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Abstract

Soil observations networks at the national scale play an integral role in hydrologic
modeling, drought assessment, agricultural decision support, and our ability to
understand climate change. Understanding soil moisture variability is necessary to apply
these measurements to model calibration, business and consumer applications, or even
human health issues. The installation of soil moisture sensors as sparse, national
networks is necessitated by limited financial resources. However, this results in the
incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography,
and the fine spatial distribution of precipitation events. To this end, temporary networks
can be installed in the areas surrounding a permanent installation within a sparse network.
The temporary networks deployed in this study provide a more representative average at
the 3-km and 9-km scales, localized about the permanent gauge. The value of such
temporary networks is demonstrated at test sites in Millbrook, New York and Crossville,
Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor
set to approximate the average of a temporary network at the 3 km and 9 km scales using
a simple linear scaling function is tested. The capacity of a temporary network to provide

reliable estimates with diminishing numbers of sensors, the temporal stability of those
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networks, and ultimately, the relationship of the variability of those networks to soil
moisture conditions at the permanent sensor are investigated. In this manner, this work
demonstrates the single-season installation of a temporary network as a mechanism to

characterize the soil moisture variability at a permanent gauge within a sparse network.

Introduction

National soil-observation networks offer a valuable mechanism for understanding below-
ground climate change by providing a critical scientific data record (Schaefer et al. 2007;
Bell et al. 2013). Data from these networks can be used for understanding drought,
calibration of land surface models, validation of remotely sensed soil moisture, and even
topics related to human health (Beck et al., 2000). Understanding changes in soil
moisture dynamics gained national attention with the historic 2012 drought in the United
States (Bell et al., 2015; Blunden and Arndt, 2013) and recent outbreaks of
coccidioidomycosis (Valley Fever) that are shown to be related to changes in soil
moisture (Stacy et al., 2012). However, knowledge of soil moisture variability is still
incomplete (Ochsner et al., 2013; Palecki and Bell, 2013). Further research is still
required to understanding how effectively a single station represents its surrounding area,
as in situ measurements of soil moisture are often too sparse to fully characterize soil
dynamics at broader spatial scales (Cosh et al., 2013). Given the considerable importance
of these measurements for drought-monitoring, agricultural yield estimation, and ground
validation of soil moisture from satellite and land-surface models, research characterizing

the representativeness of a single station to its surrounding area is critical for maximizing
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the value of soil moisture measurements from any network collecting data (Kornelsen et

al. 2015).

Soil monitoring networks are expensive to operate and difficult to maintain (Schaefer et
al. 2007; Bell et al. 2013; Temimi et al, 2014). Any effort to provide national, high-
density soil moisture monitoring is too costly and time intensive to be sustainable. Efforts
are being made to assemble existing soil monitoring network data into larger databases
with uniform quality control procedures (Dorigo et al. 2011, 2013; Quiring et al., 2016),
and apply spatial interpolation techniques (Ford and Quiring, 2014). There is also
growing interest in ingesting soil moisture observations into weather and climate models
that normally depend on modelled soil moisture inputs (Dirmeyer et al., 2016). However,
soil moisture is highly variable and a dense network of stations is required to accurately
characterize spatial variability (Magagi et al., 2013). In order to reduce cost and improve
spatial coverage, previous studies have been conducted to temporarily deploy a higher
density network to determine a scaling function for that network (Cosh et al., 2006; Cosh
et al., 2013; Scaini et al., 2015). By identifying the scaling relationship of a station to the
larger domain, researchers and land managers may be able to use measurements of soil
moisture from sparse data networks more accurately for a variety of scientific and
societal needs. However, none of those studies were focused on singular permanent
stations. Before this relationship is established, work needs to be done on understanding
the limitation and similarities of soil moisture variability at different geographic locations
and soil types. By characterizing the spatial soil moisture variability surrounding
locations, it may be possible to apply a scaling strategy to all stations (Vachaud et al.,

1985; Crow et al., 2012; Cosh et al., 2013). This scaling strategy can then be deployed to
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generalize the relationship of soil moisture measurements from a single point to the larger

domain.

