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Abstract 12 

Soil observations networks at the national scale play an integral role in hydrologic 13 

modeling, drought assessment, agricultural decision support, and our ability to 14 

understand climate change.  Understanding soil moisture variability is necessary to apply 15 

these measurements to model calibration, business and consumer applications, or even 16 

human health issues.  The installation of soil moisture sensors as sparse, national 17 

networks is necessitated by limited financial resources. However, this results in the 18 

incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, 19 

and the fine spatial distribution of precipitation events.  To this end, temporary networks 20 

can be installed in the areas surrounding a permanent installation within a sparse network.  21 

The temporary networks deployed in this study provide a more representative average at 22 

the 3-km and 9-km scales, localized about the permanent gauge.  The value of such 23 

temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, 24 

Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor 25 

set to approximate the average of a temporary network at the 3 km and 9 km scales using 26 

a simple linear scaling function is tested.  The capacity of a temporary network to provide 27 

reliable estimates with diminishing numbers of sensors, the temporal stability of those 28 
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networks, and ultimately, the relationship of the variability of those networks to soil 29 

moisture conditions at the permanent sensor are investigated.  In this manner, this work 30 

demonstrates the single-season installation of a temporary network as a mechanism to 31 

characterize the soil moisture variability at a permanent gauge within a sparse network. 32 

Introduction  33 

National soil-observation networks offer a valuable mechanism for understanding below-34 

ground climate change by providing a critical scientific data record (Schaefer et al. 2007; 35 

Bell et al. 2013). Data from these networks can be used for understanding drought, 36 

calibration of land surface models, validation of remotely sensed soil moisture, and even 37 

topics related to human health (Beck et al., 2000). Understanding changes in soil 38 

moisture dynamics gained national attention with the historic 2012 drought in the United 39 

States (Bell et al., 2015; Blunden and Arndt, 2013) and recent outbreaks of 40 

coccidioidomycosis (Valley Fever) that are shown to be related to changes in soil 41 

moisture (Stacy et al., 2012).  However, knowledge of soil moisture variability is still 42 

incomplete (Ochsner et al., 2013; Palecki and Bell, 2013). Further research is still 43 

required to understanding how effectively a single station represents its surrounding area, 44 

as in situ measurements of soil moisture are often too sparse to fully characterize soil 45 

dynamics at broader spatial scales (Cosh et al., 2013). Given the considerable importance 46 

of these measurements for drought-monitoring, agricultural yield estimation, and ground 47 

validation of soil moisture from satellite and land-surface models, research characterizing 48 

the representativeness of a single station to its surrounding area is critical for maximizing 49 



the value of soil moisture measurements from any network collecting data (Kornelsen et 50 

al. 2015).  51 

Soil monitoring networks are expensive to operate and difficult to maintain (Schaefer et 52 

al. 2007; Bell et al. 2013; Temimi et al, 2014). Any effort to provide national, high-53 

density soil moisture monitoring is too costly and time intensive to be sustainable. Efforts 54 

are being made to assemble existing soil monitoring network data into larger databases 55 

with uniform quality control procedures (Dorigo et al. 2011, 2013; Quiring et al., 2016), 56 

and apply spatial interpolation techniques (Ford and Quiring, 2014). There is also 57 

growing interest in ingesting soil moisture observations into weather and climate models 58 

that normally depend on modelled soil moisture inputs (Dirmeyer et al., 2016). However, 59 

soil moisture is highly variable and a dense network of stations is required to accurately 60 

characterize spatial variability (Magagi et al., 2013). In order to reduce cost and improve 61 

spatial coverage, previous studies have been conducted to temporarily deploy a higher 62 

density network to determine a scaling function for that network (Cosh et al., 2006; Cosh 63 

et al., 2013; Scaini et al., 2015). By identifying the scaling relationship of a station to the 64 

larger domain, researchers and land managers may be able to use measurements of soil 65 

moisture from sparse data networks more accurately for a variety of scientific and 66 

societal needs. However, none of those studies were focused on singular permanent 67 

stations.  Before this relationship is established, work needs to be done on understanding 68 

the limitation and similarities of soil moisture variability at different geographic locations 69 

and soil types. By characterizing the spatial soil moisture variability surrounding 70 

locations, it may be possible to apply a scaling strategy to all stations (Vachaud et al., 71 

