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International Challenge to Predict the Impact of Radioxenon Releases from Medical Isotope Production

on a Comprehensive Nuclear Test Ban Treaty Sampling Station
Abstract

The International Monitoring System (IMS) is part of the verification regime for the Comprehensive
Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations
will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear
explosions, and then the full network may be populated with xenon monitoring afterward. An
understanding of natural and man-made radionuclide backgrounds can be used in accordance with the
provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of Treaty) for the

effective implementation of the verification regime.

Fission-based production of Mo for medical purposes also generates nuisance radioxenon isotopes that
are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical
isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are
available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a
challenge exercise that used atmospheric transport modeling to predict the time-history of '**Xe
concentration measurements at the IMS radionuclide station in Germany using stack monitoring data
from a medical isotope production facility in Belgium. Participants received only stack monitoring data

and used the atmospheric transport model and meteorological data of their choice.

Some of the models predicted the highest measured concentrations quite well. A model comparison rank
and ensemble analysis suggests that combining multiple models may provide more accurate predicted
concentrations than any single model. None of the submissions based only on the stack monitoring data

predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities
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with smaller releases than medical isotope production facilities may be important in understanding how to

discriminate those releases from releases from a nuclear explosion.

Keywords

Medical isotope production; '**Xe; source-term estimation; atmospheric modeling; CTBTO
1. Introduction

The International Monitoring System (IMS) is part of the verification regime for the Comprehensive
Nuclear-Test-Ban-Treaty Organization (CTBTO, 2014). The verification regime is designed to detect
nuclear explosions no matter where they occur on the earth. When complete, 80 of the IMS stations will
have aerosol measurement systems sensitive enough to detect releases from nuclear explosions at great
distances. At entry-into-force, half of the 80 stations will also have equipment that measures
concentrations of four radioactive xenon isotopes ('*'™Xe, '¥*Xe, '**™Xe, and '**Xe) produced in a nuclear
explosion, and following entry-into-force, a plan to add xenon monitoring capabilities to the other 40
stations will be reviewed (Comprehensive Nuclear-Test-Ban Treaty, 1996). An understanding of natural
and man-made radionuclide backgrounds can also be used in accordance with the provisions of the treaty
(such as event screening criteria in Annex 2 to the Protocol of Treaty) for the effective implementation of

the verification regime.

A number of studies of the release and transport of radioxenon from nuclear explosions, nuclear power
plants, and medical isotope production facilities have been published (Becker et al., 2010; Eslinger et al.,
2014; Hoffman et al., 2009; Kalinowski et al., 2008; Saey et al., 2010b; Wotawa et al., 2010; Wotawa et
al., 2003; Zahringer et al., 2009). These studies confirm that fission-based production of Mo for medical
purposes is the largest routine contributor of radioxenon to worldwide background levels. The Mo (half-

life of 66 hours) decays into *Tc (half-life of 6 hours) and the resulting *"Tc is used in approximately
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30-40 million medical procedures per year (Peykov and Cameron, 2014) and the demand is expected to

increase in the future.

A reduction in radioxenon releases to relatively low levels (Bowyer et al., 2013) has the potential to
reduce background radioxenon to levels that don’t significantly impact treaty verification activities.
However, medical isotope production facilities meet regulatory release requirements and their releases
don’t pose public health risks, thus the operators have no financial incentive to reduce releases. Another
way of mitigating the impact on treaty verification activities is to use stack monitoring data, if they are
available, and atmospheric transport modeling. In the modeling context, one could attempt to model
background sources accurately enough to subtract a background contribution from any sampled value.
Given the uncertainties (source terms, modeling), simulated peaks may not accurately represent reality.
Thus, alternately, when a xenon peak is observed, one could check whether the simulated background
increases during the same period (synchronization in time). If that is the case, the observed peak could be

linked to the rise of the radioxenon background.

Unfortunately, the details of the stack monitoring data needed, such as the time resolution, the accuracy,
and whether or not local weather data are needed is not well known. There have been questions about
whether stack data would be useful in a practical way at all, depending on the type of data made available
and when it could be made available from a producer. To date, only one published study (Schéppner et
al., 2013) has addressed the impacts the time resolution of stack monitoring data have on predicted
concentrations at an IMS station location. The minimum source term resolution considered in that study
was one day. Atmospheric modeling studies using inert tracers have been conducted since the early
1980s (Ferber et al., 1986; Gudiksen et al., 1984). This study addresses the difficult nuance of whether
atmospheric models currently in wide use can yield information on the accuracy and timing of the source

term data needed to faithfully reproduce sampling data.
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This paper describes a challenge exercise formulated to start to answer some of these questions. Namely,
to ascertain the level of agreement that can be achieved between atmospheric transport models using stack
monitoring data and xenon isotopic concentration measurements at IMS stations. An evaluation criterion
is used to measure the level of agreement. However, the real value of the exercise is in discussions
resulting from the challenge without over-analyzing the evaluation criterion. The challenge is expected to
spark discussions on what techniques are best, what gaps exist in our knowledge, and what type of data
fidelity is needed from stack monitors. In general, this challenge will help inform the international treaty

verification community of the status of the current capability.