To characterize the representativeness of a single station to its surrounding area,
installations of temporary networks of stations monitoring soil moisture were deployed to
evaluate the spatial variability surrounding two permanent stations in a sparse national
network. By instrumenting a variety of landscapes near each station, we will be able to
identify the spatial representativeness of individual stations and determine the limitations
of scaling a single station to a larger domain. This work will serve as a platform for
improving the utility of sparse data networks. As NASA’s Soil Moisture Active Passive
(SMAP) satellite mission (Chan et al. submitted) was recently launched, this work will be
able to directly contribute to better calibration/validation of the satellite’s soil moisture
measurements with sparse data networks. The outcome of this pilot project is to develop
1) a better understanding of spatial representativeness of a common station to the
surrounding area, 2) a scaling strategy that can be used for the life of any permanent soil
observing station, 3) an improved metric for scaling any single point measurement to the
surrounding area, and 4) an improved methodology for using scaling individual point soil
moisture measurements for calibration/validation of larger-scale, remotely-sensed and

modeled soil moisture data products.

Test Sites and Data Collection Methods

NOAA'’s US Climate Reference Network (USCRN) is a sparse data network that records
a variety of homogenous above- and below-ground climate data (Bell et al. 2013).

USCRN stations normally have soil-monitoring probes at five depths: 5 cm (the focus of
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this study), 10 cm, 20 cm, 50 cm, and 100 cm. Soil probes are installed in three plots
around the station tower; the triple redundancy of measurements at each depth aids
quality control and allows for a continuous data record. USCRN locations are evenly
distributed across the United States and generally located in remote areas that are stable
with respect to human development (Diamond et al. 2013). Because of the placement of
USCRN gauges, each station is located in areas with topography, landscape, and soil
types that may or may not differ substantially from their surroundings. As a consequence,
spatial variability in the surrounding area can be challenging to characterize. The two
stations selected for this pilot study were near Crossville, Tennessee and Millbrook, New
York (Temimi et al, 2014). Station positions were selected with consideration towards
representing the diversity of soil textures and topographies present within the watershed,
maintaining an appropriate spatial distribution, and minimizing inconvenience to the

local landowners who allow installation of these gauges on private property.
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116 station at Millbrook, NY (top) and Crossville, TN (bottom).
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The Millbrook USCRN station is located at the Cary Institute for Ecosystems Studies,
while the stations of the temporary networks were installed across the land parcels of a
variety of landowners in the surrounding area (Figure 1, top). The installation of the
temporary network at Millbrook lay across a variety of diverse locations and topographys;
including fields, pastures, and wooded areas. At each temporary installation, the top layer
of soil was carefully removed for the insertion of a Stevens Hydra Probe into the vertical
soil profile at Scm depth to replicate the USCRN installation (which is intended to
estimate soil moisture at the Scm depth) and to represent the soil moisture depth of the
NASA SMAP mission. The removed soil is replaced around the probe to fill the hole and
cover the exposed probe. The top layer of soil that contains the aboveground biomass is
placed over the hole and compacted to remove air pockets. Twenty-five temporary
stations were installed in a random pattern around the USCRN station. The design of the
temporary network allows for an examination of a 9-km SMAP satellite product,
intended to estimate soil moisture at the Scm depth. The layout also provides an
opportunity for the temporary network to be divided into 16 stations that can represent
the 3-km SMAP product (also intended to provide a Scm-depth estimate). Soil cores and
gravimetric soil samples were extracted near the probe. Samples were brought back to the
lab for drying and analysis of soil type, bulk density and gravimetric soil moisture. Near
the temporary probe installation sites, a metal fence post is driven into the ground and the
data-logger box and solar panel are attached. Periodically, the sites were visited for visual
inspection, downloading data, and gathering the requisite gravimetric soil samples for
calibration. Downloaded soil moisture observations were then processed and inspected

for quality assurance.
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Analytical Methods

Five primary approaches were deployed to assess the spatial robustness and temporal
variability of the temporary networks as they related to the permanent network sites.
This section will outline the techniques used and the insights to be gained that are

applicable to understanding sparse network representativeness.

1. Temporal Stability Analysis

In this analysis, the relative conditions of soil moisture at the temporary network sensors
and at the permanently-installed USCRN station are compared. In a temporally-stable
network, one expects specific sensors to remain among the wettest in the network,
regardless of conditions, while others remain among the driest. For each sensor, a
normalized soil moisture time-series is obtained by subtracting the mean soil moisture
value over all temporal network sensors from each individual sensor’s time series. By
calculating the mean and standard deviation at each temporary network location, the
mean-relative-difference (MRD) for each sensor emerges. In turn, if the standard
deviation, a representation of the variability at each sensor, is small relative to the scale
of MRD values, one can conclude that a network is temporally stable. This analysis

method is analogous to work performed in Cosh et al. (2008; 2013).

