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ABSTRACT.—A synthesis of information products about
environmental stressors provided in near real-time can
serve environmental managers who seek to act decisively
before stressors become unmanageable. We have created
ecological forecasts, i.e., ecoforecasts, based on input from
a variety of environmental sensors that report in near real-
time, and we subsequently send those ecoforecasts to
environmental managers. The application behind these
ecoforecasts is Python-based software that uses an artificial
intelligence (AI) inference engine called an expert system.
This National Oceanic and Atmospheric Administration
(NOAA) Environmental Information Synthesizer (NEIS),
formerly the Environmental Information Synthesizer for
Expert Systems (EISES), has been developed over two decades
to meet the needs of environmental managers and scientists.
NEIS integrates environmental data from multiple sources,
includingin situ and satellite sensors. The application produces
ecoforecasts designed to identify environmental conditions
conducive to mass coral bleaching and bleaching of specific
coral species, as well as other marine environmental events
such as algal blooms. This study evaluates the efficacy of coral
bleaching ecoforecasts generated by NEIS for the Florida Reef
Tract covering the years 2005-2017.

The ecological response to multispecies coral bleaching is the result of complex
interactions between biological, chemical, and physical processes, some of which are
not currently well understood (van Oppen and Lough 2018). The coral holobiont (i.e.,
coral organism, zooxanthellae, and microbiome) experiences stress as a result of a
variety of environmental extremes and fluctuations. The ecological forecasting or
“ecoforecasting” of multispecies coral bleaching (Brandt et al. 2006) over wide geo-
graphic areas presents at least three major challenges: (1) near real-time (day-of or
day-after) integration of multiple environmental variables; (2) timely assessment of
those integrated variables to determine the likely impacts on coral reefs; and (3) ac-
counting for the distinct bleaching antecedents, the environmental conditions most
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likely to result in bleaching, of different coral species across different reef commu-
nities. If we are able to meet these challenges and collect, interpret, and package
data accurately and efficiently enough to make these assessments in near real-time,
this benefits researchers and ecosystem managers enormously. An alert issued at the
beginning of a destructive ecological event gives researchers and stakeholders the
opportunity to both observe and study these events, as well as a chance to mitigate
environmental damage and potential human impacts through management actions.

Previous efforts to remotely monitor coral reefs and alert managers about the
potential incidence of coral bleaching have been based on evaluations of satellite-
observed sea surface temperatures (SSTs; Liu et al. 2014). These alerts are somewhat
broad in spatial character and based solely on temperatures at the surface of the
ocean. Such an approach is not always optimized for effective, near real-time feed-
back for stakeholders, dockmasters, researchers, and other users in the field. The tool
described in the present study is designed to provide quick, usable feedback to enable
users to adapt to generalized, potentially deleterious biological conditions on a spe-
cific spatial and temporal scale. Coral Reef Watch (Liu et al. 2014) is the most similar
ecoforecasting system operating on the Florida Reef Tract; it is an early warning sys-
tem based on current satellite SST and climatological conditions. Recent updates to
Coral Reef Watch (CoralTemp; Skirving et al. 2020) have improved the core products
to daily temporal resolution. These are robust and helpful tools but the majority of
their actual ecoforecasting products are created and reviewed on a weekly time scale
and at 5 km resolution, which is not effective for the type of environmental dam-
age mitigation and responsiveness that we are seeking to enable/motivate. Another
study which approached the problem of reef monitoring using satellite data at higher
(1 km) resolution was that of Hu et al. (2009): this study represented an advance
in relating SST with ecosystem impacts; however, it still relies on data solely at the
surface, and makes use of only one predictor variable (SST). The present study seeks
to address these limitations by demonstrating a system that makes full use of hourly
physical environmental data, including wind and other variables as well as in situ sea
temperature, gathered at the location of individual sensitive coral reef sites in the
Florida Keys.

Use of in situ observations can be important because physical environmental ex-
tremes that affect marine ecosystems are directly impacted by the dominant scales
of atmospheric and radiative forcing and ocean response. The extremely fine-scale,
high-relief bathymetry found on barrier and fringing coral reef ecosystems results in
very high-frequency physical environmental variability (Gramer 2013, Rosales et al.
2019, Dobbelaere et al. 2020, 2022, Hendee et al. 2020); hour-by-hour observations
of both sea temperature and wind speed provide valuable context for forecasting the
extremes of heating and flow that individual reefs may encounter, and therefore for
improving the accuracy and extensibility of bleaching ecoforecasts.