The general approach of the exercise was to challenge atmospheric transport modeling groups to
reproduce the time-history of '**Xe measurements at an IMS station using stack monitoring data from a
medical isotope production facility. Participants received stack monitoring data that included the location,
UTC date and time of releases, the measured activity concentrations of **Xe in Bq m™, an average stack
flow rate (80,000 m® hr''), and the height (m above ground level) of the release. All other data were
gathered by the participants. Each participant used the atmospheric transport model and the associated
meteorological data of their choice. The individuals participating in the challenge are identified in Table
1. Participants were asked not to use the IMS sampling data, if they had access to them, until after

completing the modeling exercise.

2. Atmospheric transport models and meteorological data

The participants used several transport codes and several different sources for meteorological data.
Several participants submitted results for more than one model. Some of the submissions were averages
of other models or low and high resolution runs for the same model. Model metadata are provided in
Table 2. Although the analysis considers all twenty six submissions, a subset of the submissions was
selected to discuss common model characteristics. The reduced set of submissions is identified in the last

column of Table 2. Some submissions are not specifically identified in Table 2. The submission Hof 3

4



92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

was an average of the submissions Hof1 and Hof2. Submissions Sei4, Sei5 and Sei6 were slight
variations, including different release height assumptions, on submissions Sei 1, Sei2, and Sei3. Ros2
was a low resolution (smaller number of particles) version of submission Ros1 and Maul was a low

resolution version of Mau3.

The participants used five different atmospheric transport models. The models, in order of the number of
uses by participants are the following: FLEXPART (Stohl et al., 2005; Stohl et al., 1998), a Lagrangian
particle dispersion model; HYSPLIT (Draxler and Hess, 1998, 2010) a hybrid single particle Lagrangian
integrated trajectory model; Eulerian 1dX (Tombette et al., 2014) which is part of IRSN’s (French
Institute for Radiation protection and Nuclear Safety) C3X operational platform; the Weather Research
and Forecasting (WRF) model (Done et al., 2004; Michalakes et al., 2001) and MLDPO (D'Amours et al.,
2015; D'Amours et al., 2010) a Lagrangian particle dispersion model designed for long-range problems

associated with events of regional, continental and global consequences.

The participants used six different meteorological data sets, some of which are available in different
spatial and time resolutions. Meteorological analysis data are created by assimilation of a forecast model
to observational data. Reanalysis data (i.e. GDAS) are produced later to have a consistent standardized

gridded product of past weather patterns.

Thirteen of the submissions used global analysis data from the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Simmons et al., 1989). The U.S. National Oceanic and Atmospheric
Administration’s (NOAA) National Weather Service’s National Centers for Environmental Prediction
(NCEP) (Environmental Modeling Center, 2003) produces operational forecasts and a series of computer
analyses. NCEP’s Global Forecast System (GFS) produces pressure level data that can be used in
FLEXPART (NCEP tag in Table 2). It also produces the GDAS (Global Data Assimilation System)
reanalysis data which can be used in HYSPLIT (Kanamitsu et al., 1991). Five submissions used NCEP

data and three submissions used GDAS data. Two submissions used the Weather Research and

5
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Forecasting (WRF) model (Done et al., 2004; Michalakes et al., 2001; Skamarock et al., 2008). One
participant used the global model ARPEGE (Action de Recherche Petite Echelle Grande Echelle) from
the French meteorological office (Météo-France) (Déqué et al., 1994; Déqué and Piedelievre, 1995). One
participant used the global meteorological analyses provided by the Canadian Meteorological Centre
(CMC). CMC runs operationally a complete integrated suite of numerical weather prediction (NWP)
models under an infrastructure called the Global Environmental Multiscale (GEM) system (Coté et al.,
1998). The GEM system executed in a global configuration is called the GDPS: Global Deterministic
Prediction System (Buehner et al., 2015; Buehner et al., 2013; Charron et al., 2012). The GDPS includes
a 4D vibrational data assimilation system and is run twice a day (00 and 12 UTC) with a horizontal grid
mesh defined at ~25 km (0.23° horizontal resolution). This global meteorological analyses database is

used to drive MLDPO.

