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ABSTRACT.—A synthesis of information products about 
environmental stressors provided in near real-time can 
serve environmental managers who seek to act decisively 
before stressors become unmanageable. We have created 
ecological forecasts, i.e., ecoforecasts, based on input from 
a variety of environmental sensors that report in near real-
time, and we subsequently send those ecoforecasts to 
environmental managers. The application behind these 
ecoforecasts is Python-based software that uses an artificial 
intelligence (AI) inference engine called an expert system. 
This National Oceanic and Atmospheric Administration 
(NOAA) Environmental Information Synthesizer (NEIS), 
formerly the Environmental Information Synthesizer for 
Expert Systems (EISES), has been developed over two decades 
to meet the needs of environmental managers and scientists. 
NEIS integrates environmental data from multiple sources, 
including in situ and satellite sensors. The application produces 
ecoforecasts designed to identify environmental conditions 
conducive to mass coral bleaching and bleaching of specific 
coral species, as well as other marine environmental events 
such as algal blooms. This study evaluates the efficacy of coral 
bleaching ecoforecasts generated by NEIS for the Florida Reef 
Tract covering the years 2005–2017.

The ecological response to multispecies coral bleaching is the result of complex 
interactions between biological, chemical, and physical processes, some of which are 
not currently well understood (van Oppen and Lough 2018). The coral holobiont (i.e., 
coral organism, zooxanthellae, and microbiome) experiences stress as a result of a 
variety of environmental extremes and fluctuations. The ecological forecasting or 
“ecoforecasting” of multispecies coral bleaching (Brandt et al. 2006) over wide geo-
graphic areas presents at least three major challenges: (1) near real-time (day-of or 
day-after) integration of multiple environmental variables; (2) timely assessment of 
those integrated variables to determine the likely impacts on coral reefs; and (3) ac-
counting for the distinct bleaching antecedents, the environmental conditions most 
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likely to result in bleaching, of different coral species across different reef commu-
nities. If we are able to meet these challenges and collect, interpret, and package 
data accurately and efficiently enough to make these assessments in near real-time, 
this benefits researchers and ecosystem managers enormously. An alert issued at the 
beginning of a destructive ecological event gives researchers and stakeholders the 
opportunity to both observe and study these events, as well as a chance to mitigate 
environmental damage and potential human impacts through management actions.

Previous efforts to remotely monitor coral reefs and alert managers about the 
potential incidence of coral bleaching have been based on evaluations of satellite-
observed sea surface temperatures (SSTs; Liu et al. 2014). These alerts are somewhat 
broad in spatial character and based solely on temperatures at the surface of the 
ocean. Such an approach is not always optimized for effective, near real-time feed-
back for stakeholders, dockmasters, researchers, and other users in the field. The tool 
described in the present study is designed to provide quick, usable feedback to enable 
users to adapt to generalized, potentially deleterious biological conditions on a spe-
cific spatial and temporal scale. Coral Reef Watch (Liu et al. 2014) is the most similar 
ecoforecasting system operating on the Florida Reef Tract; it is an early warning sys-
tem based on current satellite SST and climatological conditions. Recent updates to 
Coral Reef Watch (CoralTemp; Skirving et al. 2020) have improved the core products 
to daily temporal resolution. These are robust and helpful tools but the majority of 
their actual ecoforecasting products are created and reviewed on a weekly time scale 
and at 5 km resolution, which is not effective for the type of environmental dam-
age mitigation and responsiveness that we are seeking to enable/motivate. Another 
study which approached the problem of reef monitoring using satellite data at higher 
(1 km) resolution was that of Hu et al. (2009): this study represented an advance 
in relating SST with ecosystem impacts; however, it still relies on data solely at the 
surface, and makes use of only one predictor variable (SST). The present study seeks 
to address these limitations by demonstrating a system that makes full use of hourly 
physical environmental data, including wind and other variables as well as in situ sea 
temperature, gathered at the location of individual sensitive coral reef sites in the 
Florida Keys.

​Use of in situ observations can be important because physical environmental ex-
tremes that affect marine ecosystems are directly impacted by the dominant scales 
of atmospheric and radiative forcing and ocean response. The extremely fine-scale, 
high-relief bathymetry found on barrier and fringing coral reef ecosystems results in 
very high-frequency physical environmental variability (Gramer 2013, Rosales et al. 
2019, Dobbelaere et al. 2020, 2022, Hendee et al. 2020); hour-by-hour observations 
of both sea temperature and wind speed provide valuable context for forecasting the 
extremes of heating and flow that individual reefs may encounter, and therefore for 
improving the accuracy and extensibility of bleaching ecoforecasts.

Photosynthetically active radiation (PAR) has been shown to play a role in the 
enzymatic activities in coral bleaching (Lesser et al. 1990, Lesser 1997, Lesser and 
Farrell 2004). Although in situ observations of PAR at these monitoring stations in 
the Florida Keys were far too sparse relative to either wind or temperature to be used 
in the present study, the authors acknowledge that the addition of hourly observa-
tions of in situ PAR would help to further elucidate any synergistic or cumulative 
effects of environmental stressors on bleaching. While Skirving et al. (2017) is the 
first attempt we are aware of to use satellite derived measures to include the role of 



Gramer et al.: Operational ecoforecasting for coral reefs using artificial intelligence 381

light in bleaching forecasts, Lachs et al. (2021) mentioned the possibility of including 
Coral Reef Watch’s Light Stress Damage (LSD) satellite-based product model into 
their heat accumulation metric.

Environmental variables that are measured in situ and reported remotely in near 
real-time are limited; however, technologies are well established for measuring sea 
and air temperatures, wind speed and direction, barometric pressure, tide heights, 
and surface irradiance in reef environments (Ogden et al. 1994, Pitts 1994, Hendee 
et al. 2001). Instrumentation for salinity, underwater irradiance, turbidity, and ocean 
currents are also available, but often more costly to deploy and maintain. Measuring 
and reporting these data in near real-time provides modelers with more accurate 
information and environmental managers with more detailed ecological forecasts.

Measurements with the most immediate consequences for benthic ecosystems—
those made throughout the water column—are particularly challenging to report in 
near real time. Such measurements can vary over small spatial scales in the coastal 
ocean (Obura et al. 2019, Hendee et al. 2020). Therefore, it is ideal to have a dense 
sensor network and the technical ability to process, synthesize, and interpret data 
from that network (Hendee et al. 2020). Ecoforecasting benefits from having access 
to near real-time data, a variety of sensors, and occasionally, in situ observations 
suitable for ecoforecast validation.

