

1 **Public Health Risks Associated with Chronic, Low-Level Domoic Acid Exposure: A**
2 **Review of the Evidence**

3

4 Rebekah Petroff,¹ Alicia Hendrix,¹ Sara Shum,² Kimberly S. Grant,^{1,3} Kathi A. Lefebvre,⁴
5 Thomas M. Burbacher^{1,3,5}

6

7 ¹ Department of Environmental and Occupational Health Sciences, University of Washington,
8 Seattle, Washington, USA

9 ² Department of Pharmaceutics, University of Washington, Seattle, Washington, USA

10 ³ Center on Human Development and Disability, University of Washington, Seattle, Washington,
11 USA

12 ⁴ Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National
13 Marine Fisheries Service, NOAA, 2725 Montlake Blvd. East, Seattle, Washington, USA

14 ⁵ Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle,
15 Washington, USA

16

17

18 Corresponding Author:

19 Dr. Thomas M. Burbacher

20 Hans Rosling Center for Population Health

21 Department of Environmental and Occupational Health Sciences

22 Box 351618

23 3980 15th Ave NE

24 University of Washington

25 Seattle, WA 98195

26 tmb@uw.edu

27 **Abstract**

28 Domoic acid (DA), the causative agent for the human syndrome Amnesic Shellfish
29 Poisoning (ASP), is a potent, naturally occurring neurotoxin produced by common marine algae.
30 DA accumulates in seafood, and humans and wildlife alike can subsequently be exposed when
31 consuming DA-contaminated shellfish or finfish. While strong regulatory limits protect people
32 from the acute effects associated with ASP, DA is an increasingly significant public health
33 concern, particularly for coastal dwelling populations, and there is a growing body of evidence
34 suggesting that there are significant health consequences following repeated exposures to
35 levels of the toxin below current safety guidelines. However, gaps in scientific knowledge make
36 it difficult to precisely determine the risks of contemporary low-level exposure scenarios. The
37 present review characterizes the toxicokinetics and neurotoxicology of DA, discussing results
38 from clinical and preclinical studies after both adult and developmental DA exposure. The
39 review also highlights crucial areas for future DA research and makes the case that DA safety
40 limits need to be reassessed to best protect public health from deleterious effects of this
41 widespread marine toxin.

42

43 **Keywords**

44 domoic acid; amnesic shellfish poisoning; neurotoxicity; development; chronic exposure; public
45 health

46

47 **Abbreviations**

48 AMPA – α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; ASP – Amnesic Shellfish
49 Poisoning; BBB – blood-brain barrier; bw – body weight; CL – total body clearance; CL/F – total
50 body clearance after oral administration; CL_r – renal clearance; CSL – California Sea Lions;
51 CoASTAL – Communities Advancing the Studies of Tribal Nations Across the Lifespan; D –
52 dopamine; DA – domoic acid; DG – dentate gyrus; ECoG – electrocorticography; EEG –

53 electroencephalography; EFSA – European Food Safety Authority; fe – fraction excreted
54 unchanged in urine; GABA – γ -aminobutyric acid; GAD – glutamic acid decarboxylase; GD –
55 gestational day; GFAP – glial fibrillary acidic protein; ic – intracoelomic; ip – intraperitoneal; iv –
56 intravenous; KA – kainic acid; LOAEL – lowest-observed-adverse-effect-level; MFS – mossy
57 fiber sprouting; MRI – magnetic resonance imaging; MRT – mean residence time; MWM –
58 Morris water maze; ND – neuronal degeneration; NMDA – N-methyl-D-aspartic acid; NOS –
59 nitric oxide synthase; PND – postnatal day; PPI – pre-pulse inhibition; ROS – reactive oxygen
60 species; sc – subcutaneous; TH – tyrosine hydroxylase; TK – toxicokinetic; V_{ss} - volume of
61 distribution at steady-state; WA – Washington; WHO – World Health Organization
62

63 **Table of Contents**

64 1. Introduction	4
65 2. A Human Domoic Acid Poisoning Event.....	5
66 3. Sea Lions as Sentinels for Health Impacts of Domoic Acid	6
67 4. Toxicokinetic Properties of Domoic Acid	7
68 5. Neurological Effects of Domoic Acid in Adults	11
69 6. Neurodevelopmental Effects of Domoic Acid Exposure.....	22
70 7. Other Toxicities from Domoic Acid Exposure	34
71 8. Current Exposures and Public Health Safety.....	36
72 9. Summary and Conclusion	40
73 Note to Reader.....	41
74 Conflicts of Interest	42
75 Acknowledgements.....	42
76 References	42
77 Figure Captions.....	57
78 Tables	58

79 **1. Introduction**

80 Domoic acid (DA), the excitotoxic glutamate receptor agonist known to cause an acute
81 neurotoxic syndrome called Amnesic Shellfish Poisoning (ASP), is produced by marine algae in
82 the genus *Pseudo-nitzschia*, found worldwide (Bates, 2000; Bates et al., 1989; Bates, Hubbard,
83 Lundholm, Montresor, & Leaw, 2018; Bates & Trainer, 2006; Perl, Bedard, Kosatsky, Hockin, &
84 Todd, 1990; Todd, 1993). When these toxicogenic algae divide rapidly, high-density toxic “blooms”
85 emerge in marine waters, where they can persist for months (McCabe et al., 2016; Trainer et
86 al., 2012). Production of DA, however, is variable, and, while some environmental conditions
87 seem to enhance production, it remains unclear as to why these algae produce the toxin
88 (Brunson et al., 2018). When DA is present in the environment, filter feeding marine life, such as
89 clams, oysters, mussels, crabs, and anchovies, can accumulate DA and pass the toxin to
90 humans and wildlife (D’Agostino et al., 2017; Fire et al., 2010; Kvitek, Goldberg, Smith,
91 Doucette, & Silver, 2008; Lefebvre, Bargu, Kieckhefer, & Silver, 2002; Lefebvre, Silver, Coale, &
92 Tjeerdema, 2002).

93 While regulations developed in the late 1980s have prevented acute human DA
94 poisonings (i.e. ASP), other exposure scenarios have been of increasing concern (Lefebvre &
95 Robertson, 2010; Wekell, Jurst, & Lefebvre, 2004). With the intensification of algal bloom
96 conditions due to climate change (McKibben et al., 2017; Trainer et al., 2020; Wells et al., 2020,
97 2015) and recent consumption surveys identifying that many shellfish harvesters may be
98 regularly exposed to low levels of DA (Andjelkovic, Vandevijvere, Van Klaveren, Van Oyen, &
99 Van Loco, 2012; Ferriss, Marcinek, Ayres, Borchert, & Lefebvre, 2017), there is an urgent need
100 to comprehensively understand the health impacts associated with chronic, low-level exposure
101 to this prevalent neurotoxin. The following review synthesizes the evidence from epidemiological
102 and *in vivo* laboratory studies on DA toxicity, while identifying persistent data gaps that hinder
103 our understanding of the present-day public health risk of DA.

104

105 **2. A Human Domoic Acid Poisoning Event**

106 DA is a small amino acid, structurally similar to the neurotoxin, kainic acid (KA), and the
107 endogenous neurotransmitter, glutamate (Fig. 1) (Wright et al., 1989). DA was first identified in
108 the 1950s in Japan, when it was characterized as an anti-parasitic treatment, administered in
109 doses of 20 mg (Takemoto & Daigo, 1958). It was not until nearly thirty years later, in 1987,
110 when the potent neurotoxicity of the compound was revealed. In early December of that year, a
111 national health bulletin was posted on Prince Edward Island, Canada, warning of a new mussel-
112 associated intoxication, after three people were hospitalized with symptoms of confusion,
113 disorientation, and memory loss after consuming mussels contaminated with 310-1280 ppm DA.
114 In total, over 150 people were sickened and four people died after very high levels of DA
115 exposure (estimated up to 290 mg/patient) (Perl, Bedard, Kosatsky, Hockin, & Todd, 1990; Perl,
116 Bedard, Kosatsky, Hockin, Todd, et al., 1990). DA was not detected in blood or cerebral spinal
117 fluid; instead, cases were considered positive if respondents experienced symptoms within 48 h
118 of consuming shellfish (Perl, Bedard, Kosatsky, Hockin, & Todd, 1990). Of those who met this
119 case definition, most reported upset stomachs, vomiting and diarrhea that developed within 4-5
120 h of exposure. Nearly a fifth of the poisoning cases were admitted to the hospital with seizures
121 and a host of other neurological symptoms, which ranged from uncontrollable emotionality to
122 coma. The term “ASP” is now widely used to refer to the clinical symptoms associated with
123 acute DA toxicity (Perl, Bedard, Kosatsky, Hockin, Todd, et al., 1990). Neuropsychological
124 examinations of some of the most severely affected ASP patients revealed a unique pattern of
125 functional losses consistent with anterograde amnesia (Todd, 1993), which is characterized by
126 the lack of ability to form new memories (Tulving, 1983). In extreme DA poisoning cases,
127 patients with amnesia had persistent and long-term memory deficits (Zatorre, 1990).

128 Several individuals sickened by DA underwent magnetic resonance imaging (MRI),
129 positron emission tomography (PET) scans, and electroencephalography (EEG) assessments.
130 MRI and other imaging results from patients indicated that those affected had acute neuronal

131 death in the amygdala and parahippocampal gyrus, as well as moderate to severe disturbances
132 in electrophysiology, as observed by spikes and seizure-like activity on EEG exams (Gjedde &
133 Evans, 1990; Teitelbaum, Zatorre, Carpenter, Gendron, & Cashman, 1990). In addition to the
134 three patients that died shortly after initial DA exposure, one patient survived the poisoning, but
135 later developed temporal lobe epilepsy and died within a year (Cendes, Andermann, Carpenter,
136 Zatorre, & Cashman, 1995). Histopathological follow-up in deceased patients revealed
137 extensive neurotoxic injury in the amygdala and hippocampus, with neuronal death and
138 astrocyte reactivity noted in the amygdala, hippocampus, olfactory cortex, and thalamus
139 (Carpenter, 1990), reflecting the potent neurotoxic nature of DA.

140 Following the Prince Edward Island poisoning, public health officials implemented DA
141 monitoring programs for seafood and instituted a 20 ppm DA action level for closing beaches to
142 shellfish harvesting (see Section 8 for details). There have been no episodes of ASP since the
143 1987 poisoning episode.

144

145 **3. Sea Lions as Sentinels for Health Impacts of Domoic Acid**

146 While humans have been protected by this action level, multiple DA poisoning events
147 have occurred in naturally exposed marine mammals over the past three decades. In May and
148 June of 1998, California sea lions (CSLs) along the Pacific coast of California were observed
149 exhibiting seizures, ataxia, abnormal scratching, and related neurological symptoms (Gulland,
150 2000; Scholin et al., 2000). Analysis of blood, urine, and feces from subsets of the estimated
151 hundreds of impacted animals identified the presence of DA (Lefebvre et al., 1999; Scholin et
152 al., 2000). This, in conjunction with a simultaneous *Pseudo-nitzschia* algal bloom, as well as the
153 detection of both DA and the DA-producing algae in sea lion feces and the anchovy prey of
154 CSLs, collectively led to the first documentation of DA poisoning in a marine mammal species
155 (Lefebvre et al., 1999; Scholin et al., 2000). Since then, dozens to hundreds of CSLs off the
156 coast of California are diagnosed with DA poisoning each year (Bargu, Goldstein, Roberts, Li, &

157 Gulland, 2012; Bargu, Silver, Goldstein, Roberts, & Gulland, 2010; Greig, Gulland, & Kreuder,
158 2005).

159 In a 1998 poisoning event and subsequent follow-up, CSLs with acute DA toxicosis
160 consistently exhibited excitotoxic cell death in the hippocampus (Gulland et al., 2002; Scholin et
161 al., 2000; Silvagni, Lowenstine, Spraker, Lipscomb, & Gulland, 2005). Researchers have also
162 identified an additional, long-lasting, DA-associated clinical syndrome in CSLs, characterized by
163 reoccurring seizures following sublethal exposure (Goldstein et al., 2008; Ramsdell & Gulland,
164 2014). Persistent seizures are often accompanied with other lingering, adverse effects of DA.
165 These include poor performance on spatial memory challenges, MRI changes in hippocampal
166 structure and connectivity (Cook, Berns, Colegrove, Johnson, & Gulland, 2018; Cook et al.,
167 2015), and aberrant behavior, including impaired spatial navigation, repetitive behaviors, and
168 unusual aggression (Cook, Reichmuth, & Gulland, 2011; Cook et al., 2016; Goldstein et al.,
169 2008). In instances of chronic seizures and related effects after DA exposure, researchers often
170 observe unilateral hippocampal atrophy that is distinct from direct DA-associated atrophy
171 (Buckmaster, Wen, Toyoda, Gulland, & Van Bonn, 2014; Goldstein et al., 2008).

172 CSLs have been an invaluable sentinel species in DA research, as marine mammal
173 exposures are similar to the human oral exposure route, and the symptoms of acute CSL
174 toxicosis syndrome are analogous to ASP (Goldstein et al., 2008). Given the expanding reports
175 detailing the prolonged effects related to sub-lethal DA exposure described above, researchers
176 should consider expanding investigations of CSLs to examine the effects of chronic, low-level
177 DA exposures in both adult and developing marine mammals.

178

179 **4. Toxicokinetic Properties of Domoic Acid**

180 An important factor in cross-species comparisons of chemical exposures and effects is
181 the toxicokinetics (TK) in humans and animal models. DA is a water soluble ($\log P = -0.23$),
182 small molecule compound (molecular weight: 331.33 g/mol) that is ionized with 3 negative

183 charges and 1 positive charge at physiological pH of 7.4 (Walter, Leek, & Falk, 1992).
184 Consistent with its hydrophilicity and ionization state at physiological pH, the plasma protein
185 binding of DA is negligible (fraction unbound (f_u) = 1), as measured in monkey and human
186 plasma (Jing et al., 2018), and the transcellular permeability of DA is low, as shown in Caco-2
187 cells (Kimura, Kotaki, Hamaue, Haraguchi, & Endo, 2011). Based on these physicochemical
188 properties, DA is not expected to distribute widely in the body and is mainly eliminated
189 unchanged in the urine through glomerular filtration. Unfortunately, the TK of DA in humans is
190 not known. During the 1987 Prince Edward Island DA poisoning, clinical specimens of blood
191 and cerebral spinal fluid were collected from patients, but DA was not detected in any of these
192 samples, likely due to the delayed sampling time (1-2 weeks after hospital admission) and
193 inadequate sensitivity of the detection method (Todd, 1993). The TK of DA in laboratory animal
194 models, however, have been described.

195 The TK of DA following intravenous (iv) dosing has been reported in multiple preclinical
196 animal models (Table 1). As expected, based on the physicochemical properties, DA was
197 rapidly eliminated in urine following an iv dose and has a short plasma half-life (1-2 h) in both
198 monkeys and rats (Jing et al., 2018; Suzuki & Hierlihy, 1993; Truelove & Iverson, 1994). The
199 volume of distribution (V_{ss}) of DA was reported as less than the total body water content (60-
200 70%) in both monkeys and rats over a wide range of doses, suggesting that DA is not widely
201 distributed in the body and the distribution is independent of dose. Consistent with the low V_{ss} ,
202 the brain-to-blood ratio of DA was low (0.04-0.06) in rats following a single iv and intraperitoneal
203 (ip) dose. The same ratio following repeated dosing has not been reported.

204 Species differences have been observed in the pathways of elimination of DA. In
205 monkeys, 30-70% of the iv dosed DA was excreted through the urine, suggesting extrarenal
206 elimination (Jing et al., 2018; Truelove & Iverson, 1994). The remaining fraction of the dose was
207 attributed to be eliminated through biliary excretion, as DA was detected in primate feces
208 following an iv dose (Jing et al., 2018). The renal clearance of DA in monkeys was reported to

209 be about 60% of the creatinine clearance (Jing et al., 2018), indicating tubular reabsorption of
210 DA. In contrast, in rats, DA was predominantly (~100%) eliminated through urine following an iv
211 dose (Suzuki & Hierlihy, 1993; Truelove & Iverson, 1994). Moreover, the renal clearance of DA
212 has been reported to be similar to inulin clearance in rats, suggesting minimal tubular
213 reabsorption of DA (Suzuki & Hierlihy, 1993).

214 Although the onset and duration of the toxicological effects have been shown to be
215 significantly different following iv and oral dose (Tryphonas, Truelove, & Iverson, 1990;
216 Tryphonas, Truelove, Todd, Nera, & Iverson, 1990), the oral TK of DA has not been reported
217 until recently in cynomolgus monkeys (Jing et al., 2018; Shum et al., 2020). In this species, DA
218 was absorbed slowly in the gut, limiting its oral bioavailability to less than 10% (Jing et al., 2018;
219 Truelove et al., 1997). This observation is consistent with previous observation in rats that
220 ~100% of orally dosed DA was recovered in feces (Iverson et al., 1989). This slow absorption
221 significantly increased the apparent half-life of DA (10 h) in monkeys, indicating that DA follows
222 flip-flop kinetics (when the absorption rate constant (k_a) is less than the elimination rate constant
223 (k)) after an oral dose (Jing et al., 2018; Shum et al., 2020). In cynomolgus monkeys, the slow
224 absorption following an oral dose may also explain the slow onset and longer duration of
225 toxicological effects following an oral dose compared to iv dose, which was supported by the
226 predicted brain concentration-time profile using a physiologically-based pharmacokinetic
227 (PBPK) model of DA. Furthermore, a more-than-dose-proportional increase in AUC has been
228 observed in cynomolgus monkeys following oral doses of DA suggesting potential saturation
229 kinetics in either the absorption processes, elimination processes, or both (Shum et al., 2020).
230 This observation suggests that drug transporters may play an important role in the disposition of
231 DA and may contribute to species differences in the TK of DA.

232 Another major concern of DA toxicity is its toxicological effect on the developing fetal
233 brain, as DA has been shown to distribute to the fetus following maternal exposure in CSLs
234 (Brodie et al., 2006; Lefebvre et al., 2018), monkeys (Shum et al., 2020), and rodents (Maucher

235 Fuquay, Muha, Wang, & Ramsdell, 2012). Maternal-fetal disposition of DA has been reported in
236 monkeys following repeated oral doses and in rats following a single iv dose. The TK of DA is
237 not significantly altered during pregnancy suggesting that the DA exposure in pregnant animals
238 is similar to that of the nonpregnant animals (Maucher Fuquay et al., 2012; Shum et al., 2020).
239 The fetal/maternal AUC ratio was reported to be less than one (F/M ratio: 0.3) in both monkeys
240 and rats, indicating that placental efflux transport is limiting fetal exposure. On the other hand,
241 DA has been shown to accumulate in the amniotic fluid, acting as a distribution compartment for
242 the fetus (DA recirculates to the fetus through fetal swallowing of amniotic fluid) (Lefebvre et al.,
243 2018; Maucher Fuquay et al., 2012; Maucher & Ramsdell, 2007; Shum et al., 2020). The
244 distribution kinetics between amniotic fluid and the fetus have been shown to increase the
245 apparent fetal plasma half-life in monkeys and rats (Maucher Fuquay et al., 2012; Shum et al.,
246 2020), which may increase the risk of fetal toxicity following repeated dosing to the mom.

247 Neonatal exposure to DA through breast milk has been estimated following iv exposure
248 in lactating rats (Maucher & Ramsdell, 2005) and oral exposure in lactating CSLs (Rust,
249 Gulland, Frame, & Lefebvre, 2014). Unequivocally, both studies demonstrated that DA was
250 detected in breast milk, even when DA could no longer be detected in plasma and urine,
251 indicating a long retention time of DA in breast milk. Despite this, DA concentrations in breast
252 milk were quite low, thus minimizing the risk of neonatal exposure through breast milk. With a
253 maternal exposure of 1 mg/kg DA iv, the neonatal rat was exposed to an estimated 60 ng DA/kg
254 through breast milk, or 0.006% of the maternal dose (Maucher & Ramsdell, 2005). Although the
255 relative infant dose is not known following an oral dose, it is likely lower than 0.006%, based on
256 the low oral bioavailability of DA. Therefore, DA exposure through breast milk poses a minor risk
257 to neonates.

258 These TK concepts, with recent improvements in the sensitivity of bioanalytical methods
259 (Shum et al., 2018), may be useful for the development of a biomarker of exposure for DA. In
260 humans, DA has been detected in urine from those who consumed razor clams containing low

261 levels of DA up to 9 days before urine collection (Lefebvre et al., 2019). These results suggest
262 that urine may be applicable to estimate recent exposure from consuming contaminated
263 seafood. In the same study, a DA-specific antibody was also detected in the serum from
264 subjects who regularly consume razor clams known to contain low levels of DA year-round,
265 suggesting that the antibody may be a viable biomarker for chronic DA exposure. These new
266 methods to estimate recent and chronic DA exposure will facilitate the understanding of the
267 dose-response relationship of DA in humans.

268

269 *Summary and Future Directions*

270 DA is not widely distributed in the body and is mainly eliminated unchanged in the urine.
271 Most relevant for humans, the TK of DA following oral dose in cynomolgus monkeys follow flip-
272 flop kinetics, which are a result of slow intestinal absorption. Other kinetic data suggest that
273 drug transporters may play an important role in the TK of DA and may contribute to species
274 difference of DA disposition. The maternal-fetal kinetics suggests that the placenta acts as a
275 partial barrier, thus limiting fetal exposure to DA, but DA can accumulate in amniotic fluid, which
276 prolongs the exposure to the fetus. The neonatal exposure to DA through breast milk is
277 expected to be minimal based on the low estimated relative infant dose.

278 Future mechanistic studies are warranted to further elucidate the role of drug
279 transporters in the TK and maternal-fetal kinetics of DA. New advances have pioneered two
280 potential biomarkers (e.g. urine DA levels, DA-specific antibody) to aid in understanding the
281 human dose-response relationship, but additional data are necessary to confirm these results in
282 broader human populations. Additionally, breast milk concentration in lactating women
283 chronically exposed to DA should be measured to confirm that this route poses a low risk of
284 neonatal exposure in humans. Building off these data, standardized biomarkers, could facilitate
285 the diagnosis of health effects associated with chronic, low-level DA exposure.

286

287 **5. Neurological Effects of Domoic Acid in Adults**

288 *Uncovering Adult Neurological Responses to Domoic Acid*

289 Since the 1987 human DA poisoning, ample laboratory research has been conducted to
290 identify the effects of DA in the adult nervous system. Early traditional toxicology experiments
291 were aimed at disseminating information on the acute toxicity of this poison and revealed
292 several key findings related to overt toxicity. Over the past 30 years, research has moved away
293 from acute toxicity testing and towards assessing DA effects following chronic, low-level
294 exposures, such as those observed in coastal populations. Results of studies reporting
295 neurotoxic effects of DA in adult subjects are summarized below and in Table 2, including parts
296 A, B, C, and D. Summaries of human epidemiological studies, as well as experimental studies
297 using nonhuman primates, rodents, and fish laboratory models are presented in the following
298 sections: overt neurotoxicity; functional effects on cognition, emotionality, motor responses, and
299 neuroimaging; neuropathology; and neurochemical and molecular responses.

300

301 Overt Neurotoxicity

302 Similar to the human syndrome ASP, laboratory mammals exposed to acute, high doses
303 of DA exhibit a common pattern of symptoms. Macaques administered >0.25 mg/kg iv (Scallet
304 et al., 1993; Schmued, Scallet, & Slikker, 1995; Tryphonas, Truelove, & Iverson, 1990), 4 mg/kg
305 ip (Tryphonas, Truelove, & Iverson, 1990), or oral doses of >5 mg/kg (Tryphonas, Truelove,
306 Todd, et al., 1990), exhibited an explicit progression of toxicity, beginning with increased vocal
307 expression (chirping), quickly moving to gastrointestinal distress (excessive salivation, gagging,
308 vomiting), unusual motor activity (so called “wet-dog shakes”), postural positioning somewhat
309 indicative of praying, and ending with tremors, seizures, and death.

310 In rodent models, this pattern of symptomology is repeated, with some slight
311 discrepancies. Acute toxicity in both rats and mice is dose-dependent and has been well
312 documented in the literature. The median ip toxic dose in mice is approximately 3-4 mg/kg and

313 in rats is near 1 mg/kg (Fujita et al., 1996; Iverson et al., 1989; Sobotka et al., 1996; Tasker,
314 Connell, & Strain, 1991). After DA administration, rodents demonstrate a short period of
315 hypoactivity, which is quickly followed by a deeper sedative state. Advancing symptoms have
316 been described as a sudden increase in activity, with signs of stereotypic behaviors, a loss of
317 postural control and tremors and convulsions. Reported stereotypic behaviors include head-
318 bobbing or weaving, circling, and hindlimb scratching near the ear. The appearance of the
319 hindlimb scratching is so distinctive of this toxin, that it has been used as the primary assay for
320 acute DA toxicity (Iverson & Truelove, 1994). Vomiting, one of the primary symptoms associated
321 with DA in primates, is noticeably lacking in the progression, as rodents cannot vomit. Rats are
322 more sensitive than mice to overt signs of toxicity, which may be due to differences in
323 physiological parameters or pharmacological response (Iverson et al., 1989).