The spatial resolution of the meteorological grids in Table 2 is typically expressed in units of degrees. A
1° grid for meteorological data in this region of the world has a north-south spacing of approximately 111
km and an east-west spacing of 78 km. Similarly, a 0.5° grid has a spacing of 55 and 39 km, and a 0.2°

grid has a spacing of about 22 and 16 km.

3. Comparison measures

The purpose of this challenge was to ascertain the level of agreement one can achieve between simulated
concentrations and IMS measurements using only the stack data and an atmospheric transport model, as
might be expected for situations in which there was a detection of radioxenon at an IMS station and very
little other information. Concentration estimates from this modeling exercise are expected to be quite
variable (Draxler et al., 2015), thus it is useful to explore the general characteristics of the models with
the closest agreement with the sampled data. Researchers have proposed a number of different

performance measures for comparing the outputs of atmospheric transport models. For purposes of this
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analysis, five statistical measures described by other researchers (Chang and Hanna, 2004; Draxler, 2006)

are used.

A brief introduction of each statistical measure is provided here. Additional information is given in the
Appendix. The fractional bias (FB) is a measure of the bias between measured and predicted values. The
correlation coefficient R is used to represent the linear relationship between measured and predicted
values. The fraction of predicted values within a factor of five of the measured value (F5) is also used.
The Kolmogorov—Smirnov (KS) statistic quantifies the differences between the distribution of unpaired
measured and predicted values. The normalized mean square error (NMSE) is a measure of the difference

between paired measured and predicted values.

The five statistical model comparison measures implicitly assume that all of the '**Xe measured at the
IMS sampling station in originated from the IRE facility. Although IRE is the largest emitter of '**Xe in
the region, it is not the only one. Nuclear power plants emit low levels of **Xe (Kalinowski and Tuma,
2009; Saey, 2009) and a number of nuclear power plants in Europe were in operation during this time
period. Another medical isotope production facility in the Netherlands (Tyco Healthcare) releases about
0.1% of the amount of **Xe (Saey, 2009) as released from IRE on an annual basis. The medical isotope
production facility in Chalk River, Canada, annually releases from three to four times as much '**Xe
(Saey, 2009) as IRE and under suitable meteorological conditions, may produce a measurable
contribution to the '**Xe levels across Europe. In spite of these other sources, this is a realistic test case
when data are only available from a single facility. In other words, for real world scenarios, we are testing

the hypothesis that a single larger emitter may dominate the concentrations observed at an IMS facility.

Based on approaches suggested by other researchers (Chang and Hanna, 2004; Draxler, 2006), we

combine four of the statistics into a single model ranking parameter as follows:

|FB|

_ p2
Rank = R +(1 >

)+F5+(1—KS)
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The model rank ranges from 0 (a model with no predictive ability) to 4 (a perfect model).

It is desirable to have contributors to an overall rank that measure different aspects of disparity. For
example, a data set could have an R? value of 1.0 but have a large magnitude of FB. There is some
concern that FB and F5 measure similar aspects of disparity. However, for this data set, other than the

four submissions with the lowest F5, the values for F5 and FB do not seem to be correlated.
4. Release and detection data

Participants in the modeling challenge received '**Xe stack emission data from the Institut des
Radioéléments (IRE) radiopharmaceutical plant in Fleurus, Belgium. Releases from IRE have a
measurable influence on '**Xe concentrations collected at DEX33 (Saey et al., 2010a) which is located
376 km from the IRE stack. The emission data covered the period 10 Nov 2013 through 8 Dec 2013. The
measured concentration values for the stack data are based only on the 81 keV decay energy and have an
uncertainty (one sigma) of approximately 10% of the measured values. The stack air flow rate was 8x10*
m® h'!, without any uncertainty estimate. The concentrations of '**Xe in the exhaust stack air were
provided for 2784 contiguous 15-min release periods. The amount released (concentration multiplied by
the air flow rate) in each 15 minute period is shown in Fig. 1. Release quantities may vary by as much as

two orders of magnitude for different 15-min duration periods in the same day.