2. Linear Scaling Functions
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In this case, a simple linear regression is generated to relate the values of the single,
permanent, USCRN gauges to the weighted average of sensors in the temporary networks
that form either the 3-km or 9-km estimated average. This structure of these relationships

is shown in Equations 1 and 2, below:

Bave = B1Buscrn + Bo (Equation 1)

Oave = Xi=1 Wib; (Equation 2)

In the above equations, w; denotes the weight associated with a given temporary network
sensor’s soil moisture value, 8;. The sum of all values of wj is unity. This yields the
weighted average, 8,,., which represents the average soil moisture over the 3-km or 9-
km pixel in which we are interested in assessing temporal and spatial stability. Oygcry
signifies the soil moisture value from the permanent station, which is in turn, scaled via a
slope, f1, and an intercept, B,. The values of these parameters are calibrated using a

randomly-selected 80% of the soil moisture data set and validated on the 20% that remain.

3. Sub-network Analysis

Utilizing this approach, a temporary network average consisting of n-sensors is
compared with various sub-networks containing n-1 sensors, then n-2 sensors, etc.
Considering an average of a temporary network with n sensors, the number of

combinations of r sensors (for r < n) is given in Equation 3:

(Z) = (Equation 3)

(n—r)!*r!
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If (Trl) < 1000, all such combinations are evaluated, and for each an RMSE value is

calculated between the sub-network and the full temporary network. The average RMSE

represents the error between a sub-network of size r, and the complete temporary network.
If (Z) > 1000, for computational expediency, a randomly selected set of 1000

combinations of size r are chosen and the reported RMSE is the average thereof. This
analysis is performed for r = 1 through r = n-1, allowing a determination of how many
sensors can be removed from a temporary network without substantial degradation of

performance.
4. Variability vs. Wetness

Intuition might suggest that the variability across a network of temporary sensors would
be largest during periods of wetting and drying. After a prolonged period without rain,
all proximally-located sensors should stabilize at a low level at or near the residual soil
moisture contents of the area in question. Similarly, after substantial precipitation events,
all sensors should approach their levels of saturation. It is within the intermediate soil
moisture levels where one might expect to observe the greatest variability across the
temporary network. To this end, analysis is performed comparing the standard deviations
of all reporting sensors within the temporary network as a function of the average of

same.
5. Network variability vs. 3-Profile Variability

By design, the USCRN soil moisture values reported at sites of permanent installations

are the average of three co-located (separated by distances of several meters), but
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independent instrument measurements. Assessments of the random errors at USCRN
installations via triple collocation are analyzed and discussed in greater detail in
Coopersmith et al (2016, 1). In this case, we investigate briefly whether the variability
within the triad of USCRN measurements is related to the variability across the sensors
comprising the temporary network. As there are only three USCRN profiles available
(and the calculation of standard deviation is generally dubious for such small sample
sizes), an RMSD calculation about the mean value of the three profiles is obtained in

Equation 4.

RMSD = / 2 (6, —6)? (Equation 4)

In the above, 8; denotes the soil moisture reading at one of the three USCRN profiles and
o signifies the average of those three measured values. These RMSD values are, in turn,
compared with the variability of the temporary network sensors at the 3-km and 9-km

scales.

Results

The soil probes of the temporary network were calibrated initially to the soil type located
at each individual location. The gravimetric measurements that occurred at each
temporary station throughout the life of the temporary networks served as a set of quality
measurements to calibrate the dielectric measurements. These calculations are applied
across all stations uniformly which is not unreasonable for the Crossville site. The
Millbrook site contained slightly more variation with respect to the soil textures, but the

heterogeneity is not expected to influence the results of the analysis significantly.
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Calibrated values were used for evaluation of the spatial and temporal variability of soil

moisture across the entire network.

1. Temporal Stability Analysis

Figure 2 illustrates that despite the 0.2-0.3 m*/m? range in soil moisture values observed,
relative positioning of sensors is temporally stable to a large degree at the Millbrook site.
The red line in Figure 2 also suggests that the USCRN sensor is, in general, likely to
produce values that are drier than those reported by the temporary network at 9-km scale
(blue line) or 3—km scale (green line). As the plots show, a great deal of variability
occurs across the temporary networks at Millbrook site. However, despite this variability,
temporal patterns of the average 9-km and 3-km soil moisture values replicate the wetting
and drying cycles of the USCRN station. Average soil moisture values for the entire
period of record confirm that the USCRN station was slightly drier (mean =
0.2066/standard deviation = 0.0525) than the 9-km (mean = 0.2587/standard deviation =

0.0541) and 3-km (mean = 0.2364/standard deviation = 0.0465) grids at Millbrook.
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Figure 2. Mean soil moisture variability of the temporary network at Millbrook, NY.
The red line denotes the USCRN value, the blue line represents the 9-km average, and the green line signifies the 3-km average.
The various shades of grey represent the individual probe values within the temporary network.
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Figure 3. CDF plots for Millbrook (top, at 3-km and 9-km scales) and Crossville
(bottom) USCRN gauges and temporary networks.