We demonstrate a partial solution to these challenges for assessing multispecies 
coral bleaching through the assessment of in situ measurements and the applica-
tion of proven artificial intelligence (AI) methods. Regional operational ocean, atmo-
spheric, and surface-wave models and satellite remote-sensing products were also 
evaluated for this purpose, but issues of horizontal and temporal resolution as well 
as data availability for the earlier periods of the study (prior to 2005) made use of 
model and satellite data problematic. Using the National Oceanic and Atmospheric 
Administration (NOAA) Environmental Information Synthesizer (NEIS), we oper-
ationalized the forecasting of coral bleaching by integrating observations from in 
situ sources whenever available. To make sense of these streams of disparate data, 
potentially gathered over fairly wide geographic regions, we used AI techniques to 
apply observed bleaching criteria and “triggers,” i.e., thresholds beyond which the 
environmental event of concern has historically occurred. The primary technique 
applied was heuristic programming, an expert system methodology that does not 
rely on single environmental triggers, but instead assigns semantics using fuzzy logic 
to complex data streams using an approximation of intuitive reasoning (Dias et al. 
2020).

The choice to use expert systems was based on pragmatism—at the time of this 
study, there was not a high enough temporal or spatial resolution of validation data 
(coral bleaching monitoring) to accurately train a neural network or other more 
complex machine learning (ML) models. In future research, we would like to see 
experiments using other ML techniques (e.g., self-organizing maps; Gramer 2013) 
to further our particular goal of developing flexible, extensible tools for use in near 
real-time monitoring situations. However, at present, the fuzzy logic assessment can 
be site specific based on sparse validation observations, and this tool can simultane-
ously be readily adapted for use in monitoring both large regions and areas with a 
large number of monitoring locations.

Heuristic programming as employed here is a practical method, not guaranteed 
to be optimal, but instead sufficient for reaching an immediate goal. Heuristics are 
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strategies derived from previous experiences with similar problems—in this case, 
coral bleaching response to environmental stressors. Although heuristic program-
ming based on fuzzy logic is a relatively old AI technique it is well suited to diagno-
sis, i.e., the monitoring of environmental health. Heuristic programming in general 
is well-suited to problems with open and imprecise data representation and logical 
rules. It succeeds in making accurate, if broad, conclusions where other AI or ML 
techniques might misfire due to the low precision of validation data. This technique 
also prioritizes efficiency and utility at the cost of precision to create near real-time 
monitoring alerts that can facilitate management actions and/or timely chronicling 
of an event utilizing one of the coral monitoring protocols (e.g., AGRRA 2022).

The result is a computer system based on open-source components similar, for ex-
ample, to those presented in Zhang et al. (2018). This system automatically integrates 
measurements and estimates from different models, such as the Berkelmans bleach-
ing curve (Berkelmans 2002), that consist of data with different units and spatial-
temporal resolutions. The system then automatically assesses the possible meaning 
of these data for marine ecosystems, alerting managers and other stakeholders about 
potential impacts. We report here on the results of applying this technology to mass 
coral bleaching ecoforecasts for the Florida Keys by using in situ hourly measure-
ments of wind and sea temperature for the period of 1991–2017.

Methods

Near Real-Time Environmental Data.—SEAKEYS (Sustained Ecological 
Research Related to Management of the Florida Keys Seascape) stations were a 
network of lighthouses and daymarkers along the Florida Reef Tract that were in-
strumented with meteorological and oceanographic sensors, solar power, and 
satellite-broadcasting technology since 1987 (Ogden et al. 1994). These observing 
platforms are part of the Coastal-Marine Automated Network (C-MAN) maintained 
by NOAA’s National Data Buoy Center (NDBC). C-MAN stations have historically 
transmitted hourly observations that are quality-controlled and archived by both 
the NDBC (Gilhousen 1998, NDBC 2009) and NOAA’s Coral Health and Monitoring 
Program (CHAMP; Hendee 1996, Manzello 2004).

For the present study, NDBC quality-controlled historical data from four C-MAN 
stations served as calibration and validation data for a mass coral bleaching eco-
forecasting model (Hendee et al. 2007). The Lower Keys C-MAN station at Sand 
Key, SANF1, ceased transmitting late in 2005, while the Middle Keys lighthouse at 
Sombrero Key Reef, SMKF1, ceased transmitting in early 2008. The lighthouses off-
shore of the Upper Keys (Molasses Reef, MLRF1) and Biscayne Bay (Fowey Rocks, 
FWYF1) continued transmitting sea temperature and wind data throughout the 
study period, with brief interruptions at FWYF1 during the summers of 2005, 2011, 
and 2015.

Ecoforecast Alert System.—The first implementation of NEIS was devel-
oped in the late 1990s using the C Language Integrated Production System (CLIPS; 
Donnell 1994) to summarize the large amount of hourly data produced by SEAKEYS 
for the benefit of environmental managers, divers, and fishermen in the Florida Keys 
(Hendee 1998). Coral bleaching ecoforecasts were the original goal, but NEIS was 
also designed to produce ecoforecasts for all types of marine environmental events 
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for which the contributing factors were known or guessed, and for which there was 
a sensor or sensors to measure those variables. Figure 1 is a schematic flow chart 
outlining the major components and data flows of the NEIS system. One strength of 
NEIS lies in its consideration of synergistic contributing factors, including sea tem-
perature, wind speed, and other environmental variables (Gramer 2013). The system 
has been adjusted to calibrate ecoforecasts using in situ observations. NEIS has also 
been used for coral spawning (Hendee et al. 2007) and onshore surface transport or 
“drift” applications (Gramer et al. 2009).

Currently, NEIS has been reimplemented as a Python package that converts in situ 
data into multispecies bleaching alerts based on three procedural steps: fact genera-
tion (Hendee 2000), knowledge engine analysis (Hendee 1998, Gramer et al. 2009), 
and output/distribution of ecoforecast alerts (Fig. 1). However, the application as 
documented here is also meant for use by marine environmental agencies to moni-
tor other types of events such as harmful algal blooms or turbidity plumes affecting 
coral reefs.