324 There is some evidence that DA effects vary depending on the sex and age of the
325 subject, with male (Baron et al., 2013; Wetmore & Nance, 1991) and older (Hesp, Clarkson,
326 Sawant, & Kerr, 2007) mice and rats responding more severely to the toxin. This apparent
327 sensitivity in older males was also noted in the 1987 human poisoning (Perl, Bedard, Kosatsky,
328 Hockin, & Todd, 1990). At the time, researchers postulated that sex-based differences in
329 seafood consumption and age-related changes in kidney function may have contributed to
330 variations in toxic responses.

331 **Summary.** Following acute DA exposure, laboratory models exhibit progressive
332 symptoms similar to those of ASP in humans, with effects that include activity level changes,
333 gastrointestinal distress, stereotypic behaviors, seizures, and death. The potential for both sex-
334 specific and age-related susceptibilities to DA exposure effects is notable and under active,
335 ongoing investigation (Personal Communication, Dr. David Marcinek).

336

337 Functional Effects

338 Studies of adult humans, as well as nonhuman primates and rodents have also
339 investigated the association between low-level DA exposure and more subtle neurological
340 effects, such as changes in cognition, emotionality, or motor responses.

341 *Effects on Cognition.* Cognitive effects have been the focus of both clinical and
342 preclinical research, as memory loss was the hallmark symptom of acute DA poisoning in
343 human episodes of ASP (Perl, Bedard, Kosatsky, Hockin, Todd, et al., 1990). The only human
344 cohort study dedicated to understanding the health effects of DA is the Communities Advancing
345 the Studies of Tribal Nations Across the Lifespan (CoASTAL) cohort. The CoASTAL cohort is
346 comprised of volunteer Native American adults who live on the coast of Washington (WA) State
347 and regularly consume shellfish that contain DA (Tracy, Boushey, Roberts, Morris, & Grattan,
348 2016). In this group, 97% of adults frequently consume fish or shellfish, and many of these
349 adults eat more than one meal/month of razor clams (Tracy et al., 2016), a filter feeder known to
350 have persistent DA concentrations up to a year after a toxic marine event ends (Wekell,
351 Gauglitz, Barnett, Hatfield, & Eklund, 1994). Preliminary studies using the verbal cognitive
352 CVLT-II Standard test in 513 adults suggested a subtle decrease in cognitive performance in
353 those who consumed more than 15 clams/month (Grattan et al., 2016). A follow-up study of a
354 subset of CoASTAL adults used additional surveys to assess everyday memory, a measure of
355 the frequency of memory “failures” in day-to-day life (Grattan et al., 2018). Adults who
356 consumed above the group median amount of razor clams in the past week, but not the past
357 year, were nearly 4x more likely to report problems with everyday memory. While the median
358 level of consumption was not reported, DA levels in clams were between 4-14 ppm. Most
359 recently, results from a study in over 100 CoASTAL adults suggests that low-level DA exposure
360 (~324 ng DA/kg/day over one month) was linked to decreased verbal memory recall, but not to
361 measures of intelligence (Stuchal et al., 2020). The authors postulated that this memory deficit
362 was an attenuated form of ASP in adults.

363 In rodents, learning and memory effects have been described after sub-lethal doses of
364 DA. Rats given 0.04 mg/kg DA iv performed poorly on a radial maze, with a longer time to
365 achieve success (Nakajima & Potvin, 1992), while mice administered a single dose of 2
366 mg/kg ip had prolonged latencies and difficulties in finding the platform on the Morris Water
367 Maze (MWM) test (Petrie, Pinsky, Standish, Bose, & Glavin, 1992). In a series of research
368 studies designed to assess potential compounds that ameliorate the decrements of DA, mice
369 given 2 mg/kg/day ip for 21-28 d also demonstrated decreased spatial memory, as noted by
370 decreased object recognition as well as increased latencies both in the ability to find the
371 platform on the MWM and in the step-through passive avoidance task (Lu et al., 2013; D. Wang,
372 Zhao, Li, Shen, & Hu, 2018; Wu et al., 2013, 2012). A single dose of 1.32 mg/kg ip in rats did
373 not, however, result in changes in passive or active avoidance tasks in other research (Sobotka
374 et al., 1996). Working memory on a match-to-sample task was decreased in animals given
375 single doses of 1 and 2 mg/kg ip (Clayton, Peng, Means, & Ramsdell, 1999). In the same study,
376 memory effects were replicated with repeated exposure to doses of 1 mg/kg ip, but not doses of
377 2 mg/kg ip, delivered every other day for 7 d (total of 4 doses). This suggests that there may be
378 a potential resistance to the effects of multiple, higher doses. In all of these rodent studies,
379 however, animals displayed some signs of overt toxicity (e.g. changes in locomotion, stereotypic
380 behaviors, hindlimb scratching) in addition to learning and memory deficits.

381 Only one laboratory study has been designed to assess learning and memory at doses
382 below those that produce overt toxicities. Lefebvre and colleagues conducted a long-term study
383 using low-level exposure (~0.75 mg/kg ip), where mice were exposed to DA once a week for up
384 to 25 weeks (Lefebvre et al., 2017). After 25 weeks, animals had fewer successful trials on the
385 radial water tread maze, but this deficit in learning and memory was reversed after a 9-week
386 wash-out period. Authors additionally noted that recovered mice maintained their ability to
387 navigate the maze throughout old age, suggesting that a chronic, low-level exposure in mice
388 may produce subtle changes in memory that are recoverable after cessation of exposure.

389 In studies with adult humans and animal models, DA-related effects on cognition are
390 evident. Importantly, deficits in learning and memory occurred in both humans and animals in
391 absence of signs of overt toxicity.

392 *Effects on Emotionality.* DA effects on emotionality have been studied in a small set of
393 research projects using adult animal models, mostly using observations of behavior in an open
394 field. Rats exposed to 1.8 mg/kg ip demonstrated more grooming behaviors and other
395 stereotypic actions in an open field test, in absence of overt DA toxicity (Baron et al., 2013).
396 Authors suggested that this was indicative of heightened emotionality or distress. Similar results of
397 longer habituation times and increases in grooming behaviors in open field test were reported in
398 another study with rats exposed to 1 mg/kg ip DA (Schwarz et al., 2014). In a separate rodent
399 study designed to create a model for epilepsy, doses of 1 mg/kg ip given at least 2x (once per h,
400 for up to 5 h) produced increases in defensive aggression in epileptic rats (Tiedeken &
401 Ramsdell, 2013). While emotional effects of DA in adult models are inadequately documented,
402 the findings presented here encourage additional investigation.

403 *Effects on Motor Responses.* Laboratory studies using adult animal models exposed to
404 DA have also investigated effects on the motor system and associated reflexes. A recent
405 seminal study used macaque monkeys exposed to daily, oral doses of 0.075 and 0.15
406 mg/kg/day for up to 11 months to study the maternal reproductive and offspring
407 neurodevelopmental effects of DA (Burbacher et al., 2019). Findings from this cohort
408 documented an increased incidence in subtle upper limb tremors in adult females, when
409 performing a reaching task. In rats given daily doses of 0.2-1.6 mg/kg ip for 30 days, motor
410 coordination was also decreased after just 10 days of exposure (Xu et al., 2008). Another study
411 documented an exaggerated auditory startle response in rats exposed to 1.32 mg/kg ip, which
412 was paired with signs of overt locomotive toxicity (Sobotka et al., 1996). In these studies,
413 however, few researchers have sought to clarify whether changes in motor measures are driven
414 by damage directly to the motor neurons or other neurotoxic effects. This point may be more

415 salient when considering that DA has been shown to directly damage the spinal cord in rodents
416 (Xu et al., 2008). At present, there is evidence that lower levels of DA can cause motor effects,
417 but these effects are subtle, and the origin of motor changes is unknown.

418 *Effects from Neuroimaging Studies.* Seizures and electrophysiological changes are
419 known to occur after DA exposure in humans and animals (Cendes et al., 1995; Perl, Bedard,
420 Kosatsky, Hockin, & Todd, 1990; Tasker et al., 1991), but only a few studies have employed
421 neuroimaging to investigate these changes. Adult monkeys in the aforementioned reproductive
422 study, who were orally exposed to 0.075 and 0.15 mg/kg/day for 1-2 years, underwent structural
423 MRI, magnetic resonance spectroscopy (MRS) and EEG assessments (Petroff et al., 2020,
424 2019). Structural MRI scans in a subset of these macaques suggested that DA-related tremors
425 observed during a reaching task were connected to decreased white matter integrity in key
426 white matter motor tracts and increased lactate in the thalamus (Petroff et al., 2019). DA-
427 exposed animals, on average, also had decreased delta power and increased theta, alpha, and
428 beta power on resting, sedated EEG exams (Petroff et al., 2020).

429 EEG imaging has been used to examine the effects of DA exposure in rats. Doses of 1-
430 10 mg/kg ip (Binienda, Beaudoin, Thorn, & Ali, 2011; Fujita et al., 1996; Sawant, Tyndall, et al.,
431 2010; Scallet, Kowalke, Rountree, Thorn, & Binienda, 2004) and intrahippocampal exposure to
432 10-300 pmol of DA (Dakshinamurti, Sharma, & Sundaram, 1991; Sawant, Mountfort, & Kerr,
433 2010) led to extensive activation in the hippocampus, increased electrographic spiking and
434 seizures, and increased delta, theta, alpha, and beta power. Changes like these are indicative
435 of subtle neuroelectric variations that have been linked to deficits in learning and memory and
436 the diagnosis of neurodegenerative disorders (Harmony, 2013; Newson & Thiagarajan, 2019).
437 Further analyses of these similarities may reveal more about the underlying functional and
438 cellular effects of the DA-induced neuroimaging changes reported here.

439 **Summary.** Due to its prominent role in ASP, memory has been the focus of the majority
440 of DA research. Both symptomatic and asymptomatic DA doses are known to cause adverse

441 learning and memory outcomes, which were reversible in asymptomatic rodents. Effects on
442 other functional domains have not been studied well, but results from a few recent studies
443 suggest that anxiety-related behaviors and motor function are impacted after low-level,
444 asymptomatic exposure. Subtle electrophysiological, neurochemical, or structural changes in
445 the brain may underlie these functional changes.

446

447 Neuropathological Effects

448 *Effects on Neurons.* After acute, high-dose DA exposures, neuronal degeneration and
449 gross lesions have been documented in several mammalian brain regions. DA most notably
450 causes damage in the hippocampus, the memory center of the brain. In monkeys given single
451 doses of DA >0.2 mg/kg iv (Tryphonas, Truelove, & Iverson, 1990) or >6 mg/kg oral (Tryphonas,
452 Truelove, Todd, et al., 1990), large neuropathic lesions are evident in the hippocampus
453 (including CA1, 3 and 4), hypothalamus, and medulla, but not other regions in the brain. Lower
454 amounts of neuronal degeneration have also been documented in the hippocampus, subiculum,
455 thalamus, and lateral septum, as well as the entorhinal and piriform cortices after doses >0.5
456 mg/kg iv (Schmued et al., 1995). In rats given >2 mg/kg ip (Appel, Rapoport, O'Callaghan, Bell,
457 & Freed, 1997) or mice given > 4 mg/kg ip (Peng, Taylor, Finch, Switzer, & Ramsdell, 1994; J.
458 C. Ryan, Cross, & Van Dolah, 2011; Strain & Tasker, 1991), similar persistent lesions and
459 neuronal damage occur in the hippocampus, hypothalamus, thalamus, amygdala, olfactory and
460 piriform cortices, and septal area. A comprehensive brain survey of DA damage in rodents
461 largely confirmed these results, while also suggesting that individual regions in target areas,
462 such as the dentate gyrus of the hippocampus, are largely unaffected by acute DA exposures at
463 4 mg/kg ip (Colman, Nowocin, Switzer, Trusk, & Ramsdell, 2005).

464 Results from studies that examine pathology at multiple time points after the initial
465 exposure suggest that the complete picture of neuronal degeneration in the brain may only be
466 visible sometime after sub-lethal doses (2-7 mg/kg ip and 0.75 mg/kg iv), with rats not

467 expressing any neuronal damage until at least 2 days after the initial exposure (Ananth,
468 Thameem Dheen, Gopalakrishnakone, & Kaur, 2001; Bruni, Bose, Pinsky, & Glavin, 1991;
469 Vieira et al., 2015). Thus, histopathology conducted less than 24 h after sub-lethal, but
470 symptomatic, DA exposure may not be the most useful way of assessing neuropathological
471 changes. Histopathology after asymptomatic exposures in rodents has not revealed any gross
472 neuronal effects (Lefebvre et al., 2017; Moyer et al., 2018).

473 *Effects on Axons.* Limited evidence suggests that axonal damage is typically less
474 extensive than damage to the neuronal body. In adult monkeys, axon terminal degeneration
475 was reported after exposure to 1 and 1.25 mg/kg DA iv (Scallet et al., 1993; Schmued et al.,
476 1995). Authors suggested that the injury may have been caused by the death of the cell body
477 and not by damage directly to the axon. In rats, a single exposure of 2.25 mg/kg led to axonal
478 damage in the hippocampus (Appel et al., 1997), whereas repeated exposure to 1 mg/kg ip was
479 connected with axonal injury in both the olfactory bulb and thalamus (Tiedeken, Muha, &
480 Ramsdell, 2013). Results from another study with mice given 4 mg/kg ip indicated axonal
481 damage in the same regions, as well as in the septal area, but not the amygdala (Colman et al.,
482 2005). However, other studies have not reported axonal damage after similar exposures in
483 rodents (Clayton et al., 1999; Peng et al., 1994). Further, lower exposures (2 mg/kg ip) do not
484 appear to impact axons or the associated myelination (Scallet, Schmued, & Johannessen,
485 2005).

486 *Effects on Glia.* Important glial responses to DA have been documented in early studies
487 using animal models. Most commonly, in acute, high-dose DA exposure, a marked astrocytic
488 reaction, detected typically with glial fibrillary acidic protein (GFAP) immunohistochemistry, has
489 been observed in symptomatic monkeys (>0.2-0.5 mg/kg iv) (Scallet et al., 1993; Tryphonas,
490 Truelove, & Iverson, 1990) and rodents (rats: >1 mg/kg ip (Sobotka et al., 1996; Vieira et al.,
491 2015); mice: >2 mg/kg ip (Lu et al., 2013)). In zebrafish, however, asymptomatic exposure to
492 DA for up to 6 weeks did not alter whole brain GFAP expression (Hiolski et al., 2014),

493 suggesting that either GFAP-positive cell responses are highly regional, species-dependent, or
494 do not change after asymptomatic toxic exposures. Several studies in rodents have also
495 documented a potential microglial reaction and suggest that microglial pathology may only be
496 observable at least 2-7 days after initial DA exposure (Ananth, Gopalakrishnakone, & Kaur,
497 2003a, 2003b; Ananth et al., 2001; Appel et al., 1997; Vieira et al., 2015). This finding is
498 contrary to early studies, which did not observe microglia differences, but examined
499 histopathology immediately after overt behavioral signs of toxicity.

500 **Summary.** High-exposure DA toxicity leads to neuronal degeneration and the formation
501 of lesions, most recognizably in the hippocampus. Additional brain areas, such as the
502 amygdala, thalamus, and olfactory areas, may be of concern in particular species and exposure
503 scenarios. Axons and myelin do not appear to be impacted in either acute or sub-acute
504 exposure scenarios, but limited findings from studies with glia suggest that there may be
505 astrocyte responses after acute exposures and microglia responses after either acute or low-
506 level exposures, but the timing of histopathological examination is an important factor in these
507 findings.

508

509 Neurochemical and Molecular Responses

510 A combination of *in vivo* and *in vitro* studies has demonstrated that DA binds to α -amino-
511 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and KA-type glutamate receptors
512 (Berman & Murray, 1997; Hampson, Huang, Wells, Walter, & Wright, 1992; Hampson & Manalo,
513 1998; Qiu, Pak, & Currás-Collazo, 2006; Stewart, Zorumski, Price, & Olney, 1990; Watanabe et
514 al., 2011), triggering a series of events typical of glutamate-derived excitotoxicity (Fig. 2) (Y.
515 Wang & Qin, 2010). In acute, high-dose DA exposure scenarios (up to 1000 μ M) with *in vitro*
516 cell culture experiments, activated AMPA and KA receptors allow both an influx of Na^+ into the
517 cell and the release of glutamate into the synapse. N-methyl-D-aspartic acid (NMDA) receptors
518 are then indirectly activated via the released glutamate, and Ca^{+2} ions subsequently flood into

519 the cell. This potent activation causes the depolarization of the post-synaptic cell and leads to
520 excessive production of reactive oxygen species (ROS) via the disruption of normal
521 mitochondria function, ultimately activating necrotic cell death pathways.

522 Consensus on the acute mechanism of toxicity is well established, but the mechanism of
523 action after lower-level DA exposures is still under active investigation (Costa, Giordano, &
524 Faustman, 2010; Lefebvre & Robertson, 2010; Pulido, 2008). Current *in vivo* rodent evidence
525 suggests that sub-lethal and symptomatic or repeat exposures at 0.3-2 mg/kg ip or 0.75 mg/kg
526 iv may not lead to necrotic cell death, but instead produce smaller increases in ROS
527 (Tsunekawa et al., 2013) and related nitric oxide synthase (NOS) products (Ananth et al.,
528 2003a, 2001; Lu et al., 2013; Vieira et al., 2015), which can disrupt normal mitochondrial
529 function (Wu et al., 2013; Xu et al., 2008).

530 Other sub-cellular effects have increasingly become a focus of investigation, with some
531 studies probing the effects of DA on specific target genes and related products, while additional
532 studies have assessed changes in large-scale gene expression profiles (Hiolski et al., 2014;
533 Lefebvre et al., 2009; J. C. Ryan, Morey, Ramsdell, & Van Dolah, 2005). *Fos* genes and related
534 proteins, a key signal in cell proliferation and apoptotic cell death pathways, were upregulated in
535 the hippocampi of monkeys, mice, and rats, and the brains of fish after both asymptomatic and
536 symptomatic exposure (Lefebvre et al., 2009; Peng & Ramsdell, 1996; Peng et al., 1994; J. C.
537 Ryan et al., 2005; Salierno et al., 2006; Scallet et al., 1993, 2004). To act as a regulatory
538 protein, *fos* dimerizes with *jun* proteins, and *Jun*-family gene expressions have been similarly
539 upregulated after DA exposures in rats and zebrafish (Lefebvre et al., 2009; J. C. Ryan et al.,
540 2005; Scallet et al., 2005). Studies have also suggested *in vivo* alterations in important cell
541 signaling and mitochondrial genes and gene products including those in the FOX family
542 (Lefebvre et al., 2009; J. C. Ryan et al., 2005; Wu et al., 2013), MAP-2 (Vieira et al., 2015),
543 MAPK (Lefebvre et al., 2009; J. C. Ryan et al., 2005; Tsunekawa et al., 2013), and Bax/Bcl-2
544 (Ananth et al., 2001; Hiolski et al., 2014). Gene expression differences in important neuronal

545 health genes like *APOE*, *APP*, *NRXN*, *GABARAP*, and *NPTX* have also been described in
546 whole-brain zebrafish studies (Hiolski et al., 2014; Lefebvre et al., 2009). Notably, gene
547 expression differences are highly dependent on the dose (Lefebvre et al., 2009), exposure
548 duration (Hiolski et al., 2014), and the time between the end of exposure and gene analysis in
549 both mice and fish (J. C. Ryan et al., 2005). These divergent responses are particularly striking
550 when comparing expression differences in symptomatic and asymptomatic animals.

551 **Summary.** The mechanism of acute DA toxicity is well established, involving the
552 activation of AMPA and KA-type glutamate receptors, subsequent activation of NMDA
553 receptors, and necrosis processes. Mechanisms of action at lower levels of DA exposure are
554 still under investigation. Future research on DA adult neurotoxicity should work to understand
555 the potential cell death compensatory mechanisms or other means of cell protection that may
556 lead to differences in response, which may include neurogenesis (Pérez-Gómez & Tasker,
557 2012, 2013), synaptic protein expression changes (Moyer et al., 2018), alterations in the
558 balance of glutamatergic and GABA(γ -aminobutyric acid)ergic neuron functioning
559 (Dakshinamurti et al., 1991; Hiolski et al., 2016; Moyer et al., 2018), and the upregulation of
560 neuroprotection pathways (Giordano, Kavanagh, Faustman, White, & Costa, 2013).

561

562 *Future Directions*

563 Adult neurotoxicity has been thoroughly described after acute exposure scenarios, but
564 there is only a small body of research on the effects of DA in absence of overt toxicity. Going
565 forward, studies focused on the functional effects of DA should be a priority area of research,
566 especially when considering the new evidence detailing human health consequences from
567 chronic, low-level exposure to DA in the CoASTAL cohort study. Additional avenues of research
568 in the potential sex- and age-variability of responses as well as in molecular and neuroprotective
569 mechanistic pathways should also be pursued. Future studies should include quantitative

570 biomarkers of DA exposure (e.g. blood, urine) to better translate results to public-health risk
571 assessment and policy.

572

573 **6. Neurodevelopmental Effects of Domoic Acid Exposure**

574 *Exploring the Consequences of Prenatal and Neonatal Domoic Acid Exposure*

575 It is a well-established tenet of neurotoxicology that age is an important determinant of
576 exposure-driven outcomes. Frequently, the embryo and fetus exhibit heightened sensitivity to
577 the deleterious effects of chemical exposures. Early exposure to toxic agents has the potential
578 to disrupt brain development in ways that may not be immediately expressed, and some effects
579 may not be manifest until adolescence or adulthood (Kraft et al., 2016). The data from animal
580 laboratory studies on DA collectively suggest that the fetus and neonate have an exaggerated
581 vulnerability to the adverse effects of exposure, and early-life central nervous system injuries
582 can be both progressive and persistent (Costa et al., 2010; Grant, Burbacher, Faustman, &
583 Grattan, 2010). There is compelling evidence that DA is a developmental neurotoxin, causing
584 behavioral and pathological effects, at levels of exposure that do not produce toxicity in adults
585 (Doucette & Tasker, 2016). The adverse consequences of early-life DA exposure are not limited
586 to one developmental system and effects have been found on multiple domains of behavior. To
587 facilitate an understanding of how DA affects developing organisms, the data presented herein
588 are organized as follows: overt neurological toxicities; functional effects on physical
589 development and neurological domains of reflexes, sensory processing, cognition, emotionality,
590 activity/motor function, and social behavior; and neuropathology. To date, no reports of DA-
591 exposed children have been published, but there are studies modeling developmental exposure
592 in macaque monkeys, rodents, and zebrafish. The experimental details of these studies are
593 provided in Tables 3 and 4.

594

595 Overt Neurotoxicity

596 In preclinical animal models with adults, seizures are a hallmark sign of overt DA
597 neurotoxicity. This neurological outcome has also been studied in animals and fish
598 developmentally exposed to DA. No evidence of spontaneous seizures or epilepsy was
599 observed in a rodent study of EEG recordings that used maternal iv doses of 0.6 mg/kg or 1.2
600 mg/kg DA on gestational day (GD) 13 (Demars, Clark, Wyeth, Abrams, & Buckmaster, 2018). In
601 contrast, a separate study found that a single maternal dose of 0.6 mg/kg DA iv on GD 13
602 resulted in abnormal basal EEGs (Dakshinamurti, Sharma, Sundaram, & Watanabe, 1993).
603 When challenged with a postnatal dose of DA, animals with a history of prenatal DA exposure
604 exhibited a reduced threshold for seizures. A decreased threshold to chemically-induced
605 seizures has also been observed in zebrafish embryonically exposed to DA (Tiedeken &
606 Ramsdell, 2007). In a recent publication that examined developmental DA exposure over a
607 range of doses in zebrafish, treated larvae displayed pectoral fin flipping and convulsions that
608 were dose and time dependent (Panlilio, Aluru, & Hahn, 2020).

609 Neonatal exposure to ip doses ranging from 0.05 to 0.4 mg/kg DA on postnatal day
610 (PND) 2, 5 or 10 resulted in hyperactivity, stereotypic scratching, paralysis and tonic/clonic
611 seizures, suggesting a heighten sensitivity of young rat pups to the toxic, even lethal, effects of
612 DA when compared to adult animals (Xi, Peng, & Ramsdell, 1997). An interesting phenomenon
613 referred to as “behavioral seizures” has been replicated in a number of postnatal DA studies
614 with rodent models (Doucette et al., 2004; D. A. Gill, Perry, McGuire, Pérez-Gómez, & Tasker,
615 2012; Perry, Ryan, & Tasker, 2009). Animals treated with subcutaneous (sc) doses of 5 or 20
616 µg/kg DA on PND 8-14 displayed low-grade seizure behavior that was not spontaneous, but
617 rather, triggered by the presentation of challenging cognitive tasks. The authors suggest that in
618 rats, neonatal DA exposure may increase susceptibility to stress, which is behaviorally
619 manifested as repetitive squinting, mastication, and head bobbing.

620 **Summary.** In mammals, prenatal DA exposure has been linked to abnormalities in
621 electrophysiology and a reduced threshold for chemically induced seizures in some studies.
622 Postnatal DA exposure can induce early spontaneous seizures, but seizure-like behaviors can
623 also be triggered by challenging tests of learning and memory in adulthood. In zebrafish
624 embryonically exposed to DA, repetitive fin-flipping and convulsions have been reported.