1985; Crow et al., 2012; Cosh et al., 2013). This scaling strategy can then be deployed to 72 



generalize the relationship of soil moisture measurements from a single point to the larger 73 

domain.  74 

To characterize the representativeness of a single station to its surrounding area, 75 

installations of temporary networks of stations monitoring soil moisture were deployed to 76 

evaluate the spatial variability surrounding two permanent stations in a sparse national 77 

network. By instrumenting a variety of landscapes near each station, we will be able to 78 

identify the spatial representativeness of individual stations and determine the limitations 79 

of scaling a single station to a larger domain. This work will serve as a platform for 80 

improving the utility of sparse data networks. As NASA’s Soil Moisture Active Passive 81 

(SMAP) satellite mission (Chan et al. submitted) was recently launched, this work will be 82 

able to directly contribute to better calibration/validation of the satellite’s soil moisture 83 

measurements with sparse data networks. The outcome of this pilot project is to develop 84 

1) a better understanding of spatial representativeness of a common station to the 85 

surrounding area, 2) a scaling strategy that can be used for the life of any permanent soil 86 

observing station, 3) an improved metric for scaling any single point measurement to the 87 

surrounding area, and 4) an improved methodology for using scaling individual point soil 88 

moisture measurements for calibration/validation of larger-scale, remotely-sensed and 89 

modeled soil moisture data products. 90 

Test Sites and Data Collection Methods 91 

NOAA’s US Climate Reference Network (USCRN) is a sparse data network that records 92 

a variety of homogenous above- and below-ground climate data (Bell et al. 2013). 93 

USCRN stations normally have soil-monitoring probes at five depths: 5 cm (the focus of 94 



this study), 10 cm, 20 cm, 50 cm, and 100 cm. Soil probes are installed in three plots 95 

around the station tower; the triple redundancy of measurements at each depth aids 96 

quality control and allows for a continuous data record.  USCRN locations are evenly 97 

distributed across the United States and generally located in remote areas that are stable 98 

with respect to human development (Diamond et al. 2013). Because of the placement of 99 

USCRN gauges, each station is located in areas with topography, landscape, and soil 100 

types that may or may not differ substantially from their surroundings.  As a consequence, 101 

spatial variability in the surrounding area can be challenging to characterize. The two 102 

stations selected for this pilot study were near Crossville, Tennessee and Millbrook, New 103 

York (Temimi et al, 2014). Station positions were selected with consideration towards 104 

representing the diversity of soil textures and topographies present within the watershed, 105 

maintaining an appropriate spatial distribution, and minimizing inconvenience to the 106 

local landowners who allow installation of these gauges on private property.   107 

 108 
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Figure 1 –Design of the network of temporary stations installed around the USCRN 115 

station at Millbrook, NY (top) and Crossville, TN (bottom). 116 



The Millbrook USCRN station is located at the Cary Institute for Ecosystems Studies, 117 

while the stations of the temporary networks were installed across the land parcels of a 118 

variety of landowners in the surrounding area (Figure 1, top). The installation of the 119 

temporary network at Millbrook lay across a variety of diverse locations and topography; 120 

including fields, pastures, and wooded areas. At each temporary installation, the top layer 121 

of soil was carefully removed for the insertion of a Stevens Hydra Probe into the vertical 122 

soil profile at 5cm depth to replicate the USCRN installation (which is intended to 123 

estimate soil moisture at the 5cm depth) and to represent the soil moisture depth of the 124 

NASA SMAP mission. The removed soil is replaced around the probe to fill the hole and 125 

cover the exposed probe. The top layer of soil that contains the aboveground biomass is 126 

placed over the hole and compacted to remove air pockets. Twenty-five temporary 127 

stations were installed in a random pattern around the USCRN station. The design of the 128 

temporary network allows for an examination of a 9-km SMAP satellite product, 129 

intended to estimate soil moisture at the 5cm depth. The layout also provides an 130 

opportunity for the temporary network to be divided into 16 stations that can represent 131 

the 3-km SMAP product (also intended to provide a 5cm-depth estimate). Soil cores and 132 

gravimetric soil samples were extracted near the probe. Samples were brought back to the 133 

lab for drying and analysis of soil type, bulk density and gravimetric soil moisture. Near 134 

the temporary probe installation sites, a metal fence post is driven into the ground and the 135 

data-logger box and solar panel are attached. Periodically, the sites were visited for visual 136 

inspection, downloading data, and gathering the requisite gravimetric soil samples for 137 

calibration. Downloaded soil moisture observations were then processed and inspected 138 

for quality assurance.  139 



 140 

Analytical Methods 141 

Five primary approaches were deployed to assess the spatial robustness and temporal 142 

variability of the temporary networks as they related to the permanent network sites.  143 

