

QC
801
.G383
83;84

4733147

GEOPHYSICAL FLUID DYNAMICS LABORATORY

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
Environmental Research Laboratories

QC
801
G 383
1983/84

GEOPHYSICAL FLUID DYNAMICS
LABORATORY

ACTIVITIES - FY83
// PLANS - FY84

September 1983

Geophysical Fluid Dynamics Laboratory
Princeton, New Jersey

UNITED STATES
DEPARTMENT OF COMMERCE

Malcolm Baldrige,
Secretary

NATIONAL OCEANIC AND
ATMOSPHERIC ADMINISTRATION

John V. Byrne,
Administrator

Environmental Research
Laboratories

Vernon E. Derr
Acting Director

Notice

Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

Preface

This document is intended to serve as a summary of the work accomplished at the Geophysical Fluid Dynamics Laboratory (GFDL) and to present a glimpse of the near future direction of its research plans.

It has been prepared within GFDL and its distribution is primarily limited to GFDL members, to interested offices of the National Oceanic and Atmospheric Administration, and to other relevant government agencies and national organizations.

The organization of the document encompasses an overview, project activities and plans for the current and next fiscal years and appendices. The overview covers the four major research areas that correspond to NOAA's mission in oceanography and meteorology: Weather Observation and Prediction; Climate; Air Quality; and Marine Environmental Quality. These are four of the NOAA categories (bins) for research activities. The body of the text describes goals, specific recent achievements and future plans for the following major research categories: Climate Dynamics; Middle Atmosphere Dynamics and Chemistry; Experimental Prediction; Oceanic Circulation; Planetary Circulations; Observational Studies; Hurricane Dynamics; Mesoscale Dynamics; Convection and Turbulence. These categories, which correspond to the internal organization of research groups are different from the NOAA bins and are far from being mutually exclusive. Interaction occurs among the various groups and is strongly encouraged.

The appendices contain the following: a list of GFDL staff members and affiliates during Fiscal Year 1983; a bibliography of the most recent research papers published by staff members and affiliates during their tenure with GFDL (these are referred to in the main body according to the appropriate reference number or letter); a description of the Laboratory's computational support and its plans for FY84; a listing of seminars presented at GFDL during Fiscal Year 1983; a list of seminars and talks presented during Fiscal Year 1983 by GFDL staff members and affiliates at other locations.

Although the specific names of individuals are not generally given in the overview, an entire listing of project participants can be found in Appendix A. Publishing staff personnel can normally be identified by consulting the cited Appendix B references.

The FY83 Annual Report was edited by Raymond T. Pierrehumbert.

September 1983

TABLE OF CONTENTS

A. AN OVERVIEW

SCOPE OF THE LABORATORY'S WORK

HIGHLIGHTS OF FY83 AND IMMEDIATE OBJECTIVES

I. WEATHER SERVICE

II. CLIMATE

III. ATMOSPHERIC QUALITY

IV. MARINE QUALITY

V. OCEAN SERVICE

B. PROJECT ACTIVITIES - FY83, PROJECT PLANS - FY84

1. CLIMATE DYNAMICS

1.1 CO₂ - CLIMATE SENSITIVITY STUDY

- 1.1.1 Hydrology Response
- 1.1.2 Cloud Cover
- 1.1.3 Transient Response
- 1.1.4 Oceanic Heat Transport and Equilibrium Response
- 1.1.5 Review
- 1.1.6 Radiative Forcing Intercomparison

1.2 ICE AGES

- 1.2.1 Simulation of an Ice Age Climate
- 1.2.2 Influences of Ice Sheets on Climate Sensitivity
- 1.2.3 Influence of Orbital Parameters on Climate

1.3 CLIMATE VARIABILITY

- 1.3.1 Land Surface Anomaly

1.4 WAVE DYNAMICS AND CLIMATE

- 1.4.1 Stationary Planetary Waves in the Troposphere
- 1.4.2 Transient Planetary Waves
- 1.4.3 Transient Eddy Flux Parameterization

1.5 MODEL IMPROVEMENTS

- 1.5.1 Atmospheric GCM
- 1.5.2 Global Ocean Atmosphere Model

2. MIDDLE ATMOSPHERE DYNAMICS AND CHEMISTRY

2.1 ATMOSPHERIC TRACER STUDIES

- 2.1.1 Atmospheric N₂O Tracer Experiments
- 2.1.2 Reactive Nitrogen in the Troposphere
- 2.1.3 Examination of the Classical Theory for Tropospheric Ozone
- 2.1.4 Tropospheric Photochemistry
- 2.1.5 "Maximum Insight" Tracer Experiments
- 2.1.6 Development of a 2-D Transport Model
- 2.1.7 Observational Analysis of Long-Lived Tracers
- 2.1.8 Model Development

2.2 MODELS OF THE TROPOSPHERE-STRATOSPHERE-MESOSPHERE

- 2.2.1 Model Improvements
- 2.2.2 "Low Diffusion Medium Resolution (N18) Experiment"
- 2.2.3 Analysis of Equatorial Waves in the SKYHI Model
- 2.2.4 Generation and Dispersion of Equatorial Disturbances
- 2.2.5 Medium Resolution (N18) Annual Cycle Experiment
- 2.2.6 Evaluation of Satellite Sampling of the Middle Atmosphere

2.3 PHYSICAL PROCESSES IN THE MIDDLE ATMOSPHERE

- 2.3.1 Radiative Transfer Model Development
- 2.3.2 Radiative Damping in the Mesosphere
- 2.3.3 Seasonal March of Radiative-Photochemical Temperatures
- 2.3.4 Ozone Photochemistry

3. EXPERIMENTAL PREDICTION

3.1 LONG-RANGE FORECAST

- 3.1.1 Monthly Forecasts

3.2 MODEL IMPROVEMENT

- 3.2.1 Various Versions of Subgrid-Scale (SGS) Processes
- 3.2.2 Cloud-Radiation Interaction
- 3.2.3 Orographic Effects
- 3.2.4 Spectral Model
- 3.2.5 HIBU Model

3.3 DYNAMICS OF PLANETARY WAVES AND BLOCKING

- 3.3.1 Planetary Waves
- 3.3.2 Simulation of Blocking
- 3.3.3 Local Equilibrium Theory of Blocking

3.4 FOUR-DIMENSIONAL ANALYSIS

- 3.4.1 FGGE Operation
- 3.4.2 Conversion and Improvement of Four-Dimensional Analysis

3.5 UPPER OCEAN FORECASTS

3.5.1 Sea Surface Temperature Forecasts

4. OCEANIC CIRCULATION

4.1 OCEANIC RESPONSE STUDIES

- 4.1.1 El Nino Southern Oscillation Phenomenon
- 4.1.2 Dynamics of Tropical Oceans

4.2 MARINE GEOCHEMISTRY

4.3 WORLD OCEAN STUDIES

4.4 POLAR OCEAN STUDIES

4.5 OCEAN MODEL DEVELOPMENT

5. PLANETARY CIRCULATIONS

- 5.1 Planetary Atmospheres
- 5.2 Venus Atmospheric Tides
- 5.3 Radiative Processes in the Venus Mesosphere

6. OBSERVATIONAL STUDIES

6.1 ATMOSPHERIC ANALYSIS

- 6.1.1 Statistical Description of the Atmospheric Circulation
- 6.1.2 Diagnosis of General Circulation Model (GCM) Results

6.2 OCEANIC ANALYSES

- 6.2.1 Global Analysis of Oceanic Data

7. HURRICANE DYNAMICS

7.1 GENESIS AND DECAY OF TROPICAL STORMS

7.2 EXPERIMENTAL HURRICANE PREDICTION

8. MESOSCALE DYNAMICS

8.1 FRONTAL DYNAMICS

- 8.1.1 The Dynamics of Mesoscale Convective Systems (MCS)
- 8.1.2 The Ocean Response to Mesoscale Atmospheric Forcing
- 8.1.3 Interaction of Fronts with Orography

8.2 MESO-ALPHA PREDICTABILITY

- 8.2.1 Initialization Impact for Nested Limited-Area Forecasts
- 8.2.2 Simulations with "Profiler" Initial Data
- 8.2.3 Boundary Data Experiments in Nested Limited-Area Models

8.3 MESO-BETA PREDICTABILITY

- 8.3.1 Sensitivity of Precipitation Forecast in Initial and Boundary Data

8.4 MODEL DEVELOPMENT

9. CONVECTION AND TURBULENCE

9.1 CONVECTION

9.2 ATMOSPHERIC AND OCEANIC BOUNDARY LAYERS

9.3 COASTAL AND ESTUARINE OCEANOGRAPHY

APPENDICES

APPENDIX A -- GFDL STAFF MEMBERS AND AFFILIATED PERSONNEL DURING FISCAL YEAR 1983

APPENDIX B -- GFDL BIBLIOGRAPHY

APPENDIX C -- COMPUTATIONAL SUPPORT

APPENDIX D -- SEMINARS GIVEN AT GFDL DURING FISCAL YEAR 1983

APPENDIX E -- TALKS, SEMINARS, AND PAPERS GIVEN OUTSIDE GFDL DURING FISCAL YEAR 1983

AN OVERVIEW

SCOPE OF THE LABORATORY'S WORK

The Geophysical Fluid Dynamics Laboratory is engaged in comprehensive long lead-time research fundamental to NOAA's mission.

The goal is to expand the scientific understanding of these physical processes which govern the behavior of the atmosphere and the oceans as complex fluid systems. These fluids can then be modeled mathematically and their phenomenology studied by computer simulation methods. In particular, research is conducted toward understanding:

- o the predictability of weather, large and small scale;
- o the particular nature of the Earth's atmospheric general circulation within the context of the family of planetary atmospheric types;
- o the structure, variability, predictability, stability and sensitivity of climate, global and regional;
- o the structure, variability and dynamics of the ocean over its many space-and-time scales;
- o the interaction of the atmosphere and oceans with each other, and how they influence and are influenced by various trace constituents.

The scientific work of the Laboratory encompasses a variety of disciplines: meteorology; oceanography; hydrology; classical physics; fluid dynamics; chemistry; applied mathematics; high-speed digital computation; and experiment design and analysis. Research is facilitated by the Geophysical Fluid Dynamics Program which is conducted collaboratively with Princeton University. Under this program, regular Princeton faculty, visiting scientists, and graduate students participate in theoretical studies both analytical and numerical, and in observational experiments, both in the laboratory and in the field. The program, in part, is supported by NOAA funds. Visiting scientists to GFDL may also be involved through institutional or international agreements, or through temporary Civil Service appointments.

The following sections of the Annual Report describe the GFDL contribution to five major research areas that correspond to NOAA's mission in oceanography and meteorology.

HIGHLIGHTS OF FY83
and
IMMEDIATE OBJECTIVES

I. WEATHER SERVICE

GOALS

During the past two decades synoptic-scale weather forecasts have improved considerably because of the development of numerical models that include more of the physical processes of the atmosphere, that have high spatial resolution, and that parameterize turbulent processes accurately. Successful forecasts for periods up to a few days are now possible, and the limits of atmospheric predictability have been extended to several weeks but quantitative precipitation forecasts remain elusive. As regards phenomena with small spatial scales, there has been considerable progress in determining the mechanisms that generate severe storms, in explaining how mesoscale phenomena interact with the large-scale flow, and in simulating the genesis and growth of hurricanes.

This success in the extension of atmospheric predictability encourages us to pose more challenging questions. Can the weather be predicted on time-scales of months? Are mesoscale weather systems and regional scale precipitation patterns predictable and if so, is it dependent on the prediction of the ambient synoptic flow? Research to develop mathematical models for improved weather prediction will also contribute to the understanding of such fundamental meteorological phenomena as fronts, hurricanes, severe storms, and tropospheric blocking.

Recent results, and plans for the next year, are briefly summarized below. For details, see the cited sections of Part B of the report.

ACCOMPLISHMENTS OVER THE PAST YEAR (FY83)

Accomplishments over the past year (FY83) include the following:

- * For the past several years, GFDL has been engaged in the production of a Level III-b gridded analysis of data from the First GARP Global Experiment (FGGE). The analysis was performed using an experimental continuous data assimilation scheme. In FY83, the operational production of the analyzed data set was completed, and the products were archived at the two World Data Centers (3.4.1).
- * Monthly forecast experiments with a GCM were conducted for four winter cases, and some skill in the 10 day and 20 day mean height prognosis was demonstrated. The experiment revealed that the quality of a GCM as well as that of the initial conditions are crucial for a successful simulation of planetary scale circulation patterns and blocking phenomena. This implies that, in the development of models for use in forecasting on the monthly time scale, internal dynamics must be treated carefully before the effects of the anomaly components of external forcing can be included (3.1.1).
- * The impact of subgrid-scale processes on GCM performance has emerged clearly in recent prediction studies. Simulation of tropical precipitation was improved by a sophisticated cumulus parameterization, and the condensational heating appears to exert an appreciable effect on the formation of midlatitude planetary waves. Mountain peaks also exhibit appreciable impact on the large-scale flow; a theory characterizing the extent to which

a mountain acts as a barrier to the oncoming flow was developed. The theory has important implications concerning the representation of mountains in GCM's (3.2).

* Several cases of blocking were successfully simulated by a GCM. In parallel, a new theory was developed in which blocking appears as a non-linearly amplified response to a weak localized forcing (3.3.2).

* Analysis of a 15 year series of observed geopotential height maps has revealed that the zonal winds averaged over certain longitude ranges have distinct meridional profiles associated with the teleconnection patterns classified by Wallace and Gutzler. The patterns were reproduced to a considerable extent when the appropriate zonal wind profiles were used in a linear barotropic model. Thus, the zonal wind profile emerges as a key factor in determining the character of the teleconnection pattern (3.3.1).

* The structure and dynamics of convection associated with fronts has been clarified using numerical simulations and stability analyses. The simulation of an observed moist cold front system produced a mature frontal squall line which shows a dual-updraft structure very similar to that observed in an Oklahoma squall line. A linear, two-layer, dry model was shown to reproduce this dual-updraft structure for certain low-level wind intensities without requiring microphysics. Also, a stability analysis of narrow cold-frontal rainbands has revealed a barotropic mechanism by which horizontal shear can organize the rainband convection into the regularly spaced cellular structure observed by radar (8.1.1).

* Results from a limited-area model nested in a global spectral model suggest that differences in the lateral boundary conditions taken from the global forecast predominate over initial condition differences in determining the position and strength of the synoptic as well as mesoscale features in the limited-area solution after only a few simulation hours (8.2.1).

* A 24-h meso- β simulation of the severe storm outbreak of 10-11 April 1979 (SESAME Day I) over Oklahoma and Texas wherein initialized and boundary data were used from a dense network of observations shows good agreement with the observed precipitation patterns as well as the mesoscale environment in which severe storms first developed (8.3.1).

* Calculations of deep moist convection representative of continental conditions give a maximum vertical velocity slightly larger than 20 m/sec at 7.5 km and a maximum disturbance potential temperature of 5.5°C near 8.5 km. At the surface 1.5 cm of rain fell in one-half hour and the downdraft outflow was cooler than its environment by 6°C (9.1).

* The decay process of tropical cyclones after the simulated landfall was investigated. A major cause for decay of a storm is the reduction of water vapor supply to a storm system. The low land surface temperature made a large contribution to decay through the suppression of evaporation, the alteration of the boundary layer wind and the reduction in conditional instability (7.1).

* The mechanism of comma vortex formation in the tropical cyclone model was studied. The tail of comma pattern tends to develop at the high wind side of disturbances. The β -effect retards the development of a comma vortex in the case of easterly basic flow and enhances it in the case of westerlies. The air-sea interaction is a necessary ingredient for the formative process of the distinct comma vortex (7.1).

* A numerical study on the transformation of a tropical easterly wave revealed that the heating effect is required for the growth of the wave. The nonlinearity effect, if and only if it is combined with the heating effect, accounts for the formation of a distinct vortex at a trough region of a wave (7.1).

PLANS FOR FY84

Plans for the next year include the following:

A study involving 4 monthly forecast cases will be completed, and the historically anomalous 1982-83 winter case will be tested.

A comparative study of A, E and F physics will be finalized.

The construction of the R42L18-F model will be completed.

The generation of transients in local baroclinic zones, the distribution of the consequent eddy fluxes, and the effects of the fluxes on blocking will be investigated.

Simulation of the Pacific comma cloud and the mid-west summer mesoscale convective complex will be attempted.

Research on the development of cellular structure in frontal rainbands will be completed.

Further investigation will be made of the impact of initial and boundary data on the simulation of mesoscale convective systems.

Further investigations will be made of the value of an explicit formulation of moist convection as a means of representing convective processes in a meso-beta scale model.

An attempt will be made to nest a cloud model within a meso-beta scale solution.

The vertical momentum transfer and kinetic energy transformation associated with the interaction of vertical wind shear and deep moist convection will be examined.

A study of hurricane landfall simulation will continue with a new model to investigate the effect of topography on landfall.

Research on the comma vortex formation in hurricanes and on the transformation of easterly waves will be finalized.

II. CLIMATE

GOALS

The purpose of climate related research at GFDL is twofold: to describe, explain and simulate climate variability on time-scales from seasons to millenia; and to evaluate the impact on climate, of human activities such as the release of CO_2 and other gases in the atmosphere. The phenomena that are studied include large-scale wave disturbances, with a period of a few weeks, and their role in the general circulation of the atmosphere; the seasonal cycle which must be known before departures from the seasonal cycle (interannual variability) can be appreciated; interannual variability associated with phenomena such as the Southern Oscillation/El Nino; a very long-term variability which includes the ice ages for example; and the meteorologies of various planets, the study of which enhances our perspective on terrestrial meteorology and climate. To achieve these goals both observational and theoretical studies are necessary: available observations are analyzed to determine the physical processes by which the circulations of the oceans and atmospheres are maintained; and mathematical models are constructed to study and simulate the ocean, the atmosphere, the coupled ocean, atmosphere and cryosphere system, and various planetary atmospheres.

Recent results, and plans for the next year, are briefly described below. For more details see the cited sections of Part B of the report.

ACCOMPLISHMENTS OVER THE PAST YEAR (FY83)

Accomplishments over the past year include the following:

- * The CO_2 -induced change in hydrology has been the subject of continued investigation by use of an atmosphere-mixed layer ocean model. It was found that, in winter, soil moisture in the subtropical steppe belt tends to decrease with increased CO_2 -concentration due to the poleward shift of the middle latitude rainbelt (1.1.1).
- * The transient response of climate to an increase of the atmospheric concentration of CO_2 has been investigated by use of a coupled ocean-atmosphere general circulation model with idealized geography. It is shown that zonal mean response of surface air temperature over continents precedes slightly the corresponding response over oceans having large thermal inertia (1.1.3).
- * The results from a model experiment indicate that a large scale soil moisture anomaly in the middle latitude rainbelt tends to persist longer than a similar anomaly in the subtropics from where moisture is exported to the neighboring rainbelts (1.3.1).
- * A study of climatic effect of the massive continental ice sheets of an ice age has been continued. The model results indicate a significant reduction of soil moisture in a zone located to the south of the ice sheets in North America and Eurasia. This is consistent with some of the geological evidence from the last glacial maximum (1.2.1).

A linear, baroclinic stationary wave model has been found to reproduce very accurately the stationary eddies in the wintertime upper troposphere of a general circulation model. The linear simulation allows one to dissect the stationary wave field into parts resulting from different features in the mean diabatic heating field and in the surface topography (1.4.1).

* The theoretical justification for barotropic models of planetary-scale stationary eddies forced by topography has been clarified by studying the extent to which the stationary eddy field is dominated by external Rossby waves and by demonstrating how to design a barotropic model which satisfactorily captures the external Rossby wave part of the solution (1.4.1).

* The effects of wave-wave interactions on midlatitude transient ultra-long waves have been examined by eliminating some selected wavenumber components from a spectral general circulation model (1.4.2).

* The GFDL troposphere-stratosphere-mesosphere GCM (SKYHI) has achieved a simulation of the equatorial semi-annual oscillation (SAO) which agrees well with observations. The westerly acceleration phase of the SAO is driven by absorption of dissipating Kelvin waves. The easterly acceleration phase on the summer hemisphere side of the equator is provided by advection of easterly angular momentum by the cross-equatorial mean meridional acceleration. On the winter hemisphere side, the easterly acceleration is provided by absorption of winter planetary waves propagating into low latitudes (2.2.4).

* A detailed space-time spectral analysis of the SKYHI GCM has achieved some remarkable new results on the structure of equatorial Kelvin waves. All classes of identified Kelvin waves have zonal wavenumber 1-2, an eastward phase velocity and an upward flux of eastward momentum. In addition to the "traditional" Kelvin wave (period 10-30 days, vertical wavelength ($L_z \sim 10$ km)), there have been identified "fast" Kelvin waves (periods 5-7 days, $L_z \sim 20$ km), and "ultra-fast" Kelvin waves (periods 3-4 days, $L_z \sim 40$ km). These waves agree well with their recently discovered observational counterparts (2.2.3).

* A coupled ocean-atmosphere model that simulates the amplification of modest initial perturbations during El Niño/Southern Oscillation Events was developed. The model reproduces the simultaneous growth of perturbations in the atmosphere and ocean (4.3).

* Global atmospheric circulation statistics for May 1958 through April 1973 have been published as NOAA Professional Paper No. 14 with more than 8000 maps and cross sections on microfiche. The mean climate and its year-to-year variability are shown for the monthly, seasonal and annual time scales (6.1.1).

* The global cycles of angular momentum, energy and water substance in the atmosphere-ocean-solid earth system and some of the regional variations have been documented and published (6.1.2).

* A high correlation was discovered between the monthly-mean, hemispheric temperature averaged over the entire troposphere and the sea surface

temperature in the eastern Equatorial Pacific Ocean. Increased convection in the Tropics during El Niño conditions (warm episodes) apparently leads to an overall warm atmosphere with a lag of about 6 months (6.1.1).

* Observed transient eddy heat and vorticity fluxes tend to destroy zonal asymmetries in the time-mean circulation. Disturbances with time scales longer than 10 days dominate this process (6.1.1).

* Midlatitude disturbances accompanying cold air outbreaks over East Asia show a typical life cycle with baroclinic growth during the polar outbreaks followed by a decay dominated by barotropic processes (6.1.1).

* A model of Jupiter's Great Red Spot and Large Ovals, based on intermediate-geostrophic (IG) dynamics, succeeded in providing an explanation of the structure, longevity, and possibly of the origin of these solitary and isolated forms of vortex. IG motions occur on scales greater than those of quasi-geostrophic ones. The longevity of some planetary scale patterns in the Earth's atmosphere may be due to the stability of IG scale motion, as suggested by the theory.

PLANS FOR FY84

Plans for the next year include the following:

A global ocean-atmosphere model with realistic orography will be constructed by combining a spectral model of the atmosphere with a finite difference model of the oceans.

The study of transient and equilibrium responses of climate to a CO₂-increase will be continued by use of a newly-developed ocean-atmosphere model with realistic geography.

The response of an idealized 9-level atmospheric GCM to successive decreases in the solar constant, Q, will be examined to see if sensitivity increases monotonically as Q is lowered, as predicted by simple energy balance models, or if the sensitivity has the more complex dependence on Q found with a 2-level primitive equations model.

Comparison of linear stationary wave models with GCM's will be actively pursued by continuing the analysis of the wintertime stationary waves already begun, extending this analysis to the seasonal variation of the stationary waves, and by examining the extent to which monthly or seasonal mean anomalies from the mean GCM climate can be understood as being due to anomalies in the forcing of stationary waves.

Theoretical and numerical studies will be made of the effects of transient eddies on the mean zonal flow.

The analysis of equatorial Kelvin wave structure will be completed.

Analysis of seasonal integrations of the SKYHI model will continue.

The study of unstable interactions between the ocean and atmosphere will be continued, and CISK processes will be included.

III. ATMOSPHERIC QUALITY

GOALS

The main goal of Atmospheric Quality Research at GFDL is to understand the formation, transport, and chemistry of atmospheric trace constituents. Such understanding requires judicious combinations of theoretical models and specialized observations. The understanding gained will be applied toward evaluating the sensitivity of the atmospheric chemical system to human activities.

Ongoing work that will be completed within the next 5 years includes analyses of atmospheric nitrous oxide, reactive nitrogen (natural plus anthropogenic), and tropospheric ozone. Capability will be developed to solve for a number of trace constituents simultaneously. Using this capability, interdependent experiments will be run involving ozone and its precursors, partitioned components of total reactive nitrogen, carbon monoxide, etc. Also, development of a dynamically active ozone photochemistry will be completed for inclusion into the GFDL troposphere-stratosphere-mesosphere GCM.

ACCOMPLISHMENTS OVER THE PAST YEAR (FY83)

Accomplishments over the past year are described below. For details, see the cited sections of Part B of the report.

* Comparison of analysis results from the 3-D "classical ozone" model of the troposphere against available observations and against a comprehensive ozone photochemical model has led to some surprising, but tentative, conclusions. To explain the summertime behavior of ozone in the Northern Hemisphere, net photochemical destruction of ozone may be required in high latitudes, while net production may be necessary in midlatitudes. These conclusions are quite sensitive to assumptions about the highly uncertain NO_x amounts in the troposphere (2.1.3).

* Preliminary experiments have been carried out to examine the mixing of a passive tracer due to deep moist convection. The initial tracer is confined to a surface layer 1750 m deep. After the mixing associated with a one-hour convective shower cloud, the horizontal average tracer has a bimodal distribution in the vertical. The primary maximum is in the boundary layer and the secondary maximum at 10 km is in the layer of convective outflow. A well-defined minimum in tracer concentration is found at mid-levels. These results illustrate the well-known non-local character of moist convection mixing (9.1).

PLANS FOR FY84

Plans for the next year include the following:

The study of the convective mixing of a passive tracer will continue. Downward advection of tracer from the upper atmosphere will be examined in addition to the boundary layer source treated previously. The effect of water solubility will be included.

Efforts will continue on the tropospheric "Combustion Nitrogen" and "Maximum Insight" experimental series. Final steps of the atmospheric N₂O and "Classical Ozone" model experiments and their corresponding observational comparisons will be completed.

Efforts to develop a self-consistent two-dimensional tracer transport model will continue.

IV. MARINE QUALITY

GOALS

Research at GFDL related to the quality of the marine environment has as its objective the simulation of oceanic conditions in coastal zones and in estuaries, and the modeling of the dispersion of geochemical tracers (tritium, radon...) in the world oceans. Over the next few years two and three-dimensional models of estuaries such as the Hudson-Raritan and Delaware Estuaries will be developed. The response of coastal zones to transient atmospheric storms, and the nature of upwelling processes which are of great importance to fisheries, are being studied by means of a variety of models.

ACCOMPLISHMENTS OVER THE PAST YEAR (FY83)

Results obtained over the past year include the following: For details see the cited sections of Part B of the report.

* During FY83 the marine geochemistry group began to consider how to model nutrient cycling in the ocean. This is the major first step in predicting the role of the oceans in determining atmospheric CO₂. Preliminary box model calculations suggest a mechanism for predicting the lower glacial pCO₂ levels that requires either a more efficient nutrient uptake by organisms in high latitude waters and/or less efficient mixing of nutrients into the mixed layer (4.3).

PLANS FOR FY84

Plans for the next year include the following:

Nutrient cycling parameterizations will be tested in a coarse resolution sector model, and then in the North Atlantic model.

Analysis of Cs-137/Sr-90 Weathership and other observations will be completed.

Data from the Transient Tracers in the Oceans observations in the North Atlantic will be analyzed.

V. OCEAN SERVICE

GOALS

A variety of models that can be used for the prediction of oceanic conditions are being developed at GFDL. The simpler models are capable of

predicting relatively few parameters. For example, one-dimensional models of the turbulent surface layer of the ocean predict the sea surface temperature and heat content of the upper ocean. More complex three-dimensional models are being developed to study phenomena such as the time-dependent development of Gulf Stream meanders and rings, the generation of Somali Current after the onset of the southwest monsoons, the response of coastal zones to atmospheric storms, and the development of sea surface temperature anomalies such as those observed in the tropical Pacific Ocean during El Niño/Southern Oscillation phenomena.

ACCOMPLISHMENTS OVER THE PAST YEAR (FY83)

Results obtained over the past year include the following. For details see the cited sections of Part B of the report.

- * A three-dimensional ocean circulation calculation with high vertical resolution was carried out on the CYBER-205 to provide a detailed check on analytic theories of the thermocline. The model was successful in showing how convection and wind stress act together to inject low potential vorticity water along density surfaces. Of particular interest is the simulation of subtropical mode water near the western boundary. An age map based on the time elapsed along trajectories from the surface was prepared (4.1).
- * A Climatological Atlas of the World Ocean describing the annual mean and seasonal structure of the oceans has been published as NOAA Professional Paper No. 13. The basic analyses are already widely used in the U.S.A. and abroad (6.2.1).

PLANS FOR FY84

Plans for the next year include the following:

A high resolution model of the tropical Pacific Ocean will be developed and will be used to study the seasonal and interannual variability, including simulation of the El Niño phenomenon.

Eddy resolving models will be extended to a more realistic geometry, and the results analyzed to assess the role of eddies in the transport of water mass properties.

Work with the coupled ice pack/ocean model will continue using a higher resolution model. The model will be used to identify the areas of maximum ice growth, and examine the effect on the heat and salinity budget of the Arctic Ocean.

The study of heat and salt water balances over individual oceans will continue.

The year-to-year variability in subsurface heat storage will be investigated over data-rich areas in the North Atlantic Ocean.

PROJECT ACTIVITIES FY83

PROJECT PLANS FY84

1. CLIMATE DYNAMICS

Goals

- * To construct mathematical models of the atmosphere and of the joint ocean-atmosphere system which simulate the global large-scale features of climate.
- * To study the dynamical interaction between large-scale wave disturbances and the general circulation of the atmosphere.
- * To identify and elucidate the physical and dynamical mechanisms which maintain climate and cause its variation.
- * To evaluate the impact of human activities on climate.

1.1 CO₂-CLIMATE SENSITIVITY STUDY

K. Bryan	D. Schwarzkopf
S. Fels	M. Spelman
F. Komro	R. Stouffer
S. Manabe	R. Wetherald

ACTIVITIES FY83

1.1.1 Hydrology Response

During the last several years, the hydrological response to an increase in atmospheric CO₂ has been investigated by coupling a general circulation model (GCM) of the global atmosphere to a static model of the mixed layer ocean. As discussed in (473), the following CO₂-induced changes are identified to be statistically significant.

- o The annual mean rate of runoff markedly increases in high latitudes.
- o During summer, zonal mean soil wetness reduces in two separate belts in middle and high latitudes. In addition, the following hydrologic change has been recently identified upon further examination of results from the model experiments.
- o In winter, zonal mean soil moisture reduces in the subtropics due to the poleward shift of the middle latitude rainbelt. According to a signal to noise ratio analysis, it is much more difficult to detect these hydrologic changes than the CO₂-induced change in surface air temperature. Comprehensive discussions of these results are contained in (532).

1.1.2 Cloud Cover

The influence of cloud cover variation upon the sensitivity of climate to an increase in the atmospheric CO₂ has been investigated by use of the atmosphere-mixed layer ocean model with global computational domain and realistic geography. This is done by comparing the results from two versions of the model, one with fixed and another with predicted cloud cover. It is (420) using a model with idealized geography and limited computational domain.) The physical mechanisms for this enhancement of sensitivity are under investigation.