625 Ample studies in different animal models have been conducted to characterize overt
626 neurotoxicity in offspring (seizures, hyperactivity, stereotypic scratching, squinting, mastication,
627 head-bobbing, paralysis, death) following high-dose *in utero* or early postnatal DA exposure.
628 Future studies focused on the high-dose acute toxic effects of DA should seek to characterize
629 the mechanistic aspects of these responses.

630

631 Functional Effects

632 *Effects on Physical Development.* DA effects on physical development have been
633 studied in several animal models including nonhuman primates. Infant macaques exposed
634 prenatally to maternal oral doses of 0.075 or 0.15 mg/kg/day DA throughout gestation showed
635 no evidence of congenital anomalies or effects on birth size (birthweight, crown-rump length,
636 head width, length and circumference) (Burbacher et al., 2019). DA-exposed offspring also
637 exhibited normal weight gain during their first year of life (Dr. Thomas Burbacher, personal
638 communication).

639 Studies of physical development in prenatally-exposed rodents using maternal iv or ip
640 doses of 0.6 mg/kg or 0.3-1.2 mg/kg DA on GD 13 did not find significant adverse effects on key
641 variables such as gestation length, litter size, birthweight, and neonatal growth (Dakshinamurti
642 et al., 1993; E. D. Levin, Pizarro, Pang, Harrison, & Ramsdell, 2005). In the only study of
643 prenatal exposure in rodents using maternal oral exposures (1 or 3 mg/kg/day on GD 10-17),
644 early physical development in offspring was regularly assessed by evaluating the timing of hair
645 emergence, incisor eruption, eye opening, descent of testes, and vaginal opening (Shiotani et

646 al., 2017). There were no differences between exposed and control animals in achieving these
647 physical milestones, but weight gain during the preweaning period was greater in DA-exposed
648 pups. Studies of postnatal DA treatment generally do not report changes in physical
649 development as well. Weight gain was unaffected in rat pups exposed to 25-100 µg/kg sc DA on
650 PND 1-2 (E. D. Levin et al., 2006). A series of neonatal exposure studies conducted at the
651 University of Prince Edward Island carefully investigated weight gain and day of eye opening
652 after 20 µg/kg sc DA on PND 8-14 in the rat model. DA did not negatively impact these indices
653 of physical development (Adams, Doucette, James, & Ryan, 2009; Bernard, MacDonald, Gill,
654 Ryan, & Tasker, 2007; Doucette et al., 2004; D. A. Gill et al., 2012; Marriott, Ryan, & Doucette,
655 2012; Perry et al., 2009; C. L. Ryan et al., 2011; Tasker, Perry, Doucette, & Ryan, 2005), nor
656 did it influence sexual maturation (Burt, Ryan, & Doucette, 2008a). While early postnatal DA
657 exposure does not appear to adversely influence physical development, precocious attainment
658 of eye opening has been documented in exposed pups. In two studies, doses of either 5 or 20
659 µg/kg sc on PND 8-14 did not affect weight gain, but treated pups, especially females, reached
660 criterion on eye opening before their saline-treated counterparts (Burt et al., 2008a; Doucette,
661 Bernard, Yuill, Tasker, & Ryan, 2003).

662 In zebrafish models, embryonic DA exposure resulted in defects of the heart and spinal
663 cord (Hong, Zhang, Zuo, Zhu, & Gao, 2015; Tiedeken, Ramsdell, & Ramsdell, 2005). More
664 recently, DA exposure at two days post-fertilization was associated with a high prevalence of
665 uninflated swim bladders (a physical milestone that is essential to survival) when measured with
666 imaging techniques at five days post-fertilization (Panlilio et al., 2020). High dose exposure at
667 four days post-fertilization was related to an abnormal opaque appearance of the brain,
668 suggesting frank neurotoxicity at this dose (0.18 ng DA).

669 In summary, most investigations conducted with mammals do not report an association
670 between developmental DA exposure and congenital anomalies or deficits in physical growth.
671 Reported effects on day of eye opening, an early physical landmark, are mixed, with reports of

672 either no effect or an accelerated effect. New results with zebrafish indicate structural
673 malformations in exposed larvae and highlight the potential importance of this model for future
674 studies of this toxin.

675 *Effects on Reflexes.* The assessment of reflexes in infancy provides a measure of
676 nervous system maturity. In the nonhuman primate study described above, the development of
677 early survival reflexes and responsivity to the environment during the first two weeks of life was
678 unaffected by maternal oral exposure throughout gestation to 0.075 mg/kg or 0.15 mg/kg day
679 DA (Grant et al., 2019). Similarly, righting, cliff avoidance, negative geotaxis, and auditory startle
680 in rodent pups were not adversely impacted by maternal oral exposure to 1 or 3 mg/kg on GD
681 10-17 (Shiotani et al., 2017). Results of postnatal exposure studies also showcase the resilience
682 of this developmental domain to early-life DA exposure. The auditory startle reflex was not
683 diminished by postnatal DA exposure to doses of either 5 or 20 μ g/kg sc DA on PND 8-14 in
684 neonatal rodents (Burt et al., 2008a; Doucette et al., 2004; D. A. Gill et al., 2012; Marriott et al.,
685 2012; Perry et al., 2009).

686 Two investigations using zebrafish found that developmental exposure to DA abolished
687 the “touch response” reflex (Panlilio et al., 2020; Tiedeken et al., 2005). This survival reflex is
688 elicited when zebrafish are touched, triggering movement to quickly change orientation and
689 swim away. Abnormal startle responses have also been reported in DA-exposed larvae (Panlilio
690 et al., 2020).

691 The collective results on reflex development in monkeys and rodents suggest that DA
692 does not adversely impact the presence and strength of reflexive behaviors, but, in zebrafish,
693 key survival reflexes are adversely affected and, in some cases, completely eliminated.

694 *Effects on Sensory and Motor Processing.* Pre-pulse inhibition (PPI) refers to the
695 phenomenon whereby a weakened pre-stimulus inhibits the subsequent reaction to a stronger
696 reflex-eliciting stimulus. In animal work, PPI is frequently evaluated in the context of auditory
697 startle testing and is used as a measure of both sensory-motor gating and early information

698 processing. Prenatal exposure to maternal sc doses of 1.5 mg/kg DA on GD 16 decreased PPI
699 in exposed male pups, suggesting sex-specific impairments in this outcome (Zuloaga et al.,
700 2016), but this finding was not replicated in a study using maternal oral doses of 1 or 3 mg/kg on
701 GD 10-17 (Shiotani et al., 2017). PPI has also been studied in rodents after postnatal DA
702 exposure, primarily in the context of animal model development for schizophrenia. Using a 20
703 µg/kg sc dose on PND 8-14, investigators found an association between DA treatment and PPI
704 deficits that was dependent on sex and time of day but the baseline startle response and
705 habituation were not affected (Marriott et al., 2012).

706 A limited number of studies suggest an association between developmental DA
707 exposure and the presence of sex-dependent shifts in the processing of sensory and motor
708 information. Any effect of DA on PPI appears to be independent from the integrity of reflexive
709 behaviors, like the startle response, that are used to measure this psychological construct.

710 *Effects on Cognition.* Memory is considered to be a key outcome that is sensitive to the
711 effects of DA exposure across species. In the only study of DA exposure and cognition in
712 primates (as described in Section 5), visual recognition memory was assessed in prenatally
713 exposed infant macaques (0.075 or 0.15 mg/kg/day maternal oral DA throughout gestation)
714 using a test paradigm based on the Fagan Test of Infant Intelligence (Grant et al., 2019). Scores
715 on this test were not affected by DA exposure when test problems were relatively easy to solve.
716 However, when the problems became more difficult and required processing complex social
717 stimuli (faces), high-dose DA exposed infants performed poorly and failed to provide empirical
718 evidence of memory when compared to their control and low-dose counterparts.

719 Results from rodent studies of prenatal DA exposure have employed a range of testing
720 paradigms, particularly mazes, to evaluate effects on cognition. Using the radial arm maze to
721 measure spatial cognition, rodents prenatally exposed to maternal sc doses of 0.3, 0.6 or 1.2
722 mg/kg DA on GD 13 showed no deficits in learning, but normal sex-specific differences in
723 performance were attenuated (E. D. Levin et al., 2005). A chemical challenge with scopolamine,

724 conducted when behavioral testing was complete, indicated greater working memory deficits in
725 the most highly exposed animals. In other rodent studies of prenatal exposure, a cued-fear
726 conditioning test has been used to study the effects of DA on associative learning and memory.
727 Significant decreases in freezing behavior were documented in animals after exposure to
728 maternal ip doses of 1 mg/kg DA on GD 11.5, 14.5 and 17.5 (Tanemura et al., 2009), but these
729 effects were not found in a separate study using maternal oral doses of 1 or 3 mg/kg on GD 10-
730 17 (Shiotani et al., 2017).

731 The effects of DA on cognition have also been examined after neonatal exposure. A
732 study of rat pups exposed to 25-100 μ g/kg sc DA on PND 1-2 found no adverse effects of DA on
733 learning in the radial arm maze (E. D. Levin et al., 2006). However, an investigation using three
734 different types of mazes (elevated plus maze, H-water maze, MWM) found that animals treated
735 with doses of 20 μ g DA sc on PND 8-14 solved problems of limited difficulty as adeptly as
736 controls, but significant differences in cognition were revealed when exposed animals were
737 challenged with more complex test environments (D. A. Gill et al., 2012). All DA-treated animals
738 displayed increased perseverative behavior on reversal problems, and, in males, the ability to
739 relearn previously mastered material was impaired relative to controls. In a separate study that
740 also used the MWM, marked learning deficits were identified in females with a history of
741 neonatal exposure (5 or 20 μ g/kg sc on PND 8-14) (Doucette, Ryan, & Tasker, 2007).

742 While these published reports provide evidence of learning impairments after early
743 postnatal DA treatment, other studies using similar dosing paradigms have found accelerated
744 performance on tests of cognition. Young rat pups exposed to 5 or 20 μ g/kg sc DA on PND 8-14
745 demonstrated superior neonatal learning on an olfactory conditioning task (Doucette et al.,
746 2003), while adolescent rats exposed to 20 μ g/kg sc DA on PND 8-14 showed improved choice
747 accuracy on the radial arm maze (Adams et al., 2009).

748 The nicotine-induced condition place preference paradigm is designed to study
749 behavioral responses to appetitive rewards. In studies examining how postnatal treatment to 20

750 $\mu\text{g/kg}$ sc DA on PND 8-14 affected drug seeking behavior on this task, exposed males did not
751 develop a place preference for nicotine, but exposed females showed an increased sensitivity to
752 the rewarding properties of nicotine in one investigation (Burt et al., 2008a; Burt, Ryan, &
753 Doucette, 2008b).

754 Finally, suppression of latent inhibition behavior, a measure of attentional processing,
755 has been documented in rodents after 20 $\mu\text{g/kg}$ sc DA on PND 8-14 exposure (Marriott et al.,
756 2012), and males appear to be more adversely impacted than females (Marriott, Tasker, Ryan,
757 & Doucette, 2014).

758 The effects of DA exposure on cognition are bidirectional, as studies have found both
759 negative and positive effects on performance. There is, however, sound evidence that DA
760 exposure early in life can result in subtle but persistent changes in learning and memory.
761 Treatment effects are often gender-specific, and some study results suggest that deficits are
762 most likely to be revealed when challenging test problems are presented (e.g. complex test
763 stimuli, reversal tasks). Prenatal DA treatment appears to result in more serious effects than
764 postnatal exposure.

765 *Effects on Emotionality.* While emotionality is difficult to quantify in animals, ultrasonic
766 vocalizations in neonatal rats and mice can be used to measure early social communications.
767 Ultrasonic vocalizations, also referred to as isolation calling responses, are emitted by pups
768 when separated from their dam or littermates and are used as a proxy to quantify emotionality.
769 While prenatal DA exposure to a maternal dose of 1.5 mg/kg sc on GD 16 did not affect
770 ultrasonic vocalizations at multiple postnatal time points in one study (Mills et al., 2016), the
771 same exposure paradigm resulted in a significant reduction of the number of calls in another
772 (Zuloaga et al., 2016). Prenatal exposure to a maternal ip dose of 1 mg/kg on GD 11.5, 14.5
773 and 17.5 in rodents was associated with the presence of anxiety-like behaviors on the open field
774 test and elevated plus maze (Tanemura et al., 2009). Changes in anxiety were also
775 documented in a study using maternal oral doses of 1 or 3 mg/kg DA on GD 10-17, but in this

776 case, prenatally exposed male rats displayed reduced anxiety, while treated females displayed
777 increased anxiety on the elevated plus maze (Shiotani et al., 2017). Increased anxiety-related
778 behaviors have also been observed in postnatal rodent studies using doses of 5 or 20 µg/kg sc
779 DA on PND 8-14 with the elevated plus maze, and females appear to be more affected than
780 males (Doucette et al., 2007; D. A. Gill et al., 2012). Finally, treatment with 20 or 60 µg/kg sc DA
781 on PND 8-14 did not increase depression-like behavior on the forced swim assay, but animals
782 appeared more anxious during the open field test (Thomsen et al., 2016).

783 The body of information on emotionality is limited to the rodent animal model. The
784 primary messages from studies on developmental DA exposure and emotionality point to
785 heightened anxiety and increased susceptibility to stress as sensitive outcome measures. The
786 manifestation of these effects is strongly gender- and dose-dependent.

787 *Effects on Activity.* Levels of activity are important indicators of developing neurological
788 function and have been studied in DA research with rodent models. Significant changes in
789 locomotor activity patterns were found on the Figure-8 maze and open field test in prenatal
790 exposure studies using maternal sc or ip doses ranging from 0.3-1.2 mg/kg DA on GD 11.5-17.5
791 (E. D. Levin et al., 2005; Tanemura et al., 2009). Treatment-related effects on circadian activity
792 levels and motor function (coordination and gait) were also identified in a study using maternal
793 oral doses of 1 or 3 mg/kg DA on GD 10-17 on the open field, Rotarod and CatWalk
794 assessments (Shiotani et al., 2017).

795 A postnatal exposure study, using sc doses from 25-100 µg/kg DA on PND 1-2, found a
796 significant reduction in locomotor activity on the Figure-8 maze (E. D. Levin et al., 2006).
797 Subcutaneous exposure occurring later in the neonatal period (PND 8-14) has been associated
798 with increased activity in female rats on the elevated plus maze (D. A. Gill et al., 2012), as well
799 as increased activity in females and decreased activity in males on the open field test (Burt et
800 al., 2008a). In other investigations, however, activity levels in open field arenas were not altered

801 after DA treatment with doses ranging from 5-60 µg/kg sc on PND 8-14 (Doucette et al., 2004;
802 J. C. Ryan et al., 2011; Thomsen et al., 2016).

803 Findings from prenatal and neonatal exposure studies suggest that DA can influence
804 normal activity levels in complex ways and locomotor activity can be increased (particularly in
805 females), decreased, or unaffected.

806 *Effects on Social Behavior.* Much of the research focused on social behavior and
807 developmental DA exposure has been conducted in an effort to develop a new rodent model of
808 human psychiatric conditions (e.g. schizophrenia) and neurodevelopmental disorders (e.g.
809 Autism Spectrum Disorder). In rodent offspring exposed *in utero* to maternal doses of 1.5 mg/kg
810 DA sc on GD 16, time spent in social interactions was significantly reduced compared to
811 controls, and this treatment effect was primarily observed in males (Mills et al., 2016; Zuloaga et
812 al., 2016). The results from studies of postnatal exposure using a DA dose of 20 µg/kg sc on
813 PND 8-14 are mixed. In one investigation, exposed males spent more time engaged in social
814 withdrawal behaviors and less time in social contact with conspecifics (C. L. Ryan et al., 2011)
815 while another found no treatment effects on social interactions (Thomsen et al., 2016).

816 Data from developmental DA studies suggest that exposure is associated with changes
817 in social interactions that include increased withdrawal and avoidance behaviors. Males appear
818 to be more sensitive to this treatment-driven change than females.

819 **Summary.** In mammalian models, developmental DA exposure does not result in
820 congenital anomalies or adversely impact physical growth trajectories. Reflex development is
821 likewise, unaffected. Researchers have, however, noted subtle but persistent changes in
822 learning and memory, often observed as animals are presented with increasingly challenging
823 tasks. DA exposure is also associated with deficits in social behavior that are characterized by
824 increased withdrawal and avoidance behaviors. Finally, heightened emotionality and
825 susceptibility to stress have been identified as sensitive outcome measures in animals with a
826 history of early-life DA exposure.

827

828 Neuropathological Effects

829 Several studies using animal models have examined the brains of asymptomatic
830 offspring exposed to DA during gestation using a variety of histological and neuroimaging
831 methods. In a seminal mouse study involving prenatal DA exposure to a maternal dose of 0.6
832 mg/kg iv on GD 13, Dakshinamurti and colleagues (1993) found evidence of progressive
833 hippocampal injury. No cellular damage was observed on PND 1, but damage to hippocampal
834 CA3 and dentate gyrus regions was detected on PND 10, and decreased regional GABA and
835 increased glutamate levels in the cerebral cortex and hippocampus were documented on PND
836 30. Treatment-related damage to the hippocampus may contribute to the memory deficits
837 observed in exposed offspring. In a separate study, a single maternal dose of 1.5 mg/kg sc DA
838 administered on GD 16 resulted in a significant increase in the number of parvalbumin-positive
839 cells in the lateral amygdala (both sexes) and in the dentate gyrus (males only) (Zuloaga et al.,
840 2016). These cellular effects, suggesting an increase in GABAergic neurons, were observed in
841 offspring with deficits in social behavior and sensorimotor gating. MRI was used in a study of
842 mice exposed to a maternal dose of 1.5 mg/kg DA sc on GD 16, and investigators found an
843 atypical pattern of connectivity in the anterior cingulate cortex (Mills et al., 2016). Treated
844 animals showed overconnectivity from anterior cingulate cortex to infralimbic and orbital regions
845 and underconnectivity to dorsal retrosplenial cortex and CA3 region of hippocampus. It is
846 possible that changes in anterior cingulate cortex connectivity, known to play an important role
847 in emotional regulation, are related to the heightened emotionality that has been observed after
848 developmental DA exposure. Routine histological examinations of exposed brains were normal
849 in a separate study using a maternal dose of 1 mg/kg ip on GD 11.5, 14.5 and 17.5, but
850 evidence of long-term abnormalities in myelination and the overgrowth of neuronal processes in
851 the cerebral cortex and hippocampus were identified using immunohistochemical methods
852 (Tanemura et al., 2009).

853 Early postnatal exposure has also been associated with neuropathology. Mossy fiber
854 axon sprouting (MFS), a finding commonly associated with temporal lobe epilepsy, has been
855 studied after neonatal DA exposure, and increased MFS was found in the hippocampus of
856 animals exposed to doses of 5 or 20 µg/kg sc on PND 8-14 (Bernard et al., 2007; Doucette et
857 al., 2004; D. A. Gill, Bastlund, et al., 2010). Despite the presence of increased MFS, the clinical
858 presentation of behaviors that resemble temporal lobe epilepsy have not been documented in
859 neonatally-DA exposed animals (Demars et al., 2018). Doses of 20 or 60 µg/kg sc DA on PND
860 8-14 in rat pups produced long-term changes in α_2 -adrenoceptor binding in limbic brain regions,
861 but the effects were bidirectional and highly dose-dependent (Thomsen et al., 2016). The
862 observed neurochemical effects were detected in the absence of functional alterations in
863 behavior in the low dose animals. Sex-specific variations in protein expression have been
864 described in a study of 20 µg/kg sc DA on PND 8-14 (D. A. Gill et al., 2012). In this
865 investigation, DA-treated male rats showed increased expression of several important stress-
866 related receptors, including the adrenergic receptor subtypes α_2a and α_2c , in hippocampal and
867 non-hippocampal brain areas. Other rodent studies using a similar dosing regimen have found
868 no treatment effects on the expression of important dopamine receptors or enzymes related to
869 tyrosine and glutamate in the prefrontal cortex and hippocampus (Marriott, Tasker, Ryan, &
870 Doucette, 2016) or on glucocorticoid and mineralocorticoid receptors in the hippocampus and
871 hypothalamus (Perry et al., 2009).

872 **Summary.** At high exposures, the effects of DA on the developing brain are similar to
873 the neuropathological changes observed in adults, and include neuronal damage and cell loss,
874 particularly in the hippocampus. Lower-level developmental exposures appear to have unique
875 pathological findings with differences in axonal sprouting, connectivity, and more subtle effects
876 in neural protein and receptor expression. Importantly, these effects are dependent on the
877 timing of exposure and may differ based on exposure during specific windows of developmental
878 susceptibility.

879

880 *Future Directions*

881 Research findings from animal models have indicated a heightened sensitivity to the
882 adverse effects of DA in the fetus and neonate when compared to adults. Data from the only
883 nonhuman primate study of developmental exposure suggest that subtle changes in early
884 memory are important, but studies of human infants will be required to determine the
885 translational value of the results from animal models. Future investigations in humans and
886 animal models should prioritize the systematic collection of DA biomarkers (e.g. blood, urine)
887 during pregnancy and in exposed offspring to characterize the relationship between increasing
888 body burden of DA and related neurodevelopmental effects.

889

890 **7. Other Toxicities from Domoic Acid Exposure**

891 While the preponderance of studies examining the effects of DA exposure have focused
892 on the central nervous system, studies of DA impacts on many peripheral organs have also
893 been conducted. Like the nervous system, other organs, including the heart, kidney, spleen,
894 liver, lung, and both male and female reproductive organs, have some level of glutamate
895 receptor expression, which may interact with DA (S. S. Gill, Barker, & Pulido, 2008; S. S. Gill,
896 Mueller, McGuire, & Pulido, 2000; S. S. Gill & Pulido, 2001). Cardiac effects of DA were first
897 noted in the original human poisoning in Canada (Todd, 1993), as well as in wild sea lion
898 populations poisoned by DA (Zabka et al., 2009). Two other research groups used both *in vivo*
899 and *in vitro* models to demonstrate that DA can accumulate in the heart of rats after exposure to
900 a single dose (2 mg/kg ip), intrahippocampal infusion (100 pmol) (Vranyac-Tramoundanas,
901 Harrison, Sawant, Kerr, & Sammut, 2011), and two doses of 2.5 mg/kg ip, spaced 30 days apart
902 (Vieira et al., 2016). In both studies, exposed animals expressed myocardial injuries and
903 damaged cardiac mitochondria, but visible damage was subtle. *In vitro*, DA leads to the
904 uncoupling of rat cardiac mitochondria, but this does not produce ROS, suggesting that the

905 function, but not structure, of cardiomyocytes may be predisposed to DA toxicity (Vranyac-
906 Tramoundanas et al., 2008).

907 Kidney damage was also noted in the original DA poisoning event, but only one study,
908 using mice exposed to 3 single doses of DA (0.1-2.5 mg/kg ip) over three days, has examined
909 the renal effects of this toxin (Funk et al., 2014). Animals demonstrated signs of kidney damage,
910 with increased urinary biomarkers of KIM-1 and NGAL and evidence of increased cell death in
911 proximal tubules of the kidney. Authors suggested that these effects may be most important in
912 human populations with pre-existing renal disease or compromised renal function, such as aged
913 or diabetic populations, as even low-level DA exposure could exacerbate existing kidney
914 damage. DA may also cause subtle immunomodulatory effects *in vivo*, but results are limited.
915 Infusions of 0.15 µg of DA directly into the lateral septal area of the brain caused neurotoxic
916 lesions and subsequent modulatory effects in the endocrine system of female mice, but not
917 male mice (Wetmore & Nance, 1991). A single dose exposure study conducted with mice given
918 2.5 mg /kg ip DA reported altered monocyte activity, decreased neutrophil phagocytosis, and
919 decreased T-cell proliferation (M. Levin, Leibrecht, Ryan, Van Dolah, & De Guise, 2008).
920 Immunomodulatory effects have also been reported in sea lions with DA poisoning (M. Levin et
921 al., 2010). Studies that assessed standard serum and urine chemistry, which include biomarkers
922 for both kidney and immune function, found few changes, however, after daily, oral, sub-chronic
923 dosing in both rats exposed to 0.1 and 5 mg DA/kg (Truelove, Mueller, Pulido, & Iverson, 1996)
924 or monkeys given 0.5 mg/kg DA for 15 days and then 0.75 mg/kg for another 15 days (Truelove
925 et al., 1997).

926

927 *Summary and Future Directions*

928 The limited number of studies on the peripheral organ toxicity of DA collectively suggest
929 that there may be many other, frequently overlooked effects from exposure to this toxin. Future
930 research into the cardiac, renal, and immunomodulatory effects of DA should aim to better

931 characterize these effects, especially considering chronic exposure. Results from these studies
932 will also help reveal the human sub-populations with pre-existing conditions who may be more
933 vulnerable to the toxic effects of this compound.