Photosynthetically active radiation (PAR) has been shown to play a role in the
enzymatic activities in coral bleaching (Lesser et al. 1990, Lesser 1997, Lesser and
Farrell 2004). Although in situ observations of PAR at these monitoring stations in
the Florida Keys were far too sparse relative to either wind or temperature to be used
in the present study, the authors acknowledge that the addition of hourly observa-
tions of in situ PAR would help to further elucidate any synergistic or cumulative
effects of environmental stressors on bleaching. While Skirving et al. (2017) is the
first attempt we are aware of to use satellite derived measures to include the role of
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light in bleaching forecasts, Lachs et al. (2021) mentioned the possibility of including
Coral Reef Watch’s Light Stress Damage (LSD) satellite-based product model into
their heat accumulation metric.

Environmental variables that are measured in situ and reported remotely in near
real-time are limited; however, technologies are well established for measuring sea
and air temperatures, wind speed and direction, barometric pressure, tide heights,
and surface irradiance in reef environments (Ogden et al. 1994, Pitts 1994, Hendee
et al. 2001). Instrumentation for salinity, underwater irradiance, turbidity, and ocean
currents are also available, but often more costly to deploy and maintain. Measuring
and reporting these data in near real-time provides modelers with more accurate
information and environmental managers with more detailed ecological forecasts.

Measurements with the most immediate consequences for benthic ecosystems—
those made throughout the water column—are particularly challenging to report in
near real time. Such measurements can vary over small spatial scales in the coastal
ocean (Obura et al. 2019, Hendee et al. 2020). Therefore, it is ideal to have a dense
sensor network and the technical ability to process, synthesize, and interpret data
from that network (Hendee et al. 2020). Ecoforecasting benefits from having access
to near real-time data, a variety of sensors, and occasionally, in situ observations
suitable for ecoforecast validation.

We demonstrate a partial solution to these challenges for assessing multispecies
coral bleaching through the assessment of in situ measurements and the applica-
tion of proven artificial intelligence (AI) methods. Regional operational ocean, atmo-
spheric, and surface-wave models and satellite remote-sensing products were also
evaluated for this purpose, but issues of horizontal and temporal resolution as well
as data availability for the earlier periods of the study (prior to 2005) made use of
model and satellite data problematic. Using the National Oceanic and Atmospheric
Administration (NOAA) Environmental Information Synthesizer (NEIS), we oper-
ationalized the forecasting of coral bleaching by integrating observations from in
situ sources whenever available. To make sense of these streams of disparate data,
potentially gathered over fairly wide geographic regions, we used Al techniques to
apply observed bleaching criteria and “triggers,” i.e., thresholds beyond which the
environmental event of concern has historically occurred. The primary technique
applied was heuristic programming, an expert system methodology that does not
rely on single environmental triggers, but instead assigns semantics using fuzzy logic
to complex data streams using an approximation of intuitive reasoning (Dias et al.
2020).

The choice to use expert systems was based on pragmatism—at the time of this
study, there was not a high enough temporal or spatial resolution of validation data
(coral bleaching monitoring) to accurately train a neural network or other more
complex machine learning (ML) models. In future research, we would like to see
experiments using other ML techniques (e.g., self-organizing maps; Gramer 2013)
to further our particular goal of developing flexible, extensible tools for use in near
real-time monitoring situations. However, at present, the fuzzy logic assessment can
be site specific based on sparse validation observations, and this tool can simultane-
ously be readily adapted for use in monitoring both large regions and areas with a
large number of monitoring locations.

Heuristic programming as employed here is a practical method, not guaranteed
to be optimal, but instead sufficient for reaching an immediate goal. Heuristics are
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strategies derived from previous experiences with similar problems—in this case,
coral bleaching response to environmental stressors. Although heuristic program-
ming based on fuzzy logic is a relatively old Al technique it is well suited to diagno-
sis, i.e., the monitoring of environmental health. Heuristic programming in general
is well-suited to problems with open and imprecise data representation and logical
rules. It succeeds in making accurate, if broad, conclusions where other Al or ML
techniques might misfire due to the low precision of validation data. This technique
also prioritizes efficiency and utility at the cost of precision to create near real-time
monitoring alerts that can facilitate management actions and/or timely chronicling
of an event utilizing one of the coral monitoring protocols (e.g., AGRRA 2022).