1.1.3 Transient Response

In collaboration with the ocean circulation group of the laboratory, the transient response of climate to an increase of atmospheric CO₂ has been investigated during the last several years (484). The model used for this study is a coupled ocean-atmosphere GCM with limited computational domain and idealized geography. Fig. 1.1 illustrates some of the recent results from this project. It shows separately for oceans and continents the response of area mean surface air temperature of the model to a sudden quadrupling of the CO₂ concentration in the atmosphere. (The ordinate indicates the transient response of area mean surface air temperature normalized by the total equilibrium response and the abscissa indicates the time elapsed after the sudden CO₂-increase.) According to this figure, the normalized response of surface

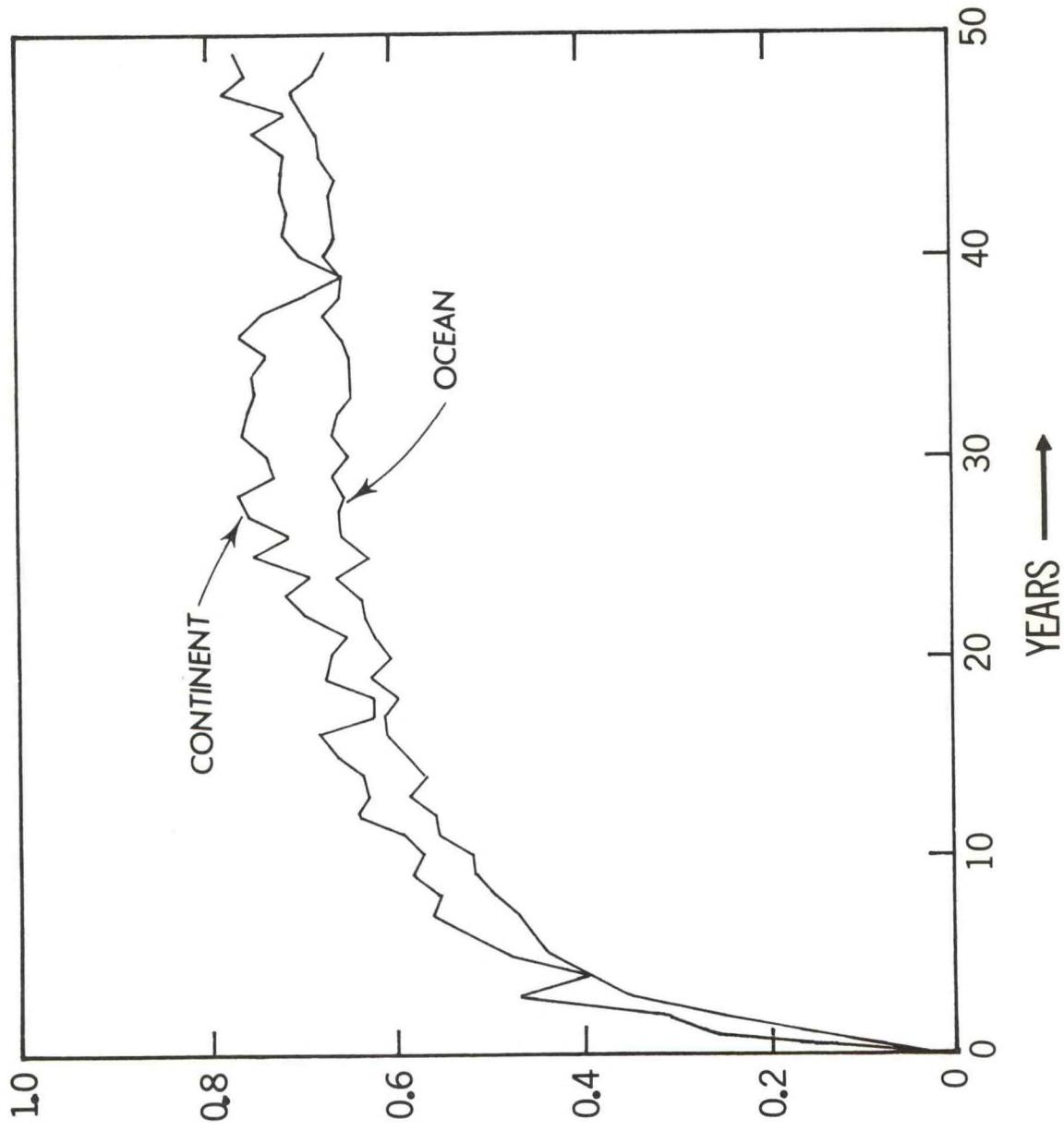


Fig. 1.1-- The transient response of area averaged, annual mean surface air temperature normalized by the total equilibrium temperature response over the continent and the ocean. The abscissa indicates the time elapsed after a sudden fourfold increase of atmospheric CO_2 in a coupled ocean-atmosphere model with limited computational domain.

air temperature over continents precedes slightly the corresponding response over oceans which have a large thermal inertia.

1.1.4 Oceanic Heat Transport and Equilibrium Response

As noted in the GFDL report of the previous fiscal year, the influence of oceanic heat transport upon the sensitivity of climate was investigated by use of a coupled ocean-atmosphere model with idealized geography (o). The study concluded that the poleward heat transport by ocean currents significantly reduces the sensitivity of climate. Recently, a code error was discovered in the computer program used for this study. Therefore, it was necessary to repeat the entire experiment during this fiscal year. The basic conclusions of the study remain unchanged.

The analysis of the equilibrium response of the model ocean also indicates that the temperature change in the deep ocean is as large as the change in the surface ocean layer of high latitudes where the CO₂-induced warming is particularly large. This is because bottom water forms due to the sinking of relatively cold, dense water in polar regions.

The results described above may have paleoclimatic implications. It has been suggested that the CO₂-concentration in the atmosphere during the Cretaceous epoch was several times larger than the modern concentration. According to the results from isotopic analysis of deep sea cores, the temperature of the deep ocean has decreased markedly during the last 100 million years. A reduction of almost the same magnitude also occurred in the ocean surface temperature in high latitudes. The qualitative similarity between isotopic temperature variation during the Tertiary and the equilibrium response of the model ocean to a CO₂-change suggests that a similar mechanism (i.e., sinking of cold water in high latitudes) is involved in both cases. The present results may partly explain why the cooling of the deep ocean during the last 100 million years has been much larger than the cooling of the surface ocean layer in low latitudes.

1.1.5 Review

The relationship between climate and atmospheric CO₂ has been the subject of continuous study at GFDL during the last 20 years. The results from this long term project have been published as a chapter of a book titled "Theory of Climate" (532).

1.1.6 Radiative Forcing Intercomparison

As part of a long-range study of CO₂-climate sensitivity, the Department of Energy has carried out an investigation of the purely radiative forcing due to a doubling of CO₂. Changes in IR fluxes at the surface, tropopause and at the top of the atmosphere were computed by various U.S. participants. The transmission function tables calculated in (441) were used to produce accurate standard values to which more heavily parameterized models can be compared.

PLANS FY84

Transient and Equilibrium Response

The coupled ocean-atmosphere GCM used for the CO₂-climate problem has a

limited computational domain and idealized geography. During the next fiscal year, a coupled model with global computational domain and realistic geography will be completed. (See Section 1.5.2). In collaboration with the ocean circulation group of the GFDL, a study of transient and equilibrium response of climate to a CO₂-increase will begin by use of this global model.

Oceanic Heat Transport

The revised version of the manuscript which discusses the influence of oceanic heat transport upon the sensitivity of climate will be resubmitted.

Equilibrium Response

The equilibrium response of the coupled ocean atmosphere model to large changes in the concentration of atmospheric CO₂ (150 ppm - 2400 ppm) will be investigated. This study may be useful for identifying the mechanism responsible for the large climatic change from Mesozoic to Cenozoic epochs.

1.2 ICE AGES

A. Broccoli	I. Held
K. Bowman	S. Manabe
D. Hahn	P. Phillips

ACTIVITIES FY83

1.2.1 Simulation of an Ice Age Climate

During the last three years, the climatic effect of the massive continental ice sheets of an ice age has been investigated by conducting a set of numerical experiments with a mathematical model of climate. This is part of a long-term research effort towards understanding how a cold climate of an ice age is maintained. Successful simulation of an ice-age climate increases our confidence in a climate model as a tool for the study of climate variation.

The model used here consists of an atmospheric general circulation model coupled with a static mixed-layer ocean model. Simulated climates are obtained from each of two versions of the model: one with the modern land-ice distribution and the other with the ice distribution which existed 18,000 years ago (18K B.P.). The climatic effect of the 18K B.P. ice sheet is evaluated by comparing these two climates.

In the Northern Hemisphere, the flow field in the lower troposphere is strongly influenced by the Laurentide ice sheet and features a split jet stream straddling the ice sheet. The northern branch of the flow brings very cold air over the North Atlantic Ocean where thick sea ice is maintained. The distribution of sea surface temperature (SST) difference between the two experiments resembles the difference between the present and 18K B.P. SST as estimated by CLIMAP.

In the Southern Hemisphere, the 18K B.P. ice sheets have little influence on temperature. This is because only a small change in the interhemispheric heat exchange takes place, as the in situ radiative compensation in the Northern Hemisphere offsets the reflection of solar radiation by continental ice sheets. These results suggest that other changes in the earth's

heat balance, besides those caused by ice sheets, are needed to explain the cold ice-age climate in high southern latitudes. Such changes may include a reduction in atmospheric CO_2 -concentration or a change in the intensity of interhemispheril thermohaline circulation in the oceans.

Hydrologic changes in the model climate are also found, with statistically significant decreases in soil moisture occurring in a zone located to the south of the ice sheets in North America and Eurasia. These findings are consistent with some geological evidence of regionally drier climates at the last glacial maximum.

The preliminary results from this study are summarized in a manuscript submitted to the Annals of Glaciology (vv). A paper which contains a comprehensive discussion of the results from this study is almost completed.

1.2.2 Influences of Ice Sheets on Climate Sensitivity

A two-level, seasonal, energy balance climate model has been used to study the effects of large ice sheets on the sensitivity of climate. Earlier experiments with a simple annual-mean energy balance model indicated that ice sheets reduce the sensitivity of climate to perturbations in the solar constant when compared to a model with snow cover (522). The annual-mean model treated the snow budget and the mass budget of the ice sheet in a highly simplified manner. In the seasonal model it is possible to calculate the mass budget of the ice sheet explicitly if the precipitation is known. Sensitivity experiments have been conducted using several different assumptions about the distribution of precipitation over the Earth. High melt rates in the ablation zone of the ice sheet keep the ice margin closely coupled to the permanent snowline. For this reason the model with the ice sheet is only slightly less sensitive than in control experiments with snow cover only.

1.2.3 Influence of Orbital Parameters on Climate

The Southern Hemisphere's response to orbital parameter variations has been examined with a variety of energy balance models. The rationale for this work is twofold. Firstly, since the model predicts only the zonal mean temperature field, it seems better suited to studying the more zonally symmetric climate of the Southern Hemisphere, rather than the more asymmetric climate in the North. Secondly, the paleoclimatic record suggests that climatic variations in the two hemispheres are in phase on the 20,000-year perihelion cycle time scale. If the two hemispheres responded similarly to insolation anomalies, one would expect the response to the perihelion cycle in the South to be exactly out of phase with that in the North. Therefore, a model similar to that described in (377) has been constructed with idealized Southern Hemisphere geometry (all land poleward of 70° , all ocean equatorward of 70°). The sensitivity of the response to the details of the sea-ice model and the heat flux parameterization are currently being examined. Preliminary results suggest that such a model cannot explain the phase of the response inferred from paleoclimatic indicators. The implication is that the climate in high Southern latitudes is strongly coupled to that in high Northern latitudes on these time scales. Calculations have also been performed with several energy balance models, and with a two-layer primitive equation model, testing the sensitivity of high Southern latitudes to large albedo variations in high Northern latitudes. These strongly suggest that meridional heat transport in the atmosphere is incapable of providing this coupling. The GCM experiment discussed in Section 1.2.1 is consistent with this result.

Work towards constructing a 2-dimensional latitude-longitude energy balance model by coupling the 1-dimensional model with a linear forced wave model for the zonal asymmetries has been postponed pending further analysis of the linear stationary wave model.

PLANS FY84

Simulation of Ice Age Climate

A manuscript which describes the details of the ice sheet experiment will be completed.

A new set of numerical experiments will be conducted to evaluate the influence of other factors on the climate of an ice age. Other factors to be considered are the reduced concentration of atmospheric CO₂ and the increased albedo of continental surface outside ice sheets.

Ice Sheets and Climate Sensitivity

The study of the influence of ice sheets on climate sensitivity will be continued by use of an energy balance model of climate. A new parameterization of the meridional transport of water vapor by the atmosphere also makes it possible to study the effects of changes of the solar constant on the hydrological cycle. The intensity of the hydrological cycle in the energy balance model responds in a manner similar to that predicted by general circulation models. The water vapor transport parameterization is used to predict precipitation in the model. Sensitivity studies will be carried out in which the entire mass budget of the ice sheet (snowfall minus ablation) is calculated internally by the model.

Orbital Parameters

The calculations of the Southern Hemisphere's response to orbital parameter variations will be pursued, and a manuscript prepared on the results obtained.

Sensitivity of GCM to Solar Constant

The sensitivity of an idealized 9-level atmospheric GCM to a decrease in solar constant will be examined. The solar constant will be lowered to the point that the high-albedo snowcover expands to cover the entire surface of the model. For efficiency, a hemispheric model with three-fold symmetry around a latitude circle, and with a "swamp" (saturated, zero heat capacity) surface boundary condition will be utilized. Simple energy balance models generally predict monotonically increasing sensitivity as the solar constant decreases, owing to stronger albedo feedback from larger snowcover. However, the two-layer model described in (323) predicts an initial increase in sensitivity as the solar constant is lowered, but this sensitivity reaches a maximum and then dips to a minimum after the snowcover boundary passes through the midlatitude maximum in baroclinic activity. After this the sensitivity increases again, leading finally to the familiar large icecap instability. An explanation for this behavior was offered in (468). The experiments planned for the coming year will determine if the behavior of the 9-level model is similar to that of the 2-level model or the simplest energy balance models.

1.3. CLIMATE VARIABILITY

D. Hahn	R. Wetherald
N. C. Lau	T. C. Yeh
S. Manabe	

ACTIVITIES FY83

1.3.1 Land Surface Anomaly

The GFDL report of the preceding year describes briefly the results from a modeling study which assesses the interaction between climate and a large scale soil moisture anomaly created by saturation of soil with water (i.e., irrigation). During this fiscal year, the results from this study have been extensively analyzed and are described in a manuscript to be resubmitted for publication (bb).

The model used for this study is an atmosphere-mixed layer ocean model with a limited computational domain and an idealized geography. In three separate numerical experiments, the soil in each of three latitude bands (i.e., 30N-60N, 0-30N, and 15S-15N) is initially saturated with water. The temporal variation of soil moisture after the time of irrigation is observed. It is found that the anomaly of soil moisture resulting from this large scale irrigation can persist at least several months. If an irrigation region is located under a rainbelt, precipitation over the region is enhanced. On the other hand, if an irrigated region is located outside a rainbelt much of the additional moisture from irrigation is exported to rainbelts outside this region. Thus, the soil moisture anomaly under the middle latitude rainbelt tends to persist longer than the corresponding anomaly in the subtropics.

This study suggests that a large scale soil moisture anomaly induced by a natural fluctuation of climate may also persist over an interseasonal time scale and may have significant impact upon the hydrological behavior of the atmosphere.

1.4 WAVE DYNAMICS AND CLIMATE

D. Golder	J. Osinga
Y. Hayashi	L. Panetta
I. Held	P. Phillips
N. C. Lau	R. Pierrehumbert
S. Nigam	T. Yamagata

ACTIVITIES FY83

1.4.1 Stationary Planetary Waves in the Troposphere

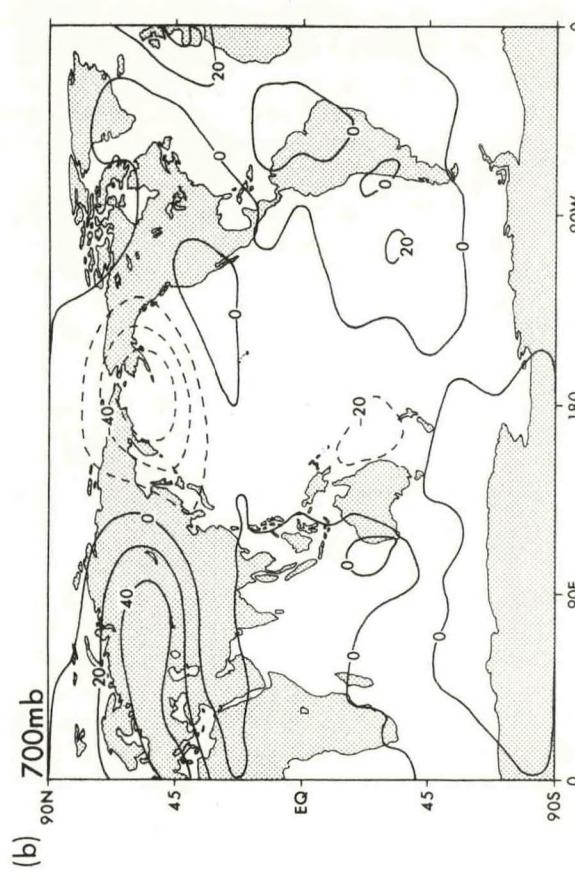
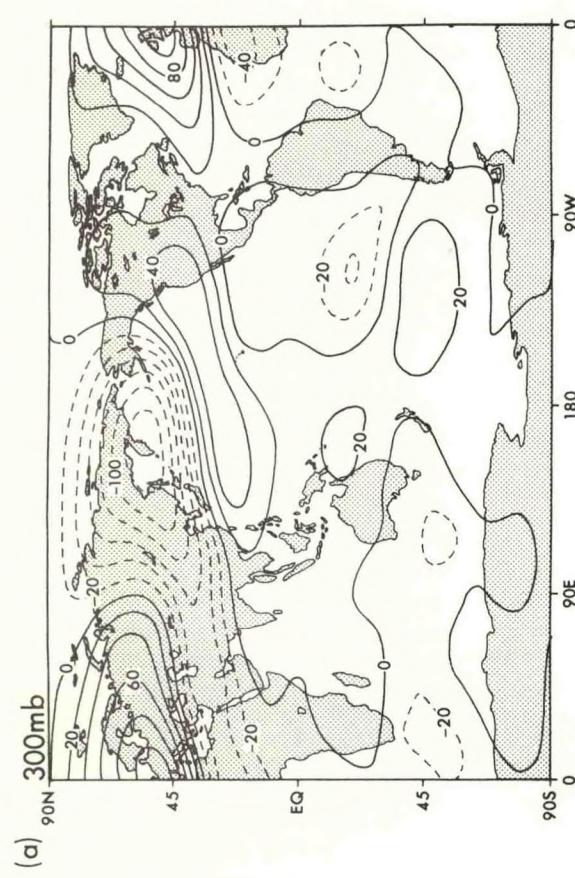
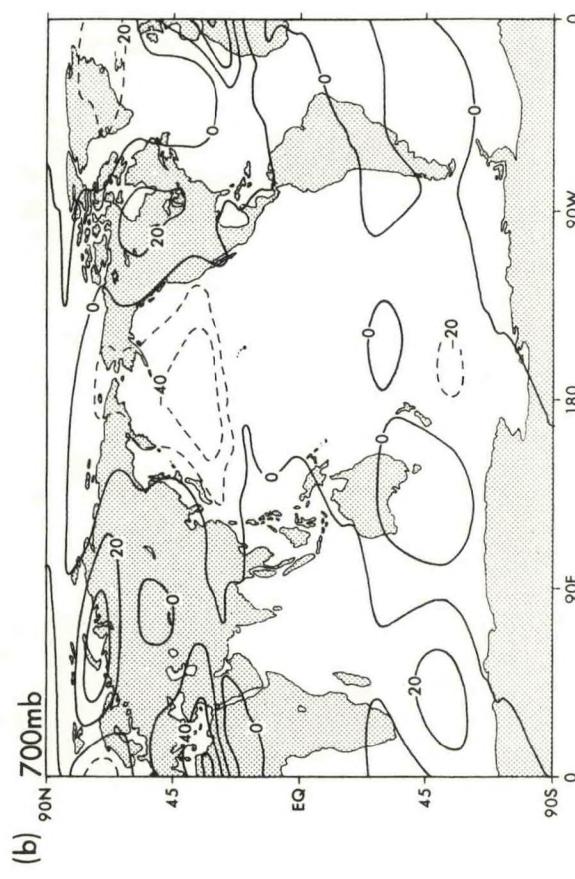
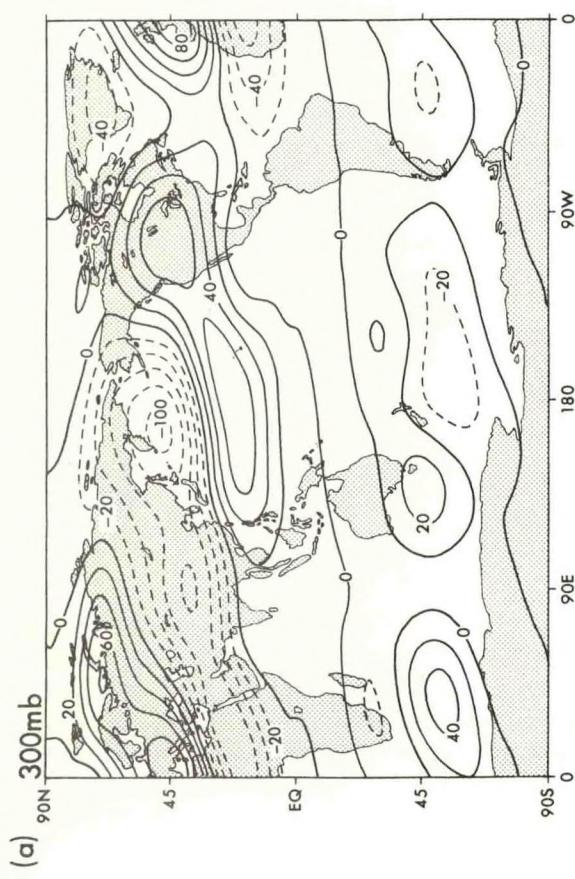
(A) Research in the past three decades has demonstrated the qualitative value of the theory of linear stationary waves forced by orography and heating for explaining the extratropical stationary eddy field. Testing of the theory has been hindered in part by the lack of data on the detailed distribution of diabatic heating, particularly latent heat release, in the atmosphere. By comparing linear wave theory with the stationary eddies produced by a GCM one can circumvent this problem, to the extent that one accepts the GCM as an adequate surrogate atmosphere. Thus, comparisons have been made between a linear

primitive equation model on the sphere and the winter climatologies produced by 15-year integrations of two GCM's, one with and one without surface orography. As illustrated in Fig. 1.2 the results are very encouraging. The figure shows the wintertime mean Northern Hemisphere stationary eddy (deviation from zonal mean) geopotential height fields at 300 and 700 mb as produced by the "no-mountain" GCM, and the result from a linear model forced by the diabatic heating produced by the GCM. The excellent agreement in the upper troposphere persists down to 500 mb, below which the solution deteriorates significantly. A similar comparison with the "mountain" GCM shows broadly similar results. The following are some of the conclusions drawn from these comparisons:

- The linear model result in Fig. 1.2 is forced by diabatic heating in the Northern Hemisphere only. If this linear model is forced by global heating, the result in the Northern Hemisphere deteriorates badly. Evidently, the linear model allows waves generated south of the equator to pass through the tropics into the Northern Hemisphere to a much greater extent than does the GCM. This difference between hemispheric and global forcing is less pronounced in the "mountain" model comparison.

- There are substantial differences in the thermally forced eddies in the linear simulations of the "mountain" and "no-mountain" models. Thus, the effect of mountains on the wintertime heating distribution is important for the thermally forced waves.

- The thermally forced eddies in the linear models can be split into parts forced by zonal asymmetries in sensible, latent, and radiative heating. Latent heating, located primarily in the mid-latitude oceanic storm tracks, is found to be by far the dominant component.





(B) Linear, inviscid, stationary wave theory breaks down near "critical latitudes," where one finds transitions from mean westerlies to easterlies. Whether or not this breakdown results in significant reflection of incident Rossby waves is one of the key problems in stationary wave theory. A barotropic model on a sphere has been used to study the effects of a critical latitude in the tropics on Rossby waves forced by topography in mid-latitudes. High resolution linear and "quasi-linear" calculations have been performed; in the latter, the zonal asymmetries are allowed to interact non-linearly with the zonal flow but not with themselves. In the quasi-linear model, a wave-train originally generated by the Himalayas reflects off of the tropical winds in the Pacific and then propagates eastward and northward across the North American continent. This wavetrain can be isolated by taking the difference between the quasi-linear and linear solutions, as indicated in Fig. 1.3. Since the reflection does not occur in the linear model, the wind structure responsible for the reflection is generated by the waves themselves. These calculations have been analyzed in a paper submitted for publication (kk).

(C) The utility of barotropic models for studying the stationary response to topography on planetary scales has been evident since the pioneering work of Charney and Eliassen, and barotropic models remain invaluable for gaining insights into aspects of the theory (see above and Sec. 3.3.1). In order to provide theoretical justification for the use of barotropic models, a comparison has been made between the stationary responses to localized forcing in a barotropic model and in a series of baroclinic, quasi-geostrophic models.

ϕ' GCM

Linear PE model

Fig. 1.2— Stationary wintertime eddy geopotential field predicted by the "no mountain" GCM (right) and by a linear stationary wave model forced by the diabatic heating distribution generated by the GCM (left), at 300 mb and 700 mb. Units are geopotential meters.

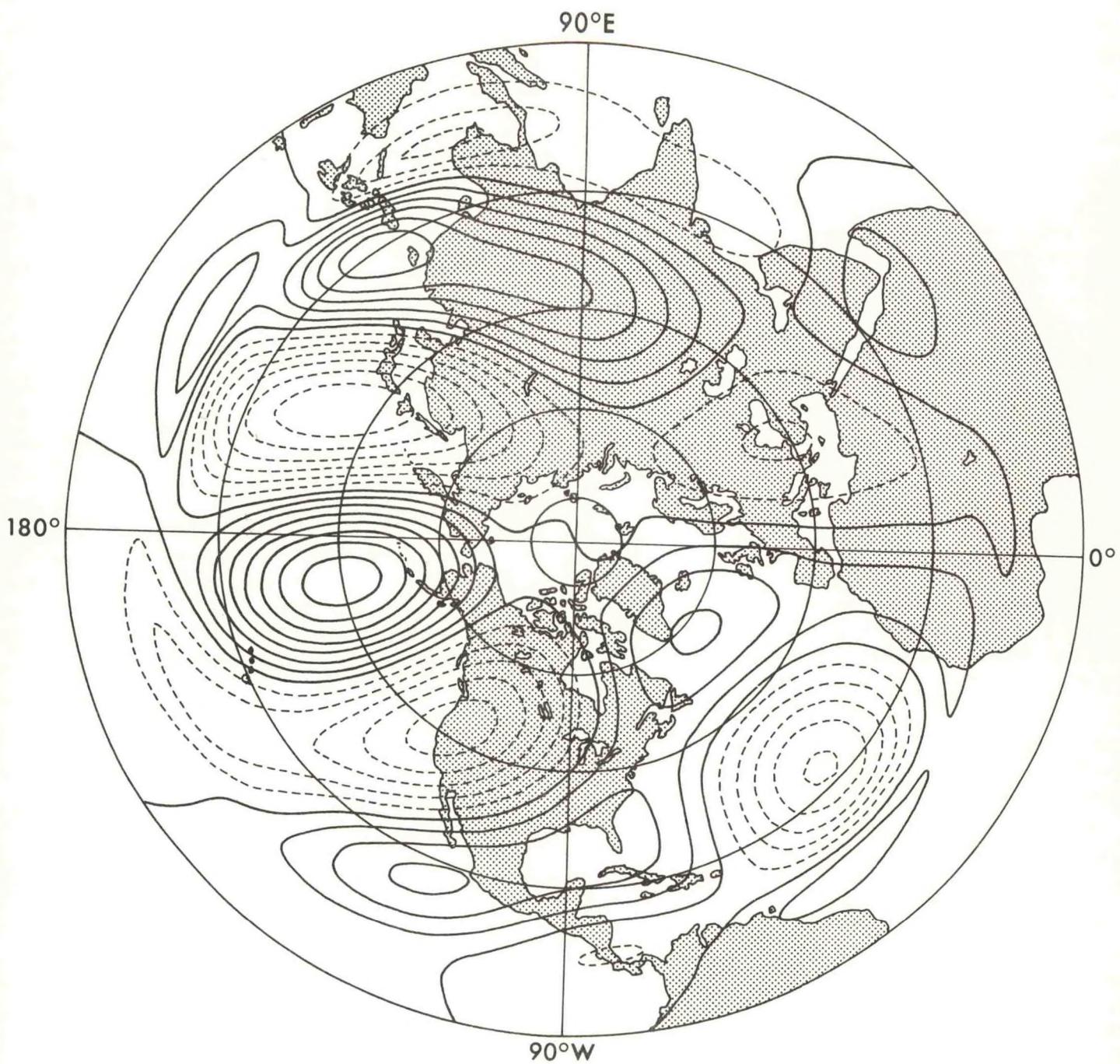


Fig. 1.3-- The difference between the eddy streamfunctions forced by topography in "quasi-linear" and linear barotropic models, showing the wave-train originating in the far western Pacific that is generated by reflection in the nonlinear model. Contour interval is $1.5 \times 10^6 \text{ m}^2/\text{s}$; negative contours are dashed.

The response in the baroclinic models far from the source is dominated by the stationary "external Rossby wave," and one can mimic the far-field solution with a suitably designed barotropic model. The strength of the topographic stretching and the height at which one should select the mean wind field for use in a barotropic model are unambiguously determined by the vertical structure of the external mode obtained from the baroclinic model. Some of the results obtained from this study are that

- 1) the height from which one must select the mean wind field for use in a barotropic model increases as the vertical shear increases, and
- 2) the horizontal group velocity of the external mode becomes infinite in the presence of positive vertical wind shear as the surface wind approaches zero, a result that has no analogue in the barotropic model.

1.4.2 Transient Planetary Waves

A. Planetary waves in middle latitudes

The effects of wave-wave interactions on mid-latitude transient ultralong waves were examined by comparing a spectral general circulation model with 21 zonal wavenumbers to a number of experiments in which the model retains only a single wavenumber or a combination of wavenumbers (ggg). It was found that the wavenumber 1 component is maintained primarily through the process of wave-wave energy transfer and does not grow by itself, while wavenumber 3 component is maintained primarily through the zonal-wave energy transfer and can grow by itself to a great extent. The wavenumber 2 component is maintained primarily through the zonal-wave energy transfer and, to some extent, through the wave-wave energy transfer. This component, however, only grows to a small extent without wave-wave interactions. It is suggested that even a moderate increase in the growth rate due to the wave-wave energy transfer results in a dramatic increase in the energy of low wavenumbers, since the surface friction is not effective in damping low wavenumber components.

B. Tropical waves

A simple linear model was constructed to diagnose the response of the tropical troposphere to a localized heat source pulsating with the observed 40 day periodicity. This model suggests that the atmospheric response may be interpreted as a standing wave in the region of heating and traveling waves elsewhere. It may be worthwhile, in the future, to simulate and analyze these waves by the use of a general circulation model of the atmosphere.

1.4.3 Transient Eddy Flux Parameterization

In (438) it was argued that the fluxes due to baroclinic eddies in a forced, dissipative quasi-geostrophic flow should be relatively easy to study when the meridional scale of the forcing is much larger than the relevant radius of deformation. It was hypothesized that for sufficiently large forcing scale the eddy statistics would become horizontally homogeneous and dependent primarily on the local time mean flow. This hypothesis is being tested using a 2-layer model on a beta-plane with a severely truncated zonal spectrum (zonal flow plus one non-zero zonal wavenumber) but with sufficient meridional resolution so as to allow for an enstrophy cascade to small scales.