934

935 **8. Current Exposures and Public Health Safety**

936 *Estimates of Human Exposures*

937 Surveys to estimate real-world DA exposure have been conducted in high-seafood
938 consumption populations in the USA and Europe. One of the first surveys targeted at elucidating
939 DA consumption reported DA levels in commonly caught fish species and mussels consumed
940 by fishers in the state of California (Mazzillo et al., 2010). DA consumption was highly
941 dependent on the type of seafood consumed; mussels collected for the survey had no DA
942 detected, whereas anchovies had levels up to 28.3 mg/kg fish. Researchers reported that those
943 fishers self-reporting whole anchovy consumption may be at highest risk of low-level DA
944 exposure, at up to 1.43 mg DA/meal. Using standardized consumption rates of 50 g fish/meal
945 and a bodyweight (bw) of 60 kg, this equates to 0.024 mg DA/kg bw. Another survey of just 16
946 fishers in Bulgaria assessed DA exposure via mussels, and found that, while DA was detected
947 in all mussels, the highest exposure in this group was estimated to be 0.27 mg DA/meal, or
948 0.0024 mg/kg bw (Peteva, Georgieva, Stancheva, & Makedonski, 2017).

949 A more recent survey of recreational fishers in WA, focused only on the risk of DA
950 exposure after razor clam consumption (Ferriss et al., 2017). This survey aimed to assess the
951 patterns DA exposure throughout the year in different ages and sexes. Data from the survey
952 revealed that the reported number of clams eaten per meal may be much higher than previously
953 estimated, over 7 clams/meal in some age groups. This, in combination with high levels of DA in
954 the shellfish, lead to higher-than-expected exposure levels, ranging from 0.05-0.1 mg DA/kg
955 bw/day. Using models to predict what long-term exposures may look like, researchers further
956 identified that predicted consumption of DA was highest in the springtime and in younger groups

957 (10-20 years), although they note that some of the highest shellfish consumer groups were
958 underrepresented in their survey.

959 In Belgium, data from a nationwide dietary survey and samples of mussels, oysters, and
960 scallops to quantify average DA concentrations and data to estimate average exposures
961 (Andjelkovic et al., 2012). DA was detected in 11% of seafood samples and ranged from 0.8-
962 203.4 ppm in shellfish meat. When consumed at the nationally reported levels, these
963 concentrations equated to up to 0.013 mg DA/kg bw/day.

964 One group at risk for higher exposures includes those of coastal Native American
965 Nations in WA State. In this state, as well as other locations, Indigenous Peoples of coastal
966 Nations share a historical, cultural, and economic connection to the ocean and marine foods,
967 including those contaminated with DA (Crosman, Petrou, Rudd, & Tillotson, 2019). Many
968 coastal Native Americans in WA regularly consume Pacific razor clams (Fialkowski et al., 2010)
969 and are concerned about the health effects of consuming these clams (Roberts et al., 2016).
970 Dietary surveys and measures from 6-month records of DA concentrations in WA clams have
971 estimated that the average monthly DA consumption rates in Native American adults were
972 approximately 0.000218 ng/kg bw/day or 0.00322 ng DA/kg bw/meal (Stuchal et al., 2020).
973 These rates, while below the current regulatory limit, were still connected with adverse health
974 outcomes, demonstrating the necessity of including groups at high risk of DA exposure in
975 regulatory considerations.

976 While these reports demonstrate the low-level and persistent exposure to DA in many
977 populations today, DA concentrations vary by seafood species (Andjelkovic et al., 2012;
978 Mazzillo et al., 2010), location (Wekell, Trainer, Ayres, & Simons, 2002), and time of the year
979 (Smith et al., 2018). Further, DA does not degrade with typical cooking and freezing methods
980 (McCarron & Hess, 2006; Vidal, Correa, & Blanco, 2009). Going forward, exposure
981 assessments should include considerations for these variable factors and look towards the use
982 of a biomarker to confirm DA exposures.

983

984 *Domoic Acid Regulation and Safety Recommendations*

985 Estimates of DA exposure from the Prince Edward Island poisoning were used to
986 establish limits for shellfish harvesting to protect public health (Hynie & Todd, 1990; Todd, 1993;
987 Wekell et al., 2004). Shellfish harvesting is closed when monitoring programs indicate DA
988 concentrations in shellfish of 20 mg/kg or greater. This action level was derived from estimates
989 of DA concentrations in mussels from the Prince Edward Island poisoning (200 mg/kg mussel
990 tissue) and applied with a 12-fold safety factor. This limit was suggested to be well below the
991 approximate no-effect-level in mice, and, therefore, thought to be protective of acute human
992 exposures (Iverson & Truelove, 1994). Continued research after the establishment of this
993 regulation estimated that the limit in seafood is approximately equivalent to 0.075-0.1 mg/kg bw
994 in adults (Alexander et al., 2009; Mariën, 1996; Toyofuku, 2006). This threshold is based solely
995 on information from the single episode of high-dose, catastrophic exposure and does not
996 address the health risks associated with lower dose or chronic exposure.

997 Since the establishment of the regulatory threshold, several research groups have
998 calculated other consumption limits, by incorporating newly available toxicological data, seafood
999 consumption rates and patterns, and additional protective safety and uncertainty factors (Table
1000 4). The results of these assessments vary significantly from daily consumption limits consistent
1001 with the current estimate of 0.075 mg/kg bw (Mariën, 1996; Toyofuku, 2006) to limits
1002 approximately 2- to 4-times lower (0.018 to 0.034 mg/kg bw) (Alexander et al., 2009; Slikker,
1003 Scallet, & Gaylor, 1998). Most of these assessments, however, indicated that there were not
1004 enough data to develop safety limits for chronic consumers of DA (Alexander et al., 2009;
1005 Kumar, Kumar, & Nair, 2009; Toyofuku, 2006).

1006 Recently, however, a seafood safety limit considering chronic exposure was developed
1007 with data from the CoASTAL cohort study (Stuchal et al., 2020). Using estimates of shellfish
1008 intake from questionnaires given to study participants and DA levels in shellfish from the study

1009 site, the authors estimated a daily consumption limit of 0.003 mg/kg bw/day would be needed to
1010 protect adult consumers from the effects observed in the study (decreased verbal memory
1011 recall), a threshold well below the present regulatory action level.

1012 The wide range of results across these studies are the product of different variations and
1013 approaches to risk assessment. None of the studies, however, include quantitative data on
1014 sensitive groups, such as young, aged, or other biologically compromised populations. These
1015 characteristics demand more attention going forward, so that updated regulations can better
1016 protect the most vulnerable populations. Future regulatory guidelines should be established with
1017 a focus on chronic and low-level effects, particularly in vulnerable and highly exposed
1018 populations, to best protect the health of all shellfish consumers. In the promotion of
1019 environmental justice, the input and consideration of key stakeholders, including Native
1020 American and Indigenous populations as well as other high-risk groups, should be considered
1021 vital in the reassessment and establishment of future regulations (Burger & Gochfeld, 2011).
1022 Interim guidance limiting chronic seafood consumption, such as that released by the WA State
1023 Department of Health, can help promote public health until such regulatory thresholds are
1024 adopted (Washington State Department of Health, n.d.).

1025

1026 **9. Summary and Conclusion**

1027 DA causes overt excitotoxicity in adult mammals, producing striking behavioral
1028 symptoms and pathology that primarily manifests in the hippocampus. Since the 1987 human
1029 poisoning and subsequent regulation of DA, there have been no documented incidents of acute
1030 human ASP, but continued research has deepened our understanding of the perilous nature of
1031 this toxin. The compelling body of research collectively detailed in this review illuminates the
1032 worrisome effects of DA, even at levels deemed as “safe” under current regulatory limits. The
1033 results of preclinical studies indicate that chronic exposure to levels of DA near the human
1034 regulatory limit do not cause overt neuroinjury but can cause subtle, neurotoxic effects that

1035 impact the function, structure, physiology, and cellular response of the brain. Recent
1036 epidemiological studies have also provided new evidence of harm from chronic, low-level DA
1037 exposure, highlighting the importance of studies focused on the health effects from repeated
1038 exposure to this toxin at levels below the current regulatory limit. Future research efforts should
1039 aim to further explore these themes, by designing studies aimed at understanding the
1040 underlying mechanisms of toxicity associated with low-level and chronic DA exposure. Potential
1041 mechanisms for tolerance should be explored as well. Special considerations for differences in
1042 responses based on sex and age should be another focus, to best understand the risk to certain
1043 populations.

1044 Health effects have also been documented following DA exposure in vulnerable,
1045 developmental laboratory models. If given during development, DA generally does not appear to
1046 cause congenital or other physical defects, but perinatal exposure to this toxin has been linked
1047 with deficits in measures of learning and memory, as well as aberrant behavior related to social
1048 and emotional domains. These changes were observed even in some studies using very low-
1049 level DA exposure paradigms administered during early life. Effects such as these may be
1050 caused, in part, by irregular mossy fiber sprouting in the hippocampus and altered connectivity
1051 in the brain. Other vulnerable populations that have not been well studied may include both
1052 those with diminished kidney, cardiac, or immune function, as limited evidence suggests DA
1053 may also impact these systems.

1054 Up to now, few studies have included a biomarker of DA exposure. Results from DA
1055 studies in adult female nonhuman primates and their offspring (Shum et al., 2018) as well as
1056 results from a study of adult humans who chronically consume shellfish (Lefebvre et al., 2012,
1057 2019) have provided evidence indicating that urine or a DA-specific antibody may be useful
1058 biomarkers for DA exposure. Future studies in human populations and preclinical models should
1059 develop strategies such as these to provide critical data regarding the relationship between DA

1060 body burden and related health effects in both the nervous system and other critical off-target
1061 organs.

1062 In conclusion, the current literature on the health effects of DA exposure provides strong
1063 evidence that the current regulatory limit does not adequately protect populations that are
1064 chronic consumers of shellfish, particularly those individuals who may be sensitive to DA
1065 effects, such as developing young or aged individuals, as well as those with other comorbidities.
1066 New interim guidance in WA suggests limiting the consumption of razor clams to 15 per month
1067 for everyone, but particularly for “women who are or might become pregnant, nursing mothers,
1068 children, the elderly, and people with compromised renal function” (Washington State
1069 Department of Health, n.d.). This is especially pertinent because the health of the highest-
1070 exposed groups may already be disproportionately impacted by other environmental
1071 contaminants. Current regulatory limits should be reexamined and reestablished, with
1072 cooperation from regulators and representation from high-risk communities to best protect the
1073 health of populations chronically exposed to this common marine contaminant.

1074

1075 **Note to Reader**

1076 The authors of the present manuscript have established a tissue repository of adult and juvenile
1077 nonhuman primates chronically exposed to low-levels of DA (Supplement 1), from the study
1078 described in Burbacher et al., 2019 (NIEHS R01 ES023043). The authors would like to invite
1079 researchers interested in utilizing these samples to contact Dr. Burbacher (the corresponding
1080 author) for future collaborative investigations on DA toxicity.

1081

1082 **Conflicts of Interest**

1083 The authors declare that there are no conflicts of interest.

1084

1085 **Acknowledgements**

1086 The publication of this review was supported in part by the following grants from the National
1087 Institutes of Health: NIEHS T32ES007062 (PI: Stuart Batterman); NIEHS T32ES007032 (PI:
1088 Michael Rosenfeld); NIEHS R01 ES030319 (PI: David Marcinek); NIEHS R01 ES023043 (PI:
1089 Thomas Burbacher); P51 OD010425 (PI: Sean Sullivan); NICHD HD083091 (PI: Michael
1090 Guralnick), and by the National Science Foundation (NSF) R01 OCE-1839041 (PI: David
1091 Marcinek). Partial support was also provided by The Teratogen Information System (TERIS) at
1092 the University of Washington. The content is solely the responsibility of the authors and does
1093 not necessarily represent the official views of any of these supporting bodies.

1094

1095 **References**

1096 Adams, A. L., Doucette, T. A., James, R., & Ryan, C. L. (2009). Persistent changes in learning
1097 and memory in rats following neonatal treatment with domoic acid. *Physiology & Behavior*,
1098 96(4–5), 505–512. <https://doi.org/10.1016/j.physbeh.2008.11.019>

1099 Alexander, J., Benford, D., Boobis, A., Ceccatelli, S., Cravedi, J.-P., Domenico, A. Di, ...
1100 Leeuwen, R. Van. (2009). Marine biotoxins in shellfish – Domoic acid. *The EFSA Journal*,
1101 1181(7), 1–61. <https://doi.org/10.2903/j.efsa.2008.723>

1102 Ananth, C., Gopalakrishnakone, P., & Kaur, C. (2003a). Induction of inducible nitric oxide
1103 synthase expression in activated microglia following domoic acid (DA)-induced
1104 neurotoxicity in the rat hippocampus. *Neuroscience Letters*, 338(1), 49–52.
1105 [https://doi.org/10.1016/S0304-3940\(02\)01351-4](https://doi.org/10.1016/S0304-3940(02)01351-4)

1106 Ananth, C., Gopalakrishnakone, P., & Kaur, C. (2003b). Protective role of melatonin in domoic
1107 acid-induced neuronal damage in the hippocampus of adult rats. *Hippocampus*, 13(3),
1108 375–387. <https://doi.org/10.1002/hipo.10090>

1109 Ananth, C., Thameem Dheen, S., Gopalakrishnakone, P., & Kaur, C. (2001). Domoic acid-
1110 induced neuronal damage in the rat hippocampus: Changes in apoptosis related genes
1111 (Bcl-2, Bax, Caspase-3) and microglial response. *Journal of Neuroscience Research*,
1112 66(2), 177–190. <https://doi.org/10.1002/jnr.1210>

1113 Andjelkovic, M., Vandevijvere, S., Van Klaveren, J., Van Oyen, H., & Van Loco, J. (2012).
1114 Exposure to domoic acid through shellfish consumption in Belgium. *Environment
1115 International*, 49, 115–119. <https://doi.org/10.1016/j.envint.2012.08.007>

1116 Appel, N. M., Rapoport, S. I., O'Callaghan, J. P., Bell, J. M., & Freed, L. M. (1997). Sequelae of
1117 parenteral domoic acid administration in rats: comparison of effects on different metabolic
1118 markers in brain. *Brain Research*, 754(1–2), 55–64. [https://doi.org/10.1016/S0006-8993\(97\)00042-5](https://doi.org/10.1016/S0006-
1119 8993(97)00042-5)

1120 Bargu, S., Goldstein, T., Roberts, K., Li, C., & Gulland, F. (2012). Pseudo-nitzschia blooms,
1121 domoic acid, and related California sea lion strandings in Monterey Bay, California. *Marine
1122 Mammal Science*, 28(2), 237–253. <https://doi.org/10.1111/j.1748-7692.2011.00480.x>

1123 Bargu, S., Silver, M., Goldstein, T., Roberts, K., & Gulland, F. (2010). Complexity of domoic
1124 acid-related sea lion strandings in Monterey Bay, California: Foraging patterns, climate
1125 events, and toxic blooms. *Marine Ecology Progress Series*, 418, 213–222.

1126 https://doi.org/10.3354/meps08816
1127 Baron, A. W., Rushton, S. P., Rens, N., Morris, C. M., Blain, P. G., & Judge, S. J. (2013). Sex
1128 differences in effects of low level domoic acid exposure. *NeuroToxicology*, 34(1), 1–8.
1129 https://doi.org/10.1016/j.neuro.2012.10.010
1130 Bates, S. S. (2000). Domoic-acid-producing diatoms: Another genus added! *Journal of*
1131 *Phycology*, 36(6), 978–983. https://doi.org/10.1046/j.1529-8817.2000.03661.x
1132 Bates, S. S., Bird, C. J., de Freitas, A. S. W., Foxall, R., Gilgan, M., Hanic, L. A., ... Wright, J. L.
1133 C. (1989). Pennate Diatom *Nitzschia pungens* as the Primary Source of Domoic Acid, a
1134 Toxin in Shellfish from Eastern Prince Edward Island, Canada. *Canadian Journal of*
1135 *Fisheries and Aquatic Sciences*, 46(7), 1203–1215. https://doi.org/10.1139/f89-156
1136 Bates, S. S., Hubbard, K. A., Lundholm, N., Montresor, M., & Leaw, C. P. (2018). Pseudo-
1137 *nitzschia*, *Nitzschia*, and domoic acid: New research since 2011. *Harmful Algae*, 79, 3–43.
1138 https://doi.org/10.1016/j.hal.2018.06.001
1139 Bates, S. S., & Trainer, V. L. (2006). The Ecology of Harmful Diatoms. In *Ecology of Harmful*
1140 *Algae* (pp. 81–93). https://doi.org/10.1007/978-3-540-32210-8_7
1141 Berman, F. W., & Murray, T. F. (1997). Domoic acid neurotoxicity in cultured cerebellar granule
1142 neurons is mediated predominantly by NMDA receptors that are activated as a
1143 consequence of excitatory amino acid release. *Journal of Neurochemistry*, 69(2), 693–703.
1144 https://doi.org/10.1046/j.1471-4159.1997.69020693.x
1145 Bernard, P. B., MacDonald, D. S., Gill, D. A., Ryan, C. L., & Tasker, R. A. (2007). Hippocampal
1146 mossy fiber sprouting and elevated trkB receptor expression following systemic
1147 administration of low dose domoic acid during neonatal development. *Hippocampus*,
1148 17(11), 1121–1133. https://doi.org/10.1002/hipo.20342
1149 Binienda, Z. K., Beaudoin, M. A., Thorn, B. T., & Ali, S. F. (2011). Analysis of electrical brain
1150 waves in neurotoxicology: γ -hydroxybutyrate. *Current Neuropharmacology*, 9(1), 236–239.
1151 https://doi.org/10.2174/157015911795017209
1152 Bose, R. J., Glavin, G. B., & Pinsky, C. (1989). Neurotoxicity and lethality of toxic extracts from
1153 atlantic coast shellfish. *Progress in Neuro-Psychopharmacology and Biological Psychiatry*,
1154 13(3–4), 559–562. https://doi.org/10.1016/0278-5846(89)90146-2
1155 Brodie, E. C., Gulland, F. M. D., Greig, D. J., Hunter, M., Jaakola, J., Leger, J. St., ... Van
1156 Dolah, F. M. (2006). Domoic Acid Causes Reproductive Failure in California Sea Lions
1157 (*Zalophus Californianus*). *Marine Mammal Science*, 22(3), 700–707.
1158 https://doi.org/10.1111/j.1748-7692.2006.00045.x
1159 Bruni, J. E., Bose, R., Pinsky, C., & Glavin, G. (1991). Circumventricular organ origin of domoic
1160 acid-induced neuropathology and toxicology. *Brain Research Bulletin*, 26(3), 419–424.
1161 https://doi.org/10.1016/0361-9230(91)90016-D
1162 Brunson, J. K., Mckinnie, S. M. K., Chekan, J. R., Mccrow, J. P., Miles, Z. D., Bertrand, E. M., ...
1163 Moore, B. S. (2018). Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom.
1164 *Science*, 365(6409), 1356–1358. https://doi.org/10.1126/SCIENCE.AAU0382
1165 Buckmaster, P. S., Wen, X., Toyoda, I., Gulland, F. M. D., & Van Bonn, W. (2014). Hippocampal
1166 neuropathology of domoic acid-induced epilepsy in California sea lions (*Zalophus*
1167 *californianus*). *Journal of Comparative Neurology*, 522(7), 1691–1706.
1168 https://doi.org/10.1002/cne.23509
1169 Burbacher, T., Grant, K., Petroff, R., Crouthamel, B., Stanley, C., McKain, N., ... Isoherranen, N.
1170 (2019). Effects of chronic, oral domoic acid exposure on maternal reproduction and infant
1171 birth characteristics in a preclinical primate model. *Neurotoxicology and Teratology*,
1172 440354. https://doi.org/10.1101/440354
1173 Burger, J., & Gochfeld, M. (2011). Conceptual environmental justice model for evaluating
1174 chemical pathways of exposure in low-income, minority, Native American, and other unique
1175 exposure populations. *American Journal of Public Health*, 101(SUPPL. 1).
1176 https://doi.org/10.2105/AJPH.2010.300077

1177 Burt, M. A., Ryan, C. L., & Doucette, T. A. (2008a). Altered responses to novelty and drug
1178 reinforcement in adult rats treated neonatally with domoic acid. *Physiology & Behavior*,
1179 93(1–2), 327–336. <https://doi.org/10.1016/j.physbeh.2007.09.003>

1180 Burt, M. A., Ryan, C. L., & Doucette, T. A. (2008b). Low dose domoic acid in neonatal rats
1181 abolishes nicotine induced conditioned place preference during late adolescence. *Amino
1182 Acids*, 35(1), 247–249. <https://doi.org/10.1007/s00726-007-0584-2>

1183 Carpenter, S. (1990). The Human Neuropathology of Encephalopathic Mussel Toxin Poisoning.
1184 *Symposium Domoic Acid Toxicity*, 73–34.

1185 Cendes, F., Andermann, F., Carpenter, S., Zatorre, R. J., & Cashman, N. R. (1995). Temporal
1186 lobe epilepsy caused by domoic acid intoxication: Evidence for glutamate receptor–
1187 mediated excitotoxicity in humans. *Annals of Neurology*, 37(1), 123–126.
1188 <https://doi.org/10.1002/ana.410370125>

1189 Clayton, E. C., Peng, Y.-G., Means, L. W., & Ramsdell, J. S. (1999). Working memory deficits
1190 induced by single but not repeated exposures to domoic acid. *Toxicon*, 37(7), 1025–1039.
1191 [https://doi.org/10.1016/S0041-0101\(98\)00230-X](https://doi.org/10.1016/S0041-0101(98)00230-X)

1192 Colman, J. R., Nowocin, K. J., Switzer, R. C., Trusk, T. C., & Ramsdell, J. S. (2005). Mapping
1193 and reconstruction of domoic acid-induced neurodegeneration in the mouse brain.
1194 *Neurotoxicology and Teratology*, 27(5), 753–767. <https://doi.org/10.1016/j.ntt.2005.06.009>

1195 Cook, P. F., Berns, G. S., Colegrove, K., Johnson, S., & Gulland, F. M. D. (2018). Postmortem
1196 DTI reveals altered hippocampal connectivity in wild sea lions diagnosed with chronic
1197 toxicosis from algal exposure. *Journal of Comparative Neurology*, 526(2), 216–228.
1198 <https://doi.org/10.1002/cne.24317>

1199 Cook, P. F., Reichmuth, C., & Gulland, F. M. D. (2011). Rapid behavioural diagnosis of domoic
1200 acid toxicosis in California sea lions. *Biology Letters*, 7(4), 536–538.
1201 <https://doi.org/10.1098/rsbl.2011.0127>

1202 Cook, P. F., Reichmuth, C., Rouse, A. A., Libby, L. A., Dennison, S. E., Carmichael, O. T., ...
1203 Ranganath, C. (2015). Algal toxin impairs sea lion memory and hippocampal connectivity,
1204 with implications for strandings. *Science*, 350(6267), 1545–1547.
1205 <https://doi.org/10.1126/science.aac5675>

1206 Cook, P. F., Reichmuth, C., Rouse, A., Dennison, S., Van Bonn, B., & Gulland, F. M. D. (2016).
1207 Natural exposure to domoic acid causes behavioral perseveration in Wild Sea lions: Neural
1208 underpinnings and diagnostic application. *Neurotoxicology and Teratology*, 57, 95–105.
1209 <https://doi.org/10.1016/j.ntt.2016.08.001>

1210 Costa, L. G., Giordano, G., & Faustman, E. M. (2010). Domoic acid as a developmental
1211 neurotoxin. *NeuroToxicology*, 31(5), 409–423. <https://doi.org/10.1016/j.neuro.2010.05.003>

1212 Crosman, K. M., Petrou, E. L., Rudd, M. B., & Tillotson, M. D. (2019). Clam hunger and the
1213 changing ocean: characterizing social and ecological risks to the quinault razor clam
1214 fishery using participatory modeling. *Ecology and Society*, 24(2).
1215 <https://doi.org/10.5751/ES-10928-240216>

1216 D'Agostino, V. C., Degrati, M., Sastre, V., Santinelli, N., Krock, B., Krohn, T., ... Hoffmeyer, M.
1217 S. (2017). Domoic acid in a marine pelagic food web: Exposure of southern right whales
1218 Eubalaena australis to domoic acid on the Península Valdés calving ground, Argentina.
1219 *Harmful Algae*, 68, 248–257. <https://doi.org/10.1016/j.hal.2017.09.001>

1220 Dakshinamurti, K., Sharma, S. K., & Sundaram, M. (1991). Domoic acid induced seizure activity
1221 in rats. *Neuroscience Letters*, 127(2), 193–197. [https://doi.org/10.1016/0304-3940\(91\)90792-R](https://doi.org/10.1016/0304-3940(91)90792-R)

1222 Dakshinamurti, K., Sharma, S. K., Sundaram, M., & Watanabe, T. (1993). Hippocampal
1223 changes in developing postnatal mice following intrauterine exposure to domoic acid.
1224 *Journal of Neuroscience*, 13(10), 4486–4495. <https://doi.org/doi: 10.1523/JNEUROSCI.13-10-04486.1993>

1225 Debonnel, G., Beauchesne, L., & de Montigny, C. (1989). Domoic acid, the alleged mussel

1228 toxin, might produce its neurotoxic effect through kainate receptor activation: an
1229 electrophysiological study in the rat dorsal hippocampus. *Canadian Journal of Physiology*
1230 and *Pharmacology*, 67(1), 29–33. <https://doi.org/10.1139/y89-005>