The initial procedural step involves Python code created to read and parse vari-
ous in situ, satellite, and model data sources. These data streams are parsed into 
time-series objects called data-frames using the Python package pandas. Data frames 
are then checked for missing or repeated times and used to calculate 3-hr averages 
for each variable, regardless of the original sampling frequency. These quality-con-
trolled data-frames are then separated by date and saved as self-annotating text files 
in JavaScript Object Notation (JSON) format.

The fact-generating code loads one or more JSON files for the data being analyzed 
and applies “fuzzy logic” to the data-frame to generate fact objects for each 3-hr av-
erage. Fact objects contain a fuzzy-time-of-day value, interpolated according to the 
local solar time at each observing location, as well as a fuzzy-intensity value, interpo-
lated from each average according to a data lookup table of site- and season-specific 
ranges called a fact-factory. Afterwards facts are then saved to JSON files, and their 
location is passed to the knowledge engine code.

The data ranges for fact factories are generated, first, by calculating the correspond-
ing percentile brackets for each variable/station combination according to number of 
standard deviations calculated in observational data distributions, as follows: 00.62%, 
02.27%, 06.68%, 15.87%, 30.85%, 69.15%, 84.13%, 93.32%, 97.72%, 99.38%. Secondly, 
the fact-factory tables are further refined manually using bleaching observations, as 
well as the false negatives/false positives alerted to over the training period. The goal 
of these fact range adjustments, which was achieved, was to reach zero false posi-
tives and false negatives in the training set; we achieved this by having three degrees 

Figure 1. Schematic flow chart showing NEIS data flow. The data flow/processing occurs in three 
main procedural steps: (1) fact generation, (2) rule evaluation, and (3) alert distribution.
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of freedom in the manual adjustment: three-hourly temperature ranges, monthly 
mean temperature ranges, and wind speed. For example, say that after reviewing 
the alerts generated by the training data, multiple false positive high temperature 
alerts are generated for station SANF1. After reviewing the station-specific criteria 
and averaged temperature values in the context of bleaching observations from the 
training period, it may be found that a 95.32%–97.72% range is better suited than a 
93.32%–97.72% range for generating the corresponding “very-high” heuristic value.

The knowledge engine is encoded with production rules (basically, if/then con-
structs) to analyze facts and determine alerts. These production rules are calibrated 
using multispecies bleaching reports, making the multispecies coral bleaching alert 
expert system distinct from a species-specific alert system. Knowledge engines are 
implemented using the Python package experta (Pérez 2019). Alerts are stored as 
JSON files, then passed to the final stage of analysis where they are packaged by day 
and location and sent via email or text message to subscribers.

Stimulus/Response Index.—Each alert includes a numeric measure of the like-
lihood and severity of the ecological response that is being forecast, based on the 
physical data and fact-factory ranges that resulted in the alert. This numeric mea-
sure, the Stimulus/Response Index (S/RI), is calculated for each day as a count of 
the number of hours for each contributing variable that matches the corresponding 
ecological forecast criteria for that variable (Hendee et al. 2009). For example, if an 
ecological forecasting production rule was based on the combined effect of high sea 
surface temperature and low wind speed, the S/RI from the sea surface temperature 
would be added to the S/RI from the low wind speed to calculate the total S/RI for 
the corresponding alert. During periods when particular physical variables have ex-
treme enough values (stress, or stimulus) to suggest a qualitatively greater ecosystem 
response, the S/RI associated with those variables is multiplied by a factor of 2 before 
being added to the daily total; where data suggest a particularly severe response, the 
S/RI is multiplied by a factor of 2.5 to reflect the rather rare but significant contribut-
ing environmental factor. For a more thorough explanation of the reasoning behind 
the S/RI concept, the appointing of points per production rule fired, and the multipli-
ers, please see Hendee et al. (2009).

For example, on a day when wind speed is low and sea temperatures are high for 
only 3 hrs each, the S/RI would be calculated as 3 + 3 = 6; if high sea temperatures 
persisted all day (i.e., 24 hrs), the total S/RI would be 24 + 3 = 27. A day with 24 hrs 
of high sea temperatures, low wind speed for 21 hrs, and “very low” wind for 3 hrs 
would have an S/RI of 24 + 21 + (3 × 2) = 51. Finally, a 24-hr period with “drastically 
high” sea temperatures and “drastically low” wind speed would be assigned an S/RI 
value of (24 × 2.5) + (24 × 2.5) = 120. Drastically high or low values were considered 
to be extremely rare instances of the variable in question. For instance, a high sea 
temperature of 32 °C would be considered drastically high in an oceanic environ-
ment and was labeled as such at most of the stations analyzed for this study. Due to 
the nature of heuristic programming, the S/RI is subjective and used to indicate the 
cumulative severity of the time and intensity of multiple variables that contribute 
to a rule firing. The context under which we assign different levels of severity to 
environmental values in constructing fuzzy intensities, rules, and our S/RI are also 
discussed in an earlier work (Hendee et al. 2009). That earlier methodological work 
also provides a set of tables and a figure to clarify this approach.
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Historical Bleaching Observations.—We calibrated the criteria for the eco-
forecasting model by comparing its outputs for the training period of 1991–2004 
with historical reports of coral bleaching in peer-reviewed literature (Manzello et al. 
2007, van Hooidonk and Huber 2009, van Oppen and Lough 2018).

All sources for bleaching observations were based on diver reports collected from 
a community of professional scientists and dive operators, utilizing Reef Check, 
SECREMP (2020), and AGRRA (2022) monitoring protocols. The granularity of 
these data was site- and species-specific and reports were gathered monthly (e.g., van 
Hooidonk and Huber 2009).

The record of physical measurements across multiple subregions of the Keys began 
in 1991. The years 1997 and 1998 were years with severe bleaching at many sites. 
These thus represented important “positive signals” to include in the training period. 
Bleaching was again observed to be relatively severe in 2005 and later years in the 
in situ record; for this reason, and to demonstrate the broader applicability of the 
method, we choose 2005–2017 as our validation period (see below).