The German national authority Bundesamt fiir Strahlenschutz (BfS) provided the **Xe activity
concentration data collected at the IMS noble gas sampler at Radionuclide Station RN33 (DEX33) at
mount Schauinsland, Germany for the challenge. This sampling station is located at 1205 m above sea
level on a mountain in the Black Forest. Surrounding low-level terrain ranges in elevation from 200 to
600 m. The SPALAX™ system (Fontaine et al., 2004) at this station uses a sample collection period of
24 hours. The time tag for each sample is the beginning of the sample collection period and the reported

concentration is an average value decay-corrected to the beginning of the sample collection period. The
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measured data at DEX33 and their uncertainties (one sigma) are shown in Fig. 2. The uncertainties range

from 2.3% of the largest measured value to approximately 40% of the smallest values.

5. Model comparison results

Thirteen participants submitted 26 solutions containing modeled concentrations of '**Xe at the sampler
(DEX33) in Germany on the time periods used by the sampler. A plot of modeled concentrations for all
26 submissions and the concentrations at the sampler (black dots connected by a dotted line) is provided
in Fig. 3. One submission had two predicted concentration values larger than 100 mBq m~, but the upper
limit on this plot partially obscures that fact. Some of the values were zero, thus they cannot be
represented on a log plot and the lines for adjacent nonzero values give the appearance of discontinuous
data. However, the data were discrete values for each day and the lines on this plot are provided to aid in

tracing of the time sequence of individual submissions.

The measured concentrations show five peaks separated in time and most modeled concentrations also
show five peaks separated in time. There are three time periods (Nov. 17-19, Nov. 26-27 and Dec. 8-9)
where most or all of the modeled concentrations are smaller than the measured concentrations. Data
collected at DEX33 when IRE was not operating (Saey et al., 2010a) show that approximately 90% of the
historical samples have concentrations above 0.1 mBq m™. Thus, it is reasonable to expect detectable
background concentrations of '**Xe at this sampler from other sources even when the wind is blowing

releases from IRE in a different direction.

Although the measured concentrations are influenced by releases from IRE, the highest concentrations in
the plume often bypassed the sampling station during the time period shown in Fig. 3. The sample
collection period of the first sample from DEX33 used in this study starts only 6 h after the first IRE
release data, but it is 15 h before the first large release. Earlier simulations suggest that releases from IRE

in the previous 3 d move to the northeast and almost all of the plume bypasses the sampler. An example
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modeled **Xe plume using the HYSPLIT computer code and GDAS data (3 h temporal resolution, 1°
spatial resolution) corresponding to the time of the sample with collection start at 0600 UTC on
November 14 is shown in Fig. 4. The plume is truncated on the south in Fig. 4 to minimize the output file
size. This particular model run slightly underestimates the sampler concentration for this time period but
it still illustrates the sharp gradients on the edges of the main body of the plume. As a consequence,
relatively small discrepancies in the direction of movement between the modeled plume and the real

plumes can lead to large concentration discrepancies at sampling locations.

5.1 Statistical performance measures

The values of the individual statistics and the ranking parameter are provided in Table 3 for every
submitted solution. The entries in the table are sorted by descending rank. The best values for the
individual performance measure are highlighted in bold text. The mean square error (MSE) between the
modeled and predicted values is also provided because it is used in the ensemble calculation in the next

section.

The only difference between Maul and Mau3 is that Mau3 used 4x10’ particles while Maul used 3x10°
particles. The accuracy of predictions improved significantly using more particles. The submission with
the largest rank (Sch) used background source estimates (average releases from other medical isotope
production facilities and nuclear power plants) in addition to the releases from IRE in the calculation.
This submission illustrates the effect additional sources can have on the KS statistic, because it is highly
influenced by the additional sources (fewer predicted concentrations are near zero). The F5 statistic is

influenced by the additional sources to a lesser extent.

5.2 Ensemble performance measures

Rather than comparing the results of individual models, one can attempt to combine them in an optimal

way to provide a better prediction. A number of researchers (Kolczynski et al., 2009; Solazzo and
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Galmarini, 2015) have started using ensembles of the individual models in an effort to produce better
modeled concentrations. One of the justifications for using ensembles is to overcome the high sensitivity

to the direction of plume movement illustrated in Fig. 4.

An ensemble reduction technique based on minimizing the mean square error between the measured and
predicted concentrations is now available (Stein et al., 2015) in the HY SPLIT suite of codes. Using this
approach, we calculate the average of all possible model combinations composed by increasing the
number of ensemble members from 1 to 25 and estimate their MSE. The combination with the minimum
MSE is then selected. In other words, we combine the 25 model outputs in 300 pairs, 2300 trios, etc., and
determine which combination provides the minimum MSE. Fig. 5 shows the minimum MSE obtained as a
function of the number of submissions in the reduced ensembles. The curve has a minimum at two
ensemble members. In addition, the best ensembles with two, three or four members all have lower MSE
than the single best model. This means that including more than about four members in the ensemble will

produce a less accurate result.