Statistically steady states for a wide range of parameters have been obtained and are currently being analyzed. Preliminary results suggest that the approach towards the homogeneous limit as the scale of the forcing increases may be faster for some statistics than for others.

PLANS FY84

Stationary Planetary Waves

The comparison of linear stationary wave models with GCM's will be actively pursued by 1) extending the wintertime comparison to an analysis of the seasonally varying stationary waves, and 2) examining the extent to which monthly or seasonal mean anomalies from the 15-year mean can be understood as anomalies in the forcing of the stationary wave field.

A manuscript will be prepared for publication on the comparison of barotropic and baroclinic stationary wave responses to localized forcing and the implications of this comparison for the proper design of barotropic models.

The problem of the interaction of Rossby waves with the mean flow near the transition from mean westerlies to easterlies will be readdressed in a model in which the mean flow is maintained against the Rossby wave stresses by a Hadley circulation. Interpretation of previous work on this issue has been hampered by the rather arbitrary methods used to maintain realistic mean flows in the tropics. A fully non-linear, high resolution barotropic model will also be used to study the effect of wave-wave interactions and zonally asymmetric tropical flow on Rossby waves incident from midlatitudes, as well as non-linear aspects of the stationary response to tropical vorticity sources.

The theory of the linear, dissipative critical latitude in the presence of baroclinicity will be examined with a two-layer quasi-geostrophic model.

Transient Planetary Waves

Space-time spectral analysis will be made of the nonlinear energy transfer of stationary and transient planetary waves in the middle latitudes and tropics simulated by general circulation models with and without topography. Theoretical and numerical studies will be made of the effect of transient eddies on the mean zonal flow.

Eddy Flux Parameterization

Analysis of the 2-layer channel model and the doubly-periodic model will be continued to study the homogeneous limit and other aspects of the eddy flux parameterization problem.

1.5 MODEL IMPROVEMENTS

D. Daniel	M. Spelman
D. Hahn	R. Stouffer
L. Holloway	

ACTIVITIES FY83

During this fiscal year, major emphasis has been placed upon the conversion and optimization of climate model programs for their operation on the new

CDC Cyber 205 computer. The programs for the following climate models have been converted and are performing satisfactorily: energy balance model; radiative, convective model; spectral GCM of the atmosphere with various computational resolutions; atmosphere-mixed layer ocean model; coupled ocean atmosphere GCM with limited computational domain.

Research aiming at the improvement of these models has been resumed. Brief descriptions of some of this research activity follows.

1.5.1 Atmospheric GCM

A spectral model of atmosphere used by the climate dynamics project employs "the transform technique" for the sake of computational economy. In this approach, a time derivative of a prognostic variable computed at each grid point is represented by a limited number of spherical harmonics. Thus, high wave components are removed. This spectral truncation has a particularly large impact upon the moisture field which varies markedly by substantial factors from one geographical location to another, and it generates large areas of negative moisture and super-saturation, which results in a fictitious precipitation. Because of the non-local influence of the spectral truncation, a spectral model with the transform technique often over-estimates the precipitation rate in regions of meagre precipitation, such as Siberia and Canada during winter.

In order to avoid this difficulty, an attempt has been made to construct a modified version of the model in which dynamical equations are evaluated by the spectral transform technique but the moisture equation is computed by use of a finite difference method. Preliminary results of test experiments indicate that this hybrid model produces a significantly more realistic distribution of precipitation than the original model in the regions of meagre precipitation.

1.5.2 Global Ocean Atmosphere Model

The coupled ocean atmosphere model with limited computational domain, which has been used extensively, has been converted to a global model with realistic geography. This version of the global model consists of the spectral GCM of the atmosphere and the finite-difference model of the oceans. A numerical integration of this model has been successfully executed.

PLANS FY84

Atmospheric GCM

The research aiming at the improvement of a spectral GCM of the atmosphere will be continued. Most of the spectral GCM's used by the Climate Dynamics Group have a relatively low computational resolution. Special emphasis will be placed upon a performance assessment and improvements of spectral GCM's with relatively high computational resolution.

Global Ocean-Atmosphere Model

The global model of the coupled ocean atmosphere system discussed in Section 1.5.1 will be improved by the incorporation of (a) new parameterization of oceanic surface layer (477) and (b) the hybrid GCM of the atmosphere described in Section 1.5.1. The performance of this model will be evaluated throughout the next fiscal year.

2. MIDDLE ATMOSPHERE DYNAMICS AND CHEMISTRY

Goals

- * To understand the interactive three-dimensional radiative-chemical-dynamical structure of the middle atmosphere (10-100km), and how it influences and is influenced by the regions above and below.
- * To understand the dispersion and chemistry of atmospheric trace gases.
- * To evaluate the sensitivity of the atmospheric system to human activities.

2.1 ATMOSPHERIC TRACER STUDIES

J. Bacmeister	J. D. Mahlman
P. L. Baker	W. J. Moxim
H. Levy II	R. A. Plumb

2.1.1 Atmospheric N₂O Tracer Experiments

Final work has been completed on the series of experiments designed to test the sensitivity of stratospheric N₂O (nitrous oxide) to various photo-destruction hypotheses. The model analysis reveals that the horizontal "topography" of time-mean mixing ratio surfaces should be essentially the same for a wide class of long-lived trace constituents. This relationship is predicted to hold as long as the chemical destruction time scale is long compared to an appropriate transport time scale. This result has allowed development of a simple theory which predicts the amount of temporal tracer variability in terms of its local time-mean vertical mixing ratio gradient. Both of these predictions are being tested against observational data (see 2.1.7).

2.1.2 Reactive Nitrogen in the Troposphere

Analysis has continued on the set of preliminary experiments which examine the global impact of the U.S. combustion source on the global reactive nitrogen budget. Detailed analysis programs have been constructed in preparation for future more realistic experiments.

2.1.3 Examination of the Classical Theory for Tropospheric Ozone

Final analysis has been completed on the two numerical experiments designed to examine the classical "no-chemistry" theory for tropospheric ozone. A more detailed analysis of model-generated vertical ozone profiles against available observations has been completed and show good qualitative agreement in both profile means and variances. In general, the model seasonal variations also show reasonable agreement with observations. An important exception occurs in Northern Hemisphere midlatitudes. The model shows a well defined spring ozone peak near the surface, while observations suggest a broad peak lasting well into the summer season. A preliminary analysis of surface strontium-90 data suggests that a portion of the summer peak may indeed be transport induced. If so, this could identify a significant defect in the transport model.

A careful re-analysis of the observations suggests that the model predicts too much midtropospheric ozone north of 40°N. In the Southern Hemisphere, the agreement is rather good, but observations are quite limited.

2.1.4 Tropospheric Photochemistry

A photochemical model (0-D) has been developed to study the purely chemical behavior of tropospheric ozone. Diurnal photochemical calculations for 500 mb have been carried out for winter and summer conditions at 15° and 45° latitude. Ozone overburden and water vapor mixing ratios are specified, methane chemistry is neglected and NO_x volume mixing ratios are varied systematically from 10 ppt to 1 ppb.

For the summer, the photochemical equilibrium value of ozone for a specified NO_x level is nearly independent of latitude. For winter, the 15° latitude values are nearly unchanged, while at 45° latitude, the photochemistry is very weak. By utilizing previous estimates of NO_x levels resulting from stratospheric injection (414,433), the model predicts that net ozone photochemical destruction should be present.

However, some previous measurements in the continental middle troposphere find summertime NO_x levels considerably higher than those expected solely from the stratospheric NO_x source. For such high NO_x levels, the model predicts a net photochemical production. This would then be added to the already too large transport-determined ozone values in mid- and high latitudes (2.1.3).

The results of the classical ozone study (2.1.3) combined with this photochemical model suggests that net photochemical destruction may take place in summer high latitudes, while some net production may occur in summer midlatitudes. These conclusions are critically dependent upon highly uncertain assumptions about the amount of NO_x present in the atmosphere (2.1.2).

2.1.5 "Maximum Insight" Tracer Experiments

Final analysis is underway on the two tracer experiments designed to allow an increased mechanistic understanding of tracer transport and dispersion. Case studies are being prepared to demonstrate the character of disturbance-induced dispersion of tracers. The analysis shows how much more efficient this process is in the troposphere compared to the stratosphere. A manuscript derived from this work is now in press (eee).

2.1.6 Development of a 2-D Transport Model

Statistics from the above 3-D "Maximum-Insight" experiments are being used to evaluate the scientific feasibility of a self-consistent 2-D tracer transport model. In principle, the two experiments provide all the transport coefficients and advective velocities required to satisfy the constraints of the recent "generalized diffusion tensor" theories. Work on this problem is in the preliminary stage.

2.1.7 Observational Analysis of Long-Lived Tracers

The previous modeling research on atmospheric N_2O has led to several hypotheses on the generalized behavior of a large class of long-lived trace gases (see 2.1.1). To examine the validity of these hypotheses, an analysis of the structure of observed N_2O , CF_2Cl_2 and CFC_1_3 has been undertaken. The data source is the series of balloon samples gathered at diverse sites by scientists from the Aeronomy Laboratory/NOAA.

Work completed to date includes: data quality control; analysis algorithm choices; data processing; and method of data averaging. Careful tests of the applicable hypotheses are currently underway.

2.1.8 Model Development

During FY83 a major effort was expanded to convert many of the tracer model and analysis codes to the CYBER 205 computer. This required considerable attention to the optimization of code, as well as to the usual mechanical conversion problems. In addition, the 3-D tracer model has been completely

restructured to allow for the possibility of simultaneous solution of multiple species chemistry/transport problems.

PLANS FY84

Efforts will continue on the tropospheric "Combustion Nitrogen" and "Maximum Insight" experimental series. The final wrapups of the atmospheric N₂O and "Classical Ozone" model experiments and their corresponding observational comparisons should be completed. Significant effort to develop a self-consistent 2-D tracer transport model will continue. Some early multiple tracer experimental testing on the CYBER 205 should be underway.

2.2 MODELS OF THE TROPOSPHERE-STRATOSPHERE-MESOSPHERE

S. B. Fels	J. D. Mahlman
D. G. Golder	M. L. Salby
D. S. Graves	L. J. Umscheid
Y. Hayashi	

ACTIVITIES FY83

2.2.1 Model Improvements

This past fiscal year has been unusual in that a large amount of time has been spent in converting the 40-level troposphere-stratosphere-mesosphere GCM (designated as SKYHI) to the CYBER 205 computer. In particular, a significant effort was required in code optimization before the speed potential of the computer began to be realized.

Several improvements in the physical parameterizations have been added, particularly in the surface-atmosphere interface. Also, testing of the impact of "rougher" topography has been underway. A higher horizontal resolution (N30) version of SKYHI has been coded and checked. This model is currently undergoing examination through analysis of an extended integration.

2.2.2 "Low Diffusion Medium Resolution (N18) Experiment"

The final work on this previously reported SKYHI annual mean insolation experiment has been completed and the manuscript is in press (nn). This work has utilized the "transformed Eulerian" zonal momentum analysis in which the traditional "eddy" terms are replaced by the so-called "Eliassen-Palm flux divergence" (EPFD), while the paths of wave activity are closely approximated by the Eliassen-Palm flux vector.

As pointed out earlier, these diagnostics generally predict a qualitatively opposite conclusion about the force exerted by the eddies on the zonal flow than that provided by traditional balances. A test of which diagnostic approach is the more meaningful for determining the role of eddies has been devised through a companion model experiment in which all eddy quantities are strongly damped in the lower stratosphere. The results show that the transformed diagnostics provide a far better predictor of the subsequent change in mean flow than do the traditional balance equations.

2.2.3 Analysis of Equatorial Waves in the SKYHI Model

A space-time spectral analysis has been made of equatorial middle atmosphere Kelvin and gravity waves as simulated by the SKYHI annual mean insolation model (2.2.2).

The model Kelvin waves are associated with zonal wavenumbers 1-2, have an eastward phase velocity and tilt eastward with height. The lower stratosphere Kelvin wave has periods of 10-30 days and a vertical wavelength of 10km, in agreement with many observational results. The upper stratospheric Kelvin wave is associated with periods of 5-7 days and a vertical wavelength of 20km, as observed a few years ago by Hirota. The mesospheric Kelvin wave has periods of 3-4 days and a vertical wavelength of about 40km. This corresponds closely to the wave discovered very recently by Salby and colleagues. All these Kelvin waves transport eastward momentum upward.

In addition, SKYHI gravity waves of zonal wavenumbers 1-15 and periods \sim 0.5 - 2 days are prevalent in the equatorial mesosphere. Their eastward and westward moving components transport eastward and westward momentum upward, respectively, and contribute to the mesospheric zonal momentum balance as much as or even more than do Kelvin waves.

2.2.4 Generation and Dispersion of Equatorial Disturbances

A series of calculations has been undertaken to understand the mechanisms producing the middle atmosphere tropical disturbance observed by satellite and in SKYHI (2.2.3). In particular, transient responses to localized, impulsive tropical latent heat release scenarios are being addressed by an initial value approach which includes the effects of wave absorption and refraction.

The results show the presence of a "spectrum" of equatorially trapped vertically propagating Kelvin and gravity waves centered about a vertical wavelength twice the depth of the imposed heating. Selective absorption of the slower, shorter vertical wavelength components of the wave spectrum appears to be responsible for the predominance of higher frequency disturbances at upper levels in SKYHI simulations (2.2.3) and in observations by Hirota and Salby.

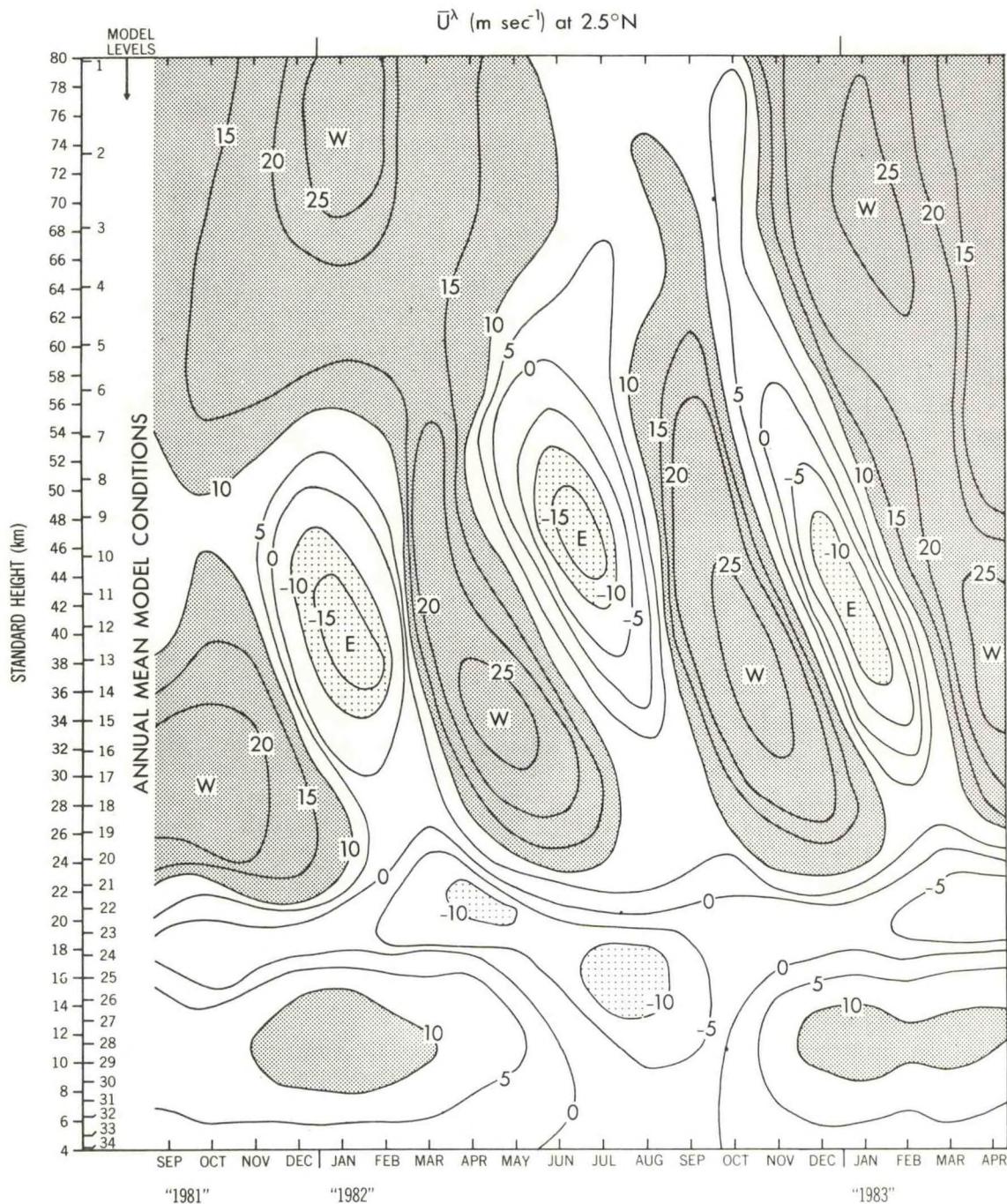
The second initial disturbance response corresponds to a spectrum of normal modes with an equivalent barotropic character. These waves are vertically trapped, but they disperse energy toward higher latitudes.

2.2.5 Medium Resolution (N18) Annual Cycle Experiment

The first phase of analysis of an annual cycle version of the SKYHI GCM has been completed, including a comparison of the model simulation against observations (vv). Simulation successes include: the cold equatorial tropopause; the midlatitude warm belts of the winter lower stratosphere; clear separation between the subtropical and polar night jet streams; reversed meridional temperature gradients in the winter mesosphere (and closed off polar night jet); stratospheric summer easterlies of the proper magnitude and depth; a strong sudden warming in the model lower mesosphere; and a pronounced equatorial semi-annual oscillation.

Simulation failures in the middle atmosphere include: an excessively cold polar night vortex with correspondingly too strong zonal winds; a modest but significant underestimate of the magnitude of the vertical component of the Eliassen-Palm flux escaping the troposphere; an easterly jet stream in the summertime mesosphere which does not close off; and no evidence of a quasi-biennial oscillation in the tropical lower stratosphere.

The sudden warming event exhibits many features of observed warmings which do not penetrate downward into the middle stratosphere. In the lower mesosphere, the polar cap warms by over 43° in 15 days. The higher temperatures increase the polar cap diabatic cooling rates to more than $15^{\circ}\text{C day}^{-1}$. Accompanying the warming is a deceleration of the mesospheric jet by more than 80 m sec^{-1} . This sudden warming was initiated by a large increase in the vertical component of Eliassen-Palm flux emanating from the troposphere. That flux leads to flux divergences exceeding $-40 \text{ m sec}^{-1} \text{ day}^{-1}$ just above the stratopause. Such a level of model forcing is sufficient to induce the large deceleration (and its associated warming). The process appears to have been facilitated by an onset of easterly winds in the Northern Hemisphere subtropics of the upper stratosphere.


Simulation of the equatorial semi-annual oscillation has been successful in a number of respects. The amplitude maximum of about 20 m sec^{-1} between 40 and 50km and the phase of the oscillation agrees rather well with observations (see Fig. 2.1). The westerly phase is driven by absorption of dissipating Kelvin waves, just as in the previous simulation (436). For the easterly phase, however, the model mechanism is more complex. On the summer hemisphere side of the equator, the easterly acceleration is provided by meridional advection of easterly angular momentum in the cross equatorial flow from the summer to the winter hemisphere. On the winter hemisphere side, however, the dominant model mechanism for the easterly acceleration is provided by absorption of planetary waves propagating in from higher latitudes. Thus, according to this simulation, the easterly phase of the semi-annual oscillation depends upon the cooperative contributions of the advection and wave-propagation mechanisms.

2.2.6 Evaluation of Satellite Sampling of the Middle Atmosphere

A new research effort has begun to provide some estimates on the types of errors to be expected in satellite sampling of the middle atmosphere. The approach chosen is to employ the SKYHI GCM (2.2.5) annual cycle experiment as a sample data set in which all variables are known "perfectly." This model data set is then sampled in a way similar to the way in which polar orbiting satellites sample the actual atmosphere.

Although the research is in a comparatively early stage, some useful results have been obtained. Sampling of temperature spatial averages (the basic variable) can be rather accurate. However, quantities which require derivatives of the temperature field become significantly worse as the order of differentiation is increased. Thus, errors in quantities such as wind are noticeable, but acceptable, while quantities such as vorticity become seriously distorted. In virtually all instances, the sampling errors are considerably larger in lower latitudes.

Fig. 2.1-- Time-height cross section of monthly averaged zonal wind at 2.5°N from the GFDL "SKYHI" seasonal model (2.2.5). Abscissa is standard altitude for the model isobaric levels. Grid point positions are as indicated. This integration was begun on astronomical date September "1981" from the annual mean model (2.2.2).

PLANS FY84

The initial analysis of equatorial Kelvin wave structure will be completed. Analysis of various aspects of the SKYHI seasonal integrations will continue. A higher-resolution (N30) SKYHI model is to be tested extensively in preparation for a new generation of middle atmosphere numerical experiments. The transmission and momentum deposition of equatorially generated waves will be investigated.

2.3 PHYSICAL PROCESSES IN THE MIDDLE ATMOSPHERE

S. B. Fels S. C. Liu*
J. D. Mahlman J. A. McAfee*
M. D. Schwarzkopf *Aeronomy Laboratory/NOAA

2.3.1 Radiative Transfer Model Development

The radiative transfer model designed for use in the SKYHI GCM (2.2) was extensively recoded for optimization on the CYBER-205 computer. In addition, a number of physical processes have been added: improved CO_2 transmission functions; the $(\text{H}_2\text{O})_n$ continuum; and the effects of breakdown of local thermodynamical equilibrium. This latter effect only becomes important above 75km. At 80km, this effect acts to reduce the $15\mu\text{m}$ CO_2 cooling rates by about 2° day^{-1} .

A new version of the GFDL (441) $15\mu\text{m}$ transmission function tape was produced on a uniform grid stretching from 1100mb to 10^{-3}mb using a fine mesh and an improved interpolation scheme. This revised tape is already being used at several outside research centers.

2.3.2 Radiative Damping in the Mesosphere

A comprehensive calculation of scale-dependant radiative damping of waves in the mesosphere was undertaken, extending the work previously reported (496) to shorter wavelengths and greater altitudes. The effects of the breakdown of local thermodynamic equilibrium were explicitly included. The results are complicated in detail, but yield damping times of about 1.5 days for disturbances with vertical wavelength of 6km in the mesosphere. Simple scaling laws were also derived allowing easy extension of the results to other CO_2 mixing ratios. A doubling of the present CO_2 loading in the mesosphere will typically lead to an increase in damping rates of 40%.

2.3.3 Seasonal March of Radiative-Photochemical Temperatures

The GFDL SKYHI radiative transfer model has been successfully combined with the ozone chemistry model developed collaboratively with Aeronomy Laboratory/NOAA scientists (2.3.4). To determine the joint radiative-photochemical equilibrium of the middle atmosphere, the combined model has been run for two years at each of 20 latitudes. The solar insolation and surface temperature are specified as a function of season.

The results show generally good agreement with the comparable radiation-only results obtained earlier using specified ozone distribution. This suggests that joint radiative-chemical-dynamical calculations may now be

planned with some confidence. The radiative-photochemical temperatures at the summer polar stratopause imply that the dynamical cooling in this region must be substantially smaller in magnitude than that of the required dynamical heating at the winter polar stratopause.

2.3.4 Ozone Photochemistry

The collaborative effort with NOAA Aeronomy Laboratory scientists has continued with an emphasis toward developing an ozone photochemistry model which is compatible with the 3-D SKYHI GCM (2.2.5). The CYBER-205 chemical code has now been developed so that either diurnal or diurnally averaged chemistry can be calculated. The diurnal chemistry is used to provide a continuous parameterization of the correction terms required for inclusion in the diurnally averaged chemistry. This allows a far more economical model for GCM work, but which remains self-consistent with the strongly diurnal character of stratospheric photochemistry.

PLANS FY84

The new improvements to the radiative transfer model will be added to the SKYHI GCM. Research will continue on the interaction of radiation and ozone photochemistry. The chemical codes will be developed further toward the goal of developing a SKYHI model which self-consistently includes the most important radiative-chemical-dynamical interactions.

3. EXPERIMENTAL PREDICTION

GOALS

- * To identify important external forcing mechanisms for the forecast range of several weeks to several months, including initial conditions in the atmosphere, oceans, soil and snow-ice.
- * To investigate the influence of additional internal processes such as cloud-radiation interaction and cumulus convection, upon atmospheric variability on the seasonal time scale.
- * To develop more accurate and efficient atmospheric and oceanic GCM's suitable for monthly and seasonal forecasts, respectively.
- * To study the mechanisms of various atmospheric phenomena such as tropospheric blocking, orographic cyclogenesis, tropical waves, equatorial ocean-atmosphere interaction processes, and teleconnection.

3.1 LONG-RANGE FORECAST

K. Miyakoda R. Pierrehumbert
J. Sirutis W. Stern
J. Ploshay

ACTIVITIES FY83

3.1.1 Monthly Forecasts

The "1980-version GCM" (i.e., N48L9-E) has been frozen and is being applied to four cases of monthly prediction for January 1977-79. Each case includes an ensemble of three individual forecasts, starting with three different initial conditions. Besides these basic experiments, two additional forecasts are being made for each case. One is a forecast with real sea surface temperatures (instead of climatological normals) as the surface boundary conditions, and the other is a forecast with an advanced physics (i.e., N48L9-F). The number of cases of successful monthly predictions has been increased. It is suggested that, so far as the monthly forecast is concerned, internal dynamics are extremely important. In this respect, the refined physics as well as the good quality of initial conditions play an essential role (see figure 3.1).

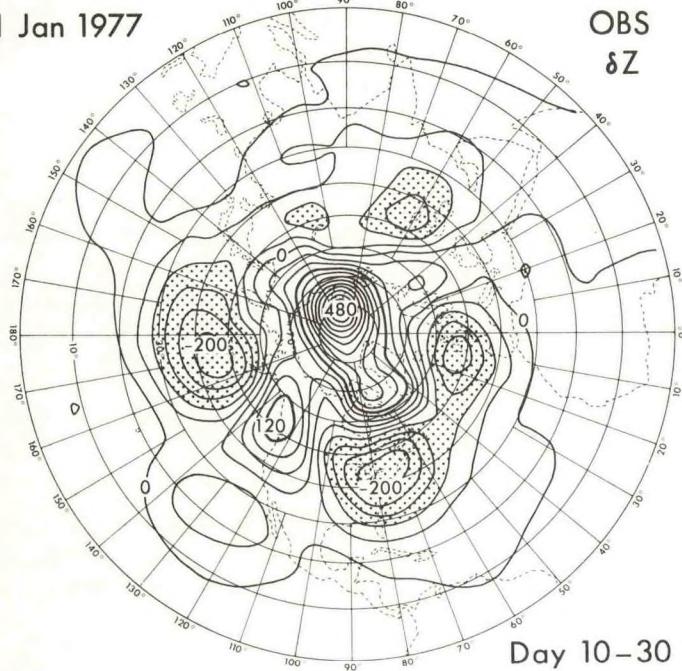
PLANS FY83

A study involving 4 cases will be completed. The historically anomalous 1982-83 winter case will be tested. A Spectral GCM (R42L18-F) will be prepared, and applied to the cases of 1980-82.

3.2 MODEL IMPROVEMENT

C. Gordon K. Miyakoda R. Pierrehumbert
J. Sirutis W. Stern R. Strickler
B. Wyman G. Vandenburg B. Carissimo

ACTIVITIES FY83

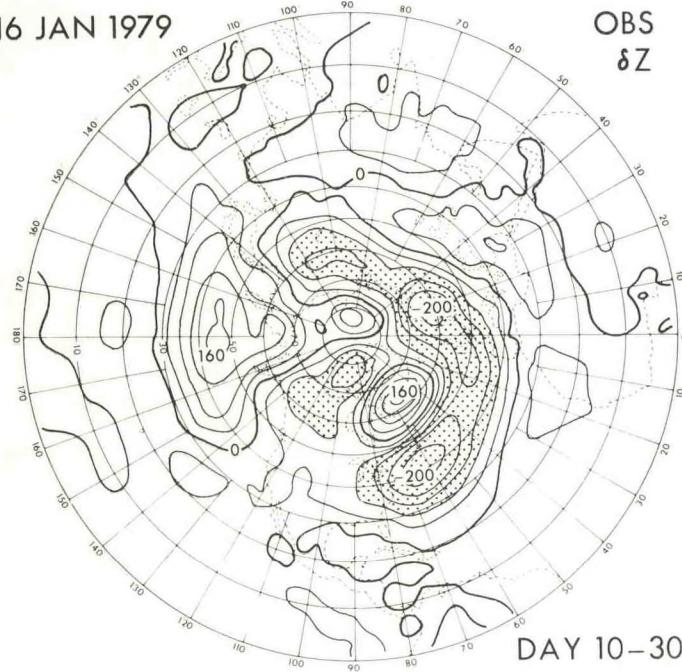

3.2.1 Various Versions of Subgrid-Scale (SGS) Processes

Continuing from the previous report, three atmospheric GCM's with different treatments of SGS parameterization (A, E, and F) have been integrated over a period of 30 days for six cases. The experiments have revealed that the effects of SGS parameterization on the monthly time scale are substantial, with the F-model consistently showing the highest forecast skill. In particular, during the GATE period of August-September, 1974, the tropical rainfall, as predicted by the F-model, agrees very well with observation in terms of spatial distribution as well as time isopleth.

3.2.2 Cloud-Radiation Interaction

Work has continued on the generation of analyses of model-dependent monthly mean cloud amount. By examining the results, biases in the GCM

1 Jan 1977



OBS
 δZ

500 mb
 δZ

F Day 10-30

16 JAN 1979

OBS
 δZ

500 mb
 δZ

F Day 10-30

Fig. 3.1-- Two examples of monthly forecasts with the N48L9-F model for 1 January 1977 (upper) and 16 January 1979 (lower) as the initial condition. Maps are the observed (left) and the predicted (right) anomalies of geopotential height at 500 mb averaged over day 10-30. Contour interval is 40 meters. The areas in which the height anomalies are less than -80 meters are shaded.

specification of surface albedo over subtropical deserts and snow covered land have been clearly revealed. Also, a cloud prediction scheme has been refined such that the latitude-dependent critical range of relative humidity will lead to radiatively consistent clouds (z,cc).

3.2.3 Orographic Effects

A number of aspects of the effects of mountains on the atmosphere need to be clarified in order to improve the representation of orography in numerical models. Considerable progress was made toward this goal. A linear analysis of mountain induced deceleration has revealed why smoothing leads to an underestimation of the orographic effect (yy). In addition, a nonlinear theory predicting the depth and upstream extent of layers of blocked air occurring upstream of steep mountains was developed (bbb). Comparisons of the theory with data from the ALPEX field experiment are encouraging. Finally, an analysis system for ALPEX data was completed, and is being used to test the above theories and to investigate the mechanism of orographic cyclogenesis.

3.2.4 Spectral Model

The conversion of the spectral model to the CYBER 205 has been completed, and the efficiency is being improved. The tentative target for CPU efficiency is 10 min per daily forecast with the R30L9-E model, whereas the current speed is 16 min. As for the next generation model, the R42L18-F model is being developed, with plans to include diurnal variability and an envelope mountain.