During the training period, when widespread bleaching was observed in each sub-
region of the Florida Keys, the criteria were loosened as necessary to produce an S/RI; 
where this resulted in false alarms for the training period, the criteria were tightened 
again as needed. This process depended critically on having more than one criterion 
to adjust. For example, where 3-hr temperature values from other years would have 
suggested a positive S/RI in a given year but no bleaching was observed, a criterion 
based on low winds could be made more stringent. Similarly, where 3-hr tempera-
ture values might not suggest bleaching based on observations in the training period, 
but bleaching occurred, a criterion based on wind or on the monthly mean tempera-
ture could be tightened. Our approach was to manually adjust these criteria, demon-
strating that a multivariate ecoforecasting system provides the degrees of freedom 
needed to perfectly match observations of coral bleaching. Further research could 
refine this approach to make use of machine learning for generating optimal fact 
ranges from observations (e.g., Ul Islam et al. 2020, Jamei et al. 2022); however, such 
an approach would have to be site specific based not only on regional differences in 
organism adaptation but also available environmental data.

We validated the model based on observations of bleaching by year and subre-
gion (i.e., Upper, Middle, and Lower Florida Keys) from BleachWatch (Maynard et al. 
2009, Walter and Bartels 2018) and The Nature Conservancy’s Florida Reef Resilience 
Program (FRRP; Lirman et al. 2014, Gintert et al. 2018). These observations covered 
the validation period of 2005–2017, with an emphasis on BleachWatch observations 
in the fore-reef zone where the four C-MAN stations reside. This zone is generally 
the farthest area from shore where larger-scale reef structures are found and where 
lighthouses have been historically placed.

The spatial granularity of these historical bleaching reports, i.e., subregions of the 
Florida Reef Tract, was similar to or coarser than the available physical data in this 
study. The time granularity of reports, generally monthly, was coarser than the hour-
ly time resolution of the physical data. Historically, due to the limited availability 
of bleaching observations, we have had to rely primarily on monthly BleachWatch 
reports, summarized seasonally in this analysis, as the basis of our validation data. 
Finally, in the analysis of results we summarized our model outputs as the annual 
sum of the S/RI at each lighthouse and took these annual S/RIs to be representative 
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of the entire fore-reef zone of the subregion in which the respective lighthouse re-
sided. This approach has been gradually improved over years of development since its 
first implementation in the Florida Keys National Marine Sanctuary (Hendee 1998).

Validation-Forecast Skill.—Following van Hooidonk and Huber (2009), we 
estimated a Peirce Skill Score (PSS; e.g., Stephenson 2000) for ecoforecasts during 
the validation period as follows. Within a given subregion, BleachWatch data that 
showed bleaching within a given year would cause that year to be marked as a posi-
tive observation. Where the S/RI of the ecoforecast was nonzero during that year, the 
year was marked as a positive forecast. Years with both a positive observation and a 
positive forecast were marked as hits, while years with a positive observation and a 
negative forecast were marked as misses. Where neither observations nor forecasts 
indicated bleaching in a given year, the year was marked as a correct negative, and 
where a forecast suggested bleaching but none was observed, the year was denoted as 
a false alarm. The PSS was then calculated as follows:

			   (Eq. 1)

Results

Stimulus/Response Index.—The concept of a Stimulus/Response Index was first 
implemented and discussed in Hendee et al. (2009) and has been implemented in 
NEIS. We examined the averages of hourly environmental data for the entire physical 
record from each of four Florida C-MAN stations, including the 3-hr rolling average 
sea temperature and wind speed, 3-day average wind speed, and 30-day average sea 
temperature. During certain summers, we found extreme values in the averaged sea 
temperature (highs), wind speed (lows), or both at each lighthouse that were outliers 
within the multiyear record for that site (Fig. 2). From these outliers, we calculated a 
total S/RI for each day of the evaluation period during which the outliers occurred, 
and then summed the S/RI values over each year for final analysis (Fig. 3).

We implemented email and text alerts to be generated in real-time when condi-
tions that resulted in a nonzero S/RI for a given day were satisfied; similarly, for his-
torical reasons the system was made to generate emails summarizing seasonal total 
S/RIs. Email and text alerts could be generated for a subscriber on a site-by-site, sub-
regional, or regional basis that incorporated links to automatically generated visual 
reports (e.g., Fig. 4).

During validation, the Florida Keys-wide coral bleaching event reported by div-
ers in 2005, for example, was reproduced at three of the four lighthouses: SANF1, 
MLRF1, and FWYF1. The sole site that failed to produce ecoforecast alerts for 2005 
was the Middle Keys lighthouse at Sombrero Reef, SMKF1. Interestingly, this cor-
responded with observations from both the FRRP and BleachWatch that offshore 
bleaching in the Middle Keys was less prevalent than it was elsewhere during that 
year. Outlier events in 2007 at the Middle Keys (SMKF1) and Upper Keys (MLRF1) 
lighthouses, and in 2009 at the Biscayne Bay lighthouse (FWYF1), corresponded 
with FRRP and BleachWatch observations from those years that confirmed coral 
bleaching had occurred there. For the years 2006, 2008, 2010, 2012, 2013, and 2017 



Gramer et al.: Operational ecoforecasting for coral reefs using artificial intelligence 387

Figure 2. Physical data and alerts for each site in this study for the calibration period 1991–2004: 
(A) Fowey Rocks (FWYF1) sea temperature and (B) wind, (C) Molasses Reef (MLRF1) sea tem-
perature and (D) wind, (E) Sombrero Key (SMKF1) sea temperature and (F) wind, and (G) Sand 
Key (SANF1) sea temperature and (H) wind. Gray denotes 3-hr averages, while black represents 
longer averages (3 d wind, 30 d temperature). Alert days are highlighted by dots whose colors 
correspond with the criteria triggering each alert: dark red for 3 hr temperature only, light red for 
30 d temperature only; dark blue for 3 hr temperature together with 3 hr wind; and light blue for 
3 hr temperature together with 3 d wind. Regions of the record where the physical data produced 
a trigger are highlighted by green ellipses.

Figure 3. Stimulus/Response Index (S/RI) estimated by the multispecies coral bleaching ecofore-
casting model for all four monitoring sites for the period 1991–2017. The validation period for the 
model (2005–2017) is discussed in more detail in the text. Color-coded markers at the top of the 
figure show the years when bleaching was observed at each site. The vertical grey line separates 
the training period of 1991–2004 from the validation period of 2005–2017.
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when few or no outlier alerts were produced, we also found few or no historical ob-
servations of bleaching. These results are summarized for the validation period in the 
contingency table (Table 1) and ecoforecast skill score section that follows.