The MSE of an average of several submissions used to select the ensemble members is different than the
performance measures shown in Table 3. The ensemble of four members yields an average value that has
KS=0.42, R=0.98, FB=-0.25, F5=0.61, Rank = 3.03, NMSE=0.81 and MSE=2.74. As a comparison, the
ensemble with only two members (Hof4 and Mau3) has KS=0.42, R=0.97, FB=0.01, F5=0.58,
Rank=3.10, NMSE=0.31 and MSE=1.34. The rank for the two member ensemble is better than the rank
of the best submission and the rank of the four member ensemble is about equal to the rank of the best
submission. The correlation (R) of the four member ensemble is higher than for the single best
submission, but the fractional bias (FB) is worse. The modeled '**Xe concentrations for the ensemble
members and the ensemble average for the minimum MSE ensemble of four members is provided in Fig.
6. Two of the ensemble members used releases varying every 15 min while the other two used sources

varying every 3 hr. These four models use four different meteorological data sets and two different
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computer codes, implying independence between the four ensemble members. Independence among
ensemble members is a necessary but not sufficient condition for building accurate ensembles

(Kioutsioukis and Galmarini, 2014).

This study, and historical sampling data from DEX33 when IRE was not operating (Saey et al., 2010a),
suggests that the largest sample values are heavily dominated by releases from IRE. A comparison of
measured and predicted concentrations are provided in Table 4 for the five largest sampled values for the
submissions that scored the highest on individual statistical performance measures. The ensemble with
four members is also included for comparison. The percentage values are the relative difference of the
predicted and measured concentrations, and a negative value means the predicted value is smaller than the
measured value. The Hof2 submission had a high correlation (0.97) between the sampled and measured
concentrations, but also a large fractional bias. Some of the submissions predicted the largest
concentrations to within 15%. The submission (Sau) did not have the best score on any specific statistical
measure, but it was one of the four members of the minimum MSE ensemble and it has the smallest

maximum relative error on the five largest measured concentrations.

5.3 Comparisons using grouped submissions

Ranks were calculated for several different combinations of the suite of submissions in addition to the
minimum MSE ensemble approach. The ranks provided in Fig. 7 are based on the seventeen submissions
identified in Table 2. Except for the single submission with the highest rank, the ranks were calculated
using the average of each member of the group. The average of all the submissions has a lower rank than
the average from the ensemble with four members. The rank for the group of HYSPLIT models is lower
than the ranks for the FLEXPART and other models. Most of the FLEXPART models used ECMWF
meteorological data while most of the HY SPLIT models used GDAS data. Thus, it is not surprising that
the lower ranks using the HYSPLIT model correspond to the lower ranks for GDAS data as compared to

other data sets. Although the governing equations generally are time reversible, the implementations yield
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slightly different concentration estimates depending on the time direction. The average of the forwards
time runs had a slightly higher rank than the average of the backwards runs. The average of model runs
using meteorological data with finer spatial resolution than 0.5° had higher rank than those using 0.5°
resolution data. The average of model runs using 1.0° resolution meteorological data had a rank about
equal to the average of finer resolution model runs, however, the normalized MSE for the 1.0° spatial
resolution runs was 5.09 while that of the finer spatial resolution runs was 2.89. Those models that
incorporated the source term on a 15-min timing basis had higher ranks than models using sources using

longer source term aggregation periods.

5.4 Additional sources

The modeling exercise was formulated to consider the hypothesis that a single larger emitter may
dominate the concentrations observed at an IMS facility. However, one submission (Sch) included annual
average emission rates for nuclear power plants and other medical isotope production facilities as an
additional source term. The Sch results are compared to the four member ensemble average in Fig. 8. This
submission suggests that the other releases are also influencing the sampler, and this result is consistent
with historical data (Saey et al., 2010a). The transport runs done for submission Hof4 yielded effective
atmospheric dilution factors that indicate releases from the medical isotope production facility in Chalk
River, Canada, could potentially influence 18 of the 30 DEX33 samples. No Chalk River source was
introduced in the Hof4 submittal even though releases from the facility seem to have influenced some of

the measured data at DEX33.