This section will outline the techniques used and the insights to be gained that are 144 

applicable to understanding sparse network representativeness. 145 

1. Temporal Stability Analysis 146 

In this analysis, the relative conditions of soil moisture at the temporary network sensors 147 

and at the permanently-installed USCRN station are compared.  In a temporally-stable 148 

network, one expects specific sensors to remain among the wettest in the network, 149 

regardless of conditions, while others remain among the driest.  For each sensor, a 150 

normalized soil moisture time-series is obtained by subtracting the mean soil moisture 151 

value over all temporal network sensors from each individual sensor’s time series.  By 152 

calculating the mean and standard deviation at each temporary network location, the 153 

mean-relative-difference (MRD) for each sensor emerges.  In turn, if the standard 154 

deviation, a representation of the variability at each sensor, is small relative to the scale 155 

of MRD values, one can conclude that a network is temporally stable.  This analysis 156 

method is analogous to work performed in Cosh et al. (2008; 2013). 157 

2. Linear Scaling Functions 158 



In this case, a simple linear regression is generated to relate the values of the single, 159 

permanent, USCRN gauges to the weighted average of sensors in the temporary networks 160 

that form either the 3-km or 9-km estimated average.  This structure of these relationships 161 

is shown in Equations 1 and 2, below: 162 

���� = ����	
�� + ��        (Equation 1) 163 

���� = ∑ ��������         (Equation 2) 164 

In the above equations, �� denotes the weight associated with a given temporary network 165 

sensor’s soil moisture value, ��.  The sum of all values of  �� is unity.  This yields the 166 

weighted average, ����, which represents the average soil moisture over the 3-km or 9-167 

km pixel in which we are interested in assessing temporal and spatial stability.  ��	
��  168 

signifies the soil moisture value from the permanent station, which is in turn, scaled via a 169 

slope, ��, and an intercept, ��.  The values of these parameters are calibrated using a 170 

randomly-selected 80% of the soil moisture data set and validated on the 20% that remain. 171 

3.  Sub-network Analysis 172 

 Utilizing this approach, a temporary network average consisting of n-sensors is 173 

compared with various sub-networks containing n-1 sensors, then n-2 sensors, etc.  174 

Considering an average of a temporary network with n sensors, the number of 175 

combinations of r sensors (for r < n) is given in Equation 3: 176 

���� = �!
�����!∗�!         (Equation 3) 177 



If ���� < 1000, all such combinations are evaluated, and for each an RMSE value is 178 

calculated between the sub-network and the full temporary network.  The average RMSE 179 

represents the error between a sub-network of size r, and the complete temporary network.  180 

If ����  > 1000, for computational expediency, a randomly selected set of 1000 181 

combinations of size r are chosen and the reported RMSE is the average thereof.  This 182 

analysis is performed for r = 1 through r = n-1, allowing a determination of how many 183 

sensors can be removed from a temporary network without substantial degradation of 184 

performance.   185 

4.  Variability vs. Wetness 186 

Intuition might suggest that the variability across a network of temporary sensors would 187 

be largest during periods of wetting and drying.  After a prolonged period without rain, 188 

all proximally-located sensors should stabilize at a low level at or near the residual soil 189 

moisture contents of the area in question.  Similarly, after substantial precipitation events, 190 

all sensors should approach their levels of saturation.  It is within the intermediate soil 191 

moisture levels where one might expect to observe the greatest variability across the 192 

temporary network.  To this end, analysis is performed comparing the standard deviations 193 

of all reporting sensors within the temporary network as a function of the average of 194 

same.   195 

5. Network variability vs. 3-Profile Variability 196 

By design, the USCRN soil moisture values reported at sites of permanent installations 197 

are the average of three co-located (separated by distances of several meters), but 198 



independent instrument measurements.  Assessments of the random errors at USCRN 199 

installations via triple collocation are analyzed and discussed in greater detail in 200 

Coopersmith et al (2016, i).  In this case, we investigate briefly whether the variability 201 

within the triad of USCRN measurements is related to the variability across the sensors 202 

comprising the temporary network.  As there are only three USCRN profiles available 203 