The result is a computer system based on open-source components similar, for ex-
ample, to those presented in Zhang et al. (2018). This system automatically integrates
measurements and estimates from different models, such as the Berkelmans bleach-
ing curve (Berkelmans 2002), that consist of data with different units and spatial-
temporal resolutions. The system then automatically assesses the possible meaning
of these data for marine ecosystems, alerting managers and other stakeholders about
potential impacts. We report here on the results of applying this technology to mass
coral bleaching ecoforecasts for the Florida Keys by using in situ hourly measure-
ments of wind and sea temperature for the period of 1991-2017.

METHODS

NEAR REAL-TIME ENVIRONMENTAL DATA.—SEAKEYS (Sustained Ecological
Research Related to Management of the Florida Keys Seascape) stations were a
network of lighthouses and daymarkers along the Florida Reef Tract that were in-
strumented with meteorological and oceanographic sensors, solar power, and
satellite-broadcasting technology since 1987 (Ogden et al. 1994). These observing
platforms are part of the Coastal-Marine Automated Network (C-MAN) maintained
by NOAA’s National Data Buoy Center (NDBC). C-MAN stations have historically
transmitted hourly observations that are quality-controlled and archived by both
the NDBC (Gilhousen 1998, NDBC 2009) and NOA A’s Coral Health and Monitoring
Program (CHAMP; Hendee 1996, Manzello 2004).

For the present study, NDBC quality-controlled historical data from four C-MAN
stations served as calibration and validation data for a mass coral bleaching eco-
forecasting model (Hendee et al. 2007). The Lower Keys C-MAN station at Sand
Key, SANF1, ceased transmitting late in 2005, while the Middle Keys lighthouse at
Sombrero Key Reef, SMKF1, ceased transmitting in early 2008. The lighthouses off-
shore of the Upper Keys (Molasses Reef, MLRF1) and Biscayne Bay (Fowey Rocks,
FWYF1) continued transmitting sea temperature and wind data throughout the
study period, with brief interruptions at FWYF1 during the summers of 2005, 2011,
and 2015.

EcororecAasT ALERT SySTEM.—The first implementation of NEIS was devel-
oped in the late 1990s using the C Language Integrated Production System (CLIPS;
Donnell 1994) to summarize the large amount of hourly data produced by SEAKEYS
for the benefit of environmental managers, divers, and fishermen in the Florida Keys
(Hendee 1998). Coral bleaching ecoforecasts were the original goal, but NEIS was
also designed to produce ecoforecasts for all types of marine environmental events
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Figure 1. Schematic flow chart showing NEIS data flow. The data flow/processing occurs in three
main procedural steps: (1) fact generation, (2) rule evaluation, and (3) alert distribution.

for which the contributing factors were known or guessed, and for which there was
a sensor or sensors to measure those variables. Figure 1 is a schematic flow chart
outlining the major components and data flows of the NEIS system. One strength of
NEIS lies in its consideration of synergistic contributing factors, including sea tem-
perature, wind speed, and other environmental variables (Gramer 2013). The system
has been adjusted to calibrate ecoforecasts using in situ observations. NEIS has also
been used for coral spawning (Hendee et al. 2007) and onshore surface transport or
“drift” applications (Gramer et al. 2009).

Currently, NEIS has been reimplemented as a Python package that converts in situ
data into multispecies bleaching alerts based on three procedural steps: fact genera-
tion (Hendee 2000), knowledge engine analysis (Hendee 1998, Gramer et al. 2009),
and output/distribution of ecoforecast alerts (Fig. 1). However, the application as
documented here is also meant for use by marine environmental agencies to moni-
tor other types of events such as harmful algal blooms or turbidity plumes affecting
coral reefs.

The initial procedural step involves Python code created to read and parse vari-
ous in situ, satellite, and model data sources. These data streams are parsed into
time-series objects called data-frames using the Python package pandas. Data frames
are then checked for missing or repeated times and used to calculate 3-hr averages
for each variable, regardless of the original sampling frequency. These quality-con-
trolled data-frames are then separated by date and saved as self-annotating text files
in JavaScript Object Notation (JSON) format.