Ecoforecast Skill Score.—The overall PSS for the 13-year record of bleaching 
observations and S/RIs for 2005–2017 was calculated from the contingency table 
(Table 1) using Equation 1. The PSS was found to be 7/8−1/22 = 0.83. This score 
compares with the published PSS for satellite-derived coral bleaching products (van 
Hooidonk and Huber 2009) of 0.83, indicating that NEIS had a degree of accuracy 
in identifying coral bleaching conditions on a yearly scale at subregional resolution 
during the validation period comparable with satellite methods, while also being able 
to incorporate other environmental triggers like in situ wind measurement.

Wind Speed and Coral Bleaching.—A consideration of wind speed in combi-
nation with sea temperature averages over various lengths of time was important in 
this study, as noted in the Methods section. One limitation of simple, single-variable 
numerical criteria (such as sea temperature cutoffs) is that extremes can occur when 
no event is observed and vice versa, confounding the calibration of models with his-
torical data. Adding additional criteria associated with demonstrable ecological im-
pacts allows the model designer, or in this case the “knowledge engineer,” to better 
distinguish the years when sea temperatures may have been high but other factors 
potentially reduced the ecosystem response. For example, ocean currents, vertical 
mixing, and waves are all associated with higher winds (e.g., Nakamura and van 
Woesik 2001, Gramer et al. 2008, Gentemann et al. 2009). Based on the importance 

Figure 4. Automated visual report for alert subscribers from the ecoforecasting system that 
shows multispecies coral bleaching “gas gauge” indicators in geographic context, based on the 
summed S/RI for the period July–September 2005.
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of the wind criteria, one or more of these processes appeared to alleviate the effects 
of thermal stress on corals at some of these sites, e.g., at SMKF1 in 1997, and at three 
of the lighthouses (FWYF1, MLRF1, SMKF1) in 2005 (Fig. 3).

Of interest, the criteria we found for “alert” outliers—those extremes that corre-
sponded with observed bleaching events—differed significantly between the light-
houses (Figs. 2 and 3). The average distance between neighboring lighthouses in 
this study was approximately 80 km (Fig. 4). Different studies (Maynard et al. 2009, 
Lirman et al. 2014, Manzello et al. 2019) have suggested that reef communities in 
Florida vary in their exposure and response to stress across similar alongshore spa-
tial scales, consistent with this finding.

Summary and Discussion

We calibrated an ecoforecasting model for coral bleaching within the Florida Reef 
Tract using historical data and observations for the period 1991–2004. Calibration 
was necessary to match observed conditions with historical bleaching records. The 
outputs of this calibrated model were daily reports and monthly and yearly sum-
maries of expected coral bleaching by station, i.e., subregion. These outputs were de-
signed with two target stakeholder groups in mind: for Marine Protected Area (MPA) 
managers, we wished to provide information on bleaching “the sooner the better” in 
order to allow managers to marshal resources or issue MPA enforcement guidance. 
However, for the second group of stakeholders, field researchers, we wished to pro-
vide information on environment and bleaching response which could be used to 
validate the ecoforecasts and provide data for the literature on environmental effects 
on bleaching. “Proactive responses” can only occur when the responding parties are 
awake, so during the day, usually. For this reason, ecoforecast rules and alerts were 
designed to be near real-time, i.e., per day. It should also be noted that the near real-
time nature of the alerts is intended to be valuable for field-based observations when 
the precise onset of bleaching (or spawning, etc.) must be known to validate a model.

We then successfully validated this model using environmental and site-specific 
bleaching observations from the years 2005 to 2017. We evaluated forecasts rela-
tive to bleaching observations by subregion, and then calculated a PSS following the 
approach of van Hooidonk and Huber (2009). The PSS for our evaluation period of 
2005–2017 was 0.83, similar to that of the method of van Hooidonk and Huber which 
was based on satellite data alone. However, our region-wide PSS accounts directly for 
individual multivariate variations within subregions, rather than calculating single-
variable results individually within subregions and averaging them globally as in van 
Hooidonk and Huber (2009). The long record of direct in situ measurements for mul-
tiple environmental variables makes this more general approach feasible.

Table 1. Contingency table that shows the years used to calculate the Peirce Skill Score (PSS). Event counts 
(hits, misses, etc.) are summed across the two subregions for which continuous data were available during the 
validation period (Biscayne Bay = Fowey Rocks and Upper Keys = Molasses Reef).

Station-years with 
bleaching

Station-years with 
no bleaching

Total forecast 
station-years

Station-years with forecast Hits = 7 False alarms = 1 8 station-years
Station-years with no forecast Misses = 1 Correct negatives = 21 22 station-years
Total observation station-years 8 station-years 22 station-years 30 station-years
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This multivariable approach also opens the possibility of using the NEIS system, 
with further research, to provide stakeholders and researchers with information to 
evaluate potential alternatives among mitigating factors. With the ability to incor-
porate new variables into the rule-based system as needed, future research could 
apply more complex, neural network-based analysis during both the data abstraction 
and trigger design processes, to produce more sophisticated expert-system based 
ecoforecasts.

As with any historical analysis, we estimated the statistical distributions and ex-
tremes in our environmental data from a fixed historical subset. We found these 
historical distributions from 1991–2004 to be useful as predictors for bleaching dur-
ing the years 2005 to 2017. However, the usefulness of model outputs for upcoming 
bleaching seasons may depend on whether these environmental variables still re-
main within the historical bounds that prevailed during our training period.

Going forward into future years, the validity of our forecasting model may further 
depend on factors we could not consider here. These factors include coral holobi-
ont population changes and adaptation, as well as reef ecosystem dynamics such as 
changing fish populations or the succession of more resilient coral genotypes. Other 
influences on ecosystem health not considered here, but also likely to affect future 
forecasts, include changes in ambient turbidity, nutrient availability, and land-based 
sources of pollution. However, this automated system is flexible and can be adapted 
to monitor and assess these conditions. This adaptation would need to include ap-
propriate historical and near real-time data sources for these variables to be used 
in calibrating a future ecoforecast model. We feel it is important to emphasize that 
NEIS is not just a coral bleaching ecoforecasting tool, but a construct for modeling 
any marine environmental event to which the environmental stimuli are known or 
suspected, and where precision instruments are available (and routinely maintained) 
to measure those stimuli.