(and the calculation of standard deviation is generally dubious for such small sample 204 

sizes), an RMSD calculation about the mean value of the three profiles is obtained in 205 

Equation 4.   206 

���� =  ∑ ��� − �̅�#$���       (Equation 4)  207 

In the above, �� denotes the soil moisture reading at one of the three USCRN profiles and 208 

�̅ signifies the average of those three measured values.  These RMSD values are, in turn, 209 

compared with the variability of the temporary network sensors at the 3-km and 9-km 210 

scales.   211 

Results 212 

The soil probes of the temporary network were calibrated initially to the soil type located 213 

at each individual location. The gravimetric measurements that occurred at each 214 

temporary station throughout the life of the temporary networks served as a set of quality 215 

measurements to calibrate the dielectric measurements.  These calculations are applied 216 

across all stations uniformly which is not unreasonable for the Crossville site.  The 217 

Millbrook site contained slightly more variation with respect to the soil textures, but the 218 

heterogeneity is not expected to influence the results of the analysis significantly.  219 



Calibrated values were used for evaluation of the spatial and temporal variability of soil 220 

moisture across the entire network.   221 

 222 

 223 

1. Temporal Stability Analysis 224 

Figure 2 illustrates that despite the 0.2-0.3 m3/m3 range in soil moisture values observed, 225 

relative positioning of sensors is temporally stable to a large degree at the Millbrook site.   226 

The red line in Figure 2 also suggests that the USCRN sensor is, in general, likely to 227 

produce values that are drier than those reported by the temporary network at 9-km scale 228 

(blue line) or 3–km scale (green line).  As the plots show, a great deal of variability 229 

occurs across the temporary networks at Millbrook site.  However, despite this variability, 230 

temporal patterns of the average 9-km and 3-km soil moisture values replicate the wetting 231 

and drying cycles of the USCRN station. Average soil moisture values for the entire 232 

period of record confirm that the USCRN station was slightly drier (mean = 233 

0.2066/standard deviation = 0.0525) than the 9-km (mean = 0.2587/standard deviation = 234 

0.0541) and 3-km (mean = 0.2364/standard deviation = 0.0465) grids at Millbrook.   235 



 

Figure 2. Mean soil moisture variability of the temporary network at Millbrook, NY.  

The red line denotes the USCRN value, the blue line represents the 9-km average, and the green line signifies the 3-km average. 

The various shades of grey represent the individual probe values within the temporary network. 
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Figure 3. CDF plots for Millbrook (top, at 3-km and 9-km scales) and Crossville 3 

(bottom) USCRN gauges and temporary networks.  4 

 5 

Cumulative distribution frequency plots were constructed to evaluate the population of 6 

USCRN values and compare them to 9-km and 3-km grid average value populations 7 

(Figure 3). The cumulative distribution frequency plots show that the three time series at 8 



Millbrook display similar patterns of soil moisture for the period of record.  Again, as 9 

expected, USCRN values were consistently drier than the 9-km values. The 3-km values 10 

were wetter than the USCRN values in the lower soil moisture percentages but were more 11 

similar to the USCRN values in the higher soil moisture conditions.  In the lower panel, 12 

at Crossville, we observe that the USCRN gauge is considerably wetter than the 13 

distribution describing the surrounding temporary network. In contrast with the 14 

Millbrook site, the USCRN station at Crossville was more similar to the temporary 15 

network when drier - the values diverged as the conditions became wetter.    16 



 17 

 18 

Figure 4. USCRN soil moisture vs. temporary network average at 3km (green dots) 19 

and 9km (blue dots) scales at Millbrook (top) and USCRN vs. temporary network at 20 

Crossville (bottom). 21 

 22 

Correlations between the USCRN values and the Millbrook temporary network’s 3-km 23 

and 9-km products yield strong relationships (Figure 4, top panel). The 3-km temporary 24 



network grid had a higher correlation (r2 = 0.90) than the 9-km grid (r2 = 0.84). As would 25 

be expected, the correlation between the 3-km vs. 9-km grids was even higher (r2 = 0.94).  26 