The fact-generating code loads one or more JSON files for the data being analyzed
and applies “fuzzy logic” to the data-frame to generate fact objects for each 3-hr av-
erage. Fact objects contain a fuzzy-time-of-day value, interpolated according to the
local solar time at each observing location, as well as a fuzzy-intensity value, interpo-
lated from each average according to a data lookup table of site- and season-specific
ranges called a fact-factory. Afterwards facts are then saved to JSON files, and their
location is passed to the knowledge engine code.

The data ranges for fact factories are generated, first, by calculating the correspond-
ing percentile brackets for each variable/station combination according to number of
standard deviations calculated in observational data distributions, as follows: 00.62%,
02.27%, 06.68%, 15.87%, 30.85%, 69.15%, 84.13%, 93.32%, 97.72%, 99.38%. Secondly,
the fact-factory tables are further refined manually using bleaching observations, as
well as the false negatives/false positives alerted to over the training period. The goal
of these fact range adjustments, which was achieved, was to reach zero false posi-
tives and false negatives in the training set; we achieved this by having three degrees
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of freedom in the manual adjustment: three-hourly temperature ranges, monthly
mean temperature ranges, and wind speed. For example, say that after reviewing
the alerts generated by the training data, multiple false positive high temperature
alerts are generated for station SANF1. After reviewing the station-specific criteria
and averaged temperature values in the context of bleaching observations from the
training period, it may be found that a 95.32%—-97.72% range is better suited than a
93.32%-97.72% range for generating the corresponding “very-high” heuristic value.

The knowledge engine is encoded with production rules (basically, if/then con-
structs) to analyze facts and determine alerts. These production rules are calibrated
using multispecies bleaching reports, making the multispecies coral bleaching alert
expert system distinct from a species-specific alert system. Knowledge engines are
implemented using the Python package experta (Pérez 2019). Alerts are stored as
JSON files, then passed to the final stage of analysis where they are packaged by day
and location and sent via email or text message to subscribers.

StTiMuULUS/RESPONSE INDEX.—Each alert includes a numeric measure of the like-
lihood and severity of the ecological response that is being forecast, based on the
physical data and fact-factory ranges that resulted in the alert. This numeric mea-
sure, the Stimulus/Response Index (S/RI), is calculated for each day as a count of
the number of hours for each contributing variable that matches the corresponding
ecological forecast criteria for that variable (Hendee et al. 2009). For example, if an
ecological forecasting production rule was based on the combined effect of high sea
surface temperature and low wind speed, the S/RI from the sea surface temperature
would be added to the S/RI from the low wind speed to calculate the total S/RI for
the corresponding alert. During periods when particular physical variables have ex-
treme enough values (stress, or stimulus) to suggest a qualitatively greater ecosystem
response, the S/RI associated with those variables is multiplied by a factor of 2 before
being added to the daily total; where data suggest a particularly severe response, the
S/RIis multiplied by a factor of 2.5 to reflect the rather rare but significant contribut-
ing environmental factor. For a more thorough explanation of the reasoning behind
the S/RI concept, the appointing of points per production rule fired, and the multipli-
ers, please see Hendee et al. (2009).

For example, on a day when wind speed is low and sea temperatures are high for
only 3 hrs each, the S/RI would be calculated as 3 + 3 = 6; if high sea temperatures
persisted all day (i.e., 24 hrs), the total S/RI would be 24 + 3 = 27. A day with 24 hrs
of high sea temperatures, low wind speed for 21 hrs, and “very low” wind for 3 hrs
would have an S/RI of 24 + 21 + (3 x 2) = 51. Finally, a 24-hr period with “drastically
high” sea temperatures and “drastically low” wind speed would be assigned an S/RI
value of (24 x 2.5) + (24 x 2.5) = 120. Drastically high or low values were considered
to be extremely rare instances of the variable in question. For instance, a high sea
temperature of 32 °C would be considered drastically high in an oceanic environ-
ment and was labeled as such at most of the stations analyzed for this study. Due to
the nature of heuristic programming, the S/RI is subjective and used to indicate the
cumulative severity of the time and intensity of multiple variables that contribute
to a rule firing. The context under which we assign different levels of severity to
environmental values in constructing fuzzy intensities, rules, and our S/RI are also
discussed in an earlier work (Hendee et al. 2009). That earlier methodological work
also provides a set of tables and a figure to clarify this approach.
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HisToricAL BLEACHING OBSERVATIONS.—We calibrated the criteria for the eco-
forecasting model by comparing its outputs for the training period of 1991-2004
with historical reports of coral bleaching in peer-reviewed literature (Manzello et al.
2007, van Hooidonk and Huber 2009, van Oppen and Lough 2018).