1231 Demars, F., Clark, K., Wyeth, M. S., Abrams, E., & Buckmaster, P. S. (2018). A single
1232 subconvulsant dose of domoic acid at mid-gestation does not cause temporal lobe epilepsy
1233 in mice. *NeuroToxicology*, 66, 128–137. <https://doi.org/10.1016/j.neuro.2018.04.001>

1234 Doucette, T. A., Bernard, P. B., Husum, H., Perry, M. A., Ryan, C. L., & Tasker, R. A. (2004).
1235 Low doses of domoic acid during postnatal development produce permanent changes in
1236 rat behaviour and hippocampal morphology. *Neurotoxicity Research*, 6(7–8), 555–563.
1237 <https://doi.org/10.1007/BF03033451>

1238 Doucette, T. A., Bernard, P. B., Yuill, P. C., Tasker, R. A., & Ryan, C. L. (2003). Low doses of
1239 non-NMDA glutamate receptor agonists alter neurobehavioural development in the rat.
1240 *Neurotoxicology and Teratology*, 25(4), 473–479. [https://doi.org/10.1016/S0892-0362\(03\)00034-5](https://doi.org/10.1016/S0892-0362(03)00034-5)

1241 Doucette, T. A., Ryan, C. L., & Tasker, R. A. (2007). Gender-based changes in cognition and
1242 emotionality in a new rat model of epilepsy. *Amino Acids*, 32(3), 317–322.
1243 <https://doi.org/10.1007/s00726-006-0418-7>

1244 Doucette, T. A., & Tasker, R. A. (2016). Perinatal domoic acid as a neuroteratogen. In *Current
1245 Topics in Behavioral Neurosciences* (Vol. 29, pp. 87–110).
1246 https://doi.org/10.1007/7854_2015_417

1247 Ferriss, B. E., Marcinek, D. J., Ayres, D., Borchert, J., & Lefebvre, K. A. (2017). Acute and
1248 chronic dietary exposure to domoic acid in recreational harvesters: A survey of shellfish
1249 consumption behavior. *Environment International*, 101, 70–79.
1250 <https://doi.org/10.1016/j.envint.2017.01.006>

1251 Fialkowski, M. K., McCrory, M. A., Roberts, S. M., Tracy, J. K., Grattan, L. M., & Boushey, C. J.
1252 (2010). Evaluation of Dietary Assessment Tools Used to Assess the Diet of Adults
1253 Participating in the Communities Advancing the Studies of Tribal Nations Across the
1254 Lifespan Cohort. *Journal of the American Dietetic Association*, 110(1), 65–73.
1255 <https://doi.org/10.1016/j.jada.2009.10.012>

1256 Fire, S. E., Wang, Z., Berman, M., Langlois, G., Morton, S. L., Sekula-Wood, E., & Benitez-
1257 Nelson, C. R. (2010). Trophic transfer of the harmful algal toxin domoic acid as a cause of
1258 death in a minke whale (*Balaenoptera acutorostrata*) stranding in southern California.
1259 *Aquatic Mammals*, 36(4), 342–350. <https://doi.org/10.1578/AM.36.4.2010.342>

1260 Fujita, T., Tanaka, T., Yonemasu, Y., Cendes, F., Cashman, N. R., & Andermann, F. (1996).
1261 Electroclinical and pathological studies after parenteral administration of domoic acid in
1262 freely moving nonanesthetized rats: An animal model of excitotoxicity. *Journal of Epilepsy*,
1263 9(2), 87–93. [https://doi.org/10.1016/0896-6974\(95\)00075-5](https://doi.org/10.1016/0896-6974(95)00075-5)

1264 Funk, J. A., Janech, M. G., Dillon, J. C., Bissler, J. J., Siroky, B. J., & Bell, P. D. (2014).
1265 Characterization of Renal Toxicity in Mice Administered the Marine Biotoxin Domoic Acid.
1266 *Journal of the American Society of Nephrology*, 1–11.
1267 <https://doi.org/10.1681/ASN.2013080836>

1268 Gill, D. A., Bastlund, J. F., Anderson, N. J., & Tasker, R. A. (2009). Reductions in paradoxical
1269 sleep time in adult rats treated neonatally with low dose domoic acid. *Behavioural Brain
1270 Research*, 205(2), 564–567. <https://doi.org/10.1016/j.bbr.2009.07.018>

1271 Gill, D. A., Bastlund, J. F., Watson, W. P., Ryan, C. L., Reynolds, D. S., & Tasker, R. A. (2010).
1272 Neonatal exposure to low-dose domoic acid lowers seizure threshold in adult rats.
1273 *Neuroscience*, 169(4), 1789–1799. <https://doi.org/10.1016/j.neuroscience.2010.06.045>

1274 Gill, D. A., Perry, M. A., McGuire, E. P., Pérez-Gómez, A., & Tasker, R. A. (2012). Low-dose
1275 neonatal domoic acid causes persistent changes in behavioural and molecular indicators of
1276 stress response in rats. *Behavioural Brain Research*, 230(2), 409–417.
1277 <https://doi.org/10.1016/j.bbr.2012.02.036>

1278

1279 Gill, D. A., Ramsay, S. L., & Tasker, R. A. (2010). Selective reductions in subpopulations of
1280 GABAergic neurons in a developmental rat model of epilepsy. *Brain Research*, 1331, 114–
1281 123. <https://doi.org/10.1016/j.brainres.2010.03.054>

1282 Gill, S. S., Barker, M., & Pulido, O. (2008). Neuroexcitatory targets in the female reproductive
1283 system of the nonhuman primate (*Macaca fascicularis*). *Toxicologic Pathology*, 36(3), 478–
1284 484. <https://doi.org/10.1177/0192623308315663>

1285 Gill, S. S., Mueller, R., McGuire, P. F., & Pulido, O. (2000). Potential target sites in peripheral
1286 tissues for excitatory neurotransmission and excitotoxicity. *Toxicologic Pathology*, 28(2),
1287 277–284. <https://doi.org/10.1177/019262330002800207>

1288 Gill, S. S., & Pulido, O. (2001). Glutamate Receptors in Peripheral Tissues: Current Knowledge,
1289 Future Research, and Implications for Toxicology. *Toxicologic Pathology*, 29(2), 208–223.
1290 <https://doi.org/10.1080/019262301317052486>

1291 Giordano, G., Kavanagh, T. J., Faustman, E. M., White, C. C., & Costa, L. G. (2013). Low-level
1292 domoic acid protects mouse cerebellar granule neurons from acute neurotoxicity: Role of
1293 glutathione. *Toxicological Sciences*, 132(2), 399–408. <https://doi.org/10.1093/toxsci/kft002>

1294 Gjedde, A., & Evans, A. C. (1990). PET Studies of Domoic Acid Poisoning in Humans:
1295 Excitotoxic Destruction of Brain Glutamatergic Pathways, Revealed in Measurements of
1296 Glucose Metabolism by Positron Emission Tomography. *Symposium Domoic Acid Toxicity*,
1297 105–109. <https://doi.org/10.2174/1568026616666160405>

1298 Goldstein, T., Mazet, J. A. K., Zabka, T. S., Langlois, G., Colegrove, K. M., Silver, M., ...
1299 Gulland, F. M. D. (2008). Novel symptomatology and changing epidemiology of domoic
1300 acid toxicosis in California sea lions (*Zalophus californianus*): an increasing risk to marine
1301 mammal health. *Proceedings of The Royal Society*, 275(1632), 267–276.
1302 <https://doi.org/10.1098/rspb.2007.1221>

1303 Grant, K. S., Burbacher, T. M., Faustman, E. M., & Grattan, L. M. (2010). Domoic acid:
1304 Neurobehavioral consequences of exposure to a prevalent marine biotoxin.
1305 *Neurotoxicology and Teratology*, 32(2), 132–141. <https://doi.org/10.1016/j.ntt.2009.09.005>

1306 Grant, K. S., Crouthamel, B., Kenney, C., McKain, N., Petroff, R., Shum, S., ... Burbacher, T. M.
1307 (2019). Preclinical modeling of exposure to a global marine bio-contaminant: Effects of in
1308 utero Domoic acid exposure on neonatal behavior and infant memory. *Neurotoxicology and*
1309 *Teratology*, 73, 1–8. <https://doi.org/10.1016/j.ntt.2019.01.003>

1310 Grattan, L. M., Boushey, C. J., Liang, Y., Lefebvre, K. A., Castellon, L. J., Roberts, K. A., ...
1311 Morris, J. G. J. (2018). Repeated dietary exposure to low levels of domoic acid and
1312 problems with everyday memory: Research to public health outreach. *Toxins*, 10(3), 103.
1313 <https://doi.org/10.3390/toxins10030103>

1314 Grattan, L. M., Boushey, C. J., Tracy, K., Trainer, V. L., Roberts, S. M., Schluterman, N., &
1315 Morris, J. G. J. (2016). The association between razor clam consumption and memory in
1316 the CoASTAL cohort. *Harmful Algae*, 57(B), 20–25.
1317 <https://doi.org/10.1016/j.hal.2016.03.011>

1318 Greig, D. J., Gulland, F. M. D., & Kreuder, C. (2005). A Decade of Live California Sea Lion
1319 (*Zalophus californianus*) Strandings Along the Central California Coast: Causes and
1320 Trends, 1991–2000. *Aquatic Mammals*, 31(1), 11–22.
1321 <https://doi.org/10.1578/am.31.1.2005.11>

1322 Grimmel, B., Nijjar, M. S., Brown, J., Macnair, N., Wagner, S., Johnson, G. R., & Amend, J. F.
1323 (1990). Relationship between domoic acid levels in the blue mussel (*Mytilus edulis*) and
1324 toxicity in mice. *Toxicon*, 28(5), 501–508. [https://doi.org/10.1016/0041-0101\(90\)90294-H](https://doi.org/10.1016/0041-0101(90)90294-H)

1325 Gulland, F. M. D. (2000). Domoic Acid Toxicity in California Sea Lions (*Zalophus californianus*)
1326 Stranded Along the Central California Coast, May–October 1998 | NOAA Fisheries. *Report*
1327 to the National Marine Fisheries Service Working Group on Unusual Marine Mammal
1328 Mortality Events. NOAA Technical Memorandum NMFS-OPR-17. Retrieved from
1329 <https://www.fisheries.noaa.gov/resource/document/domoic-acid-toxicity-california-sea->

1330 lions-zalophus-californianus-stranded-along
1331 Gulland, F. M. D., Haulena, M., Fauquier, D., Langlois, G., Lander, M. E., Zabka, T. S., & Duerr,
1332 R. (2002). Domoic acid toxicity in Californian sea lions (*Zalophus californianus*): clinical
1333 signs. *Veterinary Record*, 150, 475–480. <https://doi.org/doi:10.1136/vr.150.15.475>
1334 Hampson, D. R., Huang, X., Wells, J. W., Walter, J. A., & Wright, J. L. C. (1992). Interaction of
1335 domoic acid and several derivatives with kainic acid and AMPA binding sites in rat brain.
1336 *European Journal of Pharmacology*, 218(1), 1–8. [https://doi.org/10.1016/0014-2999\(92\)90140-Y](https://doi.org/10.1016/0014-2999(92)90140-Y)
1337 Hampson, D. R., & Manalo, J. L. (1998). The activation of glutamate receptors by kainic acid
1338 and domoic acid. *Natural Toxins*, Vol. 6, pp. 153–158. [https://doi.org/10.1002/\(SICI\)1522-7189\(199805/08\)6:3/4<153::AID-NT16>3.0.CO;2-1](https://doi.org/10.1002/(SICI)1522-7189(199805/08)6:3/4<153::AID-NT16>3.0.CO;2-1)
1339 Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing.
1340 *Frontiers in Integrative Neuroscience*, Vol. 7. <https://doi.org/10.3389/fnint.2013.00083>
1341 Hesp, B. R., Clarkson, A. N., Sawant, P. M., & Kerr, D. S. (2007). Domoic acid preconditioning
1342 and seizure induction in young and aged rats. *Epilepsy Research*, 76(2–3), 103–112.
1343 <https://doi.org/10.1016/j.eplepsyres.2007.07.003>
1344 Hiolski, E. M., Ito, S., Beggs, J. M., Lefebvre, K. A., Litke, A. M., & Smith, D. R. (2016). Domoic
1345 acid disrupts the activity and connectivity of neuronal networks in organotypic brain slice
1346 cultures. *NeuroToxicology*, 56, 215–224. <https://doi.org/10.1016/j.neuro.2016.08.004>
1347 Hiolski, E. M., Kendrick, P. S., Frame, E. R., Myers, M. S., Bammler, T. K., Beyer, R. P., ...
1348 Lefebvre, K. A. (2014). Chronic low-level domoic acid exposure alters gene transcription
1349 and impairs mitochondrial function in the CNS. *Aquatic Toxicology*, 155, 151–159.
1350 <https://doi.org/10.1016/j.aquatox.2014.06.006>
1351 Hong, Z., Zhang, Y., Zuo, Z., Zhu, R., & Gao, Y. (2015). Influences of Domoic Acid Exposure on
1352 Cardiac Development and the Expression of Cardiovascular Relative Genes in Zebrafish (*Danio rerio*)
1353 Embryos. *Journal of Biochemical and Molecular Toxicology*, 29(6), 254–260.
1354 <https://doi.org/10.1002/jbt.21692>
1355 Hynie, I., & Todd, E. C. D. (Eds.). (1990). *Proceedings of Symposium on Domoic Acid Toxicity*.
1356 Canada Disease Weekly Reports.
1357 Iverson, F., & Truelove, J. (1994). Toxicology and seafood toxins: Domoic acid. *Natural Toxins*,
1358 2(5), 334–339. <https://doi.org/10.1002/nt.2620020514>
1359 Iverson, F., Truelove, J., Nera, E., Tryphonas, L., Campbell, J., & Lok, E. (1989). Domoic acid
1360 poisoning and mussel-associated intoxication: Preliminary investigations into the response
1361 of mice and rats to toxic mussel extract. *Food and Chemical Toxicology*, 27(6), 377–384.
1362 [https://doi.org/10.1016/0278-6915\(89\)90143-9](https://doi.org/10.1016/0278-6915(89)90143-9)
1363 Jandová, K., Kozler, P., Langmeier, M., Marešová, D., Pokorný, J., & Riljak, V. (2014). Influence
1364 of low-dose neonatal domoic acid on the spontaneous behavior of rats in early adulthood.
1365 *Physiological Research*, 63, S521–S528. <https://doi.org/doi: 10.33549/physiolres.932936>
1366 Jing, J., Petroff, R., Shum, S., Crouthamel, B., Topletz, A. R., Grant, K. S., ... Isoherranen, N.
1367 (2018). Toxicokinetics and physiologically based pharmacokinetic modeling of the shellfish
1368 toxin domoic acid in nonhuman primates. *Drug Metabolism and Disposition*, 46(2), 155–
1369 165. <https://doi.org/10.1124/dmd.117.078485>
1370 Kimura, O., Kotaki, Y., Hamaue, N., Haraguchi, K., & Endo, T. (2011). Transcellular transport of
1371 domoic acid across intestinal Caco-2 cell monolayers. *Food and Chemical Toxicology*,
1372 49(9), 2167–2171. <https://doi.org/10.1016/j.fct.2011.06.001>
1373 Kraft, A. D., Aschner, M., Cory-Slechta, D. A., Bilbo, S. D., Caudle, W. M., & Makris, S. L.
1374 (2016). Unmasking silent neurotoxicity following developmental exposure to environmental
1375 toxicants. *Neurotoxicology and Teratology*, 55, 38–44.
1376 <https://doi.org/10.1016/j.ntt.2016.03.005>
1377 Kumar, K. P., Kumar, S. P., & Nair, G. A. (2009). Risk Assessment of the amnesiac shellfish
1378 poison, domoic acid, on animals and humans. *Journal of Environmental Biology*, 30(May),
1379 1380

1381 319–325. <https://doi.org/10.1016/j.automatica.2013.03.005>

1382 Kvitek, R. G., Goldberg, J. D., Smith, G. J., Doucette, G. J., & Silver, M. W. (2008). Domoic acid

1383 contamination within eight representative species from the benthic food web of Monterey

1384 Bay, California, USA. *Marine Ecology Progress Series*, 367, 35–47.

1385 <https://doi.org/10.3354/meps07569>

1386 Lefebvre, K. A., Bargu, S., Kieckhefer, T., & Silver, M. W. (2002). From sanddabs to blue

1387 whales: the pervasiveness of domoic acid. *Toxicon*, 40(7), 971–977.

1388 [https://doi.org/10.1016/S0041-0101\(02\)00093-4](https://doi.org/10.1016/S0041-0101(02)00093-4)

1389 Lefebvre, K. A., Dovel, S. L., & Silver, M. W. (2001). Tissue distribution and neurotoxic effects of

1390 domoic acid in a prominent vector species, the northern anchovy *Engraulis mordax*. *Marine*

1391 *Biology*, 138(4), 693–700. <https://doi.org/10.1007/s002270000509>

1392 Lefebvre, K. A., Frame, E. R., Gulland, F. M. D., Hansen, J. D., Kendrick, P. S., Beyer, R. P., ...

1393 Marcinek, D. J. (2012). A novel antibody-based biomarker for chronic algal toxin exposure

1394 and sub-acute neurotoxicity. *PLoS ONE*, 7(5), 1–7.

1395 <https://doi.org/10.1371/journal.pone.0036213>

1396 Lefebvre, K. A., Hendrix, A., Halaska, B., Duignan, P., Shum, S., Isoherranen, N., ... Gulland, F.

1397 M. D. (2018). Domoic acid in California sea lion fetal fluids indicates continuous exposure

1398 to a neuroteratogen poses risks to mammals. *Harmful Algae*, 79, 53–57.

1399 <https://doi.org/10.1016/j.hal.2018.06.003>

1400 Lefebvre, K. A., Kendrick, P. S., Ladiges, W., Hiolski, E. M., Ferriss, B. E., Smith, D. R., &

1401 Marcinek, D. J. (2017). Chronic low-level exposure to the common seafood toxin domoic

1402 acid causes cognitive deficits in mice. *Harmful Algae*, 64, 20–29.

1403 <https://doi.org/10.1016/j.hal.2017.03.003>

1404 Lefebvre, K. A., Powell, C. L., Busman, M., Doucette, G. J., Moeller, P. D., Silver, J. B., ... Tjee.

1405 (1999). Detection of domoic acid in northern anchovies and California sea lions associated

1406 with an unusual mortality event. *Natural Toxins*, 7(3), 85–92.

1407 [https://doi.org/10.1002/\(SICI\)1522-7189\(199905/06\)7:3<85::AID-NT39>3.0.CO;2-Q](https://doi.org/10.1002/(SICI)1522-7189(199905/06)7:3<85::AID-NT39>3.0.CO;2-Q)

1408 Lefebvre, K. A., & Robertson, A. (2010). Domoic acid and human exposure risks: A review.

1409 *Toxicon*, 56(2), 218–230. <https://doi.org/10.1016/j.toxicon.2009.05.034>

1410 Lefebvre, K. A., Silver, M., Coale, S. L., & Tjeerdema, R. S. (2002). Domoic acid in

1411 planktivorous fish in relation to toxic *Pseudo-nitzschia* cell densities. *Marine Biology*,

1412 140(3), 625–631. <https://doi.org/10.1007/s00227-001-0713-5>

1413 Lefebvre, K. A., Tilton, S. C., Bammler, T. K., Beyer, R. P., Srinouanprachan, S., Stapleton, P.

1414 L., ... Gallagher, E. P. (2009). Gene expression profiles in zebrafish brain after acute

1415 exposure to domoic acid at symptomatic and asymptomatic doses. *Toxicological Sciences*,

1416 107(1), 65–77. <https://doi.org/10.1093/toxsci/kfn207>

1417 Lefebvre, K. A., Yakes, B. J., Frame, E., Kendrick, P., Shum, S., Isoherranen, N., ... Grattan, L.

1418 (2019). Discovery of a Potential Human Serum Biomarker for Chronic Seafood Toxin

1419 Exposure Using an SPR Biosensor. *Toxins*, 11(5), 293.

1420 <https://doi.org/10.3390/toxins11050293>

1421 Levin, E. D., Pang, W. G., Harrison, J., Williams, P., Petro, A., & Ramsdell, J. S. (2006).

1422 Persistent neurobehavioral effects of early postnatal domoic acid exposure in rats.

1423 *Neurotoxicology and Teratology*, 28(6), 673–680. <https://doi.org/10.1016/j.ntt.2006.08.005>

1424 Levin, E. D., Pizarro, K., Pang, W. G., Harrison, J., & Ramsdell, J. S. (2005). Persisting

1425 behavioral consequences of prenatal domoic acid exposure in rats. *Neurotoxicology and*

1426 *Teratology*, 27(5), 719–725. <https://doi.org/10.1016/j.ntt.2005.06.017>

1427 Levin, M., Joshi, D., Draghi, A., Gulland, F. M., Jessup, D., & De Guise, S. (2010).

1428 Immunomodulatory effects upon in vitro exposure of California Sea lion and Southern sea

1429 otter peripheral blood leukocytes to domoic acid. *Journal of Wildlife Diseases*, 46(2), 541–

1430 550. <https://doi.org/10.7589/0090-3558-46.2.541>

1431 Levin, M., Leibrecht, H., Ryan, J. C., Van Dolah, F. M., & De Guise, S. (2008).

1432 Immunomodulatory effects of domoic acid differ between in vivo and in vitro exposure in
1433 mice. *Marine Drugs*, 6(4), 636–659. <https://doi.org/10.3390/md6040636>

1434 Lu, J., Wu, D. -m., Zheng, Y. -l., Hu, B., Cheng, W., Zhang, Z. -f., & Li, M. -q. (2013). Troxerutin
1435 Counteracts Domoic Acid-Induced Memory Deficits in Mice by Inhibiting CCAAT/Enhancer
1436 Binding Protein -Mediated Inflammatory Response and Oxidative Stress. *The Journal of
1437 Immunology*, 190(7), 3466–3479. <https://doi.org/10.4049/jimmunol.1202862>

1438 Lu, J., Wu, D., Zheng, Y., Hu, B., Cheng, W., & Zhang, Z. (2012). Purple sweet potato color
1439 attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor- α -
1440 mediated mitochondrial biogenesis signaling in mice. *Free Radical Biology and Medicine*,
1441 52(3), 646–659. <https://doi.org/10.1016/j.freeradbiomed.2011.11.016>

1442 Mariën, K. (1996). Establishing tolerable dungeness crab (Cancer magister) and razor clam
1443 (Siliqua patula) domoic acid contaminant levels. *Environmental Health Perspectives*,
1444 104(11), 1230–1236. <https://doi.org/10.1289/ehp.961041230>

1445 Marriott, A. L., Ryan, C. L., & Doucette, T. A. (2012). Neonatal domoic acid treatment produces
1446 alterations to prepulse inhibition and latent inhibition in adult rats. *Pharmacology
1447 Biochemistry and Behavior*, 103(2), 338–344. <https://doi.org/10.1016/j.pbb.2012.08.022>

1448 Marriott, A. L., Tasker, R. A., Ryan, C. L., & Doucette, T. A. (2014). Neonatal domoic acid
1449 abolishes latent inhibition in male but not female rats and has differential interactions with
1450 social isolation. *Neuroscience Letters*, 578, 22–26.
1451 <https://doi.org/10.1016/j.neulet.2014.06.025>

1452 Marriott, A. L., Tasker, R. A., Ryan, C. L., & Doucette, T. A. (2016). Alterations to prepulse
1453 inhibition magnitude and latency in adult rats following neonatal treatment with domoic acid
1454 and social isolation rearing. *Behavioural Brain Research*, 298, 310–317.
1455 <https://doi.org/10.1016/j.bbr.2015.11.009>

1456 Maucher Fuquay, J., Muha, N., Wang, Z., & Ramsdell, J. S. (2012). Toxicokinetics of domoic
1457 acid in the fetal rat. *Toxicology*, 294(1), 36–41. <https://doi.org/10.1016/j.tox.2012.01.012>

1458 Maucher, J. M., & Ramsdell, J. S. (2005). Domoic acid transfer to milk: Evaluation of a potential
1459 route of neonatal exposure. *Environmental Health Perspectives*, 113(4), 461–464.
1460 <https://doi.org/10.1289/ehp.7649>

1461 Maucher, J. M., & Ramsdell, J. S. (2007). Maternal-Fetal Transfer of Domoic Acid in Rats at
1462 Two Gestational Time Points. *Environmental Health Perspectives*, 115(12), 1743–1746.
1463 <https://doi.org/10.1289/ehp>.