Cumulative distribution frequency plots were constructed to evaluate the population of
USCRN values and compare them to 9-km and 3-km grid average value populations

(Figure 3). The cumulative distribution frequency plots show that the three time series at
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Millbrook display similar patterns of soil moisture for the period of record. Again, as
expected, USCRN values were consistently drier than the 9-km values. The 3-km values
were wetter than the USCRN values in the lower soil moisture percentages but were more
similar to the USCRN values in the higher soil moisture conditions. In the lower panel,
at Crossville, we observe that the USCRN gauge is considerably wetter than the
distribution describing the surrounding temporary network. In contrast with the
Millbrook site, the USCRN station at Crossville was more similar to the temporary

network when drier - the values diverged as the conditions became wetter.
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19 Figure 4. USCRN soil moisture vs. temporary network average at 3km (green dots)
20  and 9km (blue dots) scales at Millbrook (top) and USCRN vs. temporary network at
21 Crossville (bottom).

22

23 Correlations between the USCRN values and the Millbrook temporary network’s 3-km

24 and 9-km products yield strong relationships (Figure 4, top panel). The 3-km temporary
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network grid had a higher correlation (r> = 0.90) than the 9-km grid (r> = 0.84). As would
be expected, the correlation between the 3-km vs. 9-km grids was even higher (r> = 0.94).
In Crossville (Figure 4, bottom panel), the correlation between the USCRN and
temporary network average is comparable, at r> = 0.85, but demonstrates considerable

non-linearity at volumetric soil moisture amounts above 0.3 m?*/m? (a value rarely

exceeded at Millbrook).
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Figure 5. Mean relative difference plot of the Millbrook (top) and Crossville
(bottom) temporary networks. Error bars represent the standard deviations of the
relative differences for each station with the remaining stations.

Figure 5 provides a summary of the temporal stability of the temporary networks. With
mean-relative-difference (MRD) values at Millbrook spanning a range of over 0.2 m3/m?,
while the standard deviation of readings at each sensor tend to hover near 0.05 m?*/m?, the
top panel of Figure 5 confirms what Figure 2 suggests — wetter and drier sensors tend to
remain so. In contrast to some extent, at the Crossville location, the range of MRD
values falls below 0.10 m?*/m?* while the standard deviations are often above 0.10 m*/m?.
In some cases, standard deviations are considerably larger than the MRD range displayed
by the temporary network. For this reason, fewer sensors seem consistently wetter or
drier. Additionally, these paired images illustrate that, within the Millbrook network, the

USCRN gauge has been installed in a location that is slightly drier than its surroundings,
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whereas in Crossville, the installation site is substantially wetter than the peripheral

landscape.

2. Linear Scaling Functions

For the Millbrook location, time series data displayed in Figure 6 show the adjustment of
the USCRN soil moisture (red series) to a scaled average (blue series) via an optimal gain
and offset derived using Equation 1. The top panel represents the scaling for the 3-km
grid and the bottom panel represents the scaling for the 9-km grid. For the purposes of
data reliability, all time series values while rain is falling and during the four hours
immediately thereafter were removed from the regression analysis. Rain requires some
non-zero quantity of time to infiltrate to the depth of the sensor and short-term sensor
flooding is also possible. A four-hour removal of this nature, used for calibration of
USCRN sensors in Coopersmith et al, 2015(a) and Coopersmith et al, 2015(b) resolves

this issue.
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Figure 6. Gain and offset adjustments of USCRN values to approximate the average
of the Millbrook temporary network at the 3km (top) and 9km (bottom) scales.

The correlations between the Millbrook USCRN values and the temporary network 3-km
and 9-km averages are strong (r> = 0.90 and 0.89 respectively). These values are
obtained, as discussed in the methodology section by random selection of 80% of the
time series data. Validating on the remaining 20% yields comparable values (r* = 0.89
and 0.90 respectively). RMSE values prior to the introduction of optimal gains and
offsets were 0.033 and 0.049 m3/m? at 3-km and 9-km scales, respectively. After the
introduction of these adjustments, RMSE values fall to 0.013 and 0.015 m*/m? during
calibration for the 3-km and 9-km average respectively and 0.014 m*/m? during

validation.