6. Discussion

The ranking and ensemble analysis in this paper suggests that combining multiple models may provide
more accurate predicted concentrations than almost any single model. One ensemble selection technique

was used in this paper. Further research is needed to identify optimal methods for selecting ensemble
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members, and those methods may depend on the nature of the transport problem. Although this exercise
only addressed release and transport of a nondepositing noble gas, other radionuclides of interest to the
treaty monitoring community (such as "*’Cs and "*'I) deposit on the ground during transport, and models
that work best for predicting air concentrations may not fare as well when predicting deposition on the

ground (Draxler et al., 2015).

Participants in this challenge predicted measured concentrations at a sampling station using only releases
from one medical isotope production facility. Some of the models predicted the highest measured
concentrations quite well (high rank or small MSE); however none predicted the small measured
(background) concentrations very well. The one submission that included average release estimates from
other nuclear facilities matched the small concentrations much better. If expected releases from future
nuclear tests are small, such as releases from the 2013 test by the Democratic People’s Republic of Korea
(Ringbom et al., 2014), then modeling of sources from nuclear facilities with smaller releases than

medical isotope production facilities may also be important.

The grouped model comparisons shown in Fig. 7 categorize prediction performance relative to several of
the choices available to modelers. For this exercise, the ranks for submissions using FLEXPART were
higher than the ranks for submissions using FLEXPART. However, most HY SPLIT runs used GDAS
data while FLEXPART used other meteorological data. Interpretation of the results must recognize that
most of the categories are confounded with each other. For example, all of the HYSPLIT model runs in
comparisons in Fig. 7 did runs that were forwards in time. In addition, the sampler at DEX33 used a
collection interval of 24 h, and 24 h may be long enough to average out some of the differences in the
time resolution of the source term. The release data from IRE were provided with a time resolution of 15
min. Two of the models in the four member minimum MSE ensemble used 15 min release data, but the

other two aggregated releases to a 3 h basis. The average predicted concentrations for the models that
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incorporated the source term on a 15-min timing basis had a higher rank than models using longer release

periods. However, models using 3 h source averaging had a higher rank than those using 1 h averaging.

Other operational radioxenon samplers in the IMS use a shorter sample collection interval of 12 h
(Prelovskii et al., 2007; Ringbom et al., 2003) and new generation radioxenon samplers under
development (Hayes et al., 2013; Le Petit et al., 2015) can use collection periods of 6 or 8 h. These
shorter collection periods may show more sensitivity to the time resolution of a highly time-variable

source term than the current sampler.

Finally, the results of this single exercise indicate that the use of stack monitoring data to determine
radionuclide concentrations at a distance of nearly 400 km can yield predicted large concentrations within
+40% of the measured concentrations if an ensemble is used. Individual models have a larger spread than
the ensemble results. The uncertainties in the stack data do not appear to dominate the uncertainties in the
modeled results. However, the uncertainty in the air flow rate in the stack is not known, so the
uncertainty in the release values may be significantly larger than the 10% uncertainty in the isotope
concentration data in the stack. More work will be needed to determine the achievable accuracy in other
conditions, such as for larger source-receptor distances. We anticipate more exercises of this nature could
help to define methods to understand the effect of emissions from fission-based medical isotope

production on IMS sampling data.
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Appendix

In the following descriptions, let P denote predicted concentrations, M denote measured concentrations,
an overbar denote an average over the data set, and i denote an index of the N sample values. The
fractional bias (FB) is measure of the bias between measured and predicted values. The FB is normalized
to the range -2 to 2 and positive values indicate predictions are larger than measured values. Small
concentrations attributable to releases from facilities other than IRE have a small effect on this
performance measure. The fractional bias is defined as:

(P-M)

FB =25

ey
The correlation coefficient R is used to represent the linear relationship between measured and predicted
values where the summation is taken over all samples. Possible values for R range from -1 to 1. The
correlation coefficient is calculated from:

X(Mi—M)(Pi—P)

R =
5, (p-P)”

2

The fraction of predicted values within a certain factor of the measured value is often used in model
comparisons. This statistic can be heavily influenced if some modeled values are near zero while nuisance
sources cause the measured values to be at or just above a detection limit. We define the factor of five

(FS) statistic as the fraction of sample values that satisfy:

02<ii<50 3)
M;
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The Kolmogorov—Smirnov (KS) statistic (Stephens, 1970) quantifies the differences between the
distribution of unpaired measured and predicted values. The values are considered as samples from two
different statistical distributions and KS is defined as the maximum difference between two cumulative

distributions when M=P\, where

KS = Max|D(M) — D(P;)|. 4
In this case, D is the cumulative distribution of the measured and predicted concentrations over the range
of k values such that D is the probability that the concentration will not exceed My or Px. It measures the
ability of the model to reproduce the measured concentration distribution regardless of when or where it
occurred. The maximum difference between any two distributions cannot be more than 100%. This
statistic can be heavily influenced if some modeled values are near zero while nuisance sources cause the

measured values to be at or just above a detection limit.