1464 Mazzillo, F. F. M., Pomeroy, C., Kuo, J., Ramondi, P. T., Prado, R., & Silver, M. W. (2010).
1465 Angler exposure to domoic acid via consumption of contaminated fishes. *Aquatic Biology*,
1466 9(1), 1–12. <https://doi.org/10.3354/ab00238>

1467 McCabe, R. M., Hickey, B. M., Kudela, R. M., Lefebvre, K. A., Adams, N. G., Bill, B. D., ...
1468 Trainer, V. L. (2016). An unprecedented coastwide toxic algal bloom linked to anomalous
1469 ocean conditions. *Geophysical Research Letters*, 43(19), 10,366–10,376.
1470 <https://doi.org/10.1002/2016GL070023>

1471 McCarron, P., & Hess, P. (2006). Tissue distribution and effects of heat treatments on the
1472 content of domoic acid in blue mussels, *Mytilus edulis*. *Toxicon*, 47(4), 473–479.
1473 <https://doi.org/10.1016/j.toxicon.2006.01.004>

1474 McKibben, S. M., Peterson, W., Wood, A. M., Trainer, V. L., Hunter, M., & White, A. E. (2017).
1475 Climatic regulation of the neurotoxin domoic acid. *Proceedings of the National Academy of
1476 Sciences*, 114(2), 239–244. <https://doi.org/10.1073/pnas.1606798114>

1477 Mills, B. D., Pearce, H. L., Khan, O., Jarrett, B. R., Fair, D. A., & Lahvis, G. P. (2016). Prenatal
1478 domoic acid exposure disrupts mouse pro-social behavior and functional connectivity MRI.
1479 *Behavioural Brain Research*, 308, 14–23. <https://doi.org/10.1016/j.bbr.2016.03.039>

1480 Moyer, C. E., Hiolski, E. M., Marcinek, D. J., Lefebvre, K. A., Smith, D. R., & Zuo, Y. (2018).
1481 Repeated low level domoic acid exposure increases CA1 VGlut1 levels, but not bouton
1482 density, VGlut2 or VGAT levels in the hippocampus of adult mice. *Harmful Algae*, 79, 74–

1483 86. <https://doi.org/10.1016/j.hal.2018.08.008>

1484 Muha, N., & Ramsdell, J. S. (2011). Domoic acid induced seizures progress to a chronic state of

1485 epilepsy in rats. *Toxicon*, 57(1), 168–171. <https://doi.org/10.1016/j.toxicon.2010.07.018>

1486 Munday, R., Holland, P. T., McNabb, P., Selwood, A. I., & Rhodes, L. L. (2008). Comparative

1487 toxicity to mice of domoic acid and isodomoic acids A, B and C. *Toxicon*, 52(8), 954–956.

1488 <https://doi.org/10.1016/j.toxicon.2008.10.005>

1489 Nakajima, S., & Potvin, J. L. (1992). Neural and behavioural effects of domoic acid, an amnesic

1490 shellfish toxin, in the rat. *Canadian Journal of Psychology*, 46(4), 569–581.

1491 <https://doi.org/10.1037/h0084334>

1492 Newson, J. J., & Thiagarajan, T. C. (2019). EEG Frequency Bands in Psychiatric Disorders: A

1493 Review of Resting State Studies. *Frontiers in Human Neuroscience*, 12.

1494 <https://doi.org/10.3389/fnhum.2018.00521>

1495 Panlilio, J. M., Aluru, N., & Hahn, M. E. (2020). Developmental Neurotoxicity of the Harmful

1496 Algal Bloom Toxin Domoic Acid: Cellular and Molecular Mechanisms Underlying Altered

1497 Behavior in the Zebrafish Model. *Environmental Health Perspectives*, 128(11), 117002.

1498 <https://doi.org/10.1289/EHP6652>

1499 Peng, Y. G., Clayton, E. C., Means, L. W., & Ramsdell, J. S. (1997). Repeated independent

1500 exposures to domoic acid do not enhance symptomatic toxicity in outbred or seizure-

1501 sensitive inbred mice. *Fundamental and Applied Toxicology*, 40(1), 63–67.

1502 <https://doi.org/10.1093/toxsci/40.1.63>

1503 Peng, Y. G., & Ramsdell, J. S. (1996). Brain Fos induction is a sensitive biomarker for the

1504 lowest observed neuroexcitatory effects of domoic acid. *Fundamental and Applied*

1505 *Toxicology*, 31(2), 162–168. <https://doi.org/10.1006/faat.1996.0087>

1506 Peng, Y. G., Taylor, T. B., Finch, R. E., Switzer, R. C., & Ramsdell, J. S. (1994).

1507 Neuroexcitatory and neurotoxic actions of the amnesic shellfish poison, domoic acid.

1508 *NeuroReport*, 5(8), 981–985. <https://doi.org/10.1097/00001756-199404000-00032>

1509 Pérez-Gómez, A., & Tasker, R. A. (2012). Enhanced neurogenesis in organotypic cultures of rat

1510 hippocampus after transient subfield-selective excitotoxic insult induced by domoic acid.

1511 *Neuroscience*, 208, 97–108. <https://doi.org/10.1016/j.neuroscience.2012.02.003>

1512 Pérez-Gómez, A., & Tasker, R. A. (2013). Transient domoic acid excitotoxicity increases BDNF

1513 expression and activates both MEK- and PKA-dependent neurogenesis in organotypic

1514 hippocampal slices. *BMC Neuroscience*, 14(1), 72. <https://doi.org/10.1186/1471-2202-14-72>

1515 Perl, T. M., Bedard, L., Kosatsky, T., Hockin, J. C., & Todd, E. C. D. (1990). An outbreak of toxic

1516 encephalopathy caused by eating mussels contaminated with domoic acid. *New England*

1517 *Journal of Medicine*, 322(25), 1775–1780. <https://doi.org/10.1056/NEJM199006213222504>

1518 Perl, T. M., Bedard, L., Kosatsky, T., Hockin, J. C., Todd, E. C., McNutt, L. A., & Remis, R. S.

1519 (1990). Amnesic shellfish poisoning: a new clinical syndrome due to domoic acid. *Canada*

1520 *Diseases Weekly Report*, 16 Suppl 1, 7–8. Retrieved from

1521 <http://www.ncbi.nlm.nih.gov/pubmed/2101742>

1522 Perry, M. A., Ryan, C. L., & Tasker, R. A. (2009). Effects of low dose neonatal domoic acid

1523 administration on behavioural and physiological response to mild stress in adult rats.

1524 *Physiology & Behavior*, 98(1–2), 53–59. <https://doi.org/10.1016/j.physbeh.2009.04.009>

1525 Peteva, Z. V., Georgieva, S., Stancheva, M., & Makedonski, L. (2017). Recreational angler

1526 exposure to domoic acid via consumption of contaminated shellfish from the Black Sea,

1527 Bulgaria: a preliminary study. *Archives of the Balkan Medical Union*, 52(3), 291–297.

1528 Retrieved from [http://umbalk.org/wp-](http://umbalk.org/wp-content/uploads/2017/09/08.Recreational_angler_exposer_to_domoic.pdf)

1529 [content/uploads/2017/09/08.Recreational_angler_exposer_to_domoic.pdf](http://umbalk.org/wp-content/uploads/2017/09/08.Recreational_angler_exposer_to_domoic.pdf)

1530 Petrie, B. F., Pinsky, C., Standish, N. M., Bose, R., & Glavin, G. (1992). Parenteral domoic acid

1531 impairs spatial learning in mice. *Pharmacology Biochemistry and Behavior*, 41(1), 211–

1532 214. [https://doi.org/10.1016/0091-3057\(92\)90084-S](https://doi.org/10.1016/0091-3057(92)90084-S)

1533

1534 Petroff, R. (2020). *Neurological Effects of Low-Level, Chronic Domoic Acid Exposure in a*
1535 *Nonhuman Primate Model*. University of Washington.

1536 Petroff, R., Murias, M., Grant, K. S., Crouthamel, B., McKain, N., Shum, S., ... Burbacher, T. M.
1537 (2020). Power spectrum analysis of EEG in a translational nonhuman primate model after
1538 chronic exposure to low levels of the common marine neurotoxin, domoic acid.
1539 *NeuroToxicology*, 80, 124–129. <https://doi.org/10.1016/j.neuro.2020.07.006>

1540 Petroff, R., Richards, T., Crouthamel, B., McKain, N., Stanley, C., Grant, K. S., ... Burbacher, T.
1541 M. (2019). Chronic, low-level oral exposure to marine toxin, domoic acid, alters whole brain
1542 morphometry in nonhuman primates. *NeuroToxicology*, 72, 114–124.
1543 <https://doi.org/10.1016/j.neuro.2019.02.016>

1544 Pulido, O. (2008). Domoic acid toxicologic pathology: A review. *Marine Drugs*, 6(2), 180–219.
1545 <https://doi.org/10.3390/md20080010>

1546 Qiu, S., Pak, C. W., & Currás-Collazo, M. C. (2006). Sequential involvement of distinct
1547 glutamate receptors in domoic acid-induced neurotoxicity in rat mixed cortical cultures:
1548 Effect of multiple dose/duration paradigms, chronological age, and repeated exposure.
1549 *Toxicological Sciences*, 89(1), 243–256. <https://doi.org/10.1093/toxsci/kfj008>

1550 Ramsdell, J. S., & Gulland, F. M. D. (2014). Domoic acid epileptic disease. *Marine Drugs*, 12(3),
1551 1185–1207. <https://doi.org/10.3390/md12031185>

1552 Roberts, S. M., Grattan, L. M., Toben, A. C., Ausherman, C., Trainer, V. L., Tracy, K., & Morris,
1553 J. G. J. (2016). Perception of risk for domoic acid related health problems: A cross-cultural
1554 study. *Harmful Algae*, 57(B), 39–44. <https://doi.org/10.1016/j.hal.2016.03.007>

1555 Rust, L., Gulland, F., Frame, E., & Lefebvre, K. (2014). Domoic acid in milk of free living
1556 California marine mammals indicates lactational exposure occurs. *Marine Mammal
1557 Science*, 30(3), 1272–1278. <https://doi.org/10.1111/mms.12117>

1558 Ryan, C. L., Robbins, M. A., Smith, M. T., Gallant, I. C., Adams-Marriott, A. L., & Doucette, T. A.
1559 (2011). Altered social interaction in adult rats following neonatal treatment with domoic
1560 acid. *Physiology & Behavior*, 102(3–4), 291–295.
1561 <https://doi.org/10.1016/j.physbeh.2010.11.020>

1562 Ryan, J. C., Cross, C. A., & Van Dolah, F. M. (2011). Effects of COX inhibitors on
1563 neurodegeneration and survival in mice exposed to the marine neurotoxin domoic acid.
1564 *Neuroscience Letters*, 487(1), 83–87. <https://doi.org/10.1016/j.neulet.2010.10.001>

1565 Ryan, J. C., Morey, J. S., Ramsdell, J. S., & Van Dolah, F. M. (2005). Acute phase gene
1566 expression in mice exposed to the marine neurotoxin domoic acid. *Neuroscience*, 136(4),
1567 1121–1132. <https://doi.org/10.1016/J.NEUROSCIENCE.2005.08.047>

1568 Salierno, J. D., Snyder, N. S., Murphy, A. Z., Poli, M., Hall, S., Baden, D., & Kane, A. S. (2006).
1569 Harmful algal bloom toxins alter c-Fos protein expression in the brain of killifish, Fundulus
1570 heteroclitus. *Aquatic Toxicology*, 78(4), 350–357.
1571 <https://doi.org/10.1016/j.aquatox.2006.04.010>

1572 Sawant, P. M., Holland, P. T., Mountfort, D. O., & Kerr, D. S. (2008). In vivo seizure induction
1573 and pharmacological preconditioning by domoic acid and isodomoic acids A, B and C.
1574 *Neuropharmacology*, 55(8), 1412–1418. <https://doi.org/10.1016/j.neuropharm.2008.09.001>

1575 Sawant, P. M., Mountfort, D. O., & Kerr, D. S. (2010). Spectral analysis of electrocorticographic
1576 activity during pharmacological preconditioning and seizure induction by intrahippocampal
1577 domoic acid. *Hippocampus*, 20(8), 994–1002. <https://doi.org/10.1002/hipo.20698>

1578 Sawant, P. M., Tyndall, J. D. A., Holland, P. T., Peake, B. M., Mountfort, D. O., & Kerr, D. S.
1579 (2010). In vivo seizure induction and affinity studies of domoic acid and isodomoic acids-D,
1580 -E and -F. *Neuropharmacology*, 59(3), 129–138.
1581 <https://doi.org/10.1016/j.neuropharm.2010.03.019>

1582 Scallet, A. C., Binienda, Z. K., Caputo, F. A., Hall, S., Paule, M. G., Rountree, R. L., ... Slikker,
1583 W. (1993). Domoic acid-treated cynomolgus monkeys (*M. fascicularis*): Effects of Dose on
1584 Hippocampal Neuronal and Terminal Degeneration. *Brain Research*, 627(2), 307–313.

1585 https://doi.org/10.1016/0006-8993(93)90335-K
1586 Scallet, A. C., Kowalke, P. K., Rountree, R. L., Thorn, B. T., & Binienda, Z. K. (2004).
1587 Electroencephalographic, behavioral, and c-fos responses to acute domoic acid exposure.
1588 *Neurotoxicology and Teratology*, 26(2), 331–342. https://doi.org/10.1016/j.ntt.2003.10.004
1589 Scallet, A. C., Schmued, L. C., & Johannessen, J. N. (2005). Neurohistochemical biomarkers of
1590 the marine neurotoxicant, domoic acid. *Neurotoxicology and Teratology*, 27(5), 745–752.
1591 https://doi.org/10.1016/j.ntt.2005.06.018
1592 Schmued, L. C., Scallet, A. C., & Slikker, W. (1995). Domoic acid-induced neuronal
1593 degeneration in the primate forebrain revealed by degeneration specific histochemistry.
1594 *Brain Research*, 695(1), 64–70. https://doi.org/10.1016/0006-8993(95)00799-V
1595 Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S., Busman, M., Chavez, F. P., ... Van
1596 Dolah, F. M. (2000). Mortality of sea lions along the central California coast linked to a toxic
1597 diatom bloom. *Nature*, 403(6765), 80–84. https://doi.org/10.1038/47481
1598 Schwarz, M., Jandová, K., Struk, I., Marešová, D., Pokorný, J., & Riljak, V. (2014). Low dose
1599 domoic acid influences spontaneous behavior in adult rats. *Physiological Research*, 63(3),
1600 369–376. https://doi.org/932636 [pii]
1601 Shiotani, M., Cole, T. B., Hong, S., Park, J. J. Y., Griffith, W. C., Burbacher, T. M., ... Faustman,
1602 E. M. (2017). Neurobehavioral assessment of mice following repeated oral exposures to
1603 domoic acid during prenatal development. *Neurotoxicology and Teratology*, 64(June), 8–
1604 19. https://doi.org/10.1016/J.NTT.2017.09.002
1605 Shum, S., Jing, J., Petroff, R., Crouthamel, B., Grant, K. S., Burbacher, T. M., & Isoherranen, N.
1606 (2020). Maternal-fetal disposition of domoic acid following repeated oral dosing during
1607 pregnancy in nonhuman primate. *Toxicology and Applied Pharmacology*, 398(March),
1608 115027. https://doi.org/10.1016/j.taap.2020.115027
1609 Shum, S., Kirkwood, J. S., Jing, J., Petroff, R., Crouthamel, B., Grant, K. S., ... Isoherranen, N.
1610 (2018). Validated HPLC-MS/MS Method To Quantify Low Levels of Domoic Acid in Plasma
1611 and Urine after Subacute Exposure. *ACS Omega*, 3(9), 12079–12088.
1612 https://doi.org/10.1021/acsomega.8b02115
1613 Silvagni, P. A., Lowenstine, L. J., Spraker, T., Lipscomb, T. P., & Gulland, F. M. D. (2005).
1614 Pathology of domoic acid toxicity in California sea lions (*Zalophus californianus*). *Veterinary
1615 Pathology*, 42(2), 184–191. https://doi.org/10.1354/vp.42-2-184
1616 Slikker, W., Scallet, A. C., & Gaylor, D. W. (1998). Biologically-based dose-response model for
1617 neurotoxicity risk assessment. *Toxicology Letters*, 102–103, 429–433.
1618 https://doi.org/10.1016/S0378-4274(98)00335-X
1619 Smith, J., Connell, P., Evans, R. H., Gellene, A. G., Howard, M. D. A., Jones, B. H., ... Caron,
1620 D. A. (2018). A decade and a half of *Pseudo-nitzschia* spp. and domoic acid along the
1621 coast of southern California. *Harmful Algae*, 79, 87–104.
1622 https://doi.org/10.1016/j.hal.2018.07.007
1623 Sobotka, T. J., Brown, R., Quander, D. Y., Jackson, R., Smith, M., Long, S. A., ... Scallet, A. C.
1624 (1996). Domoic acid: Neurobehavioral and neurohistological effects of low-dose exposure
1625 in adult rats. *Neurotoxicology and Teratology*, 18(6), 659–670.
1626 https://doi.org/10.1016/S0892-0362(96)00120-1
1627 Stewart, G. R., Zorumski, C. F., Price, M. T., & Olney, J. W. (1990). Domoic acid: A dementia-
1628 inducing excitotoxic food poison with kainic acid receptor specificity. *Experimental
1629 Neurology*, 110(1), 127–138. https://doi.org/10.1016/0014-4886(90)90057-Y
1630 Strain, S. M., & Tasker, R. A. (1991). Hippocampal damage produced by systemic injections of
1631 domoic acid in mice. *Neuroscience*, 44(2), 343–352. https://doi.org/10.1016/0306-
1632 4522(91)90059-W
1633 Stuchal, L. D., Grattan, L. M., Portier, K. M., Kilmon, K. A., Manahan, L. M., Roberts, S. M., &
1634 Morris, J. G. (2020). Dose-response assessment for impaired memory from chronic
1635 exposure to domoic acid among native American consumers of razor clams. *Regulatory*

1636 *Toxicology and Pharmacology*, 117, 104759. <https://doi.org/10.1016/j.yrph.2020.104759>

1637 Sutherland, R. J., Hoesing, J. M., & Whishaw, I. Q. (1990). Domoic acid, an environmental toxin,
1638 produces hippocampal damage and severe memory impairment. *Neuroscience Letters*,
1639 120(2), 221–223. [https://doi.org/10.1016/0304-3940\(90\)90043-9](https://doi.org/10.1016/0304-3940(90)90043-9)

1640 Suzuki, C. A. M., & Hierlihy, S. L. (1993). Renal clearance of domoic acid in the rat. *Food and*
1641 *Chemical Toxicology*, 31(10), 701–706. [https://doi.org/10.1016/0278-6915\(93\)90140-T](https://doi.org/10.1016/0278-6915(93)90140-T)

1642 Takemoto, T., & Daigo, K. (1958). Constituents of *Chondria armata*. *Chemical and*
1643 *Pharmaceutical Bulletin*, 6(5), 578–580. <https://doi.org/10.1248/cpb.6.578b>

1644 Tanemura, K., Igarashi, K., Matsugami, T.-R., Aisaki, K., Kitajima, S., & Kanno, J. (2009).
1645 Intrauterine environment-genome interaction and Children's development (2): Brain
1646 structure impairment and behavioral disturbance induced in male mice offspring by a single
1647 intraperitoneal administration of domoic acid (DA) to their dams. *The Journal of*
1648 *Toxicological Sciences*, 34(Special), SP279–SP286. <https://doi.org/10.2131/jts.34.SP279>

1649 Tasker, R. A., Connell, B. J., & Strain, S. M. (1991). Pharmacology of systemically administered
1650 domoic acid in mice. *Canadian Journal of Physiology and Pharmacology*, 69(3), 378–382.
1651 <https://doi.org/10.1139/y91-057>

1652 Tasker, R. A., Perry, M. A., Doucette, T. A., & Ryan, C. L. (2005). NMDA receptor involvement
1653 in the effects of low dose domoic acid in neonatal rats. *Amino Acids*, 28(2), 193–196.
1654 <https://doi.org/10.1007/s00726-005-0167-z>

1655 Teitelbaum, J., Zatorre, R. J., Carpenter, S., Gendron, D., & Cashman, N. R. (1990).
1656 Neurological Sequelae of Domoic Acid Intoxication. *Symposium Domoic Acid Toxicity*,
1657 16(1E), 9–12. <https://doi.org/10.2174/13816128236661701241>

1658 Thomsen, M. B., Lillethorup, T. P., Jakobsen, S., Nielsen, E. H., Simonsen, M., Wegener, G., ...
1659 Tasker, R. A. (2016). Neonatal domoic acid alters in vivo binding of [¹¹C]yohimbine to α2-
1660 adrenoceptors in adult rat brain. *Psychopharmacology*, 233(21–22), 3779–3785.
1661 <https://doi.org/10.1007/s00213-016-4416-5>

1662 Tiedeken, J. A., Muha, N., & Ramsdell, J. S. (2013). A cupric silver histochemical analysis of
1663 domoic acid damage to olfactory pathways following status epilepticus in a rat model for
1664 chronic recurrent spontaneous seizures and aggressive behavior. *Toxicologic Pathology*,
1665 41(3), 454–469. <https://doi.org/10.1177/0192623312453521>

1666 Tiedeken, J. A., & Ramsdell, J. S. (2007). Embryonic exposure to domoic acid increases the
1667 susceptibility of zebrafish larvae to the chemical convulsant pentylenetetrazole.
1668 *Environmental Health Perspectives*, 115(11), 1547–1552.
1669 <https://doi.org/10.1289/ehp.10344>

1670 Tiedeken, J. A., & Ramsdell, J. S. (2013). Persistent neurological damage associated with
1671 spontaneous recurrent seizures and atypical aggressive behavior of domoic acid epileptic
1672 disease. *Toxicological Sciences*, 133(1), 133–143. <https://doi.org/10.1093/toxsci/kft037>

1673 Tiedeken, J. A., Ramsdell, J. S., & Ramsdell, A. F. (2005). Developmental toxicity of domoic
1674 acid in zebrafish (*Danio rerio*). *Neurotoxicology and Teratology*, 27(5), 711–717.
1675 <https://doi.org/10.1016/j.ntt.2005.06.013>

1676 Todd, E. C. D. (1993). Domoic Acid and Amnesic Shellfish Poisoning - A Review. *Journal of*
1677 *Food Protection*, 56(1), 69–83. <https://doi.org/10.4315/0362-028x-56.1.69>

1678 Toyofuku, H. (2006). Joint FAO/WHO/IOC activities to provide scientific advice on marine
1679 biotoxins (research report). *Marine Pollution Bulletin*, 52(12), 1735–1745.
1680 <https://doi.org/10.1016/j.marpolbul.2006.07.007>

1681 Tracy, K., Boushey, C. J., Roberts, S. M., Morris, J. G., & Grattan, L. M. (2016). Communities
1682 advancing the studies of Tribal nations across their lifespan: Design, methods, and
1683 baseline of the CoASTAL cohort. *Harmful Algae*, 57(B), 9–19.
1684 <https://doi.org/10.1016/j.hal.2016.03.010>

1685 Trainer, V. L., Bates, S. S., Lundholm, N., Thessen, A. E., Cochlan, W. P., Adams, N. G., &
1686 Trick, C. G. (2012). Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring

1687 and impacts on ecosystem health. *Harmful Algae*, 14, 271–300.
1688 <https://doi.org/10.1016/j.hal.2011.10.025>

1689 Trainer, V. L., Moore, S. K., Hallegraeff, G., Kudela, R. M., Clement, A., Mardones, J. I., &
1690 Cochlan, W. P. (2020). Pelagic harmful algal blooms and climate change: Lessons from
1691 nature's experiments with extremes. *Harmful Algae*, 91, 101591.
1692 <https://doi.org/10.1016/j.hal.2019.03.009>

1693 Truelove, J., & Iverson, F. (1994). Serum Domoic Acid Clearance and Clinical Observations in
1694 the Cynomolgus Monkey and Sprague-Dawley Rat following a Single IV Dose. *Bulletin of*
1695 *Environmental Contamination and Toxicology*, 52(4), 479–486.