3.2.5 HIBU Model

A low-resolution global version of the HIBU advanced gridpoint model has been completed. E2 physics has been incorporated in the model. A new polar filtering scheme was implemented; this eliminated the polar instability which hampered earlier attempts to use this model for long-term integration. A 30-day integration starting from January 1, 1977 initial condition was successfully carried out.

PLANS FY84

The comparative study of A, E and F physics, which started in 1973, will be finalized. The construction of the R42L18-F model will be completed. Research will be carried out on the inclusion of an interactive cloud scheme in a GCM. The mechanism of lee cyclogenesis will be investigated.

3.3 DYNAMICS OF PLANETARY WAVES AND BLOCKING

J. Kinter R. Pierrehumbert
K. Miyakoda

ACTIVITIES FY83

3.3.1 Planetary Waves

Wallace and Gutzler (Mon. Wea. Rev., 1981) identified five large-scale circulation patterns in the northern hemisphere. One of the most prominent of these is the Pacific-North-American (PNA) pattern. The strength of each

pattern in each month is characterized by an index which ranges continuously from negative to positive values.

An analysis of 15 years of data has revealed that the zonal winds averaged over certain longitude sectors have distinct meridional profiles associated with positive or negative index patterns (figure 3.2). Moreover, when these zonal winds are used in a linearized barotropic model, the observed circulation patterns can be reproduced to a considerable extent. The method is particularly successful for the PNA pattern.

3.3.2 Simulation of Blocking

In the GCM simulation of the blocking event of January 1977, some models were found to be very successful in predicting the evolution of a blocking pattern on the monthly time scale, whereas other models have entirely failed. The crucial elements for a skillful forecast appear to be the subgrid-scale processes, spatial resolution, and treatment of mountain barriers. These key features affect the meridional profile of zonal wind, the character of tropical heating, and the transient eddy field upstream of the blocking ridge; the effect on blocking is probably mediated by these phenomena.

3.3.3 Local Equilibrium Theory of Blocking

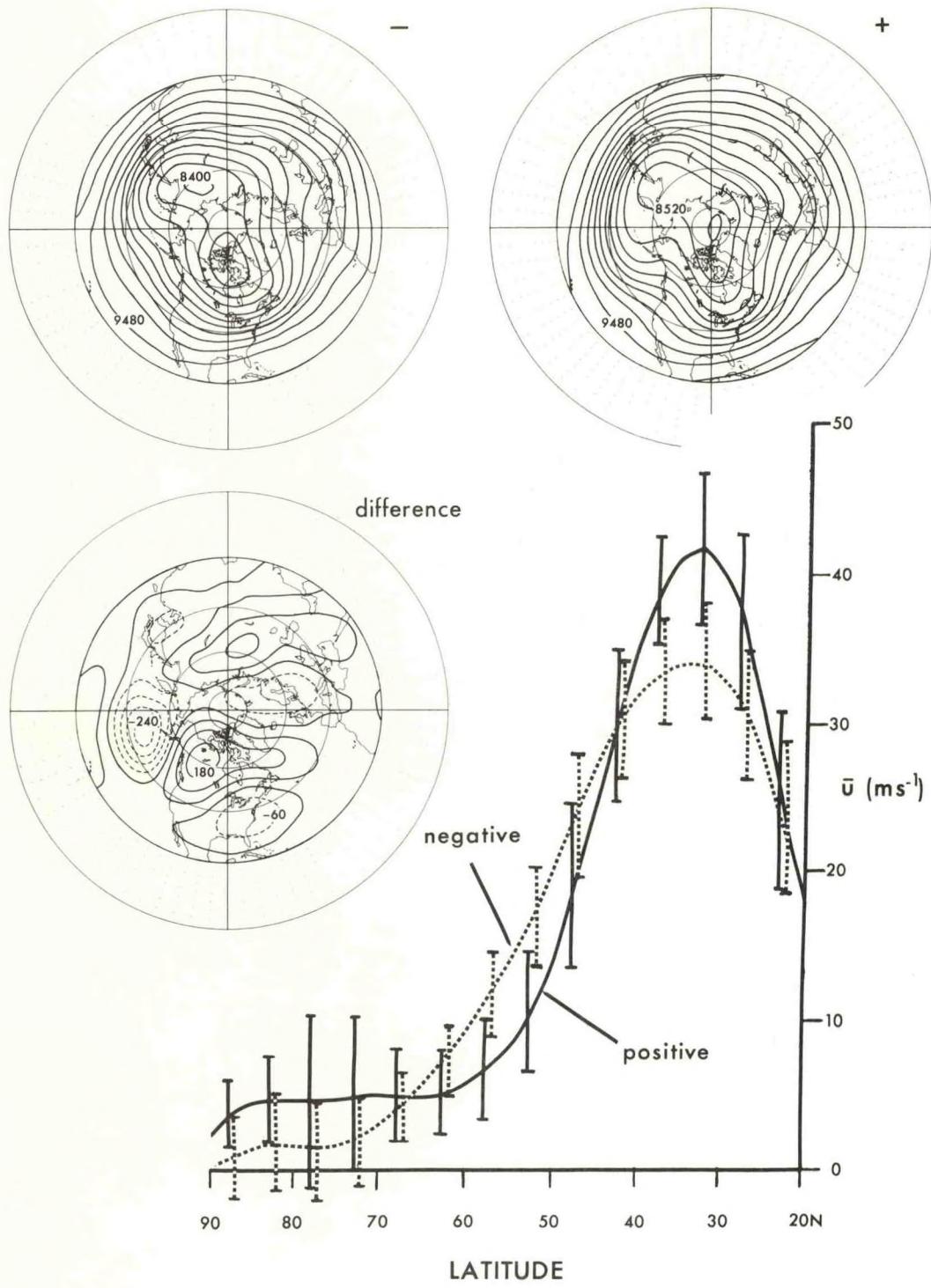
A theory of blocking as a locally amplified response to time-average eddy momentum flux was proposed (oo). It was shown analytically that a large amplitude ridge can occur in response to plausible forcing patterns. This prediction was verified in a series of simulations with a barotropic model, which indicated that a large amplitude blocking ridge could indeed be maintained upstream of a localized region of forcing.

PLANS FY84

Investigate the generation of transients in local baroclinic zones, the distribution of the consequent eddy fluxes, and the effect of these fluxes on blocking.

3.4 FOUR-DIMENSIONAL ANALYSIS

N. Lau	K. Miyakoda
K. Puri	J. Plosay
W. Stern	R. White


ACTIVITIES FY83

3.4.1 FGGE Operation

The operational production of FGGE Level III-b data has been completed. The products were mailed to and archived at two World Data Centers, i.e., Asheville, USA and Obninsk, USSR.

A book of daily weather maps Part I has been published, and another containing monthly mean statistics is being prepared. Further information is reported in (c) and (11).

PNA

90°E–180°–90°W

Fig. 3.2-- Wallace and Gutzler's (1981) geopotential height composites for the Pacific-North-American (PNA) pattern positive index (upper right) and negative index (upper left) at 300 mb based on 15 years of NMC winter monthly mean data. The map of geopotential height difference between the positive and negative index composites is given at the lower left. The 300 mb zonal winds (averaged over 90°E–180°–90°W) corresponding to positive and negative index are plotted at the lower right along with bars indicating plus or minus one standard deviation from the composite means.

3.4.2 Conversion and Improvement of Four-Dimensional Analysis

The four-dimensional analysis system as used to process FGGE data has been converted to the CYBER 205. The continuous data assimilation scheme is being improved based on an idea of K. Puri. The inclusion of a linear normal mode adjustment and the application of the non-linear normal mode initialization to the surface pressure and wind data every time-step seem to show some promise.

3.4.3 Walker Circulation at the Indonesian Archipelago

Using the FGGE data, the vertical velocity in the Indonesian Archipelago is being determined accurately. This updraft is very intense, and is likely to be linked with many significant phenomena.

3.5 UPPER OCEAN FORECASTS

K. Miyakoda J. Sirutis
C. Gordon A. Rosati

ACTIVITIES FY83

3.5.1 Sea Surface Temperature Forecasts

Ocean forecast experiments with a one-dimensional model have been completed. The results indicate that the treatment of evaporation and radiation must be done carefully in order to simulate the evolution of sea temperature accurately. So far the three-dimensional GCM for the ocean has not demonstrated its superiority over the one-dimensional model. Development of equatorial high resolution ocean model is underway.

PLANS FY84

An atmosphere-ocean coupled model will be constructed in order to simulate the air-sea interaction process in the equatorial region.

4. OCEANIC CIRCULATION

GOALS

- * To study the large-scale response of the ocean to atmospheric forcing over a range of time scales from a few weeks to decades.
- * To perform oceanic observational studies by systematically processing the large data base available for the density structure and the fields of various tracers.
- * To develop detailed, three-dimensional models of the World Ocean and its regional components and interpret these in terms of a coherent hydronynamical framework.
- * To develop a capability to predict the large-scale behavior of the World Ocean in response to changing atmospheric conditions.
- * To identify practical applications of oceanic models to man's marine activities.
- * To formulate and to test against observations a coastal ocean model which has a detailed surface layer and bottom boundary layer.

4.1 OCEANIC RESPONSE STUDIES

R. Gardiner Garden A. Seigel
R. Pacanowski T. Yamagata
S. Philander

ACTIVITIES FY83

4.1.1 El Niño Southern Oscillation Phenomena

The 1982/83 El Niño was exceptionally severe and evolved in an unusual manner. Anomalous conditions, which appeared in the western tropical Pacific in May 1982 and then expanded eastward, persisted into July 1983. A typical event starts off the coast of Peru, expands westward and terminates in February or March a year after its initiation. A review of these events was published in *Nature* (541,aaa,ccc).

A study with two coupled shallow water models that simulate the ocean and atmosphere respectively demonstrates that unstable interactions between the ocean and atmosphere can cause modest initial perturbation to amplify (ww). The perturbation, if it is a warm SST anomaly, heats the atmosphere and causes low level winds to converge on the region. The oceanic response to these winds amplifies the original perturbation which therefore has a bigger effect on the atmosphere. This is offered as an explanation for the amplification of anomalous conditions simultaneously in the ocean and atmosphere during El Niño. The seasonal movements of the large-scale atmospheric convergence zones modulate the instability because a warm SST anomaly heats the atmosphere only if there is rising air over the anomaly.

4.1.2 Dynamics of Tropical Oceans

A high resolution three dimensional model for the simulation of the seasonal cycle in the tropical Atlantic Ocean is remarkably realistic. The large seasonal changes in the slope of the equatorial thermocline, the reversal of the North Equatorial Countercurrent, the separation of the Brazilian Coastal Current from the coast during certain months, all are reproduced. Analysis routines to study the dynamics of these phenomena are now being developed.

Waves with a period of twenty days approximately dominate current meter records from the eastern tropical Pacific Ocean. Those records, obtained from PMEL Seattle, are being analyzed to determine the properties of the waves. Previous stability analyses of equatorial currents have predicted periods of thirty days rather than the observed twenty days. Further analyses with a channel model reveal that this discrepancy is a result of underestimation of the intensity of the currents.

PLANS FY84

The study of unstable interactions between the ocean and atmosphere will be continued and CISK processes will be included.

A high resolution model of the tropical Pacific Ocean will be developed and will be used to study the seasonal and interannual variability, including simulation of El Niño phenomena.

4.2 MARINE GEOCHEMISTRY

F. Bryan	M. Jackson	E. Romer
S. Gorlick	M. Kawase	R. Rotter
B. Gwinn	R. Key	J. Sarmiento
S. Hellerman		R. Toggweiler

ACTIVITIES FY83

The basic long range goal of the marine geochemistry group is the development of models of chemical recycling within the oceans. This involves the development of appropriate ocean circulation models using chemical tracers for validation. There were four major areas of activity during the last year.

The first major area of activity was the continuation of our ocean model development. During this last year F. Bryan performed a series of experiments with an idealized sector model of the oceans. He explored the effect of variations in vertical mixing and seasonal forcing on meridional overturning, heat transport, and tracer penetration. The results indicate a stronger sensitivity than we had expected. These results will be written up in the near future. Further experiments are being carried out and we are beginning to develop a new model of the Atlantic Ocean which will take advantage of what we have learned. During FY83 a previous study of how to parameterize isopycnal mixing by coordinate rotation was published (555) and the result of a North Atlantic simulation of the tritium distribution were accepted for publication (nnn).

The second major area of activity was a new one that began in FY83, the development of a model of nutrient cycling in the oceans. This is being done by Toggweiler and Sarmiento. A detailed review of recent literature on sediment trap and suspended particle studies led to a development of a series of equations for predicting nutrient recycling based on biological activity. Preliminary studies of these equations with box and 1-D models are very promising. The box model studies reveal a mechanism for oceanic control of atmospheric CO₂ that may explain the glacial decrease of 30 to 50% in atmospheric CO₂. Two papers are in preparation explaining the equations and the glacial pCO₂ theory.

A third major area of activity was our work with tracer data. A descriptive study of the tritium distribution in the North Atlantic was published (510). A paper which estimates thermocline ventilation time scales from a tritium box model is in press (ooo). The estimates show that seasonal convection and isopycnal mixing are completely dominant over Ekman pumping in ventilating the thermocline. A monthly input function for Sr-90 into the oceans was developed by Gwinn and Sarmiento and a description will soon be completed. This input function has been used to study the seasonality in surface ocean measurements at Weatherships in the North Atlantic for the period 1962 to 1973.

Hellerman and Jackson continue their vital support function, compiling and mapping Transient Tracers in the Oceans data, Cs-137 and Sr-90 measurements in the Atlantic, Ra-228 measurements throughout the world, and tritium observations in the Pacific.

The fourth major area of activity is our participation in the Transient Tracers in the Oceans measurement efforts. Sarmiento planned and coordinated the execution of the 3 month Tropical Atlantic study. He and Kawase are now using the data from this and previous geochemical projects to study the biological cycling of nutrients and develop techniques for obtaining mixing and velocity fields. Key, Gorlick, Rotter, and Sarmiento continued their radium-228 measurement efforts in their laboratory. A technical report by Key was published and three papers describing the first North Atlantic and Amazon River measurements are in preparation. The Amazon River shows a dramatic desorption of radium in the estuary which was far larger than we had expected.

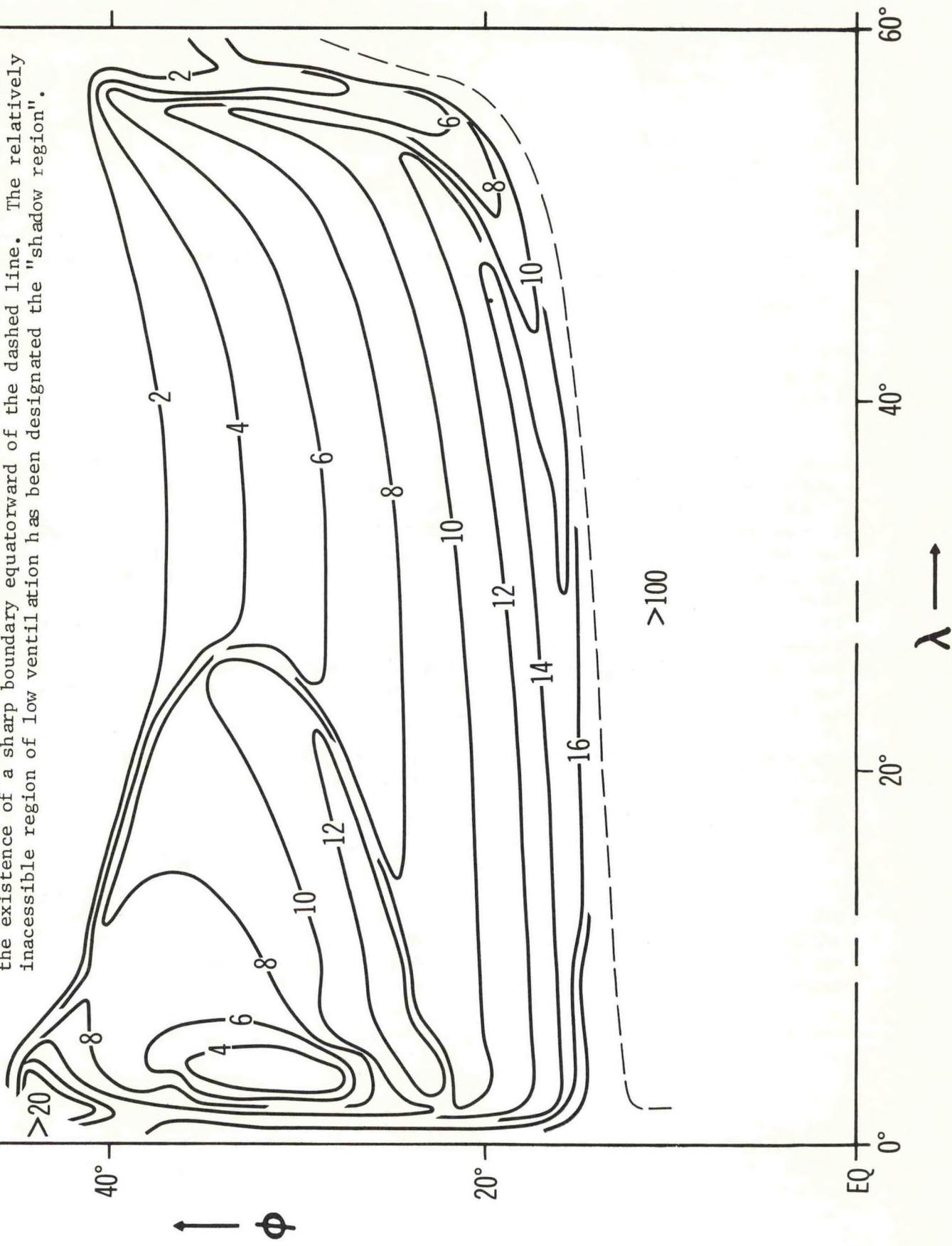
PLANS FY83

The coarse-resolution sector model experiments will be continued. The effect of vertical resolution and isopycnal mixing on model dynamics will be studied. Romer will work on the development of a new North Atlantic model for tracer studies. An eddy resolving version of this model will be developed in coordination with the Ocean Model Development Group.

The nutrient cycling parameterizations will be tested in the sector model and then in the North Atlantic model as it comes on line. We will be studying how these models can be used to predict atmospheric CO₂ levels.

We plan on completing our analysis of Cs-137/Sr-90 Weathership and other observations. The major focus of our data studies during the next year will be an analysis of the Transient Tracers in the Ocean's observations in the North Atlantic.

The radium-228 measurements take a full year to complete. We are just now beginning to get substantial numbers of measurements. Several descriptive papers are planned and we will also begin now to study how these data can be used for model validation.


4.3 WORLD OCEAN STUDIES

K. Bryan F. Komro
M. Cox N. Bogue

ACTIVITIES FY83

The installation of the CYBER 205 offered the opportunity to make a detailed parameter study of a three-dimensional ocean model in a simple geometry. The study (uu) was undertaken in cooperation with Woods Hole Oceanographic Institution. The results were analyzed in such a way as to make detailed comparison with theories for and observations of the potential vorticity distribution in the main thermocline. The analytical studies provide solutions for specific regions, while the numerical model with high vertical resolution provides a self consistent solution for the entire basin. Convection is shown to be a crucial factor in the vorticity balance, and surface wind distribution rather than seasonal effects prove to be the essential element in simulating subtropical mode water, known as the 18° water in the North Atlantic. The changing shape of the thermocline in response to strong and weak winds indicates the differences in ocean circulation to be expected in cold and warm climatic periods.

Fig. 4.1-- An "age map" (in years) of ocean waters coinciding with a surface of constant density in a three-dimensional ocean model with high vertical resolution. "Age" represents the time elapsed along a trajectory from the surface to a given point, and is a measure of the ventilation time of the ocean thermocline. Note the existence of a sharp boundary equatorward of the dashed line. The relatively inaccessible region of low ventilation has been designated the "shadow region".

Eddy resolving experiments were carried out using the $1^\circ \times 1^\circ$ resolution model as a starting point. A series of tests have been carried out to isolate the factors involved in the separation of the western boundary current.

The time scale of penetration of thermal anomalies into a World Ocean model was analyzed in a separate study (fff).

PLANS FY84

Eddy resolving models will be extended to a more realistic geometry, and the results analyzed to assess the role of eddies in the transport of water mass properties. Eddy tracer experiments will be carried out with the marine geochemistry group. A World Ocean model coupled to an atmospheric model will be analyzed in cooperation with the Climate Dynamics Group with particular emphasis on the difference between the Northern and Southern Hemisphere.

4.4 POLAR OCEAN STUDIES

ACTIVITIES FY83

A study of the yearly cycle of interaction between the Arctic Ice Pack and the underlying ocean has been completed (qq). The model parameters are fitted to the data of the AIDJEX field experiment. More detailed analysis of the coupled ice pack/ocean model for the Arctic has been carried out. The study carried out in collaboration with the CRREL (U.S. Army Corps of Engineers, Hanover, N.H.) showed that the trajectories of buoys riding on the ice pack could be predicted with some skill by the combined model including the ocean than was possible using the ice model alone. A study of the Ross Ice Shelf and the ocean below the shelf has been completed (x,ss). This study included a calculation of tides below the shelf, which provides a map of the tidal energy available for mixing. The calculations indicate that part of the area under the ice corresponds to a well mixed estuary, and the rest is well stratified. On this basis, a theory has been formulated for the distribution of melting and freezing along the lower base of the ice shelf. Melting would only occur in the well mixed regions. The theory is consistent with what little data is available, and new measurements are now being carried out along the outer edge of the ice shelf in a field experiment.

PLANS FY84

The work with the coupled ice pack/ocean model with CRREL will continue using a higher resolution model. The model will be tested using the trajectories of ice drift which now extend over several years. The model will be used to identify these areas of maximum ice growth, and examine the effect on the heat and salinity budget of the Arctic Ocean.

4.5 OCEAN MODEL DEVELOPMENT

ACTIVITIES FY83

A shear dependent mixing was introduced into our climate model, and sensitivity tests carried out. A world ocean model has been set up on the CYBER 205. An analysis of the numerical methods used to speed up the convergence to steady state solutions of the ocean model has been completed (zz).

PLANS FY84

Much of the effort in the coming year will center on eddy resolving models and the most efficient way to analyze the vast arrays of numbers that such an experiment generates. Attention will also be devoted to isopycnal coordinate models.

5. PLANETARY CIRCULATIONS

GOALS

- * To discover and understand the fundamental processes controlling the circulations of the atmospheres and oceans of the planets.

5.1 PLANETARY ATMOSPHERES

G. Williams

ACTIVITIES FY83

Analysis and documentation was commenced on the multiple experiments made to examine the response of different versions of the GFDL spectral GCM to changes in the external parameters (rotation rate, obliquity, diurnal period). Model versions are characterized by the presence or absence of moisture, longitudinal variations and surface drag. The implications of these solutions for the planets has been discussed in publication 497.

A study of the solitary vortices that occur at intermediate-geostrophic (IG) scales of motion suggested that Jupiter's Great Red Spot (GRS) and Large Ovals may be related to such phenomena. The genesis and longevity of GRS-like and Oval-like vortices was simulated using the shallow water equations for Jovian parameters in the IG range. The vortices may be initiated by weakly and moderately unstable zonal currents. IG motions occur at scales intermediate to those of quasi-geostrophic and planetary-geostrophic motions. Horizontal divergence plays a crucial role in IG dynamics and produces asymmetries in vortex behavior; in particular, anticyclonic vortices are more stable than cyclonic ones. This may explain why most of Jupiter's super-eddies prefer anticyclonic spin (ppp).

PLANS FY84

The detailed analysis and documentation of the dynamics of the multiple, parametrically varying GCM experiments will be completed.

Model development will continue for Jupiter and Venus. The nature of IG vortices in 3-dimensional models will be examined to develop more realistic models of the Great Red Spot.

5.2 VENUS ATMOSPHERIC TIDES

D. Crisp D. Andrews*

S. Fels J. Schofield*

* Dept. of Atmospheric Physics, Oxford University

ACTIVITIES FY83

The Pioneer Venus Orbital Infrared Radiometer was constructed by scientists at Oxford University, and made observations of the thermal structure of the Venus mesosphere for over 70 consecutive days in 1979. This data provides persuasive evidence for the existence of diurnal and semi-diurnal temperature perturbations. These structures show distinct phase propagation with height, and are almost certainly tides. Through an examination of their behavior, one may hope to gain insight into the structure of the Venus mesosphere. This is true largely because of the sensitivity of the tides to the distribution of mean winds and thermal forcing.

To model these waves requires a good understanding of the thermal forcing, and a suitable theoretical method for calculating the response. The development of the former has been in progress for several years at GFDL, (see Sec. 5.3).

The Venus Tidal problem differs from the classical one in that the mean zonal winds are almost everywhere larger than the motion due to planetary rotation, and are apparently not well approximated by solid body rotation. Because of this, conventional tidal theory does not apply, and new methods are required.

In the course of a six month visit to Oxford, a new analytical approximation was developed which renders the Venusian tidal problem relatively tractable. The theory makes use of a two-scale method, which although approximate, has the advantages of computational simplicity and conceptual transparency when compared with other techniques. Preliminary results show encouraging agreement with observations of the horizontal structure of the semi-diurnal tide.

Due to the short vertical wavelength of the tides, the aliasing errors introduced by the finite resolution of the OIR sounder can be very large. It is therefore necessary to verify that the model tides give the observed radiances when inserted in a suitable radiative model. This project is currently underway as a collaborative effort of GFDL and the Pioneer Venus OIR group at Oxford. Early results give grounds for optimism: the observed phase structure of the semi-diurnal tide seems to be well predicted by the model, and the amplitude is also approximately correct.

PLANS FY84

The collaboration with the Oxford group will continue, and an attempt will be made to determine properties of the mean state by comparison of predicted and observed tidal fields.

5.3 RADIATIVE PROCESSES IN THE VENUS MESOSPHERE

D. Crisp S. Fels

New methods for computing radiative fluxes and heating rates in atmospheres where gaseous absorption and multiple scattering are of nearly equal importance have been developed. These new methods have been used to determine the role of radiative processes in the Venus mesosphere (60-100 km). The global-mean radiative equilibrium thermal structure of this region was established and its sensitivity to uncertainties in the optical properties at these levels was determined. The meridional dependence of the radiative equilibrium thermal structure was also computed. These experiments show that radiative processes act to destroy the observed reversed meridional temperature gradients and produce polar mesospheric temperatures up to 40°K cooler than those in the tropics. To maintain the observed thermal structure in the presence of this radiative forcing, net dynamical heating rates of 15°K/Earth-day are needed at low latitudes. The structure of these required net heating and cooling rates suggests the presence of a meridional circulation cell with rising motion at low latitudes, poleward flow at levels near the top of the mesosphere, and descending motion in polar regions. Mechanisms for maintaining a meridional cell of this form are now being investigated.

6. OBSERVATIONAL STUDIES

Goals

- * To determine and evaluate the physical processes by which the atmospheric and oceanic circulations are maintained, using all available observations.
- * To compare results of observational studies with similar diagnostic studies of the model atmosphere and model ocean developed at GFDL and thereby develop a feedback to enhance understanding in both areas.

6. OBSERVATIONAL STUDIES

6.1 ATMOSPHERIC ANALYSIS

N. C. Lau	S. Fagen - Junior Fellow
A. H. Oort	M. Forman - Junior Fellow
M. Rosenstein	S. Prasad - Student
	J. P. Peixoto - Visitor

6.1.1 Statistical Description of the Atmospheric Circulation

Many of the research results obtained in earlier years have appeared in print during this fiscal year. Most comprehensive is the NOAA Professional Paper No. 14 (u) on "Global Atmospheric Circulation Statistics, 1958-1973" describing the structure of the global atmosphere in great detail. The physical implications of these analyses were published in two extensive, complementary papers on the global angular momentum and energy balance requirements (533) and on the atmospheric branch of the hydrological cycle (544) in cooperation with Prof. José Peixoto of the University of Lisbon. Special emphasis was given to the year-to-year variability in a position paper for a WMO/ICSU Study Conference in Leningrad (551). A joint paper with Dr. Y-H Pan of the Academia Sinica in Beijing, China, (w) clarified some of the global aspects of the El Niño-Southern Oscillation phenomena based on our 15-year data set of atmospheric and sea surface parameters. A remarkable and highly significant correlation was found between the vertical-mean atmospheric temperature averaged over the entire Northern Hemisphere and the sea surface temperature in the eastern equatorial Pacific Ocean. The warming of the atmosphere especially in the Tropics was ascribed to increased convection in the tropical belt during El Niño conditions. Similar effects have been observed during the most recent, record-breaking 1982-1983 El Niño. Part of this research is also being prepared for publication in "Acta Oceanologica Sinica" in China.

Preliminary work on interhemispheric comparisons in our data sets show the important role of the Antarctic continent in the Southern Hemisphere. Evidence is found that the troposphere in the Southern Hemisphere is on the average 1°C colder than in the Northern Hemisphere, and that the pole-equator temperature gradient is much stronger in the Southern Hemisphere, especially in the summer season. These findings have important repercussions leading to increased baroclinicity in the Southern Hemisphere and greater intensity of the transient eddy circulations and of the year-to-year variability in the various statistics in that hemisphere.

The forcing of the time mean flow by transient eddies was further investigated (514,tt). The eddy effects were found to be dominated by disturbances with time scales longer than 10 days. Both heat and vorticity fluxes tend to destroy zonal asymmetries in the time-mean circulation.

A study of midlatitude disturbances accompanying cold air outbreaks over East Asia was completed (see Fig. 6.1). Through an analysis of synoptic charts during the winter MONEX the structure and energetics of various wave phenomena prevalent over East Asia were documented. Disturbances with time scales of several days evolved through a life cycle characterized by baroclinic growth coinciding with the polar outbreaks, followed by a decay phase dominated by barotropic processes.