The normalized mean square error (NMSE) is a measure of the difference between paired measured and

predicted values. The normalized mean square error is calculated from:

MSE

MP
where MSE is the mean square error defined as:
1
MSE = ~%(M; — P))* (6)
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Fig. 1. Releases of '**Xe (Bq) in contiguous 15 minute intervals from the exhaust stack at the Institut des
Radioéléments (IRE) radiopharmaceutical plant in Fleurus, Belgium.
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to the DEX33 sample with collection start at 0600 UTC on November 14.
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Fig. 5. Minimum MSE as a function of the number of submissions in the ensemble.
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Fig. 6. Modeled '**Xe concentrations for the individual submissions and the ensemble average for the
minimum MSE ensemble of four members.
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Fig. 7. Rank parameters for grouped model comparisons.
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Fig. 8. Modeled '**Xe concentrations for the average of the minimum MSE ensemble of four members
and a submission (Sch) that includes emissions from nuclear power plants.



Table 1

Participants in the challenge exercise

ID Name Organization
Cha Tianfeng Chai National Oceanic and Atmospheric Administration (NOAA) Air Resources
Fong Ngan Laboratory, College Park, Maryland, USA
Ariel Stein
Roland Draxler
Esl Paul W. Eslinger Pacific Northwest National Laboratory, Richland, Washington, USA
Ted Bowyer
Brian Schrom
Gen Pascal Achim Commissariat a I’Energie Atomique, CEA, DAM, DIF, 91297 Arpajon, France
Sylvia Generoso
Hay Philip Hayes Air Force Technical Applications Center, Patrick Air Force Base, Florida, USA
Hof Ian Hoffman Health Canada, Radiation Protection Bureau, Ottawa, Canada
Jing Yi
Kurt Ungar
Alain Malo Environment Canada, Canadian Meteorological Centre, Dorval, Canada
Kij  Yuichi Kijima Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Kry Monika Krysta Comprehensive Test Ban Treaty Organization (CTBTO), International Data Center,
Vienna, Austria
Mau Christian Maurer Zentralanstalt fiir Meteorologie und Geodynamik, Vienna, Austria
Rob  Peter Robins Atomic Weapons Establishment (AWE), Aldermaston, Reading, RG7 4PR, United
Verena Heidmann  Kingdom
Ros Jens Ole Ross Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
Sau  Olivier Saunier French Institute for Radiation protection and Nuclear Safety, Fontenay-aux-Roses,
France
Sch  Michael Program on Science and Global Security, Princeton University, Princeton, New Jersey
Schoeppner USA
Sei  Petra Seibert University of Natural Resources and Life Sciences, Institute of Meteorology and

University of Vienna, Faculty of Earth Sciences, Vienna, Austria




Table 2
Metadata for models used to explore the effects of common characteristics (see text for definitions of the
acronyms)

ID Code Met. Data Met. Time Met. Spatial  Model Time Release Include
Source Resolution (h) Resolution Direction Length
) (h)
Cha HYSPLIT WRF 1 27/9 km Forwards 0.25 Yes
Esl HYSPLIT NCEP (GDAS) 3 0.5 Forwards 1 Yes
Gen FLEXPART NCEP 6 0.5 Forwards 2 Yes
Hay* WRF WRF Ensemble 18/6/2 km  Forwards 0.25 Yes
HYSPLIT
Hof 1 FLEXPART ECMWF 3 1 Backwards 3 Yes
Hof 2 FLEXPART NCEP 3 1 Backwards 3 Yes
Hof4 MLDPO CMC 6 0.5 Backwards 3 Yes
Kijj HYSPLIT NCEP (GDAS) 3 0.5 Forwards 6 Yes
Kry1 FLEXPART ECMWF 3 1.0 Backwards 3 Yes
Kry2 FLEXPART NCEP 6 1.0 Backwards 6 Yes
Mau 2 FLEXPART ECMWF 3 0.2 Forwards 0.25 Yes
Mau 3 FLEXPART NCEP 3 0.5 Forwards 0.25 Yes
Rob FLEXPART ECMWF 3 1.0 Backwards 0.25 Yes
Ros1 HYSPLIT ECMWF 6 0.2 Forwards 0.25 Yes
Ros3 HYSPLIT NCEP (GDAS) 3 0.5 Forwards 0.25 Yes
Sau Eulerian 1dX ARPEGE 1 0.1 Forwards 0.25 Yes
Sch FLEXPART NCEP 1 0.5 Backwards 3 No
Sei 1 FLEXPART ECMWF 3b 0.2 Backwards 1.25¢ Yes
Sei 2 FLEXPART ECMWF 3 0.2 Backwards 1.25¢ No
Sei 3 FLEXPART ECMWF 1 0.125 Backwards 1.25¢ No