All sources for bleaching observations were based on diver reports collected from
a community of professional scientists and dive operators, utilizing Reef Check,
SECREMP (2020), and AGRRA (2022) monitoring protocols. The granularity of
these data was site- and species-specific and reports were gathered monthly (e.g., van
Hooidonk and Huber 2009).

The record of physical measurements across multiple subregions of the Keys began
in 1991. The years 1997 and 1998 were years with severe bleaching at many sites.
These thus represented important “positive signals” to include in the training period.
Bleaching was again observed to be relatively severe in 2005 and later years in the
in situ record; for this reason, and to demonstrate the broader applicability of the
method, we choose 2005-2017 as our validation period (see below).

During the training period, when widespread bleaching was observed in each sub-
region of the Florida Keys, the criteria were loosened as necessary to produce an S/RI;
where this resulted in false alarms for the training period, the criteria were tightened
again as needed. This process depended critically on having more than one criterion
to adjust. For example, where 3-hr temperature values from other years would have
suggested a positive S/RI in a given year but no bleaching was observed, a criterion
based on low winds could be made more stringent. Similarly, where 3-hr tempera-
ture values might not suggest bleaching based on observations in the training period,
but bleaching occurred, a criterion based on wind or on the monthly mean tempera-
ture could be tightened. Our approach was to manually adjust these criteria, demon-
strating that a multivariate ecoforecasting system provides the degrees of freedom
needed to perfectly match observations of coral bleaching. Further research could
refine this approach to make use of machine learning for generating optimal fact
ranges from observations (e.g., Ul Islam et al. 2020, Jamei et al. 2022); however, such
an approach would have to be site specific based not only on regional differences in
organism adaptation but also available environmental data.

We validated the model based on observations of bleaching by year and subre-
gion (i.e., Upper, Middle, and Lower Florida Keys) from BleachWatch (Maynard et al.
2009, Walter and Bartels 2018) and The Nature Conservancy’s Florida Reef Resilience
Program (FRRP; Lirman et al. 2014, Gintert et al. 2018). These observations covered
the validation period of 2005-2017, with an emphasis on BleachWatch observations
in the fore-reef zone where the four C-MAN stations reside. This zone is generally
the farthest area from shore where larger-scale reef structures are found and where
lighthouses have been historically placed.

The spatial granularity of these historical bleaching reports, i.e., subregions of the
Florida Reef Tract, was similar to or coarser than the available physical data in this
study. The time granularity of reports, generally monthly, was coarser than the hour-
ly time resolution of the physical data. Historically, due to the limited availability
of bleaching observations, we have had to rely primarily on monthly BleachWatch
reports, summarized seasonally in this analysis, as the basis of our validation data.
Finally, in the analysis of results we summarized our model outputs as the annual
sum of the S/RI at each lighthouse and took these annual S/RIs to be representative
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of the entire fore-reef zone of the subregion in which the respective lighthouse re-
sided. This approach has been gradually improved over years of development since its
first implementation in the Florida Keys National Marine Sanctuary (Hendee 1998).

VALIDATION-FORECAST SKILL.—Following van Hooidonk and Huber (2009), we
estimated a Peirce Skill Score (PSS; e.g., Stephenson 2000) for ecoforecasts during
the validation period as follows. Within a given subregion, BleachWatch data that
showed bleaching within a given year would cause that year to be marked as a posi-
tive observation. Where the S/RI of the ecoforecast was nonzero during that year, the
year was marked as a positive forecast. Years with both a positive observation and a
positive forecast were marked as /its, while years with a positive observation and a
negative forecast were marked as misses. Where neither observations nor forecasts
indicated bleaching in a given year, the year was marked as a correct negative, and
where a forecast suggested bleaching but none was observed, the year was denoted as
a false alarm. The PSS was then calculated as follows:

PSS hits false alarms

(Eq. 1)

hits + misses  false alarms + correct negatives

RESULTS

STIMULUS/RESPONSE INDEX.—The concept of a Stimulus/Response Index was first
implemented and discussed in Hendee et al. (2009) and has been implemented in
NEIS. We examined the averages of hourly environmental data for the entire physical
record from each of four Florida C-MAN stations, including the 3-hr rolling average
sea temperature and wind speed, 3-day average wind speed, and 30-day average sea
temperature. During certain summers, we found extreme values in the averaged sea
temperature (highs), wind speed (lows), or both at each lighthouse that were outliers
within the multiyear record for that site (Fig. 2). From these outliers, we calculated a
total S/RI for each day of the evaluation period during which the outliers occurred,
and then summed the S/RI values over each year for final analysis (Fig. 3).

We implemented email and text alerts to be generated in real-time when condi-
tions that resulted in a nonzero S/RI for a given day were satisfied; similarly, for his-
torical reasons the system was made to generate emails summarizing seasonal total
S/RIs. Email and text alerts could be generated for a subscriber on a site-by-site, sub-
regional, or regional basis that incorporated links to automatically generated visual
reports (e.g., Fig. 4).

During validation, the Florida Keys-wide coral bleaching event reported by div-
ers in 2005, for example, was reproduced at three of the four lighthouses: SANF]I,
MLRF1, and FWYFI1. The sole site that failed to produce ecoforecast alerts for 2005
was the Middle Keys lighthouse at Sombrero Reef, SMKFI. Interestingly, this cor-
responded with observations from both the FRRP and BleachWatch that offshore
bleaching in the Middle Keys was less prevalent than it was elsewhere during that
year. Outlier events in 2007 at the Middle Keys (SMKF1) and Upper Keys (MLRF1)
lighthouses, and in 2009 at the Biscayne Bay lighthouse (FWYF1), corresponded
with FRRP and BleachWatch observations from those years that confirmed coral
bleaching had occurred there. For the years 2006, 2008, 2010, 2012, 2013, and 2017
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Figure 2. Physical data and alerts for each site in this study for the calibration period 1991-2004:
(A) Fowey Rocks (FWYF1) sea temperature and (B) wind, (C) Molasses Reef (MLRF1) sea tem-
perature and (D) wind, (E) Sombrero Key (SMKF1) sea temperature and (F) wind, and (G) Sand
Key (SANF1) sea temperature and (H) wind. Gray denotes 3-hr averages, while black represents
longer averages (3 d wind, 30 d temperature). Alert days are highlighted by dots whose colors
correspond with the criteria triggering each alert: dark red for 3 hr temperature only, light red for
30 d temperature only; dark blue for 3 hr temperature together with 3 hr wind; and light blue for
3 hr temperature together with 3 d wind. Regions of the record where the physical data produced
a trigger are highlighted by green ellipses.
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Figure 3. Stimulus/Response Index (S/RI) estimated by the multispecies coral bleaching ecofore-
casting model for all four monitoring sites for the period 1991-2017. The validation period for the
model (2005-2017) is discussed in more detail in the text. Color-coded markers at the top of the
figure show the years when bleaching was observed at each site. The vertical grey line separates
the training period of 1991-2004 from the validation period of 2005-2017.
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Figure 4. Automated visual report for alert subscribers from the ecoforecasting system that
shows multispecies coral bleaching “gas gauge” indicators in geographic context, based on the
summed S/RI for the period July—September 2005.

when few or no outlier alerts were produced, we also found few or no historical ob-
servations of bleaching. These results are summarized for the validation period in the
contingency table (Table 1) and ecoforecast skill score section that follows.

EcororecasT SKILL SCORE.—The overall PSS for the 13-year record of bleaching
observations and S/RIs for 2005-2017 was calculated from the contingency table
(Table 1) using Equation 1. The PSS was found to be 7/8-1/22 = 0.83. This score
compares with the published PSS for satellite-derived coral bleaching products (van
Hooidonk and Huber 2009) of 0.83, indicating that NEIS had a degree of accuracy
in identifying coral bleaching conditions on a yearly scale at subregional resolution
during the validation period comparable with satellite methods, while also being able
to incorporate other environmental triggers like in situ wind measurement.