Within Crossville, an analogous analysis is performed and presented in Figure 7. The
correlation between the USCRN values and the temporary network average are strong in
calibration (r> = 0.86) and validation (r> = 0.85), though perhaps not as high as those
observed in Millbrook. The RMSE value prior to the introduction of an optimal gain and

offset is 0.076 m3/m3, which falls to 0.021 m3/m3 (calibration) once an optimal linear
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correction is implemented and is only marginally worse (0.021 m3/m3) during validation.
These results suggest that a single point of observation can effectively approximate the
behavior of a small area network through calibration, even if the site location is not in the

ideal position to represent the central tendency of the area soil moisture distribution.
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Figure 7. Gain and offset adjustments of the USCRN gauge values to approximate
the average of the Crossville temporary network.

3. Sub-network Analysis

As temporary networks are still resource intensive, a sub-network analysis will help
determine the number of sensors needed to achieve results that would appear comparable
to that of the complete network. Figure 8 presents the RMSE between the various
combinations of sub-networks as compared to the 3-km (top) and 9-km (bottom) products,
respectively. In both panels, a green, dotted-line presents the approximate random error
associated with a hydraprobe measurement at this depth, as determined by the triple-
collocation analysis performed in Coopersmith et al (2016, i). The confidence intervals

are determined as the standard deviation of all combinations of the size listed on the x-
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96  Where the number of such combinations is computationally-cumbersome, 1,000 random

97  combinations are selected and used to generate the confidence intervals illustrated.
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Figure 8. RMSE between complete Millbrook temporary network and combinations
of lesser numbers of sensors at 3-km (top) and 9-km (bottom) scales.

At both 3-km and 9-km scales, we observe that even without the full contingent of
sensors, RMSE values against the complete temporary network average that fall below
the inherent random error in hydraprobe measurements are attainable. As the presented
confidence intervals illustrate a range of one standard deviation above or below the mean,
the probability of a random combination of sensors of size r (see Equation 3) presenting
an RMSE below the upper-end of the confidence interval is ~84%. This suggests, that if,
of the 25 sensors comprising the 9-km average, 14 are installed, the expected value of the
RMSE would be roughly the value of random measurement error. If 19 are available, we
would expect that RMSE to be below the random measurement error with 84%

confidence. At the 3-km scale, errors are slightly larger, as we are removing sensors



113  from a group of 15 rather than 25. We observe that the expected RMSE value
114  asymptotically approaches the random error associated with a hydroprobe measurement.

115  Figure 9 presents the analogous plot at the Crossville location.
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117  Figure 9. RMSE between complete Crossville temporary network and combinations
118 of lesser numbers of sensors.

119  These results suggest that even fewer sensors (of a 15-sensor temporary network) will be
120  required to achieve errors below the level of random measurement error, in this case only
121 10 will lead to expected RMSE values below the random error level and 12 sensors will

122  achieve this standard with 84% confidence.

123 4. Variability vs. Wetness
124  The average standard deviation among the temporary network’s constituent sensors as a

125  function of the average soil moisture values reported by those sensors was calculated at
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137

3-km and 9-km scales at Millbrook, and 3-km scale at Crossville. At Millbrook, it is
evident at the 3-km scale (Figure 10) that soil moisture variability across the temporary
network is largest during intermediate conditions, tapering off at both the upper and
lower ends of the distribution when all sensors are fully dried or fully saturated.
However, at the 9-km scale, the same relationship is no longer observed. In this case, the
variability across the temporary network may be the result of unevenly received
precipitation events in addition to topographic, vegetative, or edaphic variability. The
network at Crossville also shows no systematic relationship between variability and
wetness, even at the 3-km scale (not shown). Possibly, this may result from wet
conditions at the Crossville site — considerable rainfall arrived while the temporary

stations were installed.
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Figure 10. Standard deviation of Millbrook temporary network sensors vs. average
soil moisture

5. Variability vs. 3-Profile Variability
Taking advantage of the USCRN’s unique acquisition of three soil moisture profiles, it
would be interesting to see if the near-point variability relates in any way to the 3-km or
9-km scale spatial variability around the site. Figure 11 presents the variability of the
temporary network at Millbrook as a function of the variability observed in the three
profiles of the USCRN installation (Equation 4). At neither the 3-km, nor the 9-km scale
does the variability of the network seem dependent upon the consistency of the three-
profile measurements at the single, permanent gauge. Though the 3-km scale does seem
to present slightly less variability at the drier end of its distribution, the overall results
seem to suggest that the variability in terms of precipitation, topography, soil texture, and
vegetation cover all explain the temporary network’s variability rather than specific
conditions that manifest themselves as differences in the three profile measurements.