a. This submission was the mean of an 85 member ensemble
Forecasts up to 23 hours are used
c. Five-sample moving average in time



Table 3

Values of the individual statistics and the model rank parameter (Rank) for every model submission.
Statistics include the Kolmogorov-Smirnov parameter (KS), Pearson correlation (R), fractional bias (FB),
factor of five parameter (F5), normalized mean square error (NMSE) and the mean square error (MSE).
Bold values indicate the best score on each statistic.

Model KS R FB F5 Rank NMSE MSE
Sch? 0.10 0.89 050 0.81 3.25 2.63 19.2
Hof 4 039 094 003 0.61 3.09 0.63 18.3
Mau 3 045 093 -0.02 052 292 0.81 3.50
Sau 052 092 -033 052 268 1.77 5.60
Hof 3 045 090 -0.58 055 2.62 425 36.5
Hof 1 045 075 -0.32 058 253 3.79 259
Hof 2 045 097 -089 039 243 587 25.0
Rob 0.29 035 -0.19 0.68 241 572 20.8
Ros 2 0.52 081 -0.56 039 224 4.87 11.9
Mau 1 0.58 0.79 -036 035 222 324 9.90
Ros 1 0.52 073 -0.56 045 2.18 542 13.3
Kry1 042 047 -042 058 217 641 16.2

Sei 1 052 046 0.13 045 2.08 545 25.0
Gen 039 023 036 058 2.06 6.56 20.5
Esl 045 030 -0.08 035 195 7.62 41.4
Sei 2 0.55 043 -0.07 035 195 6.14 37.5
Kry 2 0.52 0.61 -0.67 035 1.87 7.40 27.3
Kij 045 0.17 -0.13 035 1.87 9.80 40.0
Sei 3 0.58 020 -0.03 035 1.80 8.89 36.6
Sei 7 0.55 0.19 -0.10 035 1.79 9.27 35.7
Sei 8 0.55 0.19 -0.13 035 1.78 9.29 59.7
Sei 9 0.58 0.19 028 032 1.64 103 25.5
Hay 0.65 0.71 -141 0.16 131 269 25.3
Cha 0.71 0.83 -1.69 0.06 120 62.7 23.2

Mau 2 0.58 059 1.75 023 1.12 192. 12400

Ros 3 0.55 0.18 -1.17 0.23 1.12 21.5 24.5

Average® | 042 0.69 0.27 061 253 3.52 19.6
*This submission used other sources in addition to the releases from IRE. The
statistical performance measures for this submission should not be compared
directly with those of other submissions.

® The Average row is calculated by averaging all of the modeled values for each
sample period and treating the averaged values as atmospheric transport model
output.

Table 4

Comparison of measured and predicted concentrations (mBq m™) for the five samples with the highest
concentrations and the five submissions with highest values of the individual statistics. Statistics include
the Pearson correlation (R), model rank (Rank), Kolmogorov-Smirnov parameter (KS) and fractional bias
(FB). The Sau submission was a member of the best ensemble with four members

DEX33 Hof2 (R) Hof 4 (Rank) Rob (KS) Mau 3 (FB) Sau (Ensemble) Best 4 Ensemble

6.19 1.58 (-75%) 6.91 (12%)  3.26 (-47%) 4.56 (26%) 4.38 (29%) 4.36 (-30%)
26.8 11.1(-59%) 23.4(-13%) 4.18 (-84%) 24.5(-9%)  15.4 (-42%) 18.6 (-31%)
528  2.11(-60%) 329 (-38%) 6.21(18%) 4.48 (-15%) 3.43 (-35%) 3.33 (-37%)



4.18 1.65 (-61%) 2.20 (-47%)  2.34 (-44%) 12.9 (208%) 4.56 (9%) 5.33 (27%)
3.17 0.32 (-90%) 1.75(-45%) 2.82(-11%) 6.65 (110%) 3.44 (9%) 3.04 (-4%)