Our system is readily adaptable to changes in the ecosystem, in addition to changes 
in conditions, as long as feedback from the field that characterizes those ecosystem 
changes is timely and available. For example, a useful feature incorporated into ear-
lier versions of NEIS was a blog for site maintainers and scientific/biological moni-
toring divers at monitored sites. The blog allowed for site-specific records to be kept 
of changes in instrumentation, station infrastructure, benthic and pelagic biological 
community, and other conditions. These records were then cross-referenced with 
in situ, electronically-monitored data and the resulting ecoforecasts. Although test-
ing of this Python-based newer version of the original CLIPS-based system (Hendee 
1998) precluded the use of such maintenance blogs, we feel timely use of feedback 
from the field—whether via blogs or other chronicling of the changes to the instru-
mentation and/or environment—is absolutely essential to a successful deployment 
of instrumental arrays with NEIS as the ecological forecasting component (e.g., see 
Fletcher et al. 2022).

Such a system will be integrated into future adaptations of NEIS, for example, in 
monitoring turbidity and sedimentation at reef sites impacted by ongoing human 
activities in Florida. What must be kept in mind is that correct ecoforecasts are only 
as good as (1) the precision of the instruments, which means regular cleaning, main-
tenance, and, if necessary, replacement of them, and (2) timely feedback from the 
field as to whether or not (or to what degree) the ecoforecasts were correct, thus 
permitting the necessary fine-tuning of the thresholds within the rule-based system.
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Furthermore, regarding the optimal timescale of environmental measurements, 
each species is going to react differently, but for research stakeholders, it is important 
to know how long after the threshold of temperature (and potentially, synergistic 
effects of light and wind) is met for a specific coral species to exhibit bleaching. The 
answer to that may not be known by the research stakeholder a priori, but having 
access to ecoforecast alerts based on hourly and daily measurements of the environ-
mental stressor(s) can provide a valuable context for answering such research ques-
tions. Higher-frequency environmental stressors can result in important ecosystem 
responses on coral reefs within periods of 24 hrs or less.

Based on our successes with open-source components and the methods presented 
in this study, we are collaborating with partners in NOAA operational (non-research) 
line offices and other agencies to expand this system to daily operations that cover 
coral reefs and other sensitive marine ecosystems in disparate locations. We expect 
the system to ultimately find applications in nowcasting harmful algal blooms, up-
welling, and enhanced turbidity related to human activities. However, so long as (1) 
the basic environmental influences of a particular phenomenon are known, (2) the 
instruments are available to measure those environmental variables, and, (3) there is 
in place a reliable feedback system of maintenance recording and field observations 
of the phenomenon in question, the system described herein should find applicability 
in a multitude of ecological forecasting events.

NEIS is currently being enhanced for use in an adaptive management plan for 
a Port Everglades (Fort Lauderdale, Florida USA) dredging project (USACE 2021). 
NEIS will be used to monitor turbidity levels, total suspended solids, sediment de-
position, and PAR, among other environmental variables, to deliver alerts that warn 
stakeholders when compound ecological stressors exceed predefined thresholds. 
This will enable ecosystem managers to adapt the dredging schedule to mitigate po-
tential environmental damage.

Code and supporting files for the NEIS are archived at https://github.com/
NOAA-CHAMP/EISES.

Acknowledgments

Funding from NOAA’s Office of Oceanic and Atmospheric Research and NOAA’s Coral 
Reef Conservation Program allowed for the development of this system and preparation of this 
manuscript. Funding and support from NOAA’s National Marine Fisheries Service-Southeast 
Regional Office (J Karazsia) and the US Army Corps of Engineers enabled the current adap-
tation and development of NEIS operations at Port Everglades. The insightful comments of 
two anonymous reviewers also led to substantial improvements in the manuscript, for which 
we are grateful. Comments from University of Miami writing consultants J Schneider and L 
Albritton were helpful in the completion of the manuscript.

Literature Cited

AGRRA. 2022. Atlantic and Gulf rapid reef assessment. Ocean Research Education Foundation, 
Inc & AGRRA. Available from: https://www.agrra.org/

Berkelmans R. 2002. Time-integrated thermal bleaching thresholds of reefs and their varia-
tion on the Great Barrier Reef. Mar Ecol Prog Ser. 229:73–82. https://doi.org/10.3354/
meps229073

Brandt S, Hendee J, Levin P, Phinney J, Scheurer D, Schwing F. 2006. White paper #5: eco-
logical forecasting. In: Murawski, SA, Matlock GC, editors. Ecosystem science capabilities 

http://www.agrra.org/


Bulletin of Marine Science. Vol 99, No 3. 2023392

required to support NOAA’s mission in the year 2020. NOAA Tech Memor. NMFS-F/SPO-
74. 97 p.

Dias BS, Martins BML, de Sousa MEM, Cardoso ATC, Jordaan A. 2020. Prioritizing species 
of concern monitoring using GIS-based fuzzy models. Ocean Coast Manage. 188:105073. 
https://doi.org/10.1016/j.ocecoaman.2019.105073

Dobbelaere T, Curcic M, Le Henaff M, Hanert E. 2022. Impacts of Hurricane Irma (2017) 
on wave-induced ocean transport processes. Ocean Model. 171:101947. https://doi.
org/10.1016/j.ocemod.2022.101947

Dobbelaere T, Muller EM, Gramer LJ, Holstein DM, Hanert E. 2020. Coupled epidemio-hydro-
dynamic modeling to understand the spread of a deadly coral disease in Florida. Front Mar 
Sci. 7:591881. https://doi.org/10.3389/fmars.2020.591881

Donnell BL. 1994. Object rule integration in CLIPS. Expert Syst. 11:29–45. https://doi.
org/10.1111/j.1468-0394.1994.tb00315.x

Fletcher P, Hendee J, Serrano X, Jones A. 2022. Participatory approaches to coral reef out-
reach and management: lessons learned from coral reef monitoring stations across the 
Wider Caribbean. Bremen, Germany: Proceedings of the 15th International Coral Reef 
Symposium.