Crossville displayed a similar lack of a relationship (not shown).
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Figure 11. Standard deviation of temporary network sensors at Millbrook vs. three-
profile variability of the USCRN station.

Discussion

Previous research has demonstrated that a dense network of sensors can be deployed to
produce estimates at the 500m resolution by leveraging a combination of in situ sensory
resources, and if needed, knowledge of topographic and edaphic features (Coopersmith et
al., 2015, ii1). By matching smaller 500m x 500m squares with models calibrated at
sensors located in similarly textured soils of similar topographic features, accurate
estimates within each square are possible. Essentially, this methodology enables the
creation of estimates in every 500m x 500m square within a larger (~40km x ~40km in
the article referenced above), then subsequently upscaling those estimates to 3km, 9km,

or 36km (the scales employed by the SMAP satellite mission) by aggregating and
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averaging the constituent 500m x 500m boxes. This facilitates more direct validation of

satellite estimates (Coopersmith et al., 2015, iii).

The findings in this analysis suggest that errors decrease to the levels of random errors
inherent in in situ sensor measurement (Coopersmith et al, 2016, i) with a network of
approximately one-dozen sensors. As many dense permanent and temporary networks
contain more than this quantity of sensory resources, these findings suggest upscaling can
occur using even few sensors than are typically installed in dense networks. The number
of sensors is likely to be even fewer if care is taken to ensure the chosen sensor locations
represent the diversity of textures and topographies present within the test area. These
upscaled estimates can be compared, in turn, with remotely-sensed estimates from

satellites.

In addition to comparisons with remote sensing, these upscaled estimates can be
deployed within various dense networks (or sparse networks with lower resolutions than
the aforementioned 500km) as a means of assessing drought. Given this analysis’s
findings of stable relationships for wetter and drier sensors within a given network,
characterization of potential drought risks could be informed by knowledge of which

sensors tend to be atypically wet or dry.

Previous research suggests that these findings are applicable in other locations and within
different hydroclimates and soil textures (Coopersmith et al, 2015, i). The models
calibrated during that analysis at both USCRN and the Soil Climate Analysis Network
(SCAN; Schaefer et al, 2007) sites, produced low RMSE values in over 40 states

throughout the continental USA. With respect to temporal stability, preliminary analyses
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in the Agricultural Research Service test watersheds (located in Arizona, Oklahoma,
Idaho, Georgia, Iowa, and Indiana) suggest similar performance as sensors are removed

can be achieved (Coopersmith and Cosh, 2016, ii, in-progress).

Conclusions

The results of this pilot study indicate that it is possible to accurately represent the spatial
and temporal variability of a larger domain with an individual station with considerable
accuracy, once a scaling relationship has been developed. Deploying a temporary
network around a permanent station provides an estimate of the soil moisture
characteristics for that location and these results suggest that approximately one dozen
sensors distributed around a site for an entire seasonal cycle is likely to be sufficient to
characterize the variability of the domain average. The accuracy of the USCRN, once
scaled to the surrounding 3-km or 9-km average demonstrated RMSE values below 0.015
m? during both calibration and validation. Temporal stability analysis reveals that wetter
and drier sensors within the domain are robust in terms of their mean relative differences.
Finally, while wetter and drier conditions do affect network variability (at least at the
3km scale), the variability of the USCRN’s three co-located profiles do not. This work
describes a successful approach for using a sparse data network station for validation of a

satellite remote sensing product.

Additional work is needed to characterize the differences seen at other locations with
varying soil conditions and landcover type. The study at Millbrook demonstrates that the
analytic approaches presented in this paper are useful even with a target area that has

substantial soil moisture variability due to a heterogeneous landscape. The study at



215  Crossville shows that even a primary station located in a less representative soil moisture
216  environment can still be successfully related to the variations in soil moisture for the
217  surrounding area. A similar study at a location with a less heterogeneous landscape or
218  more consistent soil type would likely produce even less variability and a more accurate
219  representation of the local area with a properly calibrated single point observation. The
220  utility of in situ soil moisture measurements at point locations in sparse networks can be

221  increased substantially through the use of temporary networks for area calibration.
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