgium. 
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Fig. 2. Measured 133Xe activity concentrations at DEX33.  The error bars represent one sigma 

uncertainties. 
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Fig. 3. Modeled 133Xe concentrations for all submissions (solid lines) and measured concentrations at the 

sampler (large black dots connected by dotted lines). 
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Fig. 4. Modeled 133Xe concentrations using the HYSPLIT computer code and GDAS data corresponding 

to the DEX33 sample with collection start at 0600 UTC on November 14. 
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Fig. 5. Minimum MSE as a function of the number of submissions in the ensemble. 
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Fig. 6. Modeled 133Xe concentrations for the individual submissions and the ensemble average for the 

minimum MSE ensemble of four members. 

  



7 

 

 

Fig. 7. Rank parameters for grouped model comparisons. 
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Fig. 8. Modeled 133Xe concentrations for the average of the minimum MSE ensemble of four members 

and a submission (Sch) that includes emissions from nuclear power plants. 
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Kurt Ungar 

Health Canada, Radiation Protection Bureau, Ottawa, Canada 
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Kij Yuichi Kijima Japan Atomic Energy Agency, Tokai, Ibaraki, Japan 

Kry Monika Krysta Comprehensive Test Ban Treaty Organization (CTBTO), International Data Center, 

Vienna, Austria 

Mau Christian Maurer  Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria 

Rob Peter Robins 
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Table 2 
Metadata for models used to explore the effects of common characteristics  (see text for definitions of the 

acronyms) 

ID Code Met. Data 

Source 

Met. Time 

Resolution (h) 

Met. Spatial 

Resolution 

(°) 

Model Time 

Direction 

Release 

Length 

(h) 

Include 

Cha HYSPLIT WRF 1 27/9 km Forwards 0.25 Yes 

Esl HYSPLIT NCEP (GDAS) 3 0.5 Forwards 1 Yes 

Gen FLEXPART NCEP 6 0.5 Forwards 2 Yes 

Haya WRF 

HYSPLIT 

WRF Ensemble 18/6/2 km Forwards 0.25 Yes 

Hof 1 FLEXPART ECMWF 3 1 Backwards 3 Yes 

Hof 2 FLEXPART NCEP 3 1 Backwards 3 Yes 

Hof 4 MLDP0 CMC 6 0.5 Backwards 3 Yes 

Kij HYSPLIT NCEP (GDAS) 3 0.5 Forwards 6 Yes 

Kry 1 FLEXPART ECMWF 3 1.0 Backwards 3 Yes 

Kry 2 FLEXPART NCEP 6 1.0 Backwards 6 Yes 

Mau 2 FLEXPART ECMWF 3 0.2 Forwards 0.25 Yes 

Mau 3 FLEXPART NCEP 3 0.5 Forwards 0.25 Yes 

Rob FLEXPART ECMWF 3 1.0 Backwards 0.25 Yes 

Ros 1 HYSPLIT ECMWF 6 0.2 Forwards 0.25 Yes 

Ros 3 HYSPLIT NCEP (GDAS) 3 0.5 Forwards 0.25 Yes 

Sau Eulerian ldX ARPEGE 1 0.1 Forwards 0.25 Yes 

Sch FLEXPART NCEP 1 0.5 Backwards 3 No 

Sei 1 FLEXPART ECMWF 3b 0.2 Backwards 1.25c Yes 

Sei 2 FLEXPART ECMWF 3 0.2 Backwards 1.25c No 

Sei 3 FLEXPART ECMWF 1 0.125 Backwards 1.25c No 

a. This submission was the mean of an 85 member ensemble 

b. Forecasts up to 23 hours are used 

c. Five-sample moving average in time 
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Table 3 
Values of the individual statistics and the model rank parameter (Rank) for every model submission.  

Statistics include the Kolmogorov-Smirnov parameter (KS), Pearson correlation (R), fractional bias (FB), 

factor of five parameter (F5), normalized mean square error (NMSE) and the mean square error (MSE).  

Bold values indicate the best score on each statistic.   