In Crossville (Figure 4, bottom panel), the correlation between the USCRN and 27 

temporary network average is comparable, at r2 = 0.85, but demonstrates considerable 28 

non-linearity at volumetric soil moisture amounts above 0.3 m3/m3 (a value rarely 29 

exceeded at Millbrook).    30 

 31 

 32 



 33 

Figure 5. Mean relative difference plot of the Millbrook (top) and Crossville 34 

(bottom) temporary networks. Error bars represent the standard deviations of the 35 

relative differences for each station with the remaining stations. 36 

 37 

Figure 5 provides a summary of the temporal stability of the temporary networks.  With 38 

mean-relative-difference (MRD) values at Millbrook spanning a range of over 0.2 m3/m3, 39 

while the standard deviation of readings at each sensor tend to hover near 0.05 m3/m3, the 40 

top panel of Figure 5 confirms what Figure 2 suggests – wetter and drier sensors tend to 41 

remain so.  In contrast to some extent, at the Crossville location, the range of MRD 42 

values falls below 0.10 m3/m3 while the standard deviations are often above 0.10 m3/m3.  43 

In some cases, standard deviations are considerably larger than the MRD range displayed 44 

by the temporary network.  For this reason, fewer sensors seem consistently wetter or 45 

drier.   Additionally, these paired images illustrate that, within the Millbrook network, the 46 

USCRN gauge has been installed in a location that is slightly drier than its surroundings, 47 



whereas in Crossville, the installation site is substantially wetter than the peripheral 48 

landscape.  49 

2. Linear Scaling Functions 50 

For the Millbrook location, time series data displayed in Figure 6  show the adjustment of 51 

the USCRN soil moisture (red series) to a scaled average (blue series) via an optimal gain 52 

and offset derived using Equation 1.  The top panel represents the scaling for the 3-km 53 

grid and the bottom panel represents the scaling for the 9-km grid.  For the purposes of 54 

data reliability, all time series values while rain is falling and during the four hours 55 

immediately thereafter were removed from the regression analysis.  Rain requires some 56 

non-zero quantity of time to infiltrate to the depth of the sensor and short-term sensor 57 

flooding is also possible.  A four-hour removal of this nature, used for calibration of 58 

USCRN sensors in Coopersmith et al, 2015(a) and Coopersmith et al, 2015(b) resolves 59 

this issue. 60 

 61 



 62 

Figure 6. Gain and offset adjustments of USCRN values to approximate the average 63 

of the Millbrook temporary network at the 3km (top) and 9km (bottom) scales. 64 

The correlations between the Millbrook USCRN values and the temporary network 3-km 65 

and 9-km averages are strong (r2 = 0.90 and 0.89 respectively).  These values are 66 

obtained, as discussed in the methodology section by random selection of 80% of the 67 

time series data.  Validating on the remaining 20% yields comparable values (r2 = 0.89 68 

and 0.90 respectively).  RMSE values prior to the introduction of optimal gains and 69 

offsets were 0.033 and 0.049 m3/m3 at 3-km and 9-km scales, respectively.  After the 70 

introduction of these adjustments, RMSE values fall to 0.013 and 0.015 m3/m3 during 71 

calibration for the 3-km and 9-km average respectively and 0.014 m3/m3 during 72 

validation.   73 

Within Crossville, an analogous analysis is performed and presented in Figure 7.  The 74 

correlation between the USCRN values and the temporary network average are strong in 75 

calibration (r2 = 0.86) and validation (r2 = 0.85), though perhaps not as high as those 76 

observed in Millbrook.  The RMSE value prior to the introduction of an optimal gain and 77 

offset is 0.076 m3/m3, which falls to 0.021 m3/m3 (calibration) once an optimal linear 78 



correction is implemented and is only marginally worse (0.021 m3/m3) during validation. 79 

These results suggest that a single point of observation can effectively approximate the 80 

behavior of a small area network through calibration, even if the site location is not in the 81 

ideal position to represent the central tendency of the area soil moisture distribution. 82 

 83 

Figure 7. Gain and offset adjustments of the USCRN gauge values to approximate 84 

the average of the Crossville temporary network. 85 

3. Sub-network Analysis 86 

As temporary networks are still resource intensive, a sub-network analysis will help 87 

determine the number of sensors needed to achieve results that would appear comparable 88 

to that of the complete network.  Figure 8 presents the RMSE between the various 89 

combinations of sub-networks as compared to the 3-km (top) and 9-km (bottom) products, 90 

respectively.  In both panels, a green, dotted-line presents the approximate random error 91 

associated with a hydraprobe measurement at this depth, as determined by the triple-92 

collocation analysis performed in Coopersmith et al (2016, i).  The confidence intervals 93 

are determined as the standard deviation of all combinations of the size listed on the x-94 



axis chosen from the complete network of size 15 (3-km product) or 25 (9-km product).  95 