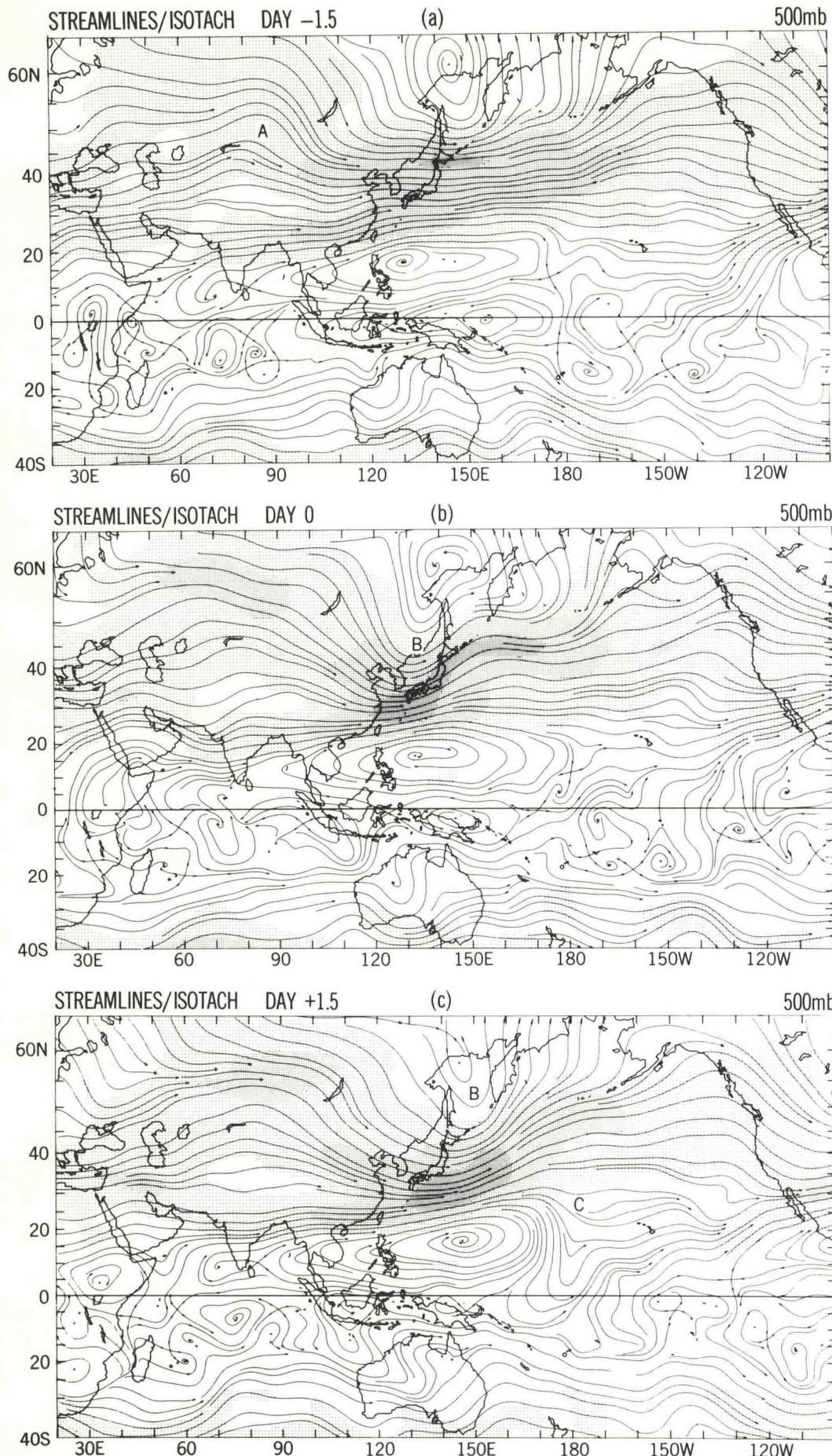


Fig. 6.1-- Severe cold outbreaks over East Asia. Observed composite streamline charts at 500 mb on (a) 1.5 days before a cold outbreak, (b) the day of the cold outbreak, and (c) 1.5 days after the outbreak. The local wind speeds are indicated by degree of shading: 0-20 knots (no shading), 20-40 knots (light), 40-60 knots (medium), over 60 knots (heavy).

Monthly and seasonal circulation statistics were documented for the entire FGGE year (Dec 1978-Nov 1979) based on the level-3B analyses produced by GFDL. Similar statistics were also computed using the analyses produced by ECMWF for the Special Observing Periods. Despite considerable enhancement of the data during the FGGE year, there still exist considerable differences between the two sets of analyses over data-sparse areas.

6.1.2 Diagnosis of General Circulation Model (GCM) Results

The seasonal variation of the three-dimensional structure of the stationary waves generated by various GCM's was verified against observations (j). The seasonal dependence of the orographic and diabatic forcing in the GCM's as well as the propagation characteristics of low-frequency fluctuations were documented and compared with observations.

The exchange of angular momentum between the atmosphere and earth was studied by evaluating the mountain and friction torques (gg) on a global scale both from observations and from general circulation model runs. The overall correspondence between model and observed results turned out to be quite good in spite of the large uncertainties in the model formulation of vertical momentum exchange.

PLANS FY84

The basic 15-year (1958-1973) and FGGE (1979) data sets will be used in a continuing research effort to study the role of the atmosphere and oceans. This will be done through, e.g., evaluating certain regional balances of angular momentum, energy and water vapor. Main emphasis will be on indirectly inferred oceanic heat and fresh water transports in cooperation with the oceanic data studies.

Data processing for a new 5 to 6-year period as a bridge between the 1958-1973 and 1979 (FGGE) periods will begin. Additional basic rawinsonde station data, besides the operational NMC data, will have to be acquired especially in the Southern Hemisphere.

The 6-times a day FGGE analyses generated earlier at GFDL in the Experimental Prediction Group will be studied for selected months in order to investigate the diurnal cycle in the atmosphere.

A comprehensive atlas containing circulation statistics for the FGGE year, as well as highlights of the differences between the level-3B analyses produced by GFDL and ECMWF will be prepared.

The diagnosis of the interaction between the transient eddies and the time-mean flow will continue, using novel techniques such as local extension of the Eliassen-Palm flux concept, and alternative formulations of the atmospheric energy cycle.

Following the successful 15-year GCM integration presently in progress, in which observed SST variations over the equatorial Pacific are introduced as the lower boundary condition. The new level of variability in the model and the circulation anomalies associated with the El Niño episodes will be studied.

6.2 OCEANIC ANALYSES

S. Levitus

A. Oort

6.2.1 Global Analysis of Oceanic Data

The "Climatological Atlas of the World Ocean" was printed as NOAA Professional Paper 13 as a culmination of an almost 10-year long effort to document the 3-dimensional structure of the world ocean. Extensive use is already being made by many investigators inside and outside the U.S. of the statistics published in the paper and of the analyzed fields provided on tape by GFDL and in the future by NODC.

A paper describing the annual cycles of temperature and heat storage in the various oceans is in the final stages of preparation. This information will be a basic input for further studies of seasonal variations in the oceanic heat transport.

A study of the salinity balance and its seasonal variation based on the oceanographic data atlas is in progress.

PLANS FY84

In conjunction with the atmospheric branch of the Observational Studies Project the study of the heat and fresh water balances over individual oceans will continue.

The year-to-year variability in subsurface heat storage will be investigated over data-rich areas in the North Atlantic Ocean. Presumably, additional historical data sets will have to be acquired to study this problem so crucial to issues of climate change.

Fig. 6.2-- Observed basin-wide zonal averages of May minus annual mean temperatures (degrees Centigrade) for the Pacific, Atlantic and Indian Oceans. The cell-like distributions in the tropics are due to displacements of the thermocline.

7. HURRICANE DYNAMICS

Goals

- * To understand the genesis, development and decay of tropical depressions by investigating the thermo-hydrodynamical processes using numerical simulation models.
- * To study small-scale features of hurricane systems, such as the collective role of deep convection, the exchange of physical quantities at the lower boundary and the formation of organized spiral bands.
- * To investigate the capability of numerical models in the prediction of hurricane movement and intensity.

7. HURRICANE DYNAMICS

7.1 GENESIS AND DECAY OF TROPICAL STORMS

M. Bender
Y. Kurihara

R. Tuleya

ACTIVITIES FY83

The decay process of tropical cyclones after the landfall was investigated. Several ideal simulations of hurricane landfall were performed for a zonal flow of 10 m s^{-1} with a movable triply-nested model with open lateral boundary. General characteristics similar to observed landfalling tropical cyclones were obtained in the primary simulation experiment including an abrupt change in the low level winds at the coastline and a decay of hurricanes as it moves inland. Figure 7.1 shows horizontal distribution of maximum low level wind during the tropical storm passage for landfall experiment as well as for the ocean only experiment. A major cause for decay of a storm is the reduction of water vapor supply to a storm system after the landfall. It was found that the low land surface temperature of 298K made a large contribution to the decay through the suppression of evaporation in spite of the presence of available water, the alteration in the boundary layer wind and the decrease in conditional instability. The analysis results of additional experiments indicate: the surface wind speed responds rather quickly to variable roughness of the land surface; a small, less intense storm fills less rapidly, in good agreement with observations. This study is summarized in (ff). Lately, the model has been upgraded with the inclusion of the effect of topography.

An investigation of the mechanism of comma vortex formation is almost complete. Comparative analysis of the experiments with both an f-plane model and a spherical model revealed that: (1) the high wind side of the disturbance is the favorable region for the formation of the tail of the comma shape pattern; (2) the β -effect retards the development of a comma vortex in the case of easterly environmental winds and enhances it in the case of westerlies; (3) although a band-like feature may be induced in a purely barotropic model by the non-linear effect alone in the non-circular flow case and by the β -effect in a circular flow case, air-sea interaction is a necessary ingredient for the formative process of the distinct comma vortex. A paper reporting the simulation and analysis results was submitted for publication (111).

The study on the transformation of a tropical easterly wave to a distinct vortex was performed through the time integration of a simple numerical model. The initial condition represents a slowly decaying, adiabatic linear normal mode resembling an easterly wave. The addition of a CISK-type heating effect causes the growth of the wave. Inclusion of the nonlinearity effect alone has little impact on the wave evolution. However, if the nonlinearity effect is combined with the heating effect, it can cause the contraction of the disturbance and enhance the development. The initial free wave undergoes significant structural changes during its transformation into a developing system. The paper on the above subject is in preparation.

The follow-up study of the hurricane eye simulation experiment carried out in the preceding year (490) was made with the emphasis on the energy budget

MAXIMUM LOW LEVEL WIND (ms⁻¹)

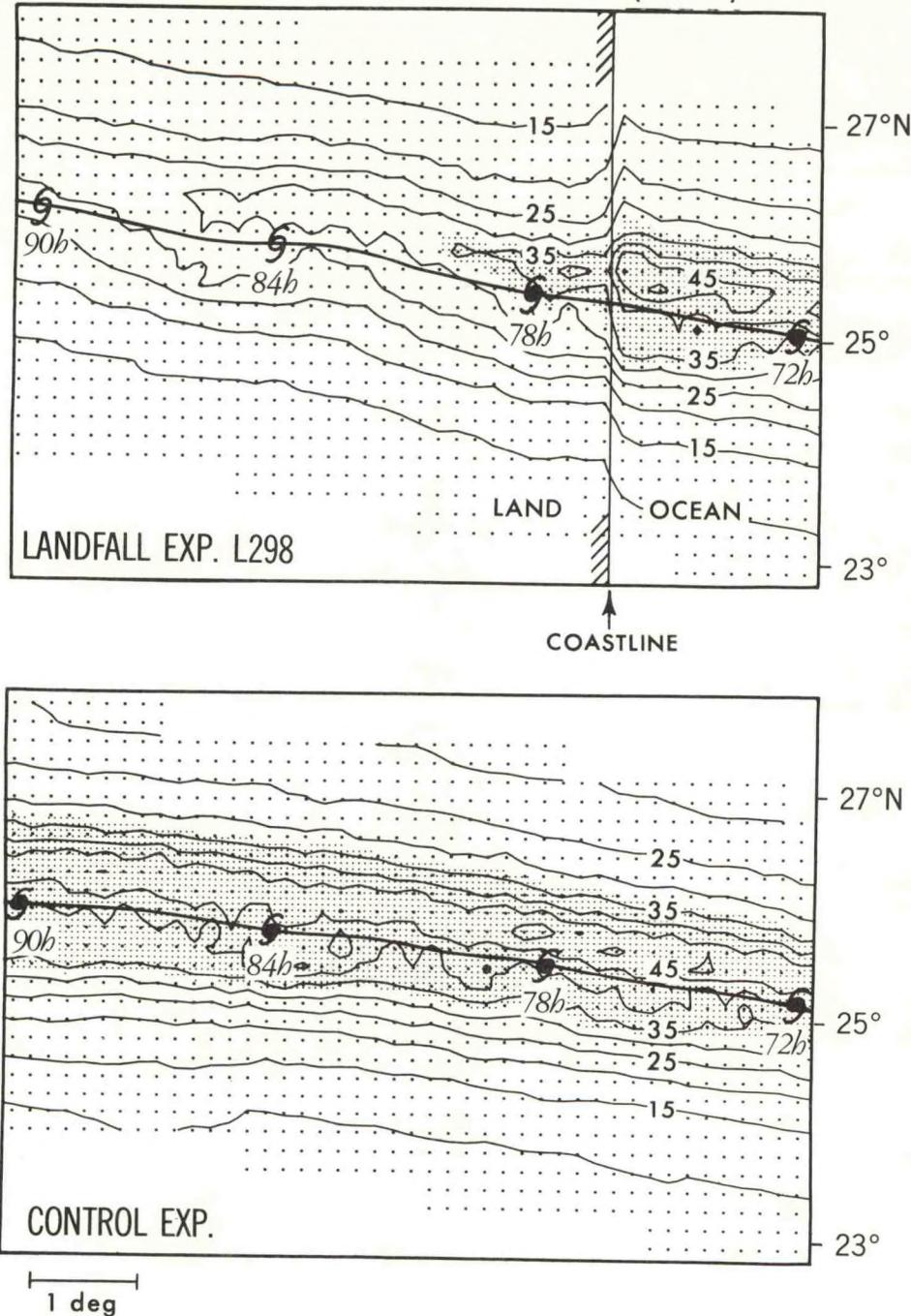


Fig. 7.1-- Top: Horizontal distribution of maximum low level wind during the tropical storm passage for the primary basic landfall experiment (land surface temperature = 298K, SST = 302K). A storm track is shown with 6 hourly positions indicated. Shading indicates hurricane force winds (above 33 m/s). Land is located to the west of the indicated coastline and the dots indicate the fine mesh resolution of approximately 17 km at 25 N. Bottom: Same as Top, except for the ocean only experiment (SST = 302K).

analysis. It was found that the eddy kinetic energy within the eye is supplied by import from the eye wall regions as well as by the conversion from total potential energy. The obtained results were summarized in (549).

PLANS FY84

The hurricane landfall simulation study will continue with a new model to investigate the effect of topography on the landfall of hurricanes.

The paper on the transformation of easterly waves will be prepared and submitted for publication.

A study on the influence of quasi-stationary field on the storm genesis in the tropics may start.

7.2 EXPERIMENTAL HURRICANE PREDICTION

M. Bender R. Tuleya
Y. Kurihara

ACTIVITIES FY83

Testing has been continued on a numerical scheme to treat the open lateral boundary of a limited area primitive equation model. The scheme examined is basically similar to the one reported in (540).

The attempt has been made to devise an efficient scheme of model initialization.

PLANS FY84

Activities in the preceding year will continue. In addition, the selection of cases for experimental prediction may be made.

8. MESOSCALE DYNAMICS

GOALS

- * To produce accurate numerical simulations of mesoscale processes in order to understand what role synoptic scale parameters play in their generation and evolution.
- * To understand the dynamics of mesoscale phenomena and their interaction with larger and smaller scales.
- * To determine practical limits of mesoscale predictability by means of sensitivity studies on numerical simulations of mesoscale phenomena.

8.1 FRONTAL DYNAMICS

8.1.1 The Dynamics of Mesoscale Convective Systems (MCS)*

I. Orlanski R. Shaginaw
B. Ross K. Moore
L. Polinsky

ACTIVITIES FY83

A detailed analysis has been made of a three-dimensional numerical simulation of a frontal squall line (488, hh). The simulated squall line which develops along the front exhibits a dual updraft structure with low-level convergence near the nose of the front and mid-level convergence located a hundred kilometers to the rear at a height of 3 km. This configuration is very similar to one found by Ogura and Liou (1980) in their analysis of an Oklahoma squall line not associated with a cold front.

Analysis of the equations of motion within the convective zone of the mature squall line shows the diabatic heating to be closely balanced by adiabatic cooling due to vertical temperature advection. As a result, the only net warming within this region occurs as adiabatic heating in the clear air outside of the cloud zone.

A linear, two-layer dry model containing stable lower and unstable upper layers is shown to reproduce the dual updraft structure for certain low-level wind intensities without requiring microphysics. Also, for all wind conditions, this simple model produces convergence at the interface between the two layers. This suggests that the occurrence of a convergence maximum at the level of free convection should be a common feature of convectively unstable cloud systems.

A stability analysis of the narrow cold-frontal rainband has revealed a mechanism by which horizontal shear can organize the convection in the rainband into cells. Although the rainband is barotropically stable, the coupling between the convective activity and the shear results in an unstable mode with properties similar to the observed regularly spaced precipitation cores in the narrow cold-frontal rainband.

PLANS FY84

Simulation of the Pacific comma cloud and the mid-west summer mesoscale convective complex will be attempted.

Research will be completed on the development of cellular structure in frontal rainbands.

* The term "Mesoscale Convective Systems" as used here refers to squall lines, comma clouds, supercell thunderstorms, mesoscale convective complexes, and other organized convective systems.

8.1.2 The Ocean Response to Mesoscale Atmospheric Forcing

I. Orlanski
L. Polinsky

ACTIVITIES FY83

Many processes have been proposed as possible forcing mechanisms for meso-scale oceanic variability. The present study (r) shows that atmospheric forcing can be an important source of mesoscale variability in the ocean. It was shown that the oceanic response is linearly proportional to the product of the time scale of the storm and its intensity. It also clarifies the point that, for storms with scales considerably smaller than the barotropic Rossby radius of deformation, the oceanic stratification and the horizontal extent of the storm are the only factors determining the penetration depth of the response. This result implies that the scale of the penetration depth, rather than the Rossby radius of deformation, characterizes the response.

8.1.3 Interaction of Fronts with Orography

W-D Chen
I. Orlanski

ACTIVITIES FY83

Research has been carried out to investigate the interaction of an atmospheric cold front with mountainous terrain. The cyclogenesis which develops on the downstream side of a ridge-type mountain barrier during frontal passage was intensively observed in the ALPEX field experiment which recently took place in the European Alps. Laboratory experiments have been performed to simulate this lee cyclogenesis using a two-layer fluid in a cylindrical rotating tank with a long ridge barrier on its lower surface. A heavier fluid was injected at the bottom center of the tank, filled with a lighter fluid, to produce an outward-moving, zonally symmetric front which encountered the ridge barrier. The interaction of this front and the bottom topography has been analyzed and compared with theory for various different experimental conditions.

PLANS FY84

This research will be completed during FY84.

8.2 MESO-ALPHA PREDICTABILITY

8.2.1 Initialization Impact for Nested Limited-Area Forecasts

I. Orlanski K. Miyakoda*
D. Miller

ACTIVITIES FY83

Despite the improvement seen in recent years in the numerical prediction

* In cooperation with the Experimental Prediction Group

of most meteorological variables with the advent of more powerful computers and the introduction of nested limited-area models, no similar improvement has been seen in the prediction of quantitative precipitation. A research effort is underway to utilize a nested system of models to explore the impact of synoptic-scale initialization analyses upon the forecasting of both planetary-scale waves and quantitative precipitation.

An initial experiment was run, simulating the 48-hour period from 1200 GMT April 9 to 1200 GMT April 11 1979, during which a severe tornadic outbreak occurred in the vicinity of the Texas-Oklahoma border, but for which previous limited-area modeling attempts to simulate the large mesoscale features and precipitation fields had met with only limited success. Two cases were run in which both the global and limited-area models of the system were initialized either with standard, NMC-analyzed observations or with a specially analyzed dataset prepared at GFDL from an enhanced set of observations taken during the First Global GARP Experiment (FGGE).

The results show some improvement in the placement and orientation of the precipitation fields for the run initialized from the enhanced and presumably superior FGGE dataset. However, the coarse resolution of the global model induces uncertainties in the higher-resolution, interior model through the lateral boundary conditions, thereby producing imprecise predictions of mesoscale circulations that are primarily responsible for determining precipitation patterns.

PLANS FY84

Further investigation will be made of the impact of initial and boundary data on the simulation of mesoscale convective systems by meso-scale models.

8.2.2 Simulations with "Profiler" Initial Data

I. Orlanski

B. Ross

ACTIVITIES FY83

Numerical experiments have been carried out which indicate the sensitivity of a numerical simulation of an observed cold front to the use of spatially smoothed thermodynamic initial conditions. Moist and dry versions of the 48h control solution discussed in 8.1.1 (488, hh), were reinitialized after 24h with initial conditions which use exact velocity and velocity tendencies from the control but employ thermodynamic fields which are smoothed either horizontally (the original 60-km grid resolution was filtered to a resolution of 540 km) or vertically (the original 1-km vertical resolution was filtered to a 3-km grid spacing in the troposphere). A comparison of the resulting 24h dry simulations with the corresponding control indicates that the horizontally smoothed solution requires nearly 2 hours to approach the control solution while the vertically smoothed case is less disturbed initially and adjusts more rapidly. When moisture is present in the solution, the smoothing procedure disrupts the developing moist convection in the frontal zone, producing large temperature and velocity differences in this region over the entire 24h integration. In particular, the horizontal smoothing of the water vapor

maximum occurring along the front drastically weakens the intensity of the frontal precipitation.

8.2.3 Boundary Data Experiments in Nested Limited-Area Models

I. Orlanski
D. Miller

ACTIVITIES FY83

Three basic problems may cause contamination of the solution obtained by nesting a fine into a coarse resolution model: (1) Long-lived mesoscale disturbances that are not resolved in the relatively-coarse outer model are lost to the limited-area solution. However, a well-conceived limited-area model should be able, after an adjustment time, to produce such features from the larger-scale baroclinic fields; (2) Any numerical scheme for prescribing lateral boundary conditions will be important and will therefore be a source of errors in the limited-area solutions. Various mathematical treatments may be used to reduce these errors, but moving the boundaries far away from the region of interest may provide the simplest short-term remedy; (3) Another source of mesoscale errors in the limited-area model is that the prescribed solution along the boundaries from the large-scale model contains the uncertainties of the large-scale solution. The nested model may then simulate mesoscale disturbances associated with the misplaced large scale patterns quite well but will still yield substantial local errors.

The experiment that has been performed here consists of switching the time-dependent boundary conditions from two spectral forecasts with NMC and FGGE initial conditions (as in 8.2.1) in the limited-area model. The analysis of the differences between the "switched" solution and the control will determine the effect of initial and boundary data in the limited-area solution. Preliminary results show that, in a nested-model system designed as described, lateral boundary conditions from the global forecast play a dominant role in determining the position and strength of the synoptic as well as mesoscale features in the limited-area solution after only a few hours of simulation time. Accurate prediction of the planetary-scale waves by the global model throughout the simulation period is thus of critical importance if any real benefit is to be gained from the enhanced resolution and more sophisticated physics of the limited-area model in the way of achieving a more accurate prediction of mesoscale features and precipitation patterns.

PLANS FY84

Analysis of the impact of boundary data in the nested solution will be continued.

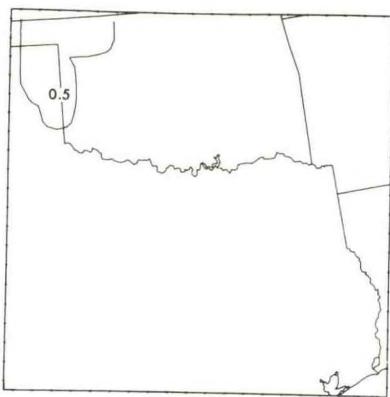
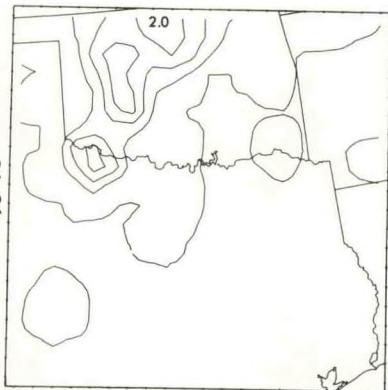
8.3 MESO-BETA PREDICTABILITY

8.3.1 Sensitivity of Precipitation Forecast to Initial and Boundary Data

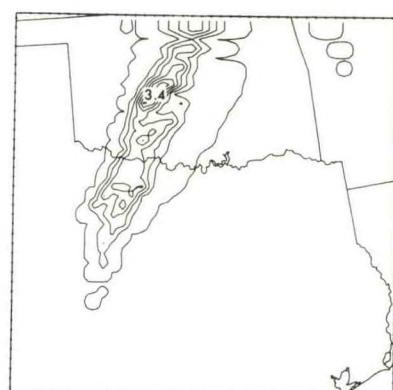
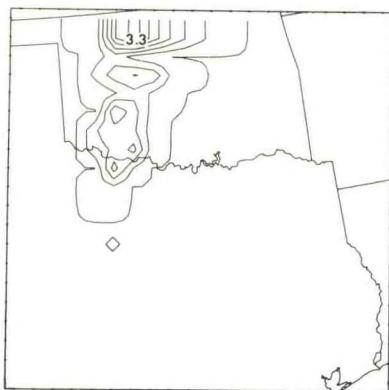
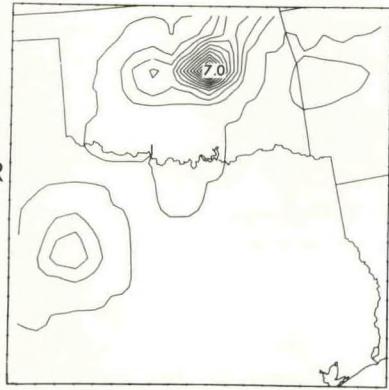
B. Ross

3-HOUR PRECIPITATION

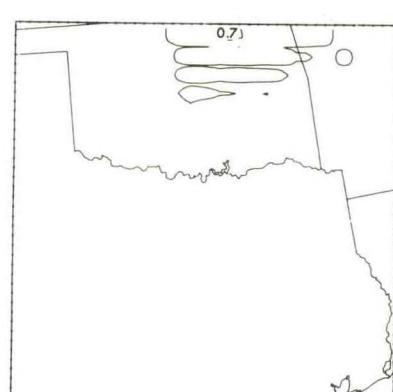
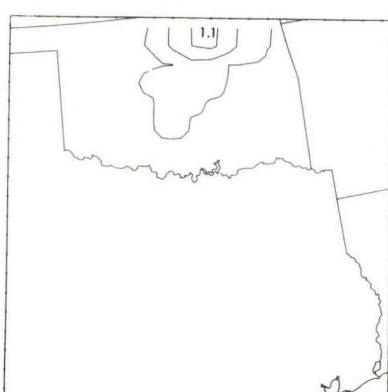
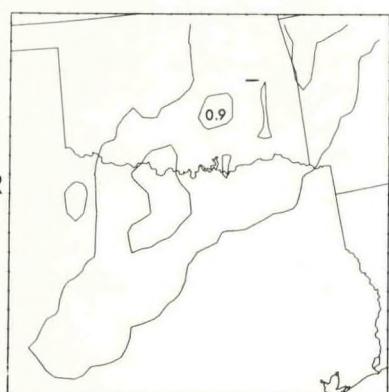
OBSERVED DATA



FORCAST USING OBSERVED BOUNDARY DATA

N21L17 ($\Delta X = 40\text{km}$)




N41L17 ($\Delta X = 20\text{km}$)

INTERVAL=0.5cm




21Z 10 APR
00Z 11 APR

03Z 11 APR
06Z 11 APR

09Z 11 APR
12Z 11 APR

Mesoscale Dynamics, GFDL

Fig. 8.1-- Comparison of 3-hour precipitation amounts over Oklahoma and Texas for different times during SESAME Day I, 12Z 10 April - 12Z 11 April 1979, as taken from observations (left column) and mesoscale model simulations with 40-km (center) and 20-km (right) grid resolution. Contour intervals are 0.5 cm with the maximum precipitation amount indicated in each frame.

ACTIVITIES FY83

An investigation has been made of the sensitivity of meso- β scale precipitation patterns to the specification of initial and boundary data in a nested grid model in which moist convection is represented explicitly. A beta-scale (BES) model, positioned over Oklahoma and north Texas, was used to predict the timing and location of precipitation during the SESAME I period of 12Z 10 April to 12Z 11 April 1979. Solutions which were obtained using initial and boundary conditions from a meso- α scale (MAC) model, were shown to produce increased mesoscale convective structure but did not alter the geographical location of the precipitation as predicted by the large-scale solution.

When higher resolution SESAME data for moisture and low-level temperature lapse rate was used in the meso- β solution, precipitation patterns were modified considerably but do not verify the observed precipitation for the period. However, when all SESAME data, including momentum and complete temperature fields, were used in the model initial and boundary conditions, the predicted precipitation showed good agreement with observations with regard to both location and time of occurrence, particularly when a 20-km grid-size was used (Fig. 8.1). The improved rainfall in the latter cases seems to be due primarily to proper representation of the formation and movement of the cold front which was observed to develop in this case but which was less intense at this time in the previous nested solutions and in numerical simulations reported by other investigators.

PLANS FY84

Further investigations will be made of the value of an explicit formulation of moist convection as a means of representing convective processes in a meso- β scale model. Inclusion of a rainwater phase as well as other modifications such as consideration of precipitation efficiency will be incorporated in order to improve the performance of this parameterization technique.

An attempt will be made, in collaboration with the Convection Group, to nest a meso- β scale cloud model within the meso- β scale solution.

8.4 MODEL DEVELOPMENT

B. Ross L. Polinsky
D. Miller I. Orlanski
R. Shaginaw

ACTIVITIES FY83

Both the MAC/BES and HIBU mesoscale models, together with the supporting analysis and initialization programs, have been converted to the CYBER 205. Extensive effort has been devoted to improving the I/O efficiency of the MAC/BES model in order to decrease its wall-clock execution time.

Modifications have been made to the three-dimensional mesoscale MAC/BES model to include the effect of rainwater in the explicit treatment of moist convection. The presence of a rainwater phase within the model simulation becomes more important in meso- β scale solutions because of the increased need

at high resolutions to properly represent water loading within the precipitation cores of the cloud and evaporative cooling of rainwater beneath the cloud. Preliminary results show that the increased water loading due to rainwater decreases the intense precipitation rate which the higher resolution model produces. Studies in collaboration with the Convection Group have suggested ways in which the rainwater treatment can be improved.

Three-dimensional experiments have been performed to compare convective solutions which employ quasi-hydrostatic and hydrostatic approximations. Preliminary results show little difference between convective simulations using the different approximations when a grid size of 15 km or larger is used.

PLANS FY84

Further improvements will be made in the explicit representation of convection, in collaboration with the Convection Group.

Further tests will be performed using simulations of moist convection in which quasi-hydrostatic techniques are incorporated.

Efforts will be made to optimize the MAC/BES mesoscale model so as to improve central processor efficiency and reduce memory utilization.

Code modifications required to incorporate a body-force parameterization of topography in the MAC/BES model will be converted to the CYBER 205.

9. CONVECTION AND TURBULENCE

GOALS

- * To develop and improve three-dimensional numerical models capable of simulating dry and moist thermal convection in the atmosphere.
- * To understand the dynamics of deep moist convection and its role in the vertical transfer of heat, moisture, momentum and atmospheric tracers.
- * To develop numerical models capable of simulating turbulence in homogeneous and stratified fluids by simulating the large turbulent eddies directly and by testing various parameterizations of the subgrid-scale flow.
- * To perform laboratory measurements and analysis of turbulence in various media to aid understanding of its fundamental mechanisms.
- * To formulate and test against observation various turbulence closure hypotheses applicable to the diabatic planetary boundary layer.

9.1 CONVECTION

R. Hemler
F. Lipps

ACTIVITIES FY83

At the beginning of this year the primary effort was devoted to converting numerical models and analysis routines from the TI-ASC to the CDC-CYBER 205 and making them run efficiently on the new computer. In addition, the deep moist convection model, initially adapted to simulate tropical maritime convection characteristic of the GATE area, was modified to simulate continental convection characteristic of the Central U.S. The basic structure of this numerical model is described in (516) and (303) with subsequent modifications in the Kessler-type bulk cloud physics and the subgrid-scale turbulence parameterization. For the continental convection the grid intervals are 1000 m in each horizontal direction and 500 m in the vertical. In all calculations the depth of the model is 17 km. For three-dimensional computations the horizontal domain is 48 km by 32 km while for two-dimensional computations the channel length is 64 km. The initial disturbance consists of a saturated bubble in the center of the horizontal domain and extending in the vertical from 1750 m to 4750 m. The maximum disturbance potential temperature is at 3250 m and is either 0.5 K or 1.0 K. For the present calculations periodic side boundary conditions are used.