Gentemann CL, Minnett PJ, Sienkiewicz J, DeMaria M, Cummings J, Jin Y, Doyle JD, 
Gramer L, Barron CN, Casey KS, et al. 2009. MISST: the multi-sensor improved sea sur-
face temperature project. Oceanography (Wash DC). 22:76–87. https://doi.org/10.5670/
oceanog.2009.40

Gilhousen DB. 1998. Improved real-time quality control of NDBC measurements. Phoenix, 
Arizona: 10th Symposium on Meteorological Observations and Instrumentation, 78th 
American Meteorological Society Annual Meeting. p. 363–366.

Gintert BE, Manzello DP, Enochs IC, Kolodziej G, Carlton R, Gleason ACR, Gracias N. 2018. 
Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: a 
nugget of hope, aberrance, or last man standing? Coral Reefs. 37:533–547. https://doi.
org/10.1007/s00338-018-1678-x

Gramer LJ. 2013. Dynamics of sea temperature variability on Florida’s Reef Tract. PhD 
Dissertation. Miami, Florida: University of Miami.

Gramer LJ, Gentemann CL, Fenner D, Vetter O, Hendee JC. In situ and remote monitoring 
for conditions conducive to coral bleaching in American Samoa. Portland Oregon: Ocean 
Sciences Meeting. Available from: https://www.ncei.noaa.gov/data/oceans/coris/library/
NOAA/CRCP/project/1101/in-situ_remote_monitor_coral_bleach_conditions_as.pdf

Gramer LJ, Johns EM, Hendee JC, Hu C. 2009. Characterization of biologically significant hy-
drodynamic anomalies on the Florida Reef Tract. Ft. Laurderdale, Florida: Proceedings of 
the 11th International Coral Reef Symposium. p. 470–474.

Hendee JC. 1996. Object-oriented analysis of a near real-time marine environmental data ac-
quisition and reporting system. Vol 90. US Department of Commerce, National Oceanic 
and Atmospheric Administration, Environmental Research Laboratories, Atlantic 
Oceanographic and Meteorological Laboratory.

Hendee JC. 1998. An expert system for marine environmental monitoring in the Florida Keys 
National Marine Sanctuary and Florida Bay. Vol 25. WIT Transactions on Ecology and the 
Environment. 10 p.

Hendee JC. 2000. An environmental information synthesizer for expert systems: a framework 
for use in near real-time detection of harmful algal blooms. In: Jodice LW, Gupta A, Boyles 
RH, editors. Coasts at the millennium. Portland, Oregon: Proceedings of the Seventeenth 
International Conference of the Coastal Society, The Coastal Society. 936 p.

Hendee J, Amornthammarong N, Gramer L, Gomez A. 2020. A novel low-cost, high-precision 
sea temperature sensor for coral reef monitoring. Bull Mar Sci. 96:97–110. https://doi.
org/10.5343/bms.2019.0050

Hendee JC, Gramer L, Kleypas JA, Manzello D, Jankulak M, Langdon C. 2007. The integrated 
coral observing network: sensor solutions for sensitive sites. In: Palaniswami M, Marusic M, 

http://www.ingentaconnect.com/content/external-references?article=0007-4977()96L.97[aid=11531046]
http://www.ncei.noaa.gov/data/oceans/coris/library/NOAA/CRCP/project/1101/in-situ_remote_monitor_coral_bleach_conditions_as.pdf
http://www.ncei.noaa.gov/data/oceans/coris/library/NOAA/CRCP/project/1101/in-situ_remote_monitor_coral_bleach_conditions_as.pdf


Gramer et al.: Operational ecoforecasting for coral reefs using artificial intelligence 393

Law YW, editors. Proc 3rd Int Conf Intelligent Sensors, Sensor Networks and Information 
Processing. Melbourne, Australia: IEEE. p. 669–673.

Hendee JC, Gramer LJ, Manzello D, Jankulak M. 2009. Ecological forecasting for coral reef 
ecosystems. In: Dodge R, editor. Ft. Lauderdale, Florida: Proc 11th Int Coral Reef Sym. 
534–538 p.

Hendee JC, Mueller E, Humphrey C, Moore T. 2001. A data-driven expert system for producing 
coral bleaching alerts at Sombrero Reef in the Florida Keys, USA. Bull Mar Sci. 69:673–684.

Hu CM, Muller-Karger F, Murch B, Myhre D, Taylor J, Luerssen R, Moses C, Zhang CY, Gramer 
L, Hendee J. 2009. Building an automated integrated observing system to detect sea sur-
face temperature anomaly events in the Florida Keys. IEEE Trans Geosci Remote Sens. 
47(7):2071–2084. https://doi.org/10.1109/TGRS.2009.2024992

Jamei M, Ali M, Karbasi M, Xiang Y, Ahmadianfar I, Yaseen ZM. 2022. Designing a multi-stage 
expert system for daily ocean wave energy forecasting: a multivariate data decomposition-
based approach. Appl Energy. 326:119925. https://doi.org/10.1016/j.apenergy.2022.119925

Lachs L, Bythell JC, East HK, Edwards AJ, Mumby PJ, Skirving WJ, Spady BL, Guest JR. 2021. 
Fine-tuning heat stress algorithms to optimise global predictions of mass coral bleaching. 
Remote Sens. 13(14):2677. https://doi.org/10.3390/rs13142677

Lesser M. 1997. Oxidative stress causes coral bleaching during exposure to elevated tempera-
tures. Coral Reefs. 16:187–192. https://doi.org/10.1007/s003380050073

Lesser MP, Farrell JH. 2004. Exposure to solar radiation increases damage to both host tissues 
and algal symbionts of corals during thermal stress. Coral Reefs. 23(3):367–377. https://doi.
org/10.1007/s00338-004-0392-z

Lesser MP, Stochaj WR, Tapley DW, Shick JM. 1990. Bleaching in coral reef anthozoans: effects 
of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes 
against active oxygen. Coral Reefs. 8:225–232. https://doi.org/10.1007/BF00265015

Lirman D, Formel N, Schopmeyer S, Ault JS, Smith SG, Gilliam D, Riegl B. 2014. Percent re-
cent mortality (PRM) of stony corals as an ecological indicator of coral reef condition. Ecol 
Indic. 44:120–127. https://doi.org/10.1016/j.ecolind.2013.10.021

Liu G, Heron SF, Eakin CM, Muller-Karger FE, Vega-Rodriguez M, Guild S, De La Cour JL, 
Geiger EF, Skirving WJ, Burgess TFR, et al. 2014. Reef-scale thermal stress monitoring of 
coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sens. 
6:11579–11606.