Where the number of such combinations is computationally-cumbersome, 1,000 random 96 

combinations are selected and used to generate the confidence intervals illustrated.   97 

 98 



 99 

Figure 8. RMSE between complete Millbrook temporary network and combinations 100 

of lesser numbers of sensors at 3-km (top) and 9-km (bottom) scales.   101 

 102 

At both 3-km and 9-km scales, we observe that even without the full contingent of 103 

sensors, RMSE values against the complete temporary network average that fall below 104 

the inherent random error in hydraprobe measurements are attainable.  As the presented 105 

confidence intervals illustrate a range of one standard deviation above or below the mean, 106 

the probability of a random combination of sensors of size r (see Equation 3) presenting 107 

an RMSE below the upper-end of the confidence interval is ~84%.  This suggests, that if, 108 

of the 25 sensors comprising the 9-km average, 14 are installed, the expected value of the 109 

RMSE would be roughly the value of random measurement error.  If 19 are available, we 110 

would expect that RMSE to be below the random measurement error with 84% 111 

confidence.  At the 3-km scale, errors are slightly larger, as we are removing sensors 112 



from a group of 15 rather than 25.  We observe that the expected RMSE value 113 

asymptotically approaches the random error associated with a hydroprobe measurement.   114 

Figure 9 presents the analogous plot at the Crossville location.  115 

 116 

Figure 9. RMSE between complete Crossville temporary network and combinations 117 

of lesser numbers of sensors. 118 

These results suggest that even fewer sensors (of a 15-sensor temporary network)  will be 119 

required to achieve errors below the level of random measurement error, in this case only 120 

10 will lead to expected RMSE values below the random error level and 12 sensors will 121 

achieve this standard with 84% confidence.  122 

4. Variability vs. Wetness 123 

The average standard deviation among the temporary network’s constituent sensors as a 124 

function of the average soil moisture values reported by those sensors was calculated at 125 



3-km and 9-km scales at Millbrook, and 3-km scale at Crossville.  At Millbrook, it is 126 

evident at the 3-km scale (Figure 10) that soil moisture variability across the temporary 127 

network is largest during intermediate conditions, tapering off at both the upper and 128 

lower ends of the distribution when all sensors are fully dried or fully saturated.  129 

However, at the 9-km scale, the same relationship is no longer observed.  In this case, the 130 

variability across the temporary network may be the result of unevenly received 131 

precipitation events in addition to topographic, vegetative, or edaphic variability. The 132 

network at Crossville also shows no systematic relationship between variability and 133 

wetness, even at the 3-km scale (not shown).  Possibly, this may result from wet 134 

conditions at the Crossville site – considerable rainfall arrived while the temporary 135 

stations were installed. 136 

  137 



Figure 10.  Standard deviation of Millbrook temporary network sensors vs. average 138 

soil moisture 139 

 140 

   141 

 142 

5. Variability vs. 3-Profile Variability 143 

Taking advantage of the USCRN’s unique acquisition of three soil moisture profiles, it 144 

would be interesting to see if the near-point variability relates in any way to the 3-km or 145 

9-km scale spatial variability around the site. Figure 11 presents the variability of the 146 

temporary network at Millbrook as a function of the variability observed in the three 147 

profiles of the USCRN installation (Equation 4).  At neither the 3-km, nor the 9-km scale 148 

does the variability of the network seem dependent upon the consistency of the three-149 

profile measurements at the single, permanent gauge.  Though the 3-km scale does seem 150 

to present slightly less variability at the drier end of its distribution, the overall results 151 

seem to suggest that the variability in terms of precipitation, topography, soil texture, and 152 

vegetation cover all explain the temporary network’s variability rather than specific 153 

conditions that manifest themselves as differences in the three profile measurements.   154 