Here the results are summarized for three-dimensional calculations with a unidirectional wind shear present. The maximum vertical velocity was slightly over 20 m/sec and the maximum rainfall at the ground was 1.5 cm which fell in one-half hour. The whole life history of the storm was approximately one hour. Due to the periodic side boundary conditions, no quasi-steady system could develop. When compared with the previously simulated GATE convection, the layer of downdraft outflow was deeper and cooler and the cloud efficiency E , defined as the ratio of the total rainfall reaching the ground to the total water vapor condensed, was less. The maximum surface cooling for the tropical maritime convection was about 2°C whereas for the present case the cooling is about 6°C . The cloud efficiency $E \approx 0.4$ for the tropical case while present results give $E \approx 0.26$.

Another set of three-dimensional calculations was carried out with the horizontal grid interval of 10 km in both directions and the horizontal domain of 480 km by 320 km. The purpose of these computations was to compare the results obtained with the present Kessler-type bulk cloud physics with the results obtained using the mesoscale parameterization (325) in which all cloud water in excess of 1.5 g/kg immediately falls out as rain. It was found that the scheme in (325) predicted point values of rain three times as large and area mean values twice as large as predicted using the Kessler-type scheme. Another effect of the mesoscale scheme is that about ten per cent of the total water vapor condensed remained in the atmosphere as high level clouds. For the Kessler-type scheme only two per cent remained as clouds. Collaboration is underway with the Mesoscale Dynamics Group to include a rain-water phase in the mesoscale model.

Preliminary experiments have been carried out to examine the mixing of a passive tracer due to deep moist convection. The initial distribution of

tracer is a uniform concentration from the surface to 1750 m and no tracer above that level. Using the disturbance discussed above for continental convection, the tracer is mixed during the lifetime of the convection (about one hour). Calculations have been performed for two- and three-dimensional convection and with and without a unidirectional wind shear. In all cases a bimodal distribution of the horizontal mean tracer is found at the end of the calculations. The primary maximum of tracer concentration remains in the boundary layer, but a secondary maximum also exists at about 10 km, the level for the moist convective outflow. The minimum at mid-levels is well defined, being a factor of ten smaller than the upper level maximum with no wind shear present. This ratio is reduced to a factor of two for the three-dimensional case with wind shear. When shear is present, the subgrid scale turbulence plays a relatively more important role.

A new version of the moist convection model has incorporated open lateral boundary conditions in place of the previous periodic side conditions. For normal velocities a radiation condition* is used. For non-normal velocities and scalar variables, however, the more common inflow-outflow boundary conditions are applied; at inflow boundaries specification is used and at outflow boundaries extrapolation from the interior is used. For planned future calculations, the open boundary conditions will allow for more realistic simulations with vertical wind shear present.

Finally, the analyses of the tropical maritime simulations have been completed. A comparison of the simulated vertical velocities in regions of strongest updrafts and downdrafts (cores) has been made with observed GATE data. Reasonable agreement with observations is found, but somewhat better agreement is seen for updraft cores than downdraft cores.

PLANS FY84

A cooperative effort will be carried out with the Mesoscale Dynamics Group to simulate an observed case of deep moist convection on April 10, 1979. Their meso- β scale model will supply the large-scale flow and side boundary conditions for the present model. In this way an attempt will be made, using the present model, to simulate the observed meso- γ scale convection.

The vertical momentum transfer and kinetic energy transformation associated with the interaction of vertical wind shear and deep moist convection will be examined. Results obtained using the open lateral boundary conditions will be compared with data obtained using periodic side boundary conditions.

The passive tracer study will continue. Downward advection of tracer from the upper atmosphere due to convection will be examined in addition to the boundary layer source discussed above. The effect of water solubility will be included.

A primary objective of this research is to determine how moist convection acts to transfer water vapor, heat and momentum in the vertical as well as to

* Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comp. Phys., 21, 251-269.

account for precipitation and evaporation at the surface. A long-term goal is to use the knowledge gained from convection modeling to improve cumulus-scale parameterizations in mesoscale and larger-scale numerical models.

9.2 ATMOSPHERIC AND OCEANIC BOUNDARY LAYERS

J. Domaradzki B. Rajkovic
G. Mellor

ACTIVITIES FY83

A new closure hypothesis for the two-point triple correlation functions in homogeneous turbulence was investigated for the special case of isotropic turbulence (jjj). The results of theoretical calculations performed in an extensive Reynolds number range $50 < R < 10^4$ are in a good agreement with a variety of experimental data chosen for comparison. The new closure was used to demonstrate the influence of large scales of turbulence from beyond the experimental range on the decay of turbulence (kkk). The closure was used to develop a numerical model which will be used for description of decaying, weakly anisotropic, axisymmetric homogeneous turbulence.

Work on the extension of the turbulence closure model to include condensation physics and application to two-dimensional frontal dynamics problems has been restarted after a three year suspension of effort.

PLANS FY84

Work on the extension of the turbulence closure model will be continued.

9.3 COASTAL AND ESTUARINE OCEANOGRAPHY

G. Mellor L. Oey
D. Henn

ACTIVITIES FY83

Work was completed on the three-dimensional, real-time simulation of the Hudson/Raritan estuary. Comparisons of the numerical results with NOS observations and our own field observations (in cooperation with R. Hires of the Stevens Institute of Technology) have shown good agreement. Salt flux analyses at a number of key cross-sections in the estuary were completed and it is shown that the time-correlation term $\langle u_1 s_1 \rangle$, where the subscript 1 denotes the time deviation of the cross-sectionally averaged quantity and the angle brackets denote time averaging, contributes most to the upstream salt balance. Physically, this means that minimum salinity does not occur at the end of ebb, as one might intuitively assume. Rather, the phase angle between u_1 and s_1 is somewhat less than $\pi/2$ because some water is trapped in coastline bends and irregularities and is released at a different stage of the tide. The effects of local and coastal-shelf winds on the subtidal currents and elevations in the harbor have been analyzed. The unsteady winds were found to have magnitudes of about 0.5 dynes/cm² and periods of five, eight and twenty days. The winds correlate well with computed velocities and salinities, especially in the Raritan Bay where the depth is generally less than 4 meters. The winds were also found to contribute significantly to the upstream salt balance.

A high fresh-water discharge simulation of the estuary has also been completed and compared with the low discharge case (10 times less fresh water discharge rate). It is found that while high discharge increases buoyancy and hence stratification, it also increases the baroclinic velocity shear amplitude, giving values of the vertical mixing diffusivity coefficient not much different from the low-discharge simulation.

Previous theoretical analyses on steady salinity distribution and circulation in partially mixed and well-mixed estuaries have been further generalized. It is shown that Hansen and Rattray's theory for predicting the importance of upstream salt transport due to the vertical gravitational circulation in estuaries is valid for arbitrary longitudinal variations in width, depth, fresh water discharge, wind stress and various dispersion and mixing coefficients. This finding is checked against available observations in the Mersey estuary, in the channel of Rio Guayas and in the Hudson River. It is also checked against the previously described, real-time, three-dimensional numerical model's results in the New York harbor. This theoretical study has been submitted and accepted for publication in the Journal of Physical Oceanography (hhh).

A two-dimensional, depth-integrated nested model of the Delaware River, bay and the adjoining continental shelf has been constructed to study the tidal hydraulics in the region. The numerical results compared well with observations. A model of the surrounding marshes in the bay has been incorporated into the numerical program to take account of the rather complex variations in the observed phase lines with varying degree of success. This study constitutes D. Henn's master of science thesis in the Mechanical and Aerospace Department.

PLANS FY84

A three-dimensional model of the Delaware estuary will be completed. Studies will be focused on the interaction of the water circulation between the continental shelf and the bay. The three-dimensional model should give better representation of the bottom friction and the resulting tidal phase prediction will be compared with the simpler, two-dimensional results.

APPENDIX A

GFDL Staff Members

and

Affliated Personnel

during

Fiscal Year 1983

A

<u>Isidoro Orlanski, Acting Director</u>	FTP
Rosemary Kelly-Champ, Secretary	FTP
<u>Alan R. Thomas, Associate Director</u>	FTP
Joyce C. Jarvis, Secretary	PTP
<u>Joseph Smagorinsky, Director</u>	FTP*
Howard M. Frazier, Assistant Director	FTP*

CENTRALIZED SUPPORT SERVICES

Administrative and Technical Support

Fraulino, Philip	Librarian	PTP
Shaffer, Daryl	Administrative Officer	FTP
Byrne, James	Jr. Technician	FTP
Capasso, Elaine	Administrative Clerk	FTP
Tunison, Philip	Sr. Technician	FTP
Ellis, William	Sr. Technician	FTP
Raphael, Catherine	Jr. Technician	PTP
Zadworney, Michael	Jr. Technician	FTP
Uveges, Frank	Actg. Admin. Officer	FTP
Chandler, Annette	Secretary	WAE
Conner, John	Sr. Technician	FTP
Kennedy, Joyce	Editorial Assistant	FTP
Pege, Joan	Management Support Clerk	FTP
Williams, Betty	Editorial Assistant	FTP

Computer Support

Welsh, James	Sr. Computer Sys. Analyst	FTP
Baker, Philip	Computer Sys. Analyst	FTP
Lewis, Lawrence	Computer Sys. Analyst	FTP
Shaginaw, Richard	Research Associate	FTP
Yeager, William	Computer Sys. Programmer	FTP
Conover, Leonard	Sr. Computer Technician	FTP
Bennett, Lois	Peripheral Equip. Opr.	FTP
Brandbergh, Gerald	Computer Technician	FTP
Brown, Gerald	Peripheral Equip. Opr.	FTT*
Cordwell, Clara	Computer Technician	FTP
Lydon, Cheryl	Peripheral Equip. Opr.	FTT*
Miller, Almore	Computer Technician	FTP
Heinbuch, Ernest	Sr. Computer Technician	FTP
Deuringer, Howard	Computer Technician	FTP
Hand, Joseph	Computer Technician	FTP
Kreuger, Mark	Computer Technician	FTP
Littell, Nancy	Peripheral Equip. Opr.	FTT*
Shearn, William	Sr. Computer Technician	FTP
Dattoli, Francis	Peripheral Equip. Opr.	FTP*

* Affiliation Terminated Prior to September 30, 1983

Computer Support (Cont.)

Henne, Ronald	Computer Technician	FTP
Henry, James	Peripheral Equip. Opr.	FTT*
Hopps, Frank	Computer Technician	FTP
King, John	Computer Technician	FTP
Mitman, Mark	Peripheral Equip. Opr.	FTP
Smith, Robert	Computer Technician	FTP
Taylor, Thomas	Computer Technician	FTP
Weltman, Richard	Peripheral Equip. Opr.	FTT*

* Affiliation Terminated Prior to September 30, 1983

CLIMATE DYNAMICS

Manabe, Syukuro	Sr. Research Scientist	FTP
Bowman, Kenneth	Student	PU
Fels, Stephen	Research Scientist	FTP
Crisp, David	Student	PU
Miyahara, Saburo	Visiting Scientist	PU
Schwarzkopf, M. Daniel	Research Associate	FTP
Hughes, John	Junior Fellow	PTT
Sneider, R.K.	Student	PU
Hahn, Douglas	Sr. Research Associate	FTP
Broccoli, Anthony	Research Associate	FTP
Daniel, Donahue	Research Associate	FTP
Hayashi, Yoshikazu	Research Scientist	FTP
Golder, Donald	Research Associate	FTP
Held, Isaac	Research Scientist	FTP
Nigam, Sumant	Student	PU*
Osinga, J.	Student	PU
Panetta, Richard	Visiting Scientist	PU
Sardeshmukh, Prashant	Student	PU*
Holloway, J. Leith	Sr. Research Associate	FTP
Phillipps, Peter	Research Associate	FTP
Spelman, Michael	Sr. Research Associate	FTP
Penik, Stephen	Junior Fellow	PTT
Stouffer, Ronald	Research Associate	FTP
Prettyman, William	Junior Fellow	PTT
Wetherald, Richard	Sr. Research Associate	FTP

MIDDLE ATMOSPHERE DYNAMICS AND CHEMISTRY

Mahlman, J.D.	Sr. Research Scientist	FTP
Bacmeister, J.T.	Student	PU
Graves, Denise S.	Student	PU
Levy, H. II	Research Scientist	FTP
Liu, S.C.	Visiting Scientist	+
Moxim, W. J.	Sr. Research Associate	FTP
Plumb, R.A.	Visiting Scientist	PU
Salby, Murry L.	Visiting Scientist	PU
Umscheid, Ludwig J.	Sr. Research Associate	FTP
Kranz, Christopher	Junior Fellow	PTT

+ Aeronomy Laboratory/NOAA

* Affiliation Terminated Prior to September 30, 1983

EXPERIMENTAL PREDICTION

Miyakoda, Kikuro	Sr. Research Scientist	FTP
Gordon, Charles	Research Scientist	FTP
Vandenbergh, George	Research Assistant	FTP
Ploshay, Jeffrey	Research Associate	FTP
Rosati, Anthony	Research Associate	FTP
Sirutis, Joseph	Research Associate	FTP
Fork, David	Junior Fellow	PTT
Kinter, James	Student	PU
Navarra, Antonio	Student	PU
Pierrehumbert, Raymond	Assoc. Research Scientist	FTP
Carissimo, D.C.	Student	PU
Dritschel, David	Student	PU
Stern, William	Research Associate	FTP
Dilliplane, Steven	Junior Fellow	PTT*
Fine, Benjamin	Junior Fellow	PTT
Strickler, Robert	Sr. Research Associate	FTP
White, Robert	Research Associate	FTP
Wyman, Bruce	Research Associate	FTP
Puri, Kamal	Visiting Scientist	PU
Seller, Joseph	Visiting Scientist	+

OCEANIC CIRCULATION

Bryan, Kirk	Sr. Research Scientist	FTP
Bogue, Neil	NOAA Corps Officer	FTP
Cox, Michael	Sr. Research Associate	FTP
Hibler, William	Visiting Scientist	++
Komro, Fred	Research Associate	FTP
Reed, Kimberly	Junior Fellow	PTT
Jackson, Martha	Sr. Technician	FTP
Lemke, Peter	Visiting Scientist	PU*
MacAyeal, Douglas	Student	PU*
Philander, Samuel G.	Sr. Research Scientist	FTP
Carton, James	Student	PU*
Gardiner-Garden, R.S.	Student	PU
Greatbatch, Richard	Visiting Scientist	PU
Pacanowski, Ronald	Sr. Research Associate	FTP
Seigel, Anne	Research Associate	FTP
Yamagata, T.	Visiting Scientist	PU*

+ National Meteorological Center/NOAA

++ Cold Region Research and Engineering Laboratory/U.S. Army

* Affiliation Terminated Prior to September 30, 1983

PLANETARY CIRCULATIONS

Williams, Gareth
Wilson, Robert

Sr. Research Scientist
Research Assistant

FTP
FTT

OBSERVATIONAL STUDIES

Oort, Abraham
Fagen, Scott
Forman, Mark
Huot, Jean-Paul
Lau, Ngan-Cheung
Levitus, Sydney
Peixoto, Jose
Rosenstein, Melvin

Sr. Research Scientist
Junior Fellow
Junior Fellow
Student
Research Staff
Sr. Research Associate
Visiting Scientist
Sr. Technician

FTP
PTT
PTT
PU*
PU
FTP
+
FTP

HURRICANE DYNAMICS

Kurihara, Yoshio
Bender, Morris
Tuleya, Robert

Sr. Research Scientist
Research Associate
Sr. Research Associate

FTP
FTP
FTP

MESOSCALE DYNAMICS

Orlanski, Isidoro
Chen, Wen-Dar
Goldman, Samuel
Miller, Dennis
Moore, G.W. Kent
Polinsky, Larry
Ross, Bruce
Baum, John
Steele, Michael

Sr. Research Scientist
Student
Laboratory Tech.
Research Associate
Student
Research Associate
Sr. Research Associate
Junior Fellow
Student

FTP
PU
PU*
FTP
PU
FTP
FTP
PTT
PU

CONVECTION AND TURBULENCE

Lipps, Frank
Hemler, Richard

Research Scientist
Research Associate

FTP
FTP

Mellor, George
Domaradzki, J.A.
Oey, Lie-Yauw
Rajkovic, Borivoje

Professor
Visiting Scientist
Research Staff
Student

PU
PU*
PU
PU

+ Geophysical Institute, University of Lisbon, Lisbon, Portugal

* Affiliation Terminated Prior to September 30, 1983

GFD PROGRAM

Sarmiento, Jorge	Professor	PU
Bryan, Frank	Student	PU
Callan, Johann	Secretary	PU
Gwinn, Elizabeth	Computer Programmer PT	PU*
Hellerman, Solomon	Computer Programmer PT	PU
Kawase, Mitsubiro	Student	PU
Key, Robert	Research Associate	PU
Neelin, J. David	Student	PU
Olsen, Esther	Secretary	PU
Papademetriou, Demetra	Student	PU
Prasad, Shailesh	Student	PU
Toggweiler, John	Visiting Scientist	PU

CONTROL DATA CORPORATION

J. Hannon, Sales Representative

Glassbrook, Richard A.	Project Leader	CDC
Feder, Michael	Analyst	CDC*
Graham, Donald	Senior Analyst	CDC*
Jacobson, Elaine	Senior Analyst	CDC
Lehane, Denis	Senior Analyst	CDC*
Mansfield, Harold	Senior Analyst	CDC
Reiff, Atara	Associate Analyst	CDC*
Siebers, Bernard	Senior Analyst	CDC
Skelly, Gretchen	Analyst	CDC*
Stringer, John	Analyst in Charge	CDC
Clark, David	Systems Analyst	CDC
Davis, Robert	Systems Analyst	CDC
Decker, Gregory	Consultant	CDC
Markowitz, Alan	Systems Analyst	CDC
Reiss, Israel	Systems Analyst	CDC
Helster, Paul	Senior Eng. in Chg.	CDC
Armbrister, Richard	Senior Customer Eng.	CDC
Dorado, Manual	Senior Customer Eng.	CDC
Egland, Randall	Senior Customer Eng.	CDC
Greshko, Edward	Senior Customer Eng.	CDC
Johnson, Eric	Senior Customer Eng.	CDC
Thompson, Robert	Senior Customer Eng.	CDC
Weiss, Edward	Senior Customer Eng.	CDC

* Affiliation Terminated Prior to September 30, 1983

TEXAS INSTRUMENTS

Webb, William	Site Manager	TI*
Caldwell, Lee	Maintenance Engineer	TI*
Devlin, Thelma	Secretary	TI*
Fedor, John	Maintenance Engineer	TI*
Iasello, Anthony	Maintenance Engineer	TI*
Schaffer, Ralph	Maintenance Engineer	TI*
Smith, Mark	Maintenance Engineer	TI*

* Affiliation Terminated Prior to September 30, 1983

PERSONNEL SUMMARY

September 30, 1983

FTP - Full Time Permanent (GFDL)	83
PTP - Part Time Permanent (GFDL)	3
WAE - When Actually Employed (GFDL)	1
Junior Fellows (GFDL)	10
Visiting Scientists (PU)	10
Visiting Scientists (GFDL)	4
Students (PU)	21
Professors (PU)	2
Secretaries (PU)	2
Control Data Corporation Computer	
System Program Conversion Support	<u>17</u>
Staff	153

APPENDIX B

GFDL

Bibliography

NOTE: THIS IS A PARTIAL LISTING OF GFDL PUBLICATIONS. A COPY OF THE COMPLETE BIBLIOGRAPHY CAN BE OBTAINED BY CALLING 609-452-6502 (FTS AND COMMERCIAL) OR BY WRITING TO:

Director
Geophysical Fluid Dynamics Laboratory
Princeton University - Post Office Box 308
Princeton, New Jersey 08542

- (300) Orlanski, Isidoro, and B.B. Ross, The Circulation Associated With a Cold Front, Part I: Dry Case, J. Atmos. Sci., 34(10()), 1619-1633, 1977.
- (301) Manabe, Syukuro, and Douglas G. Hahn, Simulation of the Tropical Climate of an Ice Age, J. Geophys. Res., 82(27), 3889-3911, 1977.
- (302) Oort, Abraham H., The Interannual Variability of Atmospheric Circulation Statistics, NOAA Professional Paper 8, US Government Printing Office, Washington, DC, 76 p., 1977.
- (303) Lipps, Frank B., A Study of Turbulence Parameterization in a Cloud Model, J. Atmos. Sci., 34(11), 1751-1772, 1977.
- * (304) Hibler, W.D. III, A Viscous Sea Ice Law as a Stochastic Average of Plasticity, J. Geophys. Res., 82(27), 3932-3938, 1977.
- (305) Hembree, G. Daniel, Comments on A Single Forecast Comparison Between the NCAR and GFDL Circulation Models, Mon. Wea. Rev., 105(12), 1598-1602.
- (306) Yamada, Tetsuji, A Numerical Experiment on Pollutant Dispersion in a Horizontally-Homogeneous Atmospheric Boundary Layer, Atmospheric Environment, 11, 1015-1024, 1977.
- (307) Briggs, M., G. Mellor, and T. Yamada, A Second Moment Turbulence Model Applied to Fully Separated Flows, Proc. Squid Workshop on Turbulence in Internal Flows, Turbulence in Internal Flows, S.N.B. Murthy (ed.), Hemisphere Publishing Corp., Wash., DC, 249-281, 1977.
- (308) Levitus, Sydney, and Abraham H. Oort, Global Analysis of Oceanographic Data, Bull. Am. Meteorol. Soc., 58(12), 1270-1284, 1977.

*In collaboration with other organizations

- * (309) Oort, Abraham H., and Paul H. Chan, On the Role of the Asian Monsoon in the Angular Momentum and Kinetic Energy Balances of the Tropics, Pure & Appl. Geophysics, 115(5/6), Berkhauser-Verlag, Basel, 1167-1186, 1977.
- (310) Orlanski, Isidoro, and L.J. Polinsky, Spectral Distribution of Cloud Cover over Africa, J. Meteorol. Soc. Japan, 55(5), 483-493, 1977.
- (311) Hayashi, Yoshikazu, Space-Time Power Spectral Analysis Using the Maximum Entropy Method, J. Meteorol. Soc. Japan, 55(4), 415-420, 1977.
- (312) Miyakoda, Kikuro, and Joseph Sirutis, Comparative Integrations of Global Models with Various Parameterized Processes of Subgrid-Scale Vertical Transports: Description of the Parameterizations, Bietrage zur Physik der Atmosphare, 50, 445-488, 1977.
- (313) Hembree, G. Daniel, A Single Forecast Comparison Between the NCAR and GFDL General Circulation Models, Mon. Wea. Rev., 105, 1598-1602, 1977.
- * (314) Rossow, William B., and Gareth P. Williams, A Forced Barotropic Model as an Analog of the Stratosphere of Venus, Bull. Am. Astro. Soc., 9(4), p. 508, 1977.
- * (315) Mellor, G.L., and T. Yamada, A Turbulence Model Applied to Geophysical Problems, Proc. Symposium on Turbulent Shear Flows, The Pennsylvania State University, 43-56, 1977.
- (316) Kurihara, Yoshio, and Robert E. Tuleya, A Scheme of Dynamic Initialization of the Boundary Layer in a Primitive Equation Model, Mon. Wea. Rev., 106(1), 114-123, 1978.
- * (317) Philander, S.G.H., Forced Oceanic Waves, Review of Geophys. and Space Phys., 16(1), 15-46, 1978.
- (318) Oort, Abraham H., Adequacy of the Rawinsonde Network for Global Circulation Studies Tested through Numerical Model Output, Mon. Wea. Rev., 106(2), 174-195, 1978.
- (319) Miyakoda, Kikuro, R.F. Strickler, and J. Chludzinski, Initialization with the Data Assimilation Method, Tellus, 30, 32-54, 1978.
- * (320) Hibler, W.D. III, Model Simulation of Near Shore Ice Drift, Deformation and Thickness, Proc. 4th Intern'l Conf. on Port and Ocean Engineering Under Arctic Conditions, Memorial Univ., Newfoundland, 1978.
- * (321) So, R.M.C., and George L. Mellor, Turbulent Boundary Layers with Streamline Curvature Effects, J. Appl. Math. & Phys., 29(Fasc.1), 54-74, 1978.
- (322) Tuleya, Robert E., and Yoshio Kurihara, A Numerical Simulation of the Landfall of Tropical Cyclones, J. Atmos. Sci., 35(2), 242-257, 1978.

*In collaboration with other organizations

- * (323) Held, Isaac M., and Max J. Suarez, A Two-Level Primitive Equation Atmospheric Model Designed for Climate Sensitivity Experiments, J. Atmos. Sci., 35(2), 206-229, 1978.
- (324) Cox, M.D., A Numerical Study of the Effects of Western Boundary Slope in the Tropics, Ocean Modelling, 12, 1-15, 1978.
- (325) Ross, B.B., and Isidoro Orlanski, The Circulation Associated with a Cold Front. Part II: Moist Case, J. Atmos. Sci., 35(3), 445-465, 1978.
- * (326) Blumberg, Alan F., The Influence of Density Variations on Estuarine Tides and Circulations, Estuarine and Coastal Marine Sci., 6, 209-215, 1978.
- * (327) Ripa, Pedro, Normal Rossby Modes of a Closed Basin with Topography, J. Geophys. Res., 83(C4), 1947-1957, 1978.
- * (328) Ellis, J.S., T.H. Vonder Haar, S. Levitus, and A.H. Oort, The Annual Variation in the Global Heat Balance of the Earth, J. Geophys. Res., 83(C4), 1958-1962, 1978.
- (329) Orlanski, Isidoro, and B.B. Ross, The Dry and Moist Circulation Associated with a Cold Front, J. Israel Meteorol. Soc., 11, 28-54, 1978.
- (330) Mahlman, J.D., R.W. Sinclair, and M.D. Schwarzkopf, Simulated Response of the Atmospheric Circulation to a Large Ozone Reduction, Proc. of the WMO Symposium on the Geophysical Aspects and Consequences of Changes in the Composition of the Stratosphere, WMO. No. 511, World Meteorological Organization, 219-220, 1978.
- (331) Mahlman, J.D., Large-Scale Atmospheric Tracer Behavior: Implications from GCM Experiments, Proc. of NCAR Colloquium on the General Circulation, National Center for Atmospheric Research, 304-309, 1978.
- (332) Williams, Gareth P., Planetary Circulations: 1. Barotropic Representation of Jovian and Terrestrial Turbulence, J. Atmos. Sci., 35(8), 1399-1426, 1978.
- (333) Fels, Stephen B., Reply to Momentum and Energy Exchange Due to Orographically Scattered Gravity Waves, J. Atmos. Sci., 35(5), 925-927, 1978.
- * (334) Bryan, Kirk, and Pedro Ripa, The Vertical Structure of North Pacific Temperature Anomalies, J. Geophys. Res., 83(C5), 2419-2429, 1978.
- (335) Bryan, Kirk, Ocean Circulation, Geophysical Predictions, Studies in Geophys., National Academy of Sciences, 178-184, 1978.
- * (336) Simmonds, Ian, The Application of a Multi-Level Spectral Model to Data Assimilation, J. Atmos. Sci., 35(8), 1321-1339, 1978.

*In collaboration with other organizations

(337) Mahlman, J.D., and W.J. Moxim, Tracer Simulation Using a Global General Circulation Model: Results from a Midlatitude Instantaneous Source Experiment, J. Atmos. Sci., 35(8), 1340-1374, 1978.

* (338) Blumberg, Alan F., Closure to Numerical Tidal Model of Chesapeake Bay, J. Hydraulics Div., Proc. Am. Soc. Civil Engrs., 104(HY7), 1103-1104, 1978.

(339) Philander, S.G.H., Instabilities of Zonal Equatorial Currents, 2, J. Geophys. Res., 83(C7), 3679-3682, 1978.

* (340) Dickey, T., A Note on the Effect of Zonal Boundaries to Equatorial Waves, J. Geophys. Res., 83(C7), 3675-3678, 1978.

* (341) Rossow, William B., Cloud Microphysics: Analysis of the Clouds of Earth, Venus, Mars, and Jupiter, Icarus, 36, 1-50, 1978.

(342) Smagorinsky, Joseph, History and Progress, The Global Weather Experiment-Perspectives on its Implementation and Exploitation, Report of the FGGE Advisory Panel to the U.S. Committee for GARP, National Research Council, National Academy of Sciences, Wash., DC, 4-12, 1978.

* (343) Smagorinsky, Joseph, and Norman A. Phillips, Scientific Problems of the Global Weather Experiment, The Global Weather Experiment-Perspectives on its Implementation and Exploitation, Report of the FGGE Advisory Panel to the U.S. Committee for GARP, National Research Council, National Academy of Sciences, Wash., DC, 13-21, 1978.

* (344) Dahlen, F.A., and Stephen B. Fels, A Physical Explanation of the Static Core Paradox, Geophys. J. R. Astron. Soc., 55, 317-331, 1978.

* (345) Crough, S. Thomas, Thermal Origin of Mid-Plate Hot-Spot Swells, Geophys. J. R. Astron. Soc., 55, 451-469, 1978.

* (346) Willebrand, Jurgen, Temporal and Spatial Scales of the Wind Field over the North Pacific and North Atlantic, J. Phys. Oceanogr., 8(6), 1080-1094, 1978.

(347) Hayashi, Yoshikazu, and Donald G. Golder, The Generation of Equatorial Transient Planetary Waves: Control Experiments with a GFDL General Circulation Model, J. Atmos. Sci., 35(11), 2068-2082, 1978.

(348) Held, Isaac M., The Tropospheric Lapse Rate and Climate Sensitivity: Experiments with a Two-Level Atmospheric Model, J. Atmos. Sci., 35(11), 2083-2098, 1978.

* (349) Sarmiento, Jorge L., Excess Bottom Radon-222 Distribution in Deep Ocean Passages, J. Geophys. Res., 83, 5068-5076, 1978.

*In collaboration with other organizations

(350) Bryan, Kirk, The Ocean Heat Balance, Oceanus, 21, Woods Hole Oceanographic Institution, 19-26, 1978.

(351) Levy, H. II, J.D. Mahlman, and W.J. Moxim, A Preliminary Report on the Numerical Simulation of the Three-Dimensional Structure and Variability of Atmospheric N₂O, Geophys. Res. Letters, 6(3), 155-158, 1979.

(352) Philander, S.G.H., Upwelling in the Gulf of Guinea, J. Marine Res., 37(1), 23-33, 1979.

(353) Cox, Michael D., A Numerical Study of Somali Current Eddies, J. Phys. Oceanogr., 9(2), 311-326, 1979.

* (354) Rossow, William B., and Gareth P. Williams, Large-Scale Motion in the Venus Stratosphere, J. Atmos. Sci., 36(3), 377-389, 1979.

* (355) Kurihara, Yoshio, Gregory J. Tripoli, and Morris A. Bender, Design of a Movable Nested-Mesh Primitive Equation Model, Mon. Wea. Rev., 107(3), 239-249, 1979.

(356) Miyakoda, Kikuro, G.D. Hembree, and R.F. Strickler, Cumulative Results of Extended Forecast Experiments II: Model Performance for Summer Cases, Mon. Wea. Rev., 107(4), 395-420, 1979.

(357) Philander, S.G.H., Equatorial Waves in the Presence of the Equatorial Undercurrent, J. Phys. Oceanogr., 9(3), 254-262, 1979.

(358) Smagorinsky, Joseph, Topics in Dynamical Meteorology: 10. Epilogue - A Perspective of Dynamical Meteorology, Weather, 34(4), 126-135, 1979.

(359) Bryan, Kirk, Models of the World Ocean, Dynamics of Atmospheres and Oceans, 3, 327-338, 1979

(360) Bryan, Kirk, and L.J. Lewis, A Water Mass Model of the World Ocean, J. Geophys. Res., 84(C5), 2503-2517, 1979.