1696 Truelove, J., Mueller, R., Pulido, O., & Iverson, F. (1996). Subchronic toxicity study of domoic
1697 acid in the rat. *Food and Chemical Toxicology*, 34(6), 525–529.
1698 [https://doi.org/10.1016/0278-6915\(96\)81814-X](https://doi.org/10.1016/0278-6915(96)81814-X)

1699 Truelove, J., Mueller, R., Pulido, O., Martin, L., Fernie, S., & Iverson, F. (1997). 30-day oral
1700 toxicity study of domoic acid in cynomolgus monkeys: Lack of overt toxicity at doses
1701 approaching the acute toxic dose. *Natural Toxins*, 5(3), 111–114.
1702 <https://doi.org/10.1002/nt.5>

1703 Tryphonas, L., Truelove, J., & Iverson, F. (1990). Acute neurotoxicity of domoic acid in
1704 cynomolgus monkeys (M. fascicularis). *Toxicologic Pathology*, 18(2), 297–303.
1705 <https://doi.org/10.1177/019262339001800101>

1706 Tryphonas, L., Truelove, J., Todd, E. C. D., Nera, E., & Iverson, F. (1990). Experimental oral
1707 toxicity of domoic acid in cynomolgus monkeys (Macaca fascicularis) and rats. *Food and*
1708 *Chemical Toxicology*, 28(10), 707–715. [https://doi.org/10.1016/0278-6915\(90\)90147-F](https://doi.org/10.1016/0278-6915(90)90147-F)

1709 Tsunekawa, K., Kondo, F., Okada, T., Feng, G. G., Huang, L., Ishikawa, N., & Okada, S. (2013).
1710 Enhanced expression of WD repeat-containing protein 35 (WDR35) stimulated by domoic
1711 acid in rat hippocampus: Involvement of reactive oxygen species generation and p38
1712 mitogen-activated protein kinase activation. *BMC Neuroscience*, 14.
1713 <https://doi.org/10.1186/1471-2202-14-4>

1714 Tulving, E. (1983). Elements of Episodic Memory. *Canadian Psychology*, 26(3), 351.

1715 Vidal, A., Correa, J., & Blanco, J. (2009). Effect of some habitual cooking processes on the
1716 domoic acid concentration in the cockle (*Cerastoderma edule*) and Manila clam (*Ruditapes*
1717 *philippinarum*). *Food Additives & Contaminants: Part A: Chemistry, Analysis, Control,*
1718 *Exposure & Risk Assessment.*, 26(7), 1089–1095.
1719 <https://doi.org/10.1080/02652030902855422>

1720 Vieira, A. C., Alemañ, N., Cifuentes, J. M., Bermúdez, R., Peña, M. L., & Botana, L. M. (2015).
1721 Brain pathology in adult rats treated with domoic acid. *Veterinary Pathology*, 52(6), 1077–
1722 1086. <https://doi.org/10.1177/0300985815584074>

1723 Vieira, A. C., Cifuentes, J. M. J. M., Bermúdez, R., Ferreiro, S. F., Castro, A. R. R., & Botana, L.
1724 M. (2016). Heart Alterations after Domoic Acid Administration in Rats. *Toxins*, 8(3), 68.
1725 <https://doi.org/10.3390/toxins8030068>

1726 Vranyac-Tramoundanas, A., Harrison, J. C., Clarkson, A. N., Kapoor, M., Winburn, I. C., Kerr,
1727 D. S., & Sammut, I. A. (2008). Domoic acid impairment of cardiac energetics. *Toxicological*
1728 *Sciences*, 105(2), 395–407. <https://doi.org/10.1093/toxsci/kfn132>

1729 Vranyac-Tramoundanas, A., Harrison, J. C., Sawant, P. M., Kerr, D. S., & Sammut, I. A. (2011).
1730 Ischemic cardiomyopathy following seizure induction by domoic acid. *American Journal of*
1731 *Pathology*, 179(1), 141–154. <https://doi.org/10.1016/j.ajpath.2011.03.017>

1732 Walter, J. A., Leek, D. M., & Falk, M. (1992). NMR study of the protonation of domoic acid.
1733 *Canadian Journal of Chemistry*, 70(4), 1156–1161. <https://doi.org/10.1139/v92-151>

1734 Wang, D., Zhao, J., Li, S., Shen, G., & Hu, S. (2018). Quercetin attenuates domoic acid-induced
1735 cognitive deficits in mice. *Nutritional Neuroscience*, 21(2), 123–131.
1736 <https://doi.org/10.1080/1028415X.2016.1231438>

1737 Wang, G. H. J., Schmued, L. C., Andrews, A. M., Scalpet, A. C., Slikker, W. H., & Binienda, Z. H.

1738 (2000). Systemic Administration of Domoic Acid-Induced Spinal Cord Lesions in Neonatal
1739 Rats. *Journal of Spinal Cord Medicine*, 23(1), 31–39.
1740 <https://doi.org/10.1080/10790268.2000.11753506>

1741 Wang, Y., & Qin, Z. H. (2010). Molecular and cellular mechanisms of excitotoxic neuronal death.
1742 *Apoptosis*, 15(11), 1382–1402. <https://doi.org/10.1007/s10495-010-0481-0>

1743 Washington State Department of Health. (n.d.). Domoic Acid in Razor Clams. Retrieved May 10,
1744 2020, from
1745 <https://www.doh.wa.gov/CommunityandEnvironment/Shellfish/RecreationalShellfish/Illness>
1746 es/Biotoxins/DomoicAcidinRazorClams

1747 Watanabe, K. H., Andersen, M. E., Basu, N., Carvan, M. J., Crofton, K. M., King, K. A., ...
1748 Schultz, I. R. (2011). Defining and modeling known adverse outcome pathways: Domoic
1749 acid and neuronal signaling as a case study. *Environmental Toxicology and Chemistry*,
1750 30(1), 9–21. <https://doi.org/10.1002/etc.373>

1751 Wekell, J. C., Gauglitz, E. J., Barnett, H. J., Hatfield, C. L., & Eklund, M. (1994). The occurrence
1752 of domoic acid in razor clams (*Siliqua patula*), Dungeness crab (*Cancer magister*), and
1753 anchovies (*Engraulis mordax*). *Journal of Shellfish Research*, 13(2), 587–593.
1754 <https://doi.org/10.2983/035.029.0302>

1755 Wekell, J. C., Jurst, J., & Lefebvre, K. A. (2004). The origin of the regulatory limits for PSP and
1756 ASP toxins in shellfish. *Journal of Shellfish Research*, 23(3), 927–930.

1757 Wekell, J. C., Trainer, V. L., Ayres, D., & Simons, D. (2002). A study of spatial variability of
1758 domoic acid in razor clams: Recommendations for resource management on the
1759 Washington coast. *Harmful Algae*, 1(1), 35–43. [https://doi.org/10.1016/S1568-9883\(02\)00004-5](https://doi.org/10.1016/S1568-9883(02)00004-5)

1760 Wells, M. L., Karlson, B., Wulff, A., Kudela, R., Trick, C., Asnaghi, V., ... Trainer, V. L. (2020).
1761 Future HAB science: Directions and challenges in a changing climate. *Harmful Algae*, 91,
1762 101632. <https://doi.org/10.1016/j.hal.2019.101632>

1763 Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C. G., Kudela, R. M., ...
1764 Cochlan, W. P. (2015). Harmful algal blooms and climate change: Learning from the past
1765 and present to forecast the future. *Harmful Algae*, 49, 68–93.
1766 <https://doi.org/10.1016/j.hal.2015.07.009>

1767 Wetmore, L., & Nance, D. M. (1991). Differential and sex-specific effects of kainic acid and
1768 domoic acid lesions in the lateral septal area of rats on immune function and body weight
1769 regulation. *Experimental Neurology*, 113(2), 226–236. [https://doi.org/10.1016/0014-4886\(91\)90179-G](https://doi.org/10.1016/0014-4886(91)90179-G)

1770 Wood, P. L., Richard, J. W., Pilapil, C., & Nair, N. P. V. (1982). Antagonists of excitatory amino
1771 acids and cyclic guanosine monophosphate in cerebellum. *Neuropharmacology*, 21(12),
1772 1235–1238. [https://doi.org/10.1016/0028-3908\(82\)90126-5](https://doi.org/10.1016/0028-3908(82)90126-5)

1773 Wright, J. L. C., Boyd, R. K., de Freitas, A. S. W., Falk, M., Foxall, R. A., Jamieson, W. D., ...
1774 Walter, J. A. (1989). Identification of domoic acid, a neuroexcitatory amino acid, in toxic
1775 mussels from eastern Prince Edward Island. *Canadian Journal of Chemistry*, 67, 481–490.
1776 <https://doi.org/10.1139/v89-075>

1777 Wu, D., Lu, J., Zhang, Y., Zheng, Y., Hu, B., Cheng, W., ... Li, M. (2013). Ursolic acid improves
1778 domoic acid-induced cognitive deficits in mice. *Toxicology and Applied Pharmacology*,
1779 271(2), 127–136. <https://doi.org/10.1016/j.taap.2013.04.038>

1780 Wu, D., Lu, J., Zheng, Y. L., Zhang, Y. Q., Hu, B., Cheng, W., ... Li, M. Q. (2012). Small
1781 interfering RNA-mediated knockdown of protein kinase C zeta attenuates domoic acid-
1782 induced cognitive deficits in mice. *Toxicological Sciences*, 128(1), 209–222.
1783 <https://doi.org/10.1093/toxsci/kfs124>

1784 Xi, D., Peng, Y.-G., & Ramsdell, J. S. (1997). Domoic acid is a potent neurotoxin to neonatal
1785 rats. *Natural Toxins*, 5(2), 74–79. [https://doi.org/10.1002/\(SICI\)1997\)5:2<74::AID-NT4>3.0.CO;2-I](https://doi.org/10.1002/(SICI)1997)5:2<74::AID-NT4>3.0.CO;2-I)

1789 Xu, R., Tao, Y., Wu, C., Yi, J., Yang, Y., Yang, R., & Hong, D. (2008). Domoic acid induced
1790 spinal cord lesions in adult mice: Evidence for the possible molecular pathways of
1791 excitatory amino acids in spinal cord lesions. *NeuroToxicology*, 29(4), 700–707.
1792 <https://doi.org/10.1016/j.neuro.2008.04.011>

1793 Zabka, T. S., Goldstein, T., Cross, C., Mueller, R. W., Kreuder-Johnson, C., Gill, S., & Gulland,
1794 F. M. D. (2009). Characterization of a degenerative cardiomyopathy associated with
1795 domoic acid toxicity in California sea lions (*Zalophus californianus*). *Veterinary Pathology*,
1796 46(1), 105–119. <https://doi.org/10.1354/vp.46-1-105>

1797 Zatorre, R. (1990). Memory Loss Following Domoic Acid Intoxication from Ingestion of Toxic
1798 Mussels. *Symposium Domoic Acid Toxicity*, 101–103.

1799 Zuloaga, D. G., Lahvis, G. P., Mills, B., Pearce, H. L., Turner, J., & Raber, J. (2016). Fetal
1800 domoic acid exposure affects lateral amygdala neurons, diminishes social investigation and
1801 alters sensory-motor gating. *NeuroToxicology*, 53, 132–140.
1802 <https://doi.org/10.1016/j.neuro.2016.01.007>

1803

Figure Captions

Figure 1: Reprinted from Petroff, 2020. Chemical structures of domoic acid and analogues. A) domoic acid; B) glutamate; C) kainic acid

Figure 2: Reprinted from Petroff, 2020. Proposed mechanism of action for domoic acid (DA). LEFT: Acute exposures to DA involve the activation of KA- and AMPA-type glutamate receptors, resulting in an influx of Na^+ into the postsynaptic membrane, and the release of glutamate into the synapse. Glutamate activates NMDA receptors, allowing an influx of Ca^{+2} and leading to necrotic cell death. RIGHT: Lower-level exposures do not involve the NMDA receptors, and therefore, lead to mitochondrial distress, the production of ROS, and apoptosis. Abbreviations: AMPA – α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; Ca^{+2} – calcium; DA – domoic acid; K^+ – potassium; KA – kainic acid; Na^+ – sodium; NMDA – N-methyl-D-aspartic acid; ROS – reactive oxygen species

Tables

Table 1: Toxicokinetic Parameters of Domoic Acid

Intravenous (iv) Toxicokinetics of DA								
Species	Route of Exposure	Dose (µg/kg)	V _{ss} (mL/kg)	CL (mL/min/kg)	CL _r (mL/min/kg)	MRT (h)	Half-life (h)	Citation
Monkey	Single iv	50	159 ± 29	1.3 ± 0.5	--	2.48 ± 1.31	1.91 ± 0.98	Truelove & Iverson, 1994
Monkey	Single iv	5	131 ± 71	2.1 ± 1.2	0.60 ± 0.50	--	1.2 ± 1.1	Jing et al., 2018
Rat	Single iv	500	272 ± 58	10.8 ± 1.2	12.2 ± 1.73	--	--	Suzuki & Hierlihy, 1993
Rat	Single iv	2000	244 ± 31	7.8 ± 1.6	8.8 ± 1.6	--	--	
Rat	Single iv	500	311	10.2	--	0.51	0.38	Truelove & Iverson, 1994
Rat (pregnant)	Single iv	1000	229 ± 88	7.8 ± 2.7	--	0.50 ± 0.09	0.35 ± 0.05	
Rat (fetus)	Single iv	1000 (maternal)	--	--	--	1.5	9.22	Maucher Fuquay et al., 2012
Oral Toxicokinetics of DA								
Species	Route of Exposure	Dose (µg/kg)	CL/F (mL/min/kg)	CL _r (mL/min/kg)	Half-life (h)	Bioavailability (%)	fe (%)	Citation
Monkey	Multiple oral	500, 750	--	--	--	--	5.8 ± 1.7	Truelove et al., 1997
Monkey	Single oral	75	33 ± 12	1.6 ± 0.8	11.3 ± 2.4	6 ± 4	4 ± 2	
Monkey	Single oral	150	27 ± 15	--	9.8 ± 5.9	7 ± 5	--	Jing et al., 2018
Monkey	Single oral	75	--	5.2 (2.8 - 9.9)	--	--	--	
Monkey	Single oral	150	--	6.4 (4.9 - 8.2)	--	--	--	
Monkey	Multiple oral	75	61 (49 - 76)	6.2 (5.3 - 7.4)	--	--	2.7 (2.1 - 3.4)	
Monkey	Multiple oral	150	39 (29-52)	6.2 (4.7 - 8.2)	--	--	4.2 (3.0 - 5.9)	Shum et al., 2020
Monkey (pregnant)	Multiple oral	75	92 (58-146)	11 (7.3 - 17)	--	--	3.2 (2.5 - 4.1)	
Monkey (pregnant)	Multiple oral	150	54 (38-76)	9.4 (6.6 - 13)	--	--	4.5 (3.2 - 6.3)	
Tissue Distribution								
Species	Route of Exposure	Dose (µg/kg)	Brain:Blood Ratio				Citation	
Rat	Single ip	500, 1000, 2000	0.04 ± 0.01				Hesp et al., 2007	
Rat (pregnant)	Single iv	1000	0.06					
Rat (fetus)	Single iv	1000 (maternal)	0.15				Maucher Fuquay et al., 2012	
Maternal-Fetal Disposition								
Species	Route of Exposure	Dose (µg/kg)	Fetal:Maternal Ratio	Amniotic Fluid:Blood Ratio			Citation	
Monkey	Multiple oral	75	0.3	0.9			Shum et al., 2020	
Monkey	Multiple oral	150	0.3	3.1				
Rat	Single iv	1000	0.3	1.48			Maucher Fuquay et al., 2012	

Abbreviations: CL – total body clearance; CL/F – total body clearance after oral administration; CL_r – renal clearance; fe – fraction excreted unchanged in urine; ip – intraperitoneal; iv – intravenous; MRT – mean residence time; V_{ss} - volume of distribution at steady-state

Table 2A: Adult Clinical and Preclinical Neurotoxic Effects of Domoic Acid

Route of Exposure	Dose	Duration of Exposure	Biomarker of Exposure	Subject Characteristics	Overt Neurotoxic Effects	Time Onset ^A	Functional Neurotoxic Effects	Time Neurotoxic Effects Examined ^A	Neuropathological Effects	Time Pathology Examined ^A	Citation
Humans											
dietary	up to 290 mg	1x	Blood: none detected CSF: none detected	Prince Edward Island adults	Vomiting, diarrhea, headache, memory loss, seizures, coma, death	<38 h	↓ memory performance	4 mth-1 yr	Hippocampus, amygdala, septal area, olfactory area, frontal cortex: ND and astrocyte reaction	7-98 d	Hyne & Todd, 1990; Perl, Bedard, Kosatsky, Hockin, & Todd, 1990
dietary	>15 razor clams/mth	1+ yr		CoASTAL cohort	None		↓ cognitive and memory performance	1+ yr			Grattan et al., 2016
dietary	Not reported	Either 1 wk or 1 yr		CoASTAL cohort	None		Both 1 wk and 1 yr: ↑ problems in everyday memory	10 d post-start of target week			Grattan et al., 2018
dietary	~324 ng/kg/d	1+ mth		CoASTAL cohort	None		↓ memory performance on verbal recall tests	At least 6 mth after start of exposure			Stuchal et al., 2020
Monkeys											
oral	5.2-10 mg/kg	1x		Females	Salivation, gagging, vomiting, diarrhea	7-96 min			Hippocampus: ND	4-44 d	Tryphonas, Truelove, Todd, et al., 1990
oral	0.5 mg/kg for 15 d, then 0.75 mg/kg for 15 d	Daily, for 30 d	Serum: 10-60 ng/ml; Urine: 1-11% of dose	Females	None				Whole brain: no changes in temporal cortex, amygdala, hypothalamus, hippocampus, thalamus, cerebellum	30 d	Truelove et al., 1997
oral	0.075 and 0.15 mg/kg	Daily, for 8-10 mth	Plasma: 0.93 ng/ml and 2.93 ng/ml	Females	Upper limb tremors	1 mth+					Burbacher et al., 2019
oral	0.075 and 0.15 mg/kg	Daily, for 1-2 yr	Plasma: 0.93 ng/ml and 2.93 ng/ml	Females	Upper limb tremors	1 mth+	MRI: ↓ white matter integrity in fornix and internal capsule; MRS: ↑ lactate in thalamus	1+ yr			Petroff et al., 2019
oral	0.075 and 0.15 mg/kg	Daily, for 1-2 yr	Plasma: 0.93 ng/ml and 2.93 ng/ml	Females	Upper limb tremors	1 mth+	EEG power differences: ↓ delta, ↑ alpha, theta, beta	1+ yr			Petroff et al., 2020
iv and ip	0.025-0.5 mg/kg iv; 4 mg/kg ip	1x			Salivation, gagging, vomiting, tremors, death	3-4 min			Hippocampus and hypothalamus: ND and astrocyte reaction at >0.2 mg/kg	3.5-5 h	Tryphonas, Truelove, & Iverson, 1990
iv	0.25-4.0 mg/kg	1x		Adult and Juvenile Males and Females	Gagging, vomiting, tremors, 4 deaths of adults >1 mg/kg	8-75 min			Hippocampus: ND and astrocyte reaction; CA1: ↑ c-Fos at >0.5 mg/kg	2-7 h (for moribund), otherwise 1 wk	Scallet et al., 1993
iv	0.25-4.0 mg/kg	1x		Adult and Juvenile Males and Females	Gagging, vomiting, tremors, 4 deaths of adults >1 mg/kg	8-75 min			Hippocampus, entorhinal and piriform cortices, subiculum, lateral septum, and thalamus: ND at >0.5 mg/kg	2-7 h (for moribund), otherwise 1 wk	Schmued et al., 1995
Rats											
oral	60-80 mg/kg	1x			Head on floor, inactivity at 60 mg/kg; rolling, seizures, and death at 80 mg/kg	5 min-5 h			Hippocampus and olfactory bulb: mild ND and astrocyte reaction at 80 mg/kg	1-54 h	Tryphonas, Truelove, Todd, et al., 1990
oral	0.1 and 5 mg/kg	Daily, for 64 d	Serum: Below the limit of detection	Males and Females	None		No changes in urine or blood chemistry	Urinalysis at 55 d, blood chemistry at 64 d	Whole brain: no changes in electron microscopic histopathology or GFAP	64 d	Truelove et al., 1996
ip and oral	1-9.5 mg/kg ip; 60-82 mg/kg oral	1x	Urine: not detected; Feces: 98% of dose		Scratching, seizures, and death at >4 mg/kg ip; chewing at 70 mg/kg oral, death at >80 mg/kg oral	<4 h			Hippocampus and retina: ND at 4-7 mg/kg ip and 80 mg/kg oral	After death (within 4 h)	Iverson et al., 1989
ip	1-10 mg/kg	1x		Males	Wet-dog shakes and seizures in all dose groups, death at >5 mg/kg	2 h	Electrographic spikes and generalized epileptic status	3-24 h, depending on morbidity	CA3: ND at all doses; Other hippocampal areas: damage at >5 mg/kg	3-24 h, depending on morbidity	Fujita et al., 1996
ip	2.25 mg/kg	1x		Males	Hindlimb scratching, convulsions, and death	45 min-3 h			CA1-4, pyramidal tracts, thalamus, amygdala, and olfactory bulb: ND, astrocyte reaction, and potential microglia response	7 d	Appel et al., 1997
ip	2.5 mg/kg	1x	Immunohistochemical DA detected in hippocampal neurons at 6-10 h post exposure	Females	Hyperactivity, scratching, tremors, head jerks	<6 h			No changes at 6-24 h; CA1/3: ND, astrocytosis, microglia reactivity at 5 d; Hippocampus and thalamus: ND, astrocyte reaction, microglia reactivity, and ↑ NOS at 54 d	6 h, 10 h, 24 h, 5 d, and 54 d	Vieira et al., 2015
ip	2.2 and 4.4 mg/kg	1x		Males	Hindlimb scratching, wet-dog shakes, salivation, and seizures at both doses	<150 min	Electrographic seizures and ↑ delta, theta, alpha, and beta power at both doses	Daily, over 7 d	Hippocampus, DG, and olfactory bulb: ↑ c-Fos+ neurons at both doses	2 h	Binienda et al., 2011; Scallet et al., 2004
ip	1 and 1.8 mg/kg	1x		Males and Females	Signs of severe toxicity in 2/7 males	<3 h	↓ activity, then ↑ locomotion, grooming, and stereotypic behaviors	Over 3 h	Hippocampus and olfactory bulb: no changes in GFAP+ astrocytes or pCREB	3 d	Baron et al., 2013

Table 2B: Adult Clinical and Preclinical Neurotoxic Effects of Domoic Acid, continued

Route of Exposure	Dose	Duration of Exposure	Biomarker of Exposure	Subject Characteristics	Overt Neurotoxic Effects	Time Onset ^A	Functional Neurotoxic Effects	Time Neurotoxic Effects Examined ^A	Neuropathological Effects	Time Pathology Examined ^A	Citation
Rats, continued											
ip	1 mg/kg	1x		Males	None	N/A	↑ locomotion immediate; ↑ time to habituate in novel field at 8 and 15 d	Immediately, 7 d, and 15 d	Hippocampus: no signs of damage or apoptosis	15 d	Schwarz et al., 2014
ip	0.3-3 mg/kg	1x	Brain: mean 7.2 ng/g	Males					CA1: ND and apoptosis; ↑ WDR35 and p38 MAPK phosphorylation at 1 mg/kg	1 and 5 d	Tsunekawa et al., 2013
ip	0.22-1.32 mg/kg	1x		Males	↓ weight at >0.65 mg/kg; hindlimb scratching, seizures, death at 1.32 mg/kg	<24 h	Motor depression and exaggerated auditory startle at 1.32 mg/kg, no changes in passive or active avoidance	1-8 days	Hippocampus: ND and astrocytosis at 1.32 mg/kg	8 d	Sobotka et al., 1996
ip	0.2 mg/kg	1x		Males					CA4: ND; CA1/4: ↑ c-Fos and c-Jun; CA1/3/4: no changes in myelination, DG: astrocyte reaction; ↓ BBB integrity	3 d	Scallet et al., 2005
ip	0.5-2 mg/kg	1x and preconditioning with 0.125-0.25 mg/kg before	Serum: 24-6133 ng/ml; Brain: 1.2-88.8 ng/g, with aged animals significantly higher	Young adult and aged adult males	Jerks, hindlimb scratching, and wet-dog shakes at 1-2 mg/kg; seizures and death at 2 mg/kg in aged animals	<3 h					Hesp et al., 2007
ip	1 and 5 mg/kg	At least 2x, 1 dose per h, for up to 5 h		Males	Seizures and chronic epilepsy	<3 h					Muha & Ramsdell, 2011
ip	1 mg/kg	At least 2x, 1 dose per h, for up to 5 h		Males	Hindlimb scratching, seizures, and chronic epilepsy	<3 h			Hippocampus, amygdala, thalamus, olfactory, prefrontal, and piriform areas: damaged cell bodies; Thalamus: axonal damage	7 d	Tiedeken et al., 2013
ip	1 mg/kg	At least 2x, 1 dose per h, for up to 3 h		Males	Seizures and chronic epilepsy	<3 h	Motor seizures and dominant/defensive aggression	Regularly, throughout 12 wk	Hippocampus, amygdala, thalamus, piriform, and olfactory areas: ND	12 wk	Tiedeken & Ramsdell, 2013
sc	0.6-3 mg/kg	1x		Males	Hypoactivity at all doses; hindlimb scratching, wet-dog shakes, seizures at >2 mg/kg	<30 min			Hippocampus, amygdala, thalamus, and cortex: neural and glial swelling	3.5-8.5 h	Stewart et al., 1990
iv	0.75 mg/kg	1x		Males					CA1/3: ND and microglia reactivity; hypertrophic microglia expressing MHC-II; ↑ Bax/BCL-2; no changes in caspase-3	1, 2, 5, 14, and 21 d	Ananth et al., 2001
iv	0.75 mg/kg	1x		Males					Hippocampus: ND and astrogliosis at 5 d; NOS induction and activated microglia at 5 d and 3 mth	5 d and 3 mth	Ananth et al., 2003a
iv	0.75 mg/kg	1x		Males					CA1/3: ND; ↑GFAP+ astrocytes and OX-42+ microglia; ↑ iNOS	5 d	Ananth et al., 2003b
iv and intra-ventricular	0.5-1 mg/kg iv; 0.04-0.08 mg/kg intraventricular	1x, and repeated until EEG observations			Hindlimb scratching, seizures, and death	3-7 min	↓ memory and learning in 0.04 mg/kg intraventricular	<5 min	No changes reported in iv treatments; CA1/3/4: ND in intraventricular treatments	3 d	Nakajima & Potvin, 1992
intra-hippocampal	10-300 pmol	1x		Males	Seizures at >100 pmol	0-7 min	ECoG spikes at 10-50 pmol; bilateral persistent spiking with seizures at >100 pmol	7-45 min	Hippocampus and cortex: ↓ GABA at 100 pmol	150 min	Dakshinamurti et al., 1991
intra-hippocampal	30-1000 pmol	1x		Males	Seizures at >130 pmol	<2.5 h					Sawant, Tyndall, et al., 2010
intra-hippocampal	112.5 pmol	1x at 3 sites		Males	Seizures		↓ learning and memory performance	10 days	Hippocampus and subiculum: ND; Thalamus: astrocyte reaction	10 d	Sutherland et al., 1990
intra-hippocampal	3-8000 pmol	1x and preconditioning with 15 pmol		Males	Freezing, wet-dog shakes, jerking, hindlimb scratching and seizures	<2.5 h					Sawant et al., 2008
intra-hippocampal	100 pmol	1x and preconditioning with 15 pmol		Males	Seizures in all treatments, fewer with preconditioning	<2.5 h	↑ ECoG power with no precondition, normal power with preconditioning	2 h			Sawant, Mountfort, et al., 2010
micro-iontophoretic	0.1 mM	1x		Males			Electrical hippocampal activation in CA1/3	Immediately			Debonnel et al., 1989