Crossville displayed a similar lack of a relationship (not shown). 155 



156 

Figure 11.  Standard deviation of temporary network sensors at Millbrook vs. three-157 

profile variability of the USCRN station. 158 

 159 

Discussion 160 

Previous research has demonstrated that a dense network of sensors can be deployed to 161 

produce estimates at the 500m resolution by leveraging a combination of in situ sensory 162 

resources, and if needed, knowledge of topographic and edaphic features (Coopersmith et 163 

al., 2015, iii).  By matching smaller 500m x 500m squares with models calibrated at 164 

sensors located in similarly textured soils of similar topographic features, accurate 165 

estimates within each square are possible.  Essentially, this methodology enables the 166 

creation of estimates in every 500m x 500m square within a larger (~40km x ~40km in 167 

the article referenced above), then subsequently upscaling those estimates to 3km, 9km, 168 

or 36km (the scales employed by the SMAP satellite mission) by aggregating and 169 



averaging the constituent 500m x 500m boxes.   This facilitates more direct validation of 170 

satellite estimates (Coopersmith et al., 2015, iii). 171 

The findings in this analysis suggest that errors decrease to the levels of random errors 172 

inherent in in situ sensor measurement (Coopersmith et al, 2016, i) with a network of 173 

approximately one-dozen sensors.  As many dense permanent and temporary networks 174 

contain more than this quantity of sensory resources, these findings suggest upscaling can 175 

occur using even few sensors than are typically installed in dense networks.  The number 176 

of sensors is likely to be even fewer if care is taken to ensure the chosen sensor locations 177 

represent the diversity of textures and topographies present within the test area.  These 178 

upscaled estimates can be compared, in turn, with remotely-sensed estimates from 179 

satellites. 180 

In addition to comparisons with remote sensing, these upscaled estimates can be 181 

deployed within various dense networks (or sparse networks with lower resolutions than 182 

the aforementioned 500km) as a means of assessing drought.  Given this analysis’s 183 

findings of stable relationships for wetter and drier sensors within a given network, 184 

characterization of potential drought risks could be informed by knowledge of which 185 

sensors tend to be atypically wet or dry.   186 

Previous research suggests that these findings are applicable in other locations and within 187 

different hydroclimates and soil textures (Coopersmith et al, 2015, i).  The models 188 

calibrated during that analysis at both USCRN and the Soil Climate Analysis Network 189 

(SCAN; Schaefer et al, 2007) sites, produced low RMSE values in over 40 states 190 

throughout the continental USA.  With respect to temporal stability, preliminary analyses 191 



in the Agricultural Research Service test watersheds (located in Arizona, Oklahoma, 192 

Idaho, Georgia, Iowa, and Indiana) suggest similar performance as sensors are removed 193 

can be achieved (Coopersmith and Cosh, 2016, ii, in-progress). 194 

 195 

Conclusions 196 

The results of this pilot study indicate that it is possible to accurately represent the spatial 197 

and temporal variability of a larger domain with an individual station with considerable 198 

accuracy, once a scaling relationship has been developed.  Deploying a temporary 199 

network around a permanent station provides an estimate of the soil moisture 200 

characteristics for that location and these results suggest that approximately one dozen 201 

sensors distributed around a site for an entire seasonal cycle is likely to be sufficient to 202 

characterize the variability of the domain average. The accuracy of the USCRN, once 203 

scaled to the surrounding 3-km or 9-km average demonstrated RMSE values below 0.015 204 

m3 during both calibration and validation.  Temporal stability analysis reveals that wetter 205 

and drier sensors within the domain are robust in terms of their mean relative differences.  206 

Finally, while wetter and drier conditions do affect network variability (at least at the 207 

3km scale), the variability of the USCRN’s three co-located profiles do not.  This work 208 

describes a successful approach for using a sparse data network station for validation of a 209 

satellite remote sensing product.  210 

Additional work is needed to characterize the differences seen at other locations with 211 

varying soil conditions and landcover type. The study at Millbrook demonstrates that the 212 

analytic approaches presented in this paper are useful even with a target area that has 213 

substantial soil moisture variability due to a heterogeneous landscape.  The study at 214 



Crossville shows that even a primary station located in a less representative soil moisture 215 

environment can still be successfully related to the variations in soil moisture for the 216 

surrounding area. A similar study at a location with a less heterogeneous landscape or 217 

more consistent soil type would likely produce even less variability and a more accurate 218 

representation of the local area with a properly calibrated single point observation.  The 219 

utility of in situ soil moisture measurements at point locations in sparse networks can be 220 

increased substantially through the use of temporary networks for area calibration. 221 
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