* (361) Dickey, T.D., and G.L. Mellor, The Kolmogoroff $r^{2/3}$ Law, The Physics of Fluids, 22(6), 1029-1032, 1979.

* (362) Blumberg, Alan F., and George L. Mellor, The Potential Impact of Three-Dimensional Circulation Modeling on Oil Spill Forecasting, The Physical Behavior of Oil in the Marine Environment, Depart. of Civil Engineering, Princeton University, 6.1-6.18, 1979.

(363) Williams, Gareth P., Planetary Circulation: 2. The Jovian Quasi-Geostrophic Regime, J. Atmos. Sci., 36(5), 932-968, 1979.

(364) Hayashi, Yoshikazu, Space-Time Spectral Analysis of Rotary Vector Series, J. Atmos. Sci., 36(5), 757-766, 1979.

*In collaboration with other organizations

- * (365) Lau, Ngar-Cheung, The Observed Structure of Tropospheric Stationary Waves and the Local Balances of Vorticity and Heat, J. Atmos. Sci., 36(6), 996-1016, 1979.
- (366) Hayashi, Yoshikazu, A Generalized Method of Resolving Transient Disturbances into Standing and Traveling Waves by Space-Time Spectral Analysis, J. Atmos. Sci., 36(6), 1017-1029, 1979.
- (367) Williams, G.P., Ultra-Long Baroclinic Waves and Jupiter's Great Red Spot, J. Meteorol. Soc. Japan, 57(2), 196-198, 1979.
- * (368) Lau, Ngar-Cheung, The Structure and Energetics of Transient Disturbances in the Northern Hemisphere Wintertime Circulation, J. Atmos. Sci., 36(6), 982-995, 1979.
- * (369) Worthem, Sylvia, and George Mellor, Turbulence Closure Model Applied to the Upper Tropical Ocean, Deep Sea Res., Suppl. 1, 26, 237-272, 1979.
- * (370) Hibler, W.D. III, A Dynamic Thermodynamic Sea Ice Model, J. Phys. Oceanogr., 9(4), 815-846, 1979.
- * (371) Kerr, Christopher L., and A.F. Blumberg, An Analysis of a Local Second-Moment Conserving Quasi-Lagrangian Scheme for Solving the Advection Equation, J. Computational Phys., 32(1), 1-9, 1979.
- (372) Manabe, S., K. Bryan, and M.J. Spelman, A Global Ocean-Atmosphere Climate Model with Seasonal Variation for Future Studies of Climate Sensitivity, Dynamics of Atmospheres and Oceans, 3, 393-426, 1979.
- (373) Philander, S.G.H., Nonlinear Coastal and Equatorial Jets, J. Phys. Oceanogr., 9(4), 739-747, 1979.
- (374) Philander, S.G.H., Variability of the Tropical Oceans, Dynamics of Atmospheres and Oceans, 3, 191-208, 1979.
- * (375) Anderson, D.L.T., K. Bryan, A.E. Gill, and R.C. Pacanowski, The Transient Response of the North Atlantic: Some Model Studies, J. Geophys. Res., 84(C8), 4795-4815, 1979.
- (376) Fels, Stephen B., Simple Strategies for Inclusion of Voight Effects in Infrared Cooling Rate Calculations, Applied Optics, 18(15), 2634-2637, 1979.
- * (377) Suarez, M.J., and Isaac M. Held, The Sensitivity of an Energy Balance Climate Model to Variations in the Orbital Parameters, J. Geophys. Res., 84(C8), 4825-4836, 1979.
- (378) Williams, G.P., Planetary Circulations: 3. The Terrestrial Quasi-Geostrophic Regime, J. Atmos. Sci., 36(8), 1409-1435, 1979.

*In collaboration with other organizations

(379) Hayashi, Yoshikazu, Studies of the Tropical General Circulation with a Global Model of the Atmosphere, Proc. Seminar on Impact of GATE on Large-Scale Numerical Modeling of the Atmosphere and Ocean, National Research Council, 249-254, 1979.

(380) Kurihara, Yoshio, and Morris A. Bender, Supplementary Note on A Scheme of Dynamic Initialization of the Boundary Layer in a Primitive Equation Model, Mon. Wea. Rev., 107(9), 1219-1221, 1979.

(381) Orlanski, Isidoro, and Bruce Ross, 3-D Simulation of a Frontal Squall Line: Sensitivity Studies, 11th Conf. on Severe Local Storms, Kansas City, American Meteorol. Soc., 557-558, 1979.

(382) Hahn, Douglas G., and Syukuro Manabe, Simulation of Atmospheric Variability, Proc. Fourth Annual Climate Diagnostics Workshop, Inst. for Environ. Studies, Univ. of Wisconsin, 398-402, 1979.

* (383) Yamada, Tetsuji, and George Mellor, A Numerical Simulation of the BOMEX Data Using a Turbulence Closure Model Coupled with Ensemble Cloud Relations, Quart. J. R. Meteorol. Soc., 105(446), 915-944, 1979.

* (384) Lau, Ngan-Cheung, and John M. Wallace, On the Distribution of Horizontal Transports by Transient Eddies in the Northern Hemisphere Wintertime Circulation, J. Atmos. Sci., 36(10), 1844-1861, 1979.

* (385) Kurbatkin, G.P., S. Manabe, and D.G. Hahn, The Moistening of Continents and the Intensity of Monsoon Circulation, Meteorol. and Hydrol., 11(6), 5-11, 1979.

(386) Mahlman, J.D., Structure and Interpretation of Blocking Anticyclones as Simulated in a GFDL General Circulation Model, Proc. Thirteenth Stanstead Seminar, Bishops University, Lennoxville, Quebec, Canada, Publication in Meteorology No. 123, Dept. of Meteorol., McGill Univ., Montreal, 70-76, 1979.

(387) Cox, M.D., 30-Day Waves in a Numerical Model of the Equatorial Pacific, Ocean Modelling, 28, 1-4, 1979.

(388) Manabe, Syukuro, and Ronald J. Stouffer, A CO₂-Climate Sensitivity Study with a Mathematical Model of the Global Climate, Nature, 282(5738), 491-493, 1979.

(389) Smagorinsky, J., Overview of the Climate Modelling Problem, Proc. JOC Study Conf. on Climate Models: Performance, Intercomparison, and Sensitivity Studies, Wash., DC, GARP Publication Series 22(1), 1-12, 1979.

(390) Bryan, K., Models of the Ocean Circulation and the Global Heat Balance, Proc. JOC Study Conf. on Climate Models: Performance, Intercomparison, and Sensitivity Studies, Wash., DC, GARP Publication Series 22(1), 23-40, 1979.

*In collaboration with other organizations

(391) Manabe, Syukuro, Douglas G. Hahn, and J. Leith Holloway, Jr., Climate Simulations with GFDL Spectral Models of the Atmosphere: Effect of Spectral Truncation, Proc. JOC Study Conf. on Climate Models: Performance, Intercomparison, and Sensitivity Studies, Wash., DC, GARP Publication Series 22(1), 41-94, 1979.

(392) Oort, Abraham, Some Personal Views on the Use of GCM's, Proc. JOC Study Conf. on Climate Models: Performance, Intercomparison, and Sensitivity Studies, Wash., DC, GARP Publication Series 22(2), 1030-1036, 1979.

(393) Manabe, Syukuro, and Richard T. Wetherald, On the Horizontal Distribution of Climate Change Resulting from an Increase in CO₂ Content of the Atmosphere, J. Atmos. Sci., 37(1), 99-118, 1980.

(394) Lipps, Frank B., and Richard S. Hemler, Another Look at the Thermodynamic Equation for Deep Convection, Mon. Wea. Rev., 108(1), 78-84, 1980.

* (395) Rossow, William B., Stephen B. Fels, and Peter H. Stone, Comments on A Three-Dimensional Model of Dynamical Processes in the Venus Atmosphere, J. Atmos. Sci., 37(1), 250-252, 1980.

(396) Philander, S.G.H., and R.C. Pacanowski, The Generation of Equatorial Currents, J. Geophys. Res., 85(C2), 1123-1136, 1980.

(397) Hayashi, Yoshikazu, Estimation of Nonlinear Energy Transfer Spectra by the Cross-Spectral Method, J. Atmos. Sci., 37(2), 299-307, 1980.

* (398) Sarmiento, J.L., and C.G.H. Rooth, A Comparison of Vertical and Isopycnal Mixing Models in the Deep Sea Based on Radon 222 Measurements, J. Geophys. Res., 85(C3), 1515-1518, 1980.

(399) Mahlman, J.D., H. Levy II, and W.J. Moxim, Three-Dimensional Tracer Structure and Behavior as Simulated in Two Ozone Precursor Experiments, J. Atmos. Sci., 37(3), 655-685, 1980.

* (400) Blackmon, Maurice L., and Ngar-Cheung Lau, Regional Characteristics of the Northern Hemisphere Wintertime Circulation: A Comparison of the Simulation of a GFDL General Circulation Model with Observations, J. Atmos. Sci., 37(3), 497-514, 1980.

* (401) Held, Isaac M., and Arthur Y. Hou, Nonlinear Axially Symmetric Circulation in a Nearly Inviscid Atmosphere, J. Atmos. Sci., 37(3), 515-533, 1980.

(402) Philander, S.G.H., The Equatorial Undercurrent Revisited, Annual Rev. of Earth Planetary Sci., 8, 191-204, 1980.

*In collaboration with other organizations

- * (403) Blumberg, Alan F., and George L. Mellor, A Coastal Ocean Numerical Model, Mathematical Modeling of Estuarine Physics, Proc. of International Symposium, Hamburg, W. Germany, J. Sundermann, and K-P. Holz (eds.), Springer-Verlag, Berlin, 203-219, 1980.
- * (404) Mellor, George, and Paul T. Strub, Similarity Solutions for the Stratified Turbulent Rayleigh Problem, J. Phys. Oceanogr., 10(3), 455-460, 1980.
- * (405) Willebrand, J., S.G.H. Philander, R.C. Pacanowski, The Oceanic Response to Large-Scale Atmospheric Disturbances, J. Phys. Oceanogr., 10(3), 411-429, 1980.
- (406) Smagorinsky, J., GARP - An Interim Retrospective, WMO Bulletin, 29(2), 92-100, 1980.
- (407) Orlanski, I., and B.B. Ross, Reply (in reference to The Circulation Associated with a Cold Front, Part I: Dry Case), J. Atmos. Sci., 37(4), 909-911, 1980.
- * (408) Hamilton, Kevin, The Geographical Distribution of the Solar Semidurnal Surface Pressure Oscillation, J. Geophys. Res., 85(C4), 1945-1949, 1980.
- * (409) Orlanski, I., and C.P. Cerasoli, Resonant Wave-Wave Interactions for Internal Gravity Waves, Marine Turbulence, Jacques C.J. Nihoul (ed.), Proc. 11th International Colloquium on Ocean Hydrodynamics, Elsevier Oceanogr. Series, 28, 65-100, 1980.
- (410) Hayashi, Y., and D.G. Golder, The Seasonal Variation of Tropical Transient Planetary Waves Appearing in a GFDL General Circulation Model, J. Atmos. Sci., 37(4), 705-716, 1980.
- * (411) Lau, Ngai-Cheung, A Diagnostic Study of the Local Sources and Sinks of Momentum, Kinetic Energy, Vorticity and Heat in the Observed Northern Hemisphere Wintertime Circulation, Workshop on Diagnostics of Diabatic Processes, European Centre for Medium Range Weather Forecasts, Reading, UK, 33-60, 1980.
- * (412) Sun, W.Y., A Forward-Backward Time Integration Scheme to Treat Internal Gravity Waves, Mon. Wea. Rev., 108(4), 402-407, 1980.
- (413) Levy, Hiram II, and J.D. Mahlman, Modeling Tropospheric N₂O, Proc. NATO Advanced Study Institute on Atmospheric Ozone: Its Variation and Human Influences, Algarve, Portugal, FAA Rept. FAA-EE-80-20, 893-907, 1980.
- (414) Levy, H. II, J.D. Mahlman, and W.J. Moxim, A Stratospheric Source of Reactive Nitrogen in the Unpolluted Troposphere, Geophys. Res. Letters, 7(6), 441-444, 1980.

*In collaboration with other organizations

(415) Hamilton, Kevin, Observations of the Solar Diurnal and Semidiurnal Surface Pressure Oscillations in Canada. Atmosphere-Ocean, 18(2), 89-97, 1980.

* (416) Stefanik, M., The Impact of Atmospheric Noise on the Detection of Inter-annual Climate Variations - an Observational Study of the Atmosphere-Ocean System During 1963-1973, unpublished thesis, Geophysical Fluid Dynamics Program, Princeton University, 1980.

* (417) Roether, W., K.O. Munnich, B. Ribbat, and J.L. Sarmiento, A Trans-atlantic ^{14}C -Section near 40°N , Meteor Forschungsergebnisse, Reihe A, 21, 57-69, 1980.

* (418) Hibler, W.D. III, Modeling Pack Ice as Viscous-Plastic Continuum, Some Preliminary Results, Sea Ice Processes in Models, R. Pritchard (ed.), Proc. ICSI/AIDJEX Symposium, Univ. of Washington Press, Seattle, 163-176, 1980.

(419) Hayashi, Yoshikazu, A Method of Estimating Space-Time Spectra from Polar Orbiting Satellite Data, J. Atmos. Sci., 37(6), 1385-1392, 1980.

(420) Wetherald, Richard T., and Syukuro Manabe, Cloud Cover and Climate Sensitivity, J. Atmos. Sci., 37(7), 1485-1510, 1980.

(421) Moxim, W.J., and J.D. Mahlman, Evaluation of Various Total Ozone Sampling Networks using the GFDL 3-D Tracer Model, J. Geophys. Res., 85(C8), 4527-4539, 1980.

(422) Cox, Michael D., Generation and Propagation of 30-Day Waves in a Numerical Model of the Pacific, J. Phys. Oceanogr., 10(8), 1168-1186, 1980.

* (423) Dickey, T.D., and G.L. Mellor, Decaying Turbulence in Neutral and Stratified Fluids, J. Fluid Mechanics, 99(I), 13-31, 1980.

(424) Hellerman, Sol, Charts of the Variability of the Wind Stress Over the Tropical Atlantic, GATE-2: Equatorial and A-Scale Oceanography, Deep Sea Res., 26(II), 63-75, 1980.

* (425) Philander, George, and Walter Duing, The Oceanic Circulation of the Tropical Atlantic, and its Variability, as Observed During GATE, GATE-2: Equatorial and A-Scale Oceanography, Deep Sea Res., 26(II), 1-27, 1980.

* (426) Sarmiento, J.L., and W.S. Broecker, Ocean Floor ^{222}Rn Standing Crops in the Atlantic and Pacific Oceans, Earth and Planetary Sci. Letters, 49(2), 341-350, 1980.

* (427) Stegen, G.R., and R.L. Thorpe, Vertical Coherence in the Atmospheric Boundary Layer, Wind Engineering, C.E. Cermak (ed.), Pergamon Press, NY, 195-202, 1980.

*In collaboration with other organizations

(428) Manabe, Syukuro, and Ronald Stouffer, Sensitivity of a Global Climate Model to an Increase of CO₂ Concentration in the Atmosphere, J. Geophys. Res., 85(C10), 5529-5554, 1980.

(429) Manabe, Syukuro, and Ronald J. Stouffer, Study of Climatic Impacts of CO₂ Increase with a Mathematical Model of the Global Climate, Report from AAAS-DOE Workshop on Environmental and Societal Consequences of a Possible CO₂-Induced Climate Change, Annapolis, MD, Dept. of Energy, 127-140, 1980.

* (430) Holopainen, Eero O., Ngar-Cheung Lau, and Abraham H. Oort, A Diagnostic Study of the Time-Averaged Budget of Atmospheric Zonal Momentum over North America, J. Atmos. Sci., 37(10), 2234-2242, 1980.

(431) Fels, S.B., J.D. Mahlman, M.D. Schwarzkopf, and R.W. Sinclair, Stratospheric Sensitivity to Perturbations in Ozone and Carbon Dioxide: Radiative and Dynamical Response, J. Atmos. Sci., 37(10), 2265-2297.

* (432) Mechoso, Carlos R., The Atmospheric Circulation Around the Antarctica: Linear Stability and Finite-Amplitude Interactions with Migrating Cyclones, J. Atmos. Sci., 37(10), 2209-2233, 1980.

* (433) Liu, S.C., D. Kley, M. McFarland, J.D. Mahlman, and H. Levy II, On the Origin of Tropospheric Ozone, J. Geophys. Res., 85(C12), 7546-7552, 1980.

(434) Kurihara, Yoshio, and Morris A. Bender, Use of a Movable Nested-Mesh Model for Tracking a Small Vortex, Mon. Wea. Rev., 108(11), 1792-1809, 1980.

(435) Hayashi, Yoshikazu, The Recent Development of Space-Time Spectral Analysis Methods and Their Applications to Large-Scale Atmospheric Waves, Tenki, 27(11), 782-801, 1980.

(436) Mahlman, J.D., and R.W. Sinclair, Recent Results from the GFDL Troposphere-Stratosphere-Mesosphere General Circulation Model, Collection of Extended Abstracts Presented at ICMUA Sessions and IUGG Symposium 18, XVII IUGG General Assembly, Canberra, Australia, NCAR, 11-18, 1980.

(437) Mahlman, J.D., Coupling of Atmospheric Observations with Comprehensive Numerical Models, Collection of Extended Abstracts Presented at ICMUA Sessions and IUGG Symposium 18, XVII IUGG General Assembly, Canberra, Australia, NCAR, 253-259, 1980.

* (438) Haidvogel, Dale B., and Isaac M. Held, Homogeneous Quasi-Geostrophic Turbulence Driven by a Uniform Temperature Gradient, J. Atmos. Sci., 37(12), 2644-2660, 1980.

*In collaboration with other organizations

- * (439) Hamilton, Kevin, Numerical Studies of Wave-Mean Flow Interaction in the Stratosphere, Mesosphere, and Lower Thermosphere, unpublished thesis, Geophysical Fluid Dynamics Program, Princeton University, 1981.
- (440) Wetherald, Richard T., and Syukuro Manabe, Influence of a Seasonal Variation upon the Sensitivity of a Model Climate, J. Geophys. Res., 86(C2), 1194-1204, 1981.
- (441) Fels, Stephen B., and M.D. Schwarzkopf, An Efficient, Accurate Algorithm for Calculating CO₂ 15 m Band Cooling Rates, J. Geophys. Res., 86(C2), 1205-1232, 1981.
- (442) Cox, M.D., A Numerical Study of Surface Cooling Processes During Summer in the Arabian Sea, Proc. of Joint IUTAM/IUGG International Symposium on Monsoon Dynamics, New Delhi, India, Lighthill & Pearce (eds.), Monsoon Dynamics, Cambridge Univ. Press, 529-540, 1981.
- * (443) Hamilton, Kevin, Latent Heat Release as a Possible Forcing Mechanism for Atmospheric Tides, Mon. Wea. Rev., 109(1), 3-17, 1981.
- (444) Philander, S.G.H., The Response of Equatorial Oceans to a Relaxation of the Trade Winds, J. Phys. Oceanogr., II(2), 176-189, 1981.
- * (445) Holopainen, E.O., and A.H. Oort, On the Role of Large-Scale Transient Eddies in the Maintenance of the Vorticity and Enstrophy of the Time-Mean Atmospheric Flow, J. Atmos. Sci., 38(2), 270-280, 1981.
- * (446) Holopainen, E.O., and A.H. Oort, Mean Surface Stress Curl Over the Oceans as Determined from the Vorticity Budget of the Atmosphere, J. Atmos. Sci., 38(2), 262-269, 1981.
- (447) Philander, S.G.H., and R.C. Pacanowski, Response of Equatorial Oceans to Periodic Forcing, J. Geophys. Res., 86(C3), 1903-1916, 1981.
- (448) Lipps, Frank B., and Richard S. Hemler, Reply (in reference to Another Look at the Thermodynamic Equation for Deep Convection, Mon. Wea. Rev., 109(3), p. 675, 1981.
- * (449) Mesinger, Fedor, Horizontal Advection Schemes of a Staggered Grid - An Enstrophy and Energy-Conserving Model, Mon. Wea. Rev., 109(3), 467-478, 1981.
- (450) Orlanski, Isidoro, The Quasi-Hydrostatic Approximation, J. Atmos. Sci., 38(3), 572-582, 1981.
- * (451) Lau, Ngan-Cheung, Glenn H. White, and Roy L. Jenne, Circulation Statistics for the Extratropical Northern Hemisphere Based on NMC Analyses, NCAR Technical Note, NCAR/TN-171+STR, 1-138, 1981.

*In collaboration with other organizations

(452) Miyakoda, K., and R.F. Strickler, Cumulative Results of Extended Forecast Experiment, III: Precipitation, Mon. Wea. Rev., 109(4), 830-842, 1981.

(453) Levy, H. II, J.D. Mahlman, and W.J. Moxim, A Three-Dimensional Numerical Model of Atmospheric N₂O, Proc. Quadrennial International Ozone Symposium, II, Boulder, CO, International Ozone Commission (IOC), 943-947, 1981.

* (454) Orlanski, I., and C.P. Cerasoli, Energy Transfer Among Internal Gravity Modes: Weak and Strong Interactions, J. Geophys. Res., 26(C5), 4103-4124, 1981.

(455) Smagorinsky, J., CO₂ and Climate - A Continuing Story, Climatic Variations and Variability: Facts and Theories, A. Berger (ed.), D. Reidel Publ. Co., 661-687, 1981.

(456) Philander, S.G.H., and R.C. Pacanowski, The Oceanic Response to Cross-Equatorial Winds (with application to coastal upwelling in low latitudes, Tellus, 33, 201-210, 1981.

* (457) Gonella, Joseph, Michele Fiuex, and George Philander, Evidence for Equatorial Rossby Waves in the Indian Ocean from Drifter Buoys, Proc. C.R. Academy of Sci., Paris, 292(II), 1397-1399, 1981.

* (458) Stefanik, Michael, Space and Time Scales of Atmospheric Variability, J. Atmos. Sci., 38, 988-1002, 1981.

* (459) Andrews, David G., A Note on Potential Energy Density in a Stratified Compressible Fluid, J. Fluid Mech., 107, 227-236, 1981.

(460) Hayashi, Yoshikazu, Vertical-Zonal Propagation of a Stationary Planetary Wave Packet, J. Atmos. Sci., 38(6), 1197-1205, 1981.

* (461) Lau, Ngai-Cheung, and Abraham H. Oort, A Comparative Study of Observed Northern Hemisphere Circulation Statistics Based on GFDL and NMC Analyses, Part I: The Time Mean Fields, Mon. Wea. Rev., 109(7), 1380-1403, 1981.

* (462) Hamilton, Kevin, Effects of Atmospheric Tides on the General Circulation of the Stratosphere, Mesosphere and Lower Thermosphere, Proc. IAMAP Symposium on Middle Atmospheric Dynamics and Transport, Urbana, IL, S.K. Avery (ed.), Handbook for MAP, 2, 246-255, 1981.

* (463) Andrews, D.G., J.D. Mahlman, and R.W. Sinclair, The Use of the Eliassen-Palm Flux as a Diagnostic of Wave, Mean-Flow Interaction in a General Circulation Model, Proc. IAMAP Symposium on Middle Atmospheric Dynamics and Transport, Urbana, IL, S.K. Avery (ed.), Handbook for MAP, 2, 99-100, 1981.

*In collaboration with other organizations

~ (464) Hsu, C-P F., Air Parcel Motions During a Simulated Sudden Stratospheric Warming, Proc. IAMAP Symposium on Middle Atmospheric Dynamics and Transport, Urbana, IL, S.K. Avery (ed.), Handbook for MAP, 2, 201-211, 1981.

(465) Kurihara, Yoshio, and Robert E. Tuleya, A Numerical Simulation Study on the Genesis of a Tropical Storm, Mon. Wea. Rev., 109(8), 1629-1653, 1981.

* (466) Sun, Wen-Yih, and Isidoro Orlanski, Large Mesoscale Convection and Sea Breeze Circulation, Part I: Linear Stability Analysis, J. Atmos. Sci., 38(8), 1675-1693, 1981.

* (467) Sun, Wen-Yih, and Isidoro Orlanski, Large Mesoscale Convection and Sea Breeze Circulation, Part II: Nonlinear Numerical Model, J. Atmos. Sci., 38(8), 1694-1706, 1981.

(468) Held, Isaac M., David I. Linder, and Max J. Suarez, Albedo Feedback, The Meridional Structure of the Effective Heat Diffusivity, and Climate Sensitivity: Results from Dynamic and Diffusive Models, J. Atmos. Sci., 38(9), 1911-1927, 1981.

(469) Hayashi, Y., Space Time Cross Spectral Analysis Using the Maximum Entropy Method, J. Meteorol. Soc. Japan, Ser. II, 59(5), 620-624, 1981.

(470) Smagorinsky, J., Climate Modelling, Proc. Tech. Conf. on Climate-Asia and Western Pacific, Guangzhou, China, WMO 578, 139-151, 1981.

* (471) Virasaro, M.A., Variational Principle for Two-Dimensional Incompressible Hydrodynamics and Quasigeostrophic Flows, Phys. Rev. Letters, 47(17), 1181-1183, 1981.

(472) Smagorinsky, J., Epilogue: A Perspective of Dynamical Meteorology, Dynamical Meteorology - An Introductory Selection, B.W. Atkinson (ed.), Methuen & Co., Ltd., NY, 205-219, 1981.

(473) Manabe, S., R.T. Wetherald, and R.J. Stouffer, Summer Dryness Due to an Increase of Atmospheric CO₂ Concentration, Climate Change, 3(4), 336-376, 1981.

(474) Manabe, Syukuro, and Douglas G. Hahn, Simulation of Atmospheric Variability, Mon. Wea. Rev., 109(11), 2260-2286, 1981.

* (475) Lau, Ngar-Cheung, A Diagnostic Study of Recurrent Meteorological Anomalies Appearing in a 15-Year Simulation with a GFDL General Circulation Model, Mon. Wea. Rev., 109(11), 2287-2311, 1981.

(476) Hayashi, Y., and D.G. Golder, The Effects of Condensational Heating on Midlatitude Transient Waves in Their Mature Stage: Control Experiment with a GFDL General Circulation Model, J. Atmos. Sci., 38(11), 2532-2539, 1981.

*In collaboration with other organizations

(477) Pacanowski, R.C., and S.G.H. Philander, Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans, J. Phys. Oceanogr., 11(11), 1443-1451, 1981.

* (478) Meleshko, V.P., and R.T. Wetherald, The Effect of a Geographical Cloud Distribution on Climate: A Numerical Experiment with an Atmospheric General Circulation Model, J. Geophys. Res., 86(C12), 11,995-12,014, 1981.

* (479) Liu, S.C., D. Kley, M. McFarland, J.D. Mahlman, and H. Levy II, Reply in reference to On the Origin of Tropospheric Ozone, J. Geophys. Res., 86(C12), 12,165-12,166, 1981.

* (480) Ripa, P., On the Theory of Nonlinear Wave-Wave Interactions Among Geophysical Waves, J. Fluid Mech., 103, 87-115, 1981.

* (481) Yoon, Jong-Hwan, Effects of Islands on Equatorial Waves, J. Geophys. Res., 86(C11), 10,913-10,920, 1981.

* (482) Mahlman, J.D., D.G. Andrews, H.U. Dutsch, D.L. Hartmann, T. Matsuno, and R.J. Murgatroyd, Transport of Trace Constituents in the Stratosphere, Report of MAP Study Group - 2, Handbook for MAP, C.F. Sechrist, Jr. (ed.), 3, 14-43, 1981.

(483) Tuleya, Robert E., and Yoshio Kurihara, A Numerical Study of the Effects of Environmental Flow on Tropical Storm Genesis, Mon. Wea. Rev., 109(12), 2487-2506, 1981.

(484) Bryan, K., F.G. Komro, S. Manabe, and M.J. Spelman, Transient Climate Response to Increasing Atmospheric Carbon Dioxide, Science, 215 (4528), 56-58, 1982.

* (485) Sarmiento, J.L., and K. Bryan, An Ocean Transport Model for the North Atlantic, J. Geophys. Res., 87(C1), 394-408, 1982.

* (486) Holopainen, Eero, Long-term Budget of Zonal Momentum in the Free Atmosphere over Europe in Winter, Quart. J. R. Meteorol. Soc., 108, 95-102, 1982.

(487) Held, Isaac M., On the Height of the Tropopause and the Static Stability of the Troposphere, J. Atmos. Sci., 39(2), 412-417, 1982.

(488) Ross, Bruce B., and Isidoro Orlanski, The Evolution of an Observed Cold Front, Part I: Numerical Simulation, J. Atmos. Sci., 39(2), 297-327, 1982.

(489) Hayashi, Y., Space-Time Spectral Analysis and its Application to Atmospheric Waves, J. Meteorol. Soc. Japan, 60(1), 156-171, 1982.

*In collaboration with other organizations

(490) Kurihara, Y., and Morris A. Bender, Structure and Analysis of the Eye of a Numerically Simulated Tropical Cyclone, J. Meteorol. Soc. Japan, 60(1), 381-395, 1982.

(491) Bryan, K., Poleward Heat Transport by the Ocean: Observations and Models, Annual Rev. of Earth and Planetary Sciences, 10, 15-38, 1982.

(492) Hayashi, Yoshikazu, Interpretations of Space-Time Spectral Energy Equations, J. Atmos. Soc., 39(3), 685-688, 1982.

(493) Miyakoda, K., J. Sheldon, and J. Sirutis, Four-Dimensional Analysis Experiment During the GATE Period - Part II, J. Atmos. Soc., 38(3), 486-506, 1982.

(494) Smagorinsky, Joseph, Scientific Basis for the Monsoon Experiment, Proc. International Conference on the Scientific Results of the Monsoon Experiment, Denpasar Bali, ICSU/WMO-GARP, XXXV-XLII, 1982.

(495) Levy II, H., J.D. Mahlman, and W.J. Moxim, Tropospheric N₂O Variability, J. Geophys. Res., 87(C4), 3061-3080, 1982.

(496) Fels, Stephen B., A Parameterization of Scale-Dependent Radiative Damping Rates in the Middle Atmosphere, J. Atmos. Sci., 39(5), 1141-1152, 1982.

(497) Williams, Gareth P., and J. Leith Holloway, The Range and Unity of Planetary Circulations, Nature, 297(5864), 295-299, 1982.

* (498) Keshavamurty, R.N., Response of the Atmosphere to Sea Surface Temperature Anomalies Over the Equatorial Pacific and the Teleconnections of the Southern Oscillation, J. American Meteorol. Soc., 39(6), 1241-1259, 1982.

(499) Smagorinsky, Joseph, Carbon Dioxide and Climate: A Second Assessment, Report of the CO₂/Climate Review Panel (Chairman), National Research Council, 1-72, 1982.

(500) Miyakoda, K., and A. Rosati, The Variation of Sea Surface Temperature in 1976 and 1977 - 1: The Data Analysis, J. Geophys. Res., 87(C7), 5667-5680, 1982.

* (501) Oey, Li-Yauw, Implicit Schemes for Differential Equations, J. Computational Phys., 45(3), 443-468, 1982.

(502) Smagorinsky, Joseph, Some Thoughts on Contemporary Global Climatic Variability, Drought and Man - the 1972 Case History, 1, Nature Pleads Not Guilty, R.V. Garcia (ed.), Pergamon Press, 265-296, 1982.

(503) Gordon, Charles T., and William F. Stern, A Description of the GFDL Global Spectral Model, Mon. Wea. Rev., 110(7), 625-644, 1982.