Table 2C: Adult Clinical and Preclinical Neurotoxic Effects of Domoic Acid, continued

Route of Exposure	Dose	Duration of Exposure	Biomarker of Exposure	Subject Characteristics	Overt Neurotoxic Effects	Time Onset ^A	Functional Neurotoxic Effects	Time Neurotoxic Effects Examined ^A	Neuropathological Effects	Time Pathology Examined ^A	Citation
Mice											
Oral and ip	8.8-104 mg/kg oral; 12-233 mg/kg ip	1x	Urine: not detected; Feces: 102% of dose	Males and Females	Hindlimb scratching, seizures, and death at >23mg/kg ip; death at >47 mg/kg oral	<30 min			Hippocampus and hypothalamus: ND at 5 mg/kg ip and 35 mg/kg oral	~1 h	Iverson et al., 1989
ip	55-630 mg of shellfish protein extract/kg	1x		Males	Motor activity, stereotypic behaviors, convulsions, respiratory distress, deaths	<60 min					Bose et al., 1989
ip	5-20 mg/kg	1x		Females	Forelimb tremors at 5 mg/kg, hypoactivity at 20 mg/kg	<60 min					Munday et al., 2008
ip	4 mg/kg	1x		Females	Catatonic state, hindlimb scratching, convulsions, death	1 min			Hippocampus: ND at 4 h, largest damaged area at 168 h	4,24,48, 72, and 168 h	Strain & Tasker, 1991
ip	4 mg/kg	1x		Males	Hypo-/hyperactivity, hindlimb scratching, seizures, death	<1 h			Hippocampus, olfactory, and septal areas: ND	48 h	J. C. Ryan et al., 2011
ip	4 mg/kg	1x		Females					Hippocampus, amygdala, olfactory areas, septal area: ND and axonal degeneration	72 h	Colman et al., 2005
ip	2, 3, and 7 mg/kg	1x							Hypothalamus and area postrema: No changes at 2-3 mg/kg; ND at 7 mg/kg	30 min, 60 min, 24 h, 48 h, and 3 d	Bruni et al., 1991
ip	2 mg/kg	1x		Males and Females	Behavioral toxicity, not otherwise described		↓ learning and memory performance	1-14 d			Petrie et al., 1992
ip	1-15 mg/kg	1x		Females	Hypoactivity, stereotypic hindlimb scratching, tremors, and death at >4 mg/kg	1 min					Tasker et al., 1991
ip	~1.3-50 mg/kg	1x		Females	Hypoactivity, hindlimb scratching, death	<1 h					Grimmelt et al., 1990
ip	1-4 mg/kg	1x		Females					CA1/2/3: ND; ↑ transient c-Fos at 4 mg/kg	15-240 min	Peng et al., 1994
ip	1 and 4 mg/kg	1x		Males and Females	Hypoactivity, hindlimb scratching, head weaving, tremors, convolution	<30 min			Whole brain: 800 differentially expressed genes analysis per time point	30, 60, and 240 min	J. C. Ryan et al., 2005
ip	0.25-4.0 mg/kg	1x	Serum: 50-1000 ng/ml for low and high dose, 60 min post-exposure	Females	Hypoactivity, hindlimb scratching at >1 mg/kg, tremors, convulsions, death, convulsions at >2 mg/kg	<1 h			Whole brain: ↑ c-Fos mRNA at >1 mg/kg	60 min	Peng & Ramsdell, 1996
ip	1 and 2 mg/kg	1x and 4x over 7 d		Males	Hypoactivity, hindlimb scratching at >1 mg/kg, tremors, convulsions, death, convulsions at >2 mg/kg with repeat and single doses	<1 h	↓ working memory performance for both doses of single exposures and 1 mg/kg multiple exposure	7 d	Whole brain: ND at both 2 mg/kg, single and multiple exposures	25 d	Clayton et al., 1999
ip	0.5 and 2 mg/kg	1x and 4x with 48 h between doses	Serum: ~550-1230 ng/ml for low and high dose, 60 min post exposure for repeat and single doses	Females	Hindlimb scratching, tremors, convulsions, death at <2 mg/kg; no symptoms at 0.5 mg/kg	<1 h					Peng et al., 1997
ip	2 mg/kg	Daily, for 21 d		Males	Seizures, but not death		↓ learning and memory	5 wk	Hippocampus: ND; ↑ GFAP+ astrocytes; ↑ IL-1b, TNF- α , Cox-2, and NOS	6 wk	Lu et al., 2013
ip	2 mg/kg	Daily, for 28 d		Males	Seizures, but not death		↓ learning and memory	5 wk	Hippocampus: ND; ↑ NADPH/ROS; ↑ SAPK/JNK/FoxO1/Fas	6 wk	Wu et al., 2012
ip	2 mg/kg	Daily, for 28 d		Males	Seizures, but not death		↓ learning and memory	5 wk	Hippocampus: ND; ↑ ROS and mitochondrial dysfunction	6 wk	Wu et al., 2013
ip	2 mg/kg	Daily, for 28 d		Males	Not reported		↓ object recognition, learning and memory		Hippocampus: ↑ mitochondrial dysfunction; ↑ ROS; ↓ NRF-1	5 wk	D. Wang et al., 2018

Table 2D: Adult Clinical and Preclinical Neurotoxic Effects of Domoic Acid, continued

Route of Exposure	Dose	Duration of Exposure	Biomarker of Exposure	Subject Characteristics	Overt Neurotoxic Effects	Time Onset [^]	Functional Neurotoxic Effects	Time Neurotoxic Effects Examined [^]	Neuropathological Effects	Time Pathology Examined [^]	Citation
Mice, continued											
ip	2 mg/kg	Daily, for 30 d		Males	Seizures		↓ learning and memory		Hippocampus: ND and ↓ PCG-1a, NRF-1, TFAM; ↓ mitochondrial and antioxidant activity	30 d	Lu et al., 2012
ip	0.2-1.6 mg/kg	Daily, up to 30 d		Females	None		↓ hind limb motor coordination	10 d	Spinal cord: lesions with TUNEL staining, ↓ proteasome activity after 10 days, ↑ ROS production	0, 7, 15, 20, 25 and 30 d	Xu et al., 2008
ip	0.75-0.82 mg/kg	1x/wk, up to 25 wk		Females	None		↓ memory on the radial water tread maze and increased locomotion in open field at 25 wk, recoverable after 9 wk without exposure	1, 6, 25 wk and 9 wk	Hippocampus: No changes in cell count for both young and aged mice	22 wk	Lefebvre et al., 2017
ip	0.75-0.82 mg/kg	1x/wk, for 22 wk		Females	None				Hippocampus: No changes in neurons or astrocytes with NeuN and GFAP; no changes in VGluT2 or VGAT; CA1: ↑ VGluT1	22 wk	Moyer et al., 2018
intracisternal	25 ng	1x		Males	Scratching, running, seizures	<10 min					Wood et al., 1982
Fish											
oral and ic	0.8 mg, oral; 38-194 mg/kg, ip		2.7 mg/kg in liver; 0.4 mg/kg in body	Anchovies	Spiral swimming, head shaking, death	40 min					Lefebvre et al., 2001
ip	5 mg/kg	1x	DA detection by immunohistochemistry	Killifish	Hyperactivity, spiral swimming	<3 h			Optic areas: ↑ c-Fos	3 h	Salerno et al., 2006
ic	0.47 or 1.2 mg/kg	1x		Zebrafish	Erratic darting, circle and spiral swimming, death	<20 min			Whole brain: 223 and 106 differentially expressed in 0.47 and 1.2 mg/kg, respectively	6 h	Lefebvre et al., 2009
ic	0.31 mg/kg for 6 wks followed by 0.18 mg/kg	1x/wk for 6 wk, plus 1x/every other wk for another 6-30 wk		Zebrafish	None				Whole brain: no changes in pathology at 36 wk; 52-239 differentially expressed genes per timepoint; ↓ mitochondrial respiration capacity	2-36 wk	Hiolski et al., 2014

[^]reported in time post-initial dose

Abbreviations: BBB – blood-brain barrier; DG – dentate gyrus; ECoG – electrocorticography; EEG – electroencephalogram; GABA - γ -aminobutyric acid; GFAP – glial fibrillary acidic protein; ic – intracoelomic; ip – interparental; iv – intravenous; ND – neuronal degeneration; NOS – nitric oxide synthase; ROS – reactive oxygen species; sc - subcutaneous

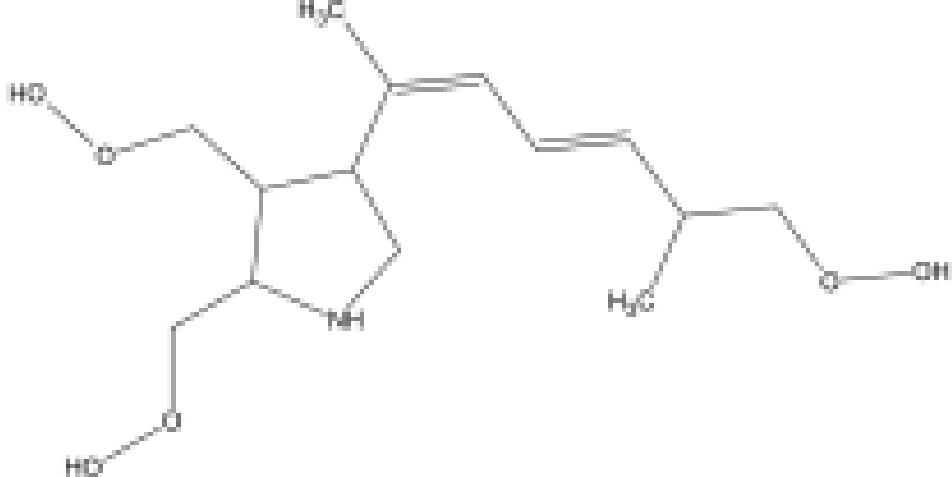
Table 3: Prenatal Exposure and Neurodevelopmental Effects of Domoic Acid

Route of Exposure	Dose	Duration of Exposure	Maternal Toxicities	Offspring Sex	Offspring Biomarker of Exposure	Period of Study	Overt Signs of Neurotoxicity	Affected Developmental Domains	Unaffected Developmental Domains	Neuropathological Effects	Citation
Monkeys											
maternal, oral	0.075 or 0.15 mg/kg/day	1x/d in gestation (~5-6 mth)	Tremors	Males and Females	Plasma: 0.44 ng/ml and 1.26 ng/ml	Infancy	None		Physical		Burbacher et al., 2019
maternal, oral	0.075 or 0.15 mg/kg/day	1x/d in gestation (~5-6 mth)	Tremors	Males and Females	Plasma: 0.44 ng/ml and 1.26 ng/ml	Infancy	None	Cognition	Early Reflexes		Grant et al., 2019
Rats											
maternal, sc	0.3, 0.6 or 1.2 mg/kg	1x on GD13	None	Males and Females		Weaning-adulthood	None	Activity, Cognition	Physical		E. D. Levin et al., 2005
Mice											
maternal, oral	1 or 3 mg/kg/d	1x on GD10-17	None	Males and Females		Neonatal period-adulthood	None	Physical, Emotionality, Activity	Physical, Early Reflexes, Sensory/Motor Processing, Cognition		Shiotani et al., 2017
maternal, ip	1 mg/kg	1x on GD11.5, 14.5 and 17.5		Males		Adulthood		Emotionality, Cognition, Activity	Activity	Whole brain: no pathology changes; Cortex: ↓ MAG; ↑ MAP; CA3: ↑ MAP	Tanemura et al., 2009
maternal, sc	1.5 mg/kg	1x on GD16		Males and Females		Behavior: adolescence; MRI: adulthood		Social Behavior	Emotionality	MRI tracts of anterior cingulate cortex and infralimbic and orbital regions: ↑ connectivity; MRI tracts of dorsal retrosplenial and CA3: ↓ connectivity	Mills et al., 2016
maternal, sc	1.5 mg/kg	1x on GD16		Males and Females		Adolescence		Sensory/Motor Processing, Social Behavior, Emotionality	None	CA1/3, basolateral amygdala, infralimbic and prelimbic cortices: no changes in parvalbumin+ cells; Lateral amygdala and DG: ↑ in parvalbumin+ cells	Zuloaga et al., 2016
maternal, iv	0.6 or 1.2 mg/kg	1x on GD13	Hindlimb scratching, seizures, death	Males (0.06 mg/kg) and Females (1.2 mg/kg)		Adolescence and adulthood			Spontaneous Seizures	Hippocampus: no change in hilar neurons or mossy fiber sprouting	Demars et al., 2018
maternal, iv	0.6 mg/kg	1x on GD13	Slight hypoactivity, temporary immobilization	Males and Females		Neonatal period, weaning, and adolescence	None	Electrophysiology (EEG, ↓ seizure threshold)	Physical	Age-related, selective ND: PND1-No obvious cellular damage; PND14- In CA3 and DG: ↑ cell damage; PND30- Hippocampus and cerebral cortex: ↓ GABA and ↑ glutamate	Dakshinamurti et al., 1993
Zebrafish											
in ovo	0.12 to 17 mg/kg (DA/egg weight)	Microinjection of fertilized eggs at the 128-to 512 cell stages	N/A			Hatching-5 d postfertilization	Seizures, rapid and continuous fin movement	Early Reflexes			Tiedeken et al., 2005
in ovo	0.12 to 1.26 ng/mg (DA/egg weight)	Microinjection of fertilized eggs at 1k-cell and high-oblong cell stages	N/A			7 d	Seizures, rapid and continuous fin movement	Physical, Early Reflexes, Activity, Electrophysiology (EEG, ↓ seizure threshold)		↑ spinal deformities	Tiedeken & Ramsdell, 2007
in ovo	1, 10, 100, and 1000 ng/L	Cocultured for 72 h	N/A			72 h postfertilization	Death			↑ spinal deformities, yolk sac edema	Hong et al., 2015
iv	0.09-0.18 ng/fish	1x on a single day within 1-4 d postfertilization				5-7 d postfertilization	Fin flapping and convulsions at some doses/times	Physical, Early Reflexes		Whole brain: widespread necrosis at highest dose; reduced myelin and altered structure at some timepoints; 10 differentially expressed genes at all timepoints	Panlilio, Aluru, & Hahn, 2020

Abbreviations: GABA - γ -aminobutyric acid; GD – gestational day; ip – interparental; iv – intravenous; MRI – magnetic resonance imaging; PND – postnatal day; sc – subcutaneous

Table 4: Postnatal Exposure and Neurodevelopmental Effects of Domoic Acid*

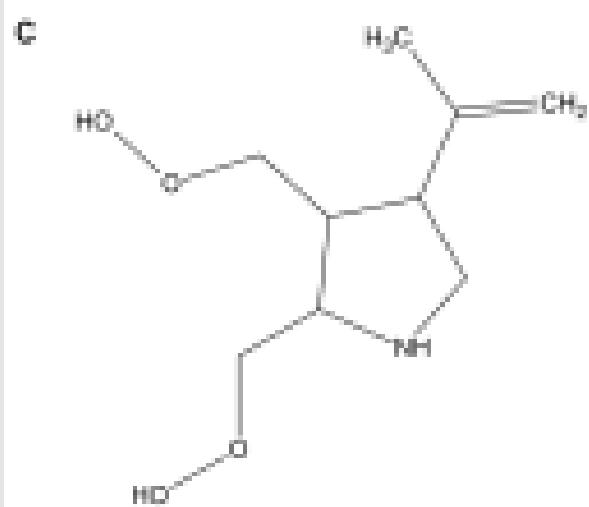
Route of Exposure	Dose	Duration of Exposure	Period of Study	Sex	Overt Signs of Neurotoxicity	Affected Developmental Domains	Unaffected Developmental Domains	Neuropathological Effects	Citation
Rats									
ip	0.05-0.4 mg/kg	1x on PND2, 5, or 10	Neonatal	Males and Females	Dose-dependent hyperactivity, scratching, seizures			Hippocampus: no morphological changes; Whole brain: ↑ c-fos mRNA	Xi et al., 1997
sc	0.1-0.50 mg/kg	1x on PND7	Neonatal	Males and Females	Paralysis, tremors, seizures, death	Electrophysiology (EEG)		Whole brain: no pathology changes; Spinal cord: ↑ lesions	J. Wang et al., 2000
sc	25-100 µg/kg	2x/d on PND1 and 2	Neonatal period-adulthood	Males and Females	Death (highest dose)	Activity	Physical, Cognition		E. D. Levin et al., 2006
sc	20 or 60 µg/kg	1x/d on PND8-14	Neonatal period-adulthood	Males	None	Emotionality	Physical, Activity, Social behavior, Emotionality	Limbic areas: ↑ binding of yohimbine to α2-adrenoceptors in at 20 µg/kg and ↓ binding at 60 µg/kg	Thomsen et al., 2016
sc	30 µg/kg	1x/d on PND10-14	Adolescence and adulthood	Males	None	Activity	Physical		Jandová et al., 2014
sc	20 µg/kg	1x/d on PND8-14	Adulthood	Males		Electrophysiology (EEG)			D. A. Gill et al., 2009
sc	20 µg/kg	1x/d on PND8-14	Adulthood	Males		Electrophysiology (EEG), ↓ threshold to chemically induced seizures		DG and CA3: ↑ MFS	D. A. Gill, Bastlund, et al., 2010
sc	20 µg/kg	1x/d on PND8-14	Neonatal period-adulthood	Males and Females	None	Cognition	Physical, Early reflexes		Adams et al., 2009
sc	20 µg/kg	1x/d on PND8-14	Neonatal period-adulthood	Males and Females	None		Physical, Early reflexes	Hippocampus: ↑ in MFS; ↑ density of trkB receptors; no cell loss	Bernard et al., 2007
sc	20 µg/kg	1x/d on PND8-14	Neonatal period-adulthood	Males and Females	None	Physical, Activity, Drug-seeking behavior	Physical, Early reflexes		Burt et al., 2008a
sc	20 µg/kg	1x/d on PND8-14	Adolescence	Males and Females	None	Drug-seeking behavior	Activity		Burt et al., 2008b
sc	20 µg/kg	1x/d on PND8-14	Neonatal period-adulthood	Males and Females	None	Cognition, Emotionality, Activity, Behavioral seizures	Physical, Early reflexes, Cognition	Hippocampus and amygdala: Sex-specific alterations α2 adrenoceptors; no changes in corticotropin-releasing factor receptors I/II or D2 receptors	D. A. Gill et al., 2012
sc	20 µg/kg	1x/d on PND8-14	Adulthood	Males and Females	None			Ventral hippocampus: ↓ GAD; Dorsal/mid hippocampus: sex-specific ↓ parvalbumin+ cells; no changes in somatostatin	D. A. Gill, Ramsay, & Tasker, 2010
sc	20 µg/kg	1x/d on PND8-14	Neonatal period-adulthood	Males and Females	None	Cognition, Sensory/Motor Processing	Physical, Early reflexes		Marriott et al., 2012
sc	20 µg/kg	1x/d on PND8-14	Adulthood	Males and Females		Cognition			Marriott et al., 2014
sc	20 µg/kg	1x/d on PND8-14	Adulthood	Males and Females	None	Cognition	Physical	Hippocampus and prefrontal cortex: no changes in D1, D2, TH, GAD65 or GAD67 proteins	Marriott et al., 2016
sc	20 µg/kg	1x/d on PND8-14	Neonatal period-adulthood	Males and Females	None	Behavioral seizures	Physical, Early reflexes	Hippocampus and hypothalamus: no change in glucocorticoid and mineralocorticoid receptors	Perry et al., 2009
sc	20 µg/kg	1x/d on PND8-14	Adulthood	Males and Females	None	Social behavior	Physical		C. L. Ryan et al., 2011
sc	20 µg/kg	1x/d on PND8-14	Neonatal	Males and Females	None	Cognition			Tasker et al., 2005
sc	5 or 20 µg/kg	1x/d on PND8-14	Neonatal period-preadolescence	Males and Females	None	Physical, Cognition	Physical, Early reflexes, Emotionality, Activity		Doucette et al., 2003
sc	5 or 20 µg/kg	1x/d on PND8-14	Adulthood	Males and Females	None	Behavioral seizures	Physical	Hippocampus: ↑ MFS, ↓ cell counts, ↑ brain derived neurotrophic factor (BDNF)	Doucette et al., 2004
sc	5 or 20 µg/kg	1x/d on PND8-14	Adulthood	Males and Females	None	Cognition, Emotionality			Doucette et al., 2007

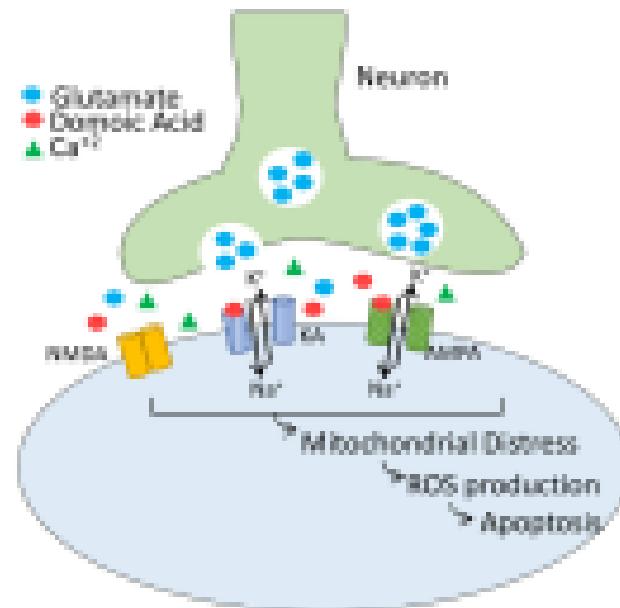
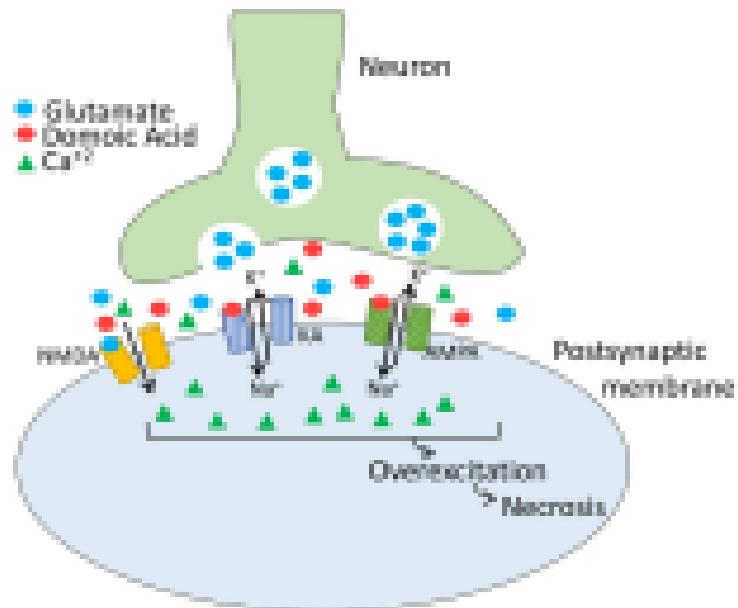

*No biomarkers of exposure were reported.

Abbreviations: D – dopamine; GABA - γ-aminobutyric acid; GAD – glutamic acid decarboxylase; MFS – mossy fiber sprouting; PND – postnatal day; TH – tyrosine hydroxylase

Table 5: Domoic Acid Human Health Risk Assessments and Suggested Regulatory Limit

Suggested DA limit in shellfish (ppm)	Estimated Seafood Consumption in 1 Meal (g)	Suggested Consumption Limit (mg DA/kg bw)	Citation
19.4	270	0.075	Mariën, 1996
16-24	250-380	0.1	WHO - Toyofuku, 2006
12	200	0.03	LOAEL - Slikker et al., 1998
10	200	0.03	1 in 10,000 risk - Slikker et al., 1998
6.4	200	0.018	Benchmark Dose - Slikker et al., 1998
4.5	400	0.03	EFSA - Alexander et al., 2009
2	135	0.003	Benchmark Dose – Stuchal et al., 2020


Abbreviations: bw – body weight; EFSA – European Food Safety Authority; LOAEL – lowest-observed-adverse-effect-level; WHO – World Health Organization

A

B