Manzello DP. 2004. A decade of SEAKEYS data: SST trends and patterns. In: Hendee JC, edi-
tor. The effects of combined sea temperature, light, and carbon dioxide on coral bleaching, 
settlement, and growth. US Department of Commerce, National Oceanic and Atmospheric 
Administration, Ocean and Atmospheric Research. p. 35–36.

Manzello DP, Berkelmans R, Hendee JC. 2007. Coral bleaching indices and thresholds for the 
Florida Reef Tract, Bahamas, and St. Croix, US Virgin Islands. Mar Pollut Bull. 54(12):1923–
1931. https://doi.org/10.1016/j.marpolbul.2007.08.009

Manzello DP, Matz MV, Enochs IC, Valentino L, Carlton RD, Kolodziej G, Serrano X, Towle 
EK, Jankulak M. 2019. Role of host genetics and heat-tolerant algal symbionts in sustain-
ing populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean 
warming. Glob Change Biol. 25:1016–1031. https://doi.org/10.1111/gcb.14545

Maynard JA, Johnson JE, Marshall PA, Eakin CM, Goby G, Schuttenberg H, Spillman CM. 
2009. A strategic framework for responding to coral bleaching events in a changing climate. 
Environ Manage. 44:1–11. https://doi.org/10.1007/s00267-009-9295-7

Nakamura T, van Woesik R. 2001. Water-flow rates and passive diffusion partially explain dif-
ferential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser. 212:301–
304. https://doi.org/10.3354/meps212301

NDBC. 2009. Handbook of automated data quality control checks and procedures. National 
Data Buoy Center. 78 p. Available from: https://www.ndbc.noaa.gov/qc.shtml

Obura DO, Aeby G, Amornthammarong N, Appeltans W, Bax N, Bishop J, Brainard RE, Chan 
S, Fletcher P, Gordon TAC, et al. 2019. Coral reef monitoring, reef assessment technologies, 

http://www.ingentaconnect.com/content/external-references?article=0171-8630()212L.301[aid=7527085]
http://www.ingentaconnect.com/content/external-references?article=0722-4028()8L.225[aid=2643945]
http://www.ingentaconnect.com/content/external-references?article=0722-4028()16L.187[aid=5339162]
http://www.ingentaconnect.com/content/external-references?article=0007-4977()69L.673[aid=11531041]
http://www.ndbc.noaa.gov/qc.shtml


Bulletin of Marine Science. Vol 99, No 3. 2023394

and ecosystem-based management. Front Mar Sci. 6:580. https://doi.org/10.3389/
fmars.2019.00580

Ogden JC, Porter JW, Smith NP, Szmant AM, Jaap WC, Forcucci D. 1994. A long-term interdis-
ciplinary study of the Florida Keys seascape. Bull Mar Sci. 54:1059–1071.

Pérez RAM. 2019. Experta: expert systems for Python. Available from: https://experta.
readthedocs.io/en/latest/

Pitts PA. 1994. An investigation of near-bottom flow patterns along and across Hawk Channel, 
Florida Keys. Bull Mar Sci. 54:610–620.

Rosales SM, Sinigalliano C, Gidley M, Jones PR, Gramer LJ. 2019. Oceanographic habitat and 
the coral microbiomes of urban-impacted reefs. PeerJ. 7:e7552. https://doi.org/10.7717/
peerj.7552

SECREMP. 2020. South East Coral Reef Evaluation and Monitoring Project. Florida Department 
of Environmental Protection. Available from: https://floridadep.gov/rcp/coral/documents/
secremp-year-18-fact-sheet-2020

Skirving W, Enríquez S, Hedley JD, Dove S, Eakin CM, Mason RAB, De La Cour JL, Liu G, 
Hoegh-Guldberg O, Strong AE, et al. 2017. Remote sensing of coral bleaching using tem-
perature and light: progress towards an operational algorithm. Remote Sens. 10:18. https://
doi.org/10.3390/rs10010018

Skirving W, Marsh B, De la Cour J, Liu G, Harris A, Maturi E, Geiger E, Eakin CM. 2020. 
Coraltemp and the Coral Reef Watch coral bleaching heat stress product suite version 3.1. 
Remote Sens. 12(23):3856. https://doi.org/10.3390/rs12233856

Stephenson DB. 2000. Use of the “odds ratio” for diagnosing forecast skill. Weather Forecast. 
15:221–232. https://doi.org/10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2

Ul Islam R, Hossain MS, Andersson K. Ieee. 2020. Inference and multi-level learning in a be-
lief rule-based expert system to predict flooding. Joint 9th International Conference on 
Informatics, Electronics and Vision (ICIEV) and 4th International Conference on Imaging, 
Vision and Pattern Recognition (ICIVPR).

USACE (US Army Corps of Engineers). 2021. Appendix H adaptive management plan Port 
Everglades, Florida. US Army Corps of Engineers Jacksonville District Economic Impact 
Statement. Available from: https://usace.contentdm.oclc.org/utils/getfile/collection/
p16021coll7/id/16679

van Hooidonk R, Huber M. 2009. Quantifying the quality of coral bleaching predictions. Coral 
Reefs. 28:579–587. https://doi.org/10.1007/s00338-009-0502-z

van Oppen MJ, Lough JM. 2018. Coral bleaching: patterns, processes, causes and consequenc-
es. Cham: Springer International. 357 p. https://doi.org/10.1007/978-3-319-75393-5

Walter C, Bartels E. 2018. BleachWatch: weekly reports, 2005–2018. MOTE Marine 
Laboratory and Aquarium. Available from: https://mote.org/research/program/
coral-reef-science-monitoring/bleachwatch

Zhang XY, Moynihan GP, Ernest ANS, Gutenson JL. 2018. Evaluation of the benefits of using a 
backward chaining decision support expert system for local flood forecasting and warning. 
Expert Syst. 35:e11261. https://doi.org/10.1111/exsy.12261

BB
MM
SS

http://www.ingentaconnect.com/content/external-references?article=0882-8156()15L.221[aid=5018068]
http://www.ingentaconnect.com/content/external-references?article=0882-8156()15L.221[aid=5018068]
http://www.ingentaconnect.com/content/external-references?article=0007-4977()54L.610[aid=7427299]
http://www.ingentaconnect.com/content/external-references?article=0007-4977()54L.1059[aid=11531035]