WiIND SPEED AND CORAL BLEACHING.—A consideration of wind speed in combi-
nation with sea temperature averages over various lengths of time was important in
this study, as noted in the Methods section. One limitation of simple, single-variable
numerical criteria (such as sea temperature cutoffs) is that extremes can occur when
no event is observed and vice versa, confounding the calibration of models with his-
torical data. Adding additional criteria associated with demonstrable ecological im-
pacts allows the model designer, or in this case the “knowledge engineer,” to better
distinguish the years when sea temperatures may have been high but other factors
potentially reduced the ecosystem response. For example, ocean currents, vertical
mixing, and waves are all associated with higher winds (e.g., Nakamura and van
Woesik 2001, Gramer et al. 2008, Gentemann et al. 2009). Based on the importance
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Table 1. Contingency table that shows the years used to calculate the Peirce Skill Score (PSS). Event counts
(hits, misses, etc.) are summed across the two subregions for which continuous data were available during the
validation period (Biscayne Bay = Fowey Rocks and Upper Keys = Molasses Reef).

Station-years with Station-years with Total forecast

bleaching no bleaching station-years

Station-years with forecast Hits =7 False alarms = 1 8 station-years
Station-years with no forecast Misses = 1 Correct negatives = 21 22 station-years
Total observation station-years 8 station-years 22 station-years 30 station-years

of the wind criteria, one or more of these processes appeared to alleviate the effects
of thermal stress on corals at some of these sites, e.g., at SMKF1 in 1997, and at three
of the lighthouses (FWYF1, MLRF1, SMKF1) in 2005 (Fig. 3).

Of interest, the criteria we found for “alert” outliers—those extremes that corre-
sponded with observed bleaching events—differed significantly between the light-
houses (Figs. 2 and 3). The average distance between neighboring lighthouses in
this study was approximately 80 km (Fig. 4). Different studies (Maynard et al. 2009,
Lirman et al. 2014, Manzello et al. 2019) have suggested that reef communities in
Florida vary in their exposure and response to stress across similar alongshore spa-
tial scales, consistent with this finding.

SUMMARY AND DISCUSSION

We calibrated an ecoforecasting model for coral bleaching within the Florida Reef
Tract using historical data and observations for the period 1991-2004. Calibration
was necessary to match observed conditions with historical bleaching records. The
outputs of this calibrated model were daily reports and monthly and yearly sum-
maries of expected coral bleaching by station, i.e., subregion. These outputs were de-
signed with two target stakeholder groups in mind: for Marine Protected Area (MPA)
managers, we wished to provide information on bleaching “the sooner the better” in
order to allow managers to marshal resources or issue MPA enforcement guidance.
However, for the second group of stakeholders, field researchers, we wished to pro-
vide information on environment and bleaching response which could be used to
validate the ecoforecasts and provide data for the literature on environmental effects
on bleaching. “Proactive responses” can only occur when the responding parties are
awake, so during the day, usually. For this reason, ecoforecast rules and alerts were
designed to be near real-time, i.e., per day. It should also be noted that the near real-
time nature of the alerts is intended to be valuable for field-based observations when
the precise onset of bleaching (or spawning, etc.) must be known to validate a model.

We then successfully validated this model using environmental and site-specific
bleaching observations from the years 2005 to 2017. We evaluated forecasts rela-
tive to bleaching observations by subregion, and then calculated a PSS following the
approach of van Hooidonk and Huber (2009). The PSS for our evaluation period of
2005-2017 was 0.83, similar to that of the method of van Hooidonk and Huber which
was based on satellite data alone. However, our region-wide PSS accounts directly for
individual multivariate variations within subregions, rather than calculating single-
variable results individually within subregions and averaging them globally as in van
Hooidonk and Huber (2009). The long record of direct in situ measurements for mul-
tiple environmental variables makes this more general approach feasible.
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This multivariable approach also opens the possibility of using the NEIS system,
with further research, to provide stakeholders and researchers with information to
evaluate potential alternatives among mitigating factors. With the ability to incor-
porate new variables into the rule-based system as needed, future research could
apply more complex, neural network-based analysis during both the data abstraction
and trigger design processes, to produce more sophisticated expert-system based
ecoforecasts.

As with any historical analysis, we estimated the statistical distributions and ex-
tremes in our environmental data from a fixed historical subset. We found these
historical distributions from 1991-2004 to be useful as predictors for bleaching dur-
ing the years 2005 to 2017. However, the usefulness of model outputs for upcoming
bleaching seasons may depend on whether these environmental variables still re-
main within the historical bounds that prevailed during our training period.