Model KS R FB F5 Rank NMSE MSE 

Scha 0.10 0.89 0.50 0.81 3.25 2.63 19.2 

Hof 4 0.39 0.94 0.03 0.61 3.09 0.63 18.3 

Mau 3 0.45 0.93 -0.02 0.52 2.92 0.81 3.50 
Sau 0.52 0.92 -0.33 0.52 2.68 1.77 5.60 

Hof 3 0.45 0.90 -0.58 0.55 2.62 4.25 36.5 

Hof 1 0.45 0.75 -0.32 0.58 2.53 3.79 25.9 

Hof 2 0.45 0.97 -0.89 0.39 2.43 5.87 25.0 

Rob 0.29 0.35 -0.19 0.68 2.41 5.72 20.8 

Ros 2 0.52 0.81 -0.56 0.39 2.24 4.87 11.9 

Mau 1 0.58 0.79 -0.36 0.35 2.22 3.24 9.90 

Ros 1 0.52 0.73 -0.56 0.45 2.18 5.42 13.3 

Kry 1 0.42 0.47 -0.42 0.58 2.17 6.41 16.2 

Sei 1 0.52 0.46 0.13 0.45 2.08 5.45 25.0 

Gen 0.39 0.23 0.36 0.58 2.06 6.56 20.5 

Esl 0.45 0.30 -0.08 0.35 1.95 7.62 41.4 

Sei 2 0.55 0.43 -0.07 0.35 1.95 6.14 37.5 

Kry 2 0.52 0.61 -0.67 0.35 1.87 7.40 27.3 

Kij 0.45 0.17 -0.13 0.35 1.87 9.80 40.0 

Sei 3 0.58 0.20 -0.03 0.35 1.80 8.89 36.6 

Sei 7 0.55 0.19 -0.10 0.35 1.79 9.27 35.7 

Sei 8 0.55 0.19 -0.13 0.35 1.78 9.29 59.7 

Sei 9 0.58 0.19 0.28 0.32 1.64 10.3 25.5 

Hay 0.65 0.71 -1.41 0.16 1.31 26.9 25.3 

Cha 0.71 0.83 -1.69 0.06 1.20 62.7 23.2 

Mau 2 0.58 0.59 1.75 0.23 1.12 192. 12400 

Ros 3 0.55 0.18 -1.17 0.23 1.12 21.5 24.5 

Averageb 0.42 0.69 0.27 0.61 2.53 3.52 19.6 
a This submission used other sources in addition to the releases from IRE. The 

statistical performance measures for this submission should not be compared 

directly with those of other submissions. 

b The Average row is calculated by averaging all of the modeled values for each 

sample period and treating the averaged values as atmospheric transport model 

output. 

 

Table 4 
Comparison of measured and predicted concentrations (mBq m-3) for the five samples with the highest 

concentrations and the five submissions with highest values of the individual statistics.  Statistics include 

the Pearson correlation (R), model rank (Rank), Kolmogorov-Smirnov parameter (KS) and fractional bias 

(FB).  The Sau submission was a member of the best ensemble with four members 

DEX33 Hof 2 (R) Hof 4 (Rank) Rob (KS) Mau 3 (FB) Sau (Ensemble) Best 4 Ensemble 

6.19 1.58 (-75%) 6.91 (12%) 3.26 (-47%) 4.56 (-26%) 4.38 (-29%) 4.36 (-30%) 

26.8 11.1 (-59%) 23.4 (-13%) 4.18 (-84%) 24.5 (-9%) 15.4 (-42%) 18.6 (-31%) 

5.28 2.11 (-60%) 3.29 (-38%) 6.21 (18%) 4.48 (-15%) 3.43 (-35%) 3.33 (-37%) 
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4.18 1.65 (-61%) 2.20 (-47%) 2.34 (-44%) 12.9 (208%) 4.56 (9%) 5.33 (27%) 

3.17 0.32 (-90%) 1.75 (-45%) 2.82 (-11%) 6.65 (110%) 3.44 (9%) 3.04 (-4%) 

 