Going forward into future years, the validity of our forecasting model may further
depend on factors we could not consider here. These factors include coral holobi-
ont population changes and adaptation, as well as reef ecosystem dynamics such as
changing fish populations or the succession of more resilient coral genotypes. Other
influences on ecosystem health not considered here, but also likely to affect future
forecasts, include changes in ambient turbidity, nutrient availability, and land-based
sources of pollution. However, this automated system is flexible and can be adapted
to monitor and assess these conditions. This adaptation would need to include ap-
propriate historical and near real-time data sources for these variables to be used
in calibrating a future ecoforecast model. We feel it is important to emphasize that
NEIS is not just a coral bleaching ecoforecasting tool, but a construct for modeling
any marine environmental event to which the environmental stimuli are known or
suspected, and where precision instruments are available (and routinely maintained)
to measure those stimuli.

Our system is readily adaptable to changes in the ecosystem, in addition to changes
in conditions, as long as feedback from the field that characterizes those ecosystem
changes is timely and available. For example, a useful feature incorporated into ear-
lier versions of NEIS was a blog for site maintainers and scientific/biological moni-
toring divers at monitored sites. The blog allowed for site-specific records to be kept
of changes in instrumentation, station infrastructure, benthic and pelagic biological
community, and other conditions. These records were then cross-referenced with
in situ, electronically-monitored data and the resulting ecoforecasts. Although test-
ing of this Python-based newer version of the original CLIPS-based system (Hendee
1998) precluded the use of such maintenance blogs, we feel timely use of feedback
from the field—whether via blogs or other chronicling of the changes to the instru-
mentation and/or environment—is absolutely essential to a successful deployment
of instrumental arrays with NEIS as the ecological forecasting component (e.g., see
Fletcher et al. 2022).

Such a system will be integrated into future adaptations of NEIS, for example, in
monitoring turbidity and sedimentation at reef sites impacted by ongoing human
activities in Florida. What must be kept in mind is that correct ecoforecasts are only
as good as (1) the precision of the instruments, which means regular cleaning, main-
tenance, and, if necessary, replacement of them, and (2) timely feedback from the
field as to whether or not (or to what degree) the ecoforecasts were correct, thus
permitting the necessary fine-tuning of the thresholds within the rule-based system.



Gramer et al.: Operational ecoforecasting for coral reefs using artificial intelligence 391

Furthermore, regarding the optimal timescale of environmental measurements,
each species is going to react differently, but for research stakeholders, it is important
to know how long after the threshold of temperature (and potentially, synergistic
effects of light and wind) is met for a specific coral species to exhibit bleaching. The
answer to that may not be known by the research stakeholder a priori, but having
access to ecoforecast alerts based on hourly and daily measurements of the environ-
mental stressor(s) can provide a valuable context for answering such research ques-
tions. Higher-frequency environmental stressors can result in important ecosystem
responses on coral reefs within periods of 24 hrs or less.

Based on our successes with open-source components and the methods presented
in this study, we are collaborating with partners in NOA A operational (non-research)
line offices and other agencies to expand this system to daily operations that cover
coral reefs and other sensitive marine ecosystems in disparate locations. We expect
the system to ultimately find applications in nowcasting harmful algal blooms, up-
welling, and enhanced turbidity related to human activities. However, so long as (1)
the basic environmental influences of a particular phenomenon are known, (2) the
instruments are available to measure those environmental variables, and, (3) there is
in place a reliable feedback system of maintenance recording and field observations
of the phenomenon in question, the system described herein should find applicability
in a multitude of ecological forecasting events.

NEIS is currently being enhanced for use in an adaptive management plan for
a Port Everglades (Fort Lauderdale, Florida USA) dredging project (USACE 2021).
NEIS will be used to monitor turbidity levels, total suspended solids, sediment de-
position, and PAR, among other environmental variables, to deliver alerts that warn
stakeholders when compound ecological stressors exceed predefined thresholds.
This will enable ecosystem managers to adapt the dredging schedule to mitigate po-
tential environmental damage.

Code and supporting files for the NEIS are archived at https://github.com/
NOAA-CHAMP/EISES.
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