*In collaboration with other organizations

- * (504) Philander, S.G.H., and J.-H. Yoon, Eastern Boundary Currents and Coastal Upwelling, J. Phys. Oceanogr., 12(8), 862-879, 1982.
- * (505) Wahr, John M., The Effects of the Atmosphere and Oceans on the Earth's Wobble - I. Theory, Geophys. J. R. Astr. Soc., 349-372, 1982.
- (506) Kurihara, Y., and R.E. Tuleya, Influence of Environmental Conditions on the Genesis of a Tropical Storm, Topics in Atmospheric and Oceanographic Sciences - Intense Atmospheric Vortices, Bengtsson-Lighthill (eds.), Springer-Verlag, 71-79, 1982.
- (507) Held, Isaac M., Climate Models and the Astronomical Theory of the Ice Ages, Icarus, 50(2/3), 449-461, 1982.
- * (508) Matsuura, Tomonori, and Toshio Yamagata, On the Evolution of Non-Linear Planetary Eddies Larger than the Radius of Deformation, J. Phys. Oceanogr., 12(5), 440-456, 1982.
- * (509) Lau, Ngar-Cheung, and Abraham H. Oort, A Comparative Study of Observed Northern Hemisphere Circulation Statistics Based on GFDL and NMC Analyses, Part II: Transient Eddy Statistics and the Energy Cycle, Mon. Wea. Rev., 110(8), 889-906, 1982.
- * (510) Sarmiento, J.L., C.G.H. Rooth, W. Roether, The North Atlantic Tritium Distribution in 1972, J. Geophys. Res., 87(C10), 8047-8056, 1982.
- (511) Hayashi, Yoshikazu, Confidence Intervals of a Climatic Signal, J. Atmos. Sci., 39(9), 1895-1905, 1982.
- * (512) Lau, Ngar-Cheung, Some Observational Results Useful for Diagnosing Long-Term Integrations of Climate Models, Proc. of WMO/ICSU Study Conf. on Physical Basis for Climate Prediction on Seasonal, Annual, and Decadal Time Scales, Leningrad, 13-17 Sept. 1982, World Climate Research Programme, WCP-47, 273-291, 1983.
- * (513) Miyakoda, K., and Chao Jin-Ping, Essay on Dynamical Long-Range Forecasts of Atmospheric Circulation, J. Meteorol. Soc. Japan, 60(1), 292-308, 1982.
- * (514) Holopainen, Eero O., L. Rontu, and Ngar-Cheung Lau, The Effect of Large-Scale Transient Eddies on the Time-Mean Flow in the Atmosphere, J. Atmos. Sci., 39(9), 1972-1984, 1982.
- * (515) De Elvira, A. Ruiz, and Peter Lemke, A Langevin Equation for Stochastic Climate Models with Periodic Feedback and Forcing Variance, Tellus, 34, 313-320, 1982.
- (516) Lipps, Frank B., and Richard S. Hemler, A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations, J. Atmos. Sci., 39(10), 2192-2210, 1982.

*In collaboration with other organizations

(517) Mellor, George L., and Tetsuji Yamada, Development of a Turbulence Closure Model for Geophysical Fluid Problems, Reviews for Geophys. and Space Phys., 20(4), 851-875, 1982.

(518) Welsh, James G., Geophysical Fluid Simulation on a Parallel Computer, Parallel Computations, Garry Rodrigue (ed.), Academic Press, 269-277, 1982.

(519) Kurihara, Yoshio, and Robert E. Tuleya, On a Mechanism of the Genesis of Tropical Storms, Proc. Regional Scientific Conf. on Tropical Meteorol., Tsukuba, Japan, WMO, 17-18, 1982.

(520) Bryan, Kirk, Seasonal Variation in Meridional Overturning and Poleward Heat Transport in the Atlantic and Pacific Oceans: A Model Study, J. Marine Res., 40 (Suppl.), 39-53, 1982.

* (521) Yoon, J.-H., and S.G.H. Philander, The Generation of Coastal Undercurrents, J. Oceanogr. Soc. Japan, 38(4), 215-224, 1982.

* (522) Bowman, Kenneth P., Sensitivity of an Annual Mean Diffusive Energy Balance Model with an Ice Sheet, J. Geophys. Res., 87(C11), 9667-9674, 1982.

* (523) Sarmiento, J.L., C.G.H. Rooth, and W.S. Broecker, Radium 228 on a Tracer of Basin Wide Processes in the Abyssal Ocean, J. Geophys. Res., 87(C12), 9694-9698, 1982.

(524) Smagorinsky, J., Large-Scale Climate Modeling and Small-Scale Physical Processes, Land Surface Processes in Atmospheric General Circulation Models, P.S. Eagleson (ed.), Cambridge University Press, 3-17, 1982.

(525) Manabe, Syukuro, Simulation of Climate by General Circulation Models with Hydrologic Cycles, Land Surface Processes in Atmospheric General Circulation Models, P.S. Eagleson (ed.), Cambridge University Press, 19-66, 1982.

(526) Tuleya, Robert E., and Yoshio Kurihara, A Note on the Sea Surface Temperature Sensitivity of a Numerical Model of Tropical Storm Genesis, Mon. Wea. Rev., 110(12), 2063-2069, 1982.

* (527) Zeng, Qing-cun, The Evolution of Rossby-Wave Packet in Three-Dimensional Baroclinic Atmosphere, J. Atmos. Sci., 40(1), 73-84, 1983.

(528) Levitus, Sydney, Climatological Atlas of the World Ocean, NOAA Professional Paper 13, 188 p., 1982.

* (529) Mellor, George L., Carlos R. Mechoso, and Eric Keto, A Diagnostic Calculation of the General Circulation of the Atlantic Ocean, Deep Sea Res., 29(10A), 1171-1192, 1982.

(530) Cox, M.D., A Numerical Model of the Ventilated Thermocline, Ocean Modeling, 49, 5-7, 1983.

*In collaboration with other organizations

(531) Smagorinsky, Joseph, The Beginnings of Numerical Weather Prediction and General Circulation Modeling: Early Recollections, Advances in Geophysics, 25, Theory of Climate, Barry Saltzman (ed.), Academic Press, New York, 3-38, 1983.

(532) Manabe, Syukuro, Carbon Dioxide and Climatic Change, Advances in Geophysics, 25, Theory of Climate, Barry Saltzman (ed.), Academic Press, New York, 39-84, 1983.

* (533) Oort, Abraham H., and Jose P. Peixoto, Global Angular Momentum and Energy Balance Requirements from Observations, Advances in Geophysics, 25, Theory of Climate, Barry Saltzman (ed.), Academic Press, New York, 355-490, 1983.

* (534) Carton, James A., The Long-Period Tides and Coastal Upwelling, unpublished thesis, Geophysical Fluid Dynamics Program, Princeton University, 1983.

* (535) Sardeshmukh, Prashant D., Mechanisms of Monsoonal Cyclogenesis, unpublished thesis, Geophysical Fluid Dynamics Program, Princeton University, 1983.

* (536) Mac Ayeal, Douglas R., Rectified Tidal Currents and Tidal-Mixing Fronts: Controls on the Ross Ice Shelf Flow and Mass Balance, unpublished thesis, Geophysical Fluid Dynamics Program, Princeton University, 1983.

(537) Smagorinsky, Joseph, Climate Changes Due to CO₂. AMBIÖ, A Journal of the Human Environment, R. Swedish Acad. Sci., XII(2), 83-85, 1983.

(538) Hayashi, Y., and D.G. Golder, Transient Planetary Waves Simulated by GFDL Spectral General Circulation Models. Part I: Effects of Mountains, J. Atmos. Sci. 40(4), 941-950, 1983.

(539) Hayashi, Y., and D.G. Golder, Transient Planetary Waves Simulated by GFDL Spectral General Circulation Models. Part II: Effects of Nonlinear Energy Transfer, J. Atmos. Sci., 40(4), 951-957, 1983.

(540) Kurihara, Yoshio, and Morris A. Bender, A Numerical Scheme to Treat the Open Lateral Boundary of a Limited Area Model, Mon. Wea. Rev., 111(3), 445-454, 1983.

(541) Philander, S.G.H., El Nino Southern Oscillation Phenomena, Nature, 302(5906), 295-301, 1983.

* (542) Palmer, T.N., and C.-P. F. Hsu, Stratospheric Sudden Coolings and the Role of Nonlinear Wave Interactions in Preconditioning the Circumpolar Flow, J. Atmos. Sci., 40(4), 909-928, 1983.

(543) Pierrehumbert, R.T., Bounds on the Growth of Perturbations to Non-Parallel Steady Flow on the Barotropic Beta Plane, J. Atmos. Sci., 40(5), 1207-1217, 1983.

*In collaboration with other organizations

- * (544) Peixoto, Jose P., and Abraham H. Oort, The Atmospheric Branch of the Hydrological Cycle and Climate, Variations in the Global Water Budget, A. Street-Perrot, M. Beran, R. Ratcliffe (eds.), D. Reidel, Holland, 5-65, 1983.
- (545) Manabe, Syukuro, and Ronald J. Stouffer, Seasonal and Latitudinal Variation of the CO₂ Induced Change in a Climate of an Atmosphere-Mixed Layer Ocean Model. Proc. DOE Workshop on First Detection of Carbon Dioxide Effects, June 8-10, 1981, Harpers Ferry, West Virginia, 79-94, 1982.
- (546) Manabe, S., Comments on paper Simulating CO₂-Induced Climate Change with Mathematical Climate Models: Capabilities, Limitations and Prospects by Michael E. Schlesinger. Proc. CO₂ Research Conference and Workshop, Sept. 19-23, 1982, Coolfont, West Virginia, III 145-159, 1983.
- * (547) Miyakoda, K., T. Gordon, R. Caverly, W. Stern, R. Sirutis, and W. Bourke, Simulation of a Blocking Event in January 1977, Mon. Wea. Rev., 111(4), 846-869, 1983.
- (548) Miyakoda, K., Surface Boundary Forcings, WMO/ICSU Study Conf. on Physical Basis for Climate Prediction on Seasonal, Annual, and Decadal Time Scales, Leningrad, 13-17 Sept. 1982, World Climate Research Programme, WCP-47, 51-78, 1983.
- (549) Bender, Morris A., and Yoshio Kurihara, The Energy Budgets for the Eye and Eye Wall of a Numerically Simulated Tropical Cyclone, J. Meteorol. Soc. Japan, 61(2), 239-243, 1983.
- * (550) Yeh, T.-C., R.T. Wetherald, and S. Manabe, A Model Study of the Short-Term Climatic and Hydrologic Effects of Sudden Snow-Cover Removal, Mon. Wea. Rev., 111(5), 1013-1024, 1983.
- (551) Oort, Abraham H., Climate Variability - Some Observational Evidence, WMO/ICSU Study Conf. on Physical Basis for Climate Prediction on Seasonal, Annual and Decadal Time Scales, Leningrad, 13-17 Sept. 1982, World Climate Research Programme, WCP 47, 1-24, 1983.
- (552) Ploshay, Jeffrey, J., Robert K. White, and Kikuro Miyakoda, FGGE Level III-B Daily Global Analyses. Part I (Dec 1978 - Feb 1979), NOAA Data Report, ERL GFDL-1, 278 pp., 1983.
- (553) Mesinger, F., and R.F. Strickler, Effect of Mountains on Genoa Cyclogenesis, J. Meteorol. Soc. Japan, 60(1), 326-338, 1983.
- (554) Bryan, Kirk, Poleward Heat Transport by the Ocean, Reviews of Geophysics and Space Physics, 21(5), 1131-1137, 1983.
- * (555) Redi, Martha H., Oceanic Isopycnal Mixing by Coordinate Rotation, J. Phys. Oceanogr., 12(10), 1154-1158, 1982.

*In collaboration with other organizations

MANUSCRIPTS SUBMITTED FOR PUBLICATION

- (a) Miyakoda, K., A. Rosati, and F. E. Boland, The Variation of Sea Surface Temperature in 1976 and 1977. Part II. The Characteristics of Spatial and Temporal Variability. (Submitted to the J. Geophys. Res., Sept. 1979.)
- * (b) Sarmiento, J.L., J. Willebrand, and S. Hellerman, Objective Analysis of Tritium Observations in the Atlantic Ocean During 1971-1974. (Submitted to J. Geophys. Res., February 1981.)
- * (c) Miyakoda, K., L. Umscheid, T. Terpstra, J. Ploshay, J. Sirutis, W. Bourke, C.T. Jobson, W. Stern, and W. Davis, FGGE Four-Dimensional Analysis System at GFDL. (Submitted to Mon. Wea. Rev., April 1981.)
- * (d) Wahr, J.M., and T. Sasao, A Nearly Diurnal Resonance in the Ocean Load Tide. (Submitted to Proc. of Ninth International Symposium on Earth Tides, 16-21 August 1981, New York, NY)
- * (e) Wahr, J.M., and D.R. Larden, An Analysis of Lunar Laser Ranging Data for the Earth's Free Core Nutation. (Submitted to Proc. of Ninth International Symposium on Earth Tides, 15-21 August 1981, New York, NY.)
- * (f) Carton, J.A., and J.M. Wahr, The Pole Tide in the Deep Ocean. (Submitted to Proc. of Ninth International Symposium on Earth Tides, 16-21 August 1981, New York, NY)
- * (g) Carton, J., The Long Period Tides in Closed Ocean Basins. (Submitted to J. Geophys. Res., August 1981.)
- * (h) Sarmiento, J.L., Time Scales of Thermocline Exchange with the Surface Waters. (Submitted to Science, December 1981.)
- * (i) Mesinger, Fedor, Zavisa I. Janjic, and Robert F. Strickler, Space Difference at the Pole of a Staggered Enstrophy and Energy Conserving Model. (Submitted to Mon. Wea. Rev., December 1981.)
- * (j) Lau, Ngar-Cheung, Mid-Latitude Wintertime Circulation Anomalies Appearing in a 15-year GCM Experiment. (Submitted to "Large-Scale Dynamical Processes in the Atmosphere, Academic Press, January 1982.)
- (k)
- (l) Held, Isaac M., Stationary and Quasi-stationary Eddies in the Extra-tropical Troposphere: Theory. (Submitted to Academic Press, B. Hoskins (ed.), March 1982.)

*In collaboration with other organizations

- * (m) Zeng, Qing-Cun, The Development Characteristics of Quasi-Geostrophic Baroclinic Disturbances. (Submitted to J. Atmos. Sci., and Tellus, April 1982.)
- (n) Hayashi, Yoshikazu, The Frequency Transform Method of Estimating Space-Time Spectra from Satellite Data. (Submitted to J. Meteorol. Soc. Japan, May 1982.)
- (o) Spelman, M.J., and S. Manabe, Influence of Ocean Heat Transport Upon the Sensitivity of a Model Climate. (Submitted to J. Geophys. Res., May 1982.)
- * (p) Hires, R.I., L.Y. Oey, and G.L. Mellor, Numerical Model Study of the Tidal Hydraulics of Raritan Bay. (Submitted to the Bull. of New Jersey Academy of Sci., May 1982.)
- (q) Orlanski, Isidoro, Orographically Induced Vortex Centers. (Proc. Joint U.S.-China Mountain Meteorology Symposium, Beijing, China, May 1982, Mountain Meteorology, Sino-U.S. Academies of Sci.)
- (r) Orlanski, Isidoro, and L.J. Polinsky, Ocean Response to Mesoscale Atmospheric Forcing. (Submitted to Tellus, May 1982.)
- * (s) Philander, S.G.H., and P. Delacluse, Coastal Currents in Low Latitudes (with application to the Somali and El Nino Currents. (Submitted to Deep Sea Res., June 1982.)
- * (t) Lemke, Peter, Stochastic Description of Atmosphere-Sea Ice-Ocean Interaction. (Presented at NATO Advanced Study Institute on Air-Sea-Ice Interaction, Maretta, Italy, for publication in textbook Air-Sea-Ice Interaction (tent. title), N. Untersteiner (ed.), July 1982.)
- (u) Oort, Abraham H., Global Atmospheric Circulation Statistics, 1958-1973. (NOAA Professional Paper No. 14, U.S. Printing Office, Washington, D.C., 180 pp., 1983.)
- (v) Orlanski, I., and B.B. Ross, The Mesoscale Structure of a Moist Cold Front Simulation with Explicit Convection. (Proc. CIMMS Symposium on Mesoscale Modeling, Norman, OK, June 1982.)
- * (w) Pan, Yi Hong, and Abraham H. Oort. Global Climate Variations Connected with Sea Surface Temperature Anomalies in the Equatorial Pacific Ocean for the 1958-1973 Period. (Submitted to Mon. Wea. Rev., September 1982.)
- * (x) MacAyeal, Douglas R., Numerical Simulations of the Ross Sea Tides. (Submitted to J. Geophys. Res., September 1982.)
- (y) Hayashi, Yoshikazu, Studies of the Mechanism of Planetary-Scale Atmospheric Disturbances Using New Analysis Methods. (Proc. presentation ceremony Japan Meteorol. Soc. Research Award 1982; to be published by Tenki.)

*In collaboration with other organizations

- (z) Gordon, Charles T., Russell D. Hovanec, and William F. Stern, 3-D Neph and Surface Observation-based Analyses of Monthly Mean Cloudiness and their Influence upon Model-diagonal Radiative Fluxes: A Comparative Study. (Submitted to J. Geophys. Res. (ocean-atmosphere edition), November 1982.)
- (aa) Hellerman, Sol, and Mel Rosenstein, Normal Monthly Stress Over the World Ocean with Error Estimates. (Submitted to J. Phys. Oceanogr., November 1982.)
- (bb) Yeh, T.-C., R.T. Wetherald, and S. Manabe, The Effect of Soil Moisture on the Short Term Climate and Hydrology Change - A Numerical Experiment. (Submitted to Mon. Wea. Rev., December 1982.)
- (cc) Gordon, Charles T., William F. Stern, and R.D. Hovanec, An Inverse Method for Generating Radiatively Consistent Analysis of Cloud Amount. (Submitted to J. Geophys. Res., January 1983.)
- * (dd) Held, Isaac M., and David G. Andrews, On the Direction of the Eddy Momentum Flux in Baroclinic Instability. (Submitted to J. Atmos. Sci., January 1983.)
- (ee) Gordon, Charles T., and William F. Stern, Medium Range Prediction by a GFDL Global Spectral Model: Results for Three Winter Cases and Sensitivity to Dissipation. (Submitted to Mon. Wea. Rev., February 1983.)
- (ff) Tuleya, Robert E., Morris A. Bender, and Yoshio Kurihara, A Simulation Study of the Landfall of Tropical Cyclones Using a Movable Nested-Mesh Model. (Submitted to Mon. Wea. Rev., March 1983.)
- * (gg) Wahr, John M., and Abraham H. Oort, Friction-and Mountain-Torque Estimates from Global, Atmospheric Data. (Submitted to J. Atmos. Sci., April 1983.)
- (hh) Orlanski, Isidoro, and Bruce B. Ross, The Evolution of an Observed Cold Front Part II: Mesoscale Dynamics. (Submitted to J. Atmos. Sci., April 1983.)
- * (ii) Andrews, D.G., J.D. Mahlman, and R.W. Sinclair, Eliassen-Palm Diagnostics of Wave, Mean Flow Interaction in the GFDL "SKYHI" General Circulation Model. (Submitted to J. Atmos. Sci., April 1983.)
- * (jj) Sardeshmukh, Prashant D., and Isaac M. Held, The Vorticity Balance in the Tropical Upper Troposphere of a General Circulation Model. (Submitted to J. Atmos. Sci., April 1983.)
- * (kk) Nigam, Sumant, and Isaac M. Held, The Influence of a Critical Latitude on Topographically Forced Stationary Waves in a Barotropic Model. (Submitted to J. Atmos. Sci., April 1983.)
- (ll) Miyakoda, K., J. Ploshay, and W. Stern, Guide and Caution on the GFDL/FGGE III-b Data Set. (Submitted to AMS Newsletter, April 1983.)
- (mm) Salby, Murry L., and Dennis L. Hartmann, Evidence for Equatorial Kelvin Modes in Nimbus-7 LIMS. (Submitted to J. Atmos. Sci., April 1983.)
- (nn)

*In collaboration with other organizations

- * (oo) Pierrehumbert, R.T., and P. Malguzzi, Forced Coherent Structures and Local Multiple Equilibria in a Barotropic Atmosphere. (Submitted to J. Atmos. Sci., May 1983.)
- * (pp) Schemm, Charles E., and Frank B. Lipps, A Three Dimensional Numerical Study of Turbulence in Homogeneous Fluids. (Submitted to Computers & Fluids, May 1983.)
- * (qq) Lemke, P., and T. O. Manley, The Seasonal Variation of the Mixed Layer and the Pycnocline Under Polar Sea Ice. (Submitted to J. Geophys. Res., June 1983.)
- (rr) Mahlman, J.D., and L.J. Umscheid, Dynamics of the Middle Atmosphere: Successes and Problems of the GFDL "SKYHI" General Circulation Model. (Proc. US-Japan Seminar on Middle Atmosphere Dynamics, June 83.) (Book form by "TERRAPUB")
- * (ss) MacAyeal, Douglas Reed, Thermohaline Circulation Below the Ross Ice Shelf: A Consequence of Tidally Induced Vertical Mixing and Basal Melting. (Submitted to the J. Geophys. Res., June 1983.)
- * (tt) Lau, Ngar-Cheung, and Eero O. Holopainen, Transient Eddy Forcing of the Time-Mean Flow as Identified by Quasi-geostrophic Tendencies. (Submitted to J. Atmos. Sci., June 1983.)
- (uu) Cox, Michael D., and Kirk Bryan, A Numerical Model of the Ventilated Thermo-cline. (Submitted to J. Phys. Oceanogr., July 1983.)
- (vv) Manabe, S., and A.J. Broccoli, Ice Age Climate and Continental Ice Sheets: Some Experiments with a General Circulation Model. (Submitted to the Annals of Glaciology, July 1983.)
- (ww) Philander, S.G.H., T. Yamagata, and R.C. Pacanowski, Unstable Air-Sea Interactions in the Tropics. (Submitted to J. Atmos. Sci., July 1983.)
- * (xx) Yamagata, T., and S.G.H. Philander, The Role of Damped Equatorial Waves in the Oceanic Response to Winds. (Submitted to J. Marine Res., July 1983.)
- (yy) Pierrehumbert, R.T., Remarks on the Blocking of Flow by Mesoscale Mountains. (Submitted to J. Atmos. Sci., July 1983.)
- (zz) Bryan, Kirk, Accelerating the Time-Integration of Ocean-Climate Models. (Submitted to J. Phys. Oceanogr., July 1983.)
- (aaa) Philander, S.G.H., Anomalous El Nino of 1982-83. (Submitted to Nature, July 1983.)
- (bbb) Pierrehumbert, R.T., Formation of Shear Layers Upstream of the Alps. (Submitted to Revista Meteorologica i Aeronautica, Special Issue on Proc. Fifth Course on Meteorology of the Mediterranean, July 1983.)

*In collaboration with other organizations

- * (ccc) Halpern, D., S.P. Hayes, A. Leetma, D.V. Hansen, S.G.H. Philander, Oceanographic Observations of the 1982 Warming of the Tropical Eastern Pacific. (Submitted to Science, July 1983.)
- * (ddd) Matsuura, Tomonori, and Toshio Yamagata, Numerical Study of a Viscous Flow Past a Right Circular Cylinder in a Rotating Frame. I. The f-plane Case. (Submitted to J. Fluid Mechanics, July 1983.)
- * (eee) Mahlman, J.D., D.G. Andrews, D.L. Hartmann, T. Matsuno, R.J. Murgatroyd, Transport of Trace Constituents in the Stratosphere. (Proc. U.S.-Japan Seminar on Middle Atmosphere Dynamics, Toyko, Japan, Advances in Earth and Planetary Sciences, TERRAPUB).
- * (fff) Bryan, K., F.G. Komro, and C. Rooth, The Ocean's Transient Response to Global Surface Temperature Anomalies. (For publication in Ewing Symposium Volume, American Geophys. Union).
- * (ggg) Hayashi, Y., and D.G. Golder, The Effect of Wave-Wave Interactions on Transient Ultralong Waves: Control Experiments with a GFDL Spectral General Circulation Model. (Submitted to J. Atmos. Sci., August 1983.)
- * (hhh) Oey, L.-Y., On Steady Salinity Distribution and Circulation in Partially Mixed and Well Mixed Estuaries". (Submitted to J. Phys. Oceanogr., August 1983.)
- * (iii) Oey, L.-Y., G.L. Mellor, and R.I. Hires, Tidal Modeling of the Hudson-Raritan Estuary. (Submitted to Estuarine Coastal & Shelf Science, August 1983.)
- * (jjj) Domaradski, J.A., and G.L. Mellor, A Simple Turbulence Closure Hypothesis for the Triple dVelocity Correlation Functions in Homogeneous, Isotropic Turbulence. (Submitted to J. Fluid Mech., February 1983.)
- * (kkk) Domaradski, J.A., and G.L. Mellor, The Importance of Large Scales of Turbulence on the Predictability of the Turbulent Energy Decay. (Proc. Workshop on Predictability of Fluid Motions, La Jolla, CA, February 1983.)
- (lll) Tuleya, Robert E., and Yoshio Kurihara, The Formation of Comma Vortices in a Tropical Numerical Simulation Model. (Submitted to Mon. Wea. Rev., August 1983.)
- (mmm) Levitus, Sydney, Climatological Atlas of the World Ocean. (Submitted to The Oceanography Report, EOS, September 1983.)
- * (nnn) Sarmiento, J.L., A Simulation of Bomb Tritium Entry into the Atlantic Ocean. (Submitted to J. Phys. Oceanogr., 1983.)
- * (ooo) Sarmiento, J.L., A Tritium Box Model of the North Atlantic Thermocline. (Submitted to J. Phys. Oceanogr., 1983.)
- (ppp) Williams, Gareth P., and Toshio Yamagata, Geostrophic Regimes, Intermediate Solitary Vortices and Jovian Eddies. (Submitted to J. Atmos. Sci., 1983.)

*In collaboration with other organizations

BIBLIOGRAPHY

CROSS-REFERENCE BY AUTHOR

ANDERSON, David L.	(375)
ANDREWS, David G.	(459),(463),(482),(dd),(ii),(eee)
BABA, NOBUYOSHI	(191)
BAER, Ferdinand	(131)
BAKER, Phillip L.	(110)
BANNON, Peter	(289)
BENDER, Morris	(355),(380),(434),(490),(540),(549),(ff)
BLUMBERG, Alan F.	(229),(279),(280),(281),(291),(292),(326), (338),(362),(371),(393)
BOLAND, F.E.	(a)
BOURKE, W.	(547),(c)
BOWMAN, Harold D. II	(204)
BOWMAN, K.P	(522)
BRIGGS, M.	(307)
BROECKER, W.S.	(523)
BROCCOLI, A.J.	(vv)
BRYAN, Kirk	(16),(20),(22),(36),(41),(47),(70),(71), (78),(80),(83),(85),(114),(139),(141), (207),(208),(228),(234),(253),(265),(334), (335),(350),(359),(360),(372),(375),(390), (484),(485),(491),(520),(554),(uu),(zz), (fff)
CARTON, J.A.	(f),(g)
CAVERLY, Richard	(547)
CERASOLI, Carmen	(241),(409),(454)
CHAN, Paul H.	(309)

CHAO, J.-P.	(513)
CHEN, J.H.	(170),(177)
CHEN, W.Y.	(190),(203)
CLARK, Terry L.	(138),(161),(175)
CLARKE, Reginald H.	(108),(124),(135)
CHUDLINSKI, J.	(319)
COX, Michael D.	(47),(70),(71),(89),(139),(141),(151), (233),(276),(324),(353),(387),(422),(442) (uu)
CROUGH, S. Thomas	(345)
DAHLEN, F.A.	(344)
DAVIES, D.R.	(33)
DAVIS, W.	(c)
DELACLUSE, P.	(s)
DELISI, Donald P.	(212),(220),(221)
de ELVIRA, A.R.	(515)
DELSOL, Frederick	(108)
DICKEY, Thomas	(296),(340),(361),(423)
DOMARADSKI, J.A.	(jjj),(kkk)
DUING, Walter	(425)
DURBIN, P.A.	(230)
DUTSCH, H.U.	(482)
ELLIS, J.S.	(328)
FELS, Stephen B.	(174),(181),(215),(223),(286),(333),(344), (376),(395),(431),(441),(496)
FIEUX, Michael	(457)
FRIEDLANDER, Susan	(130)
FRIEDRICH, Hans J.	(130)

GALL, Robert	(246),(247)
GILL, Adrian	(114),(160),(375)
GOLDER, Donald G.	(284),(347),(410),(476),(538),(539),(ggg)
GONELLA, J.	(457)
GORDON, Charles T.	(136),(196),(278),(503),(547),(z),(cc),(ee)
GRAHAM, R.D.	(58)
GRAY, T.I., Jr.	(179)
HAHN, Douglas G.	(173),(226),(270),(273),(301),(382),(385),(391),(474)
HAIDVOGEL, Dale B.	(438)
HAMILTON, Kevin	(408),(415),(439),(443),(462)
HANSEN, D.V.	(ccc)
HANTL, Michael	(244),(248)
HARTMANN, Dennis L.	(183),(227),(262),(266),(482),(mm),(eee)
HAYASHI, Yoshikazu	(152),(176),(243),(284),(290),(311),(347),(364),(366),(379),(397),(410),(419),(435),(460),(469),(476),(489),(492),(511),(539)(n),(y),(ggg)
HAYES, S.P.	(ccc)
HELD, Isaac M.	(171),(224),(239),(267),(323),(348),(377),(401),(438),(468),(487),(507),(1),(dd),(jj),(kk)
HELD, Joann L.	(228)
HELLERMAN, Solomon	(31),(41),(57),(424),(b),(aa)
HEMBREE, G. Daniel	(4),(60),(74),(86),(110),(144),(195),(313),(356)
HEMLER, Richard B.	(394),(448),(516)
HIBLER, W.D., III	(294),(304),(320),(370),(418)
HIRES, R.I.	(p),(iii)

HIRSHMAN, Alan D.	(140)
HOLLAND, William R.	(64),(123),(140),(147),(231),(232),(235)
HOLLOWAY, J. Leith	(3),(34),(55),(60),(88),(93),(94),(101),(109),(148),(173),(189),(214),(391),(497)
HOLOPAINEN, Eero O.	(430),(445),(446),(486),(514),(tt)
HOSKINS, B.J.	(168),(210),(242)
HOU, A.Y.	(401)
HOVANEC, R.D.	(z),(cc)
HSU, C.-P. F.	(464),(542)
HUNT, Barrie G.	(37),(39),(65),(66),(72)
HUPPERT, H.E.	(265)
JANJIC, Zavisa I.	(i)
JOBSON, C.T.	(c)
KAPLAN, L.D.	(215)
KESHAVAMURTY, R.N.	(498)
KETO, E.	(529)
KLEY, D.	(433),(479)
KOMRO, F.G.	(484),(fff)
KUNG, Ernest G.	(28),(38),(43),(56)
KURBATKIN, G.P.	(385)
KURIHARA, Yoshio	(30),(32),(55),(67),(97),(125),(146),(163),(184),(194),(206),(211),(255),(256),(316),(322),(355),(380),(434),(465),(483),(490),(506),(519),(526),(540),(549),(ff),(111)
LARDEN, D.R.	(e)
LAU, Ngar-Cheung	(365),(368),(384),(400),(411),(430),(461),(475),(509),(512),(514),(j),(tt)
LEE, D.H.	(252)

LEETMA, A.	(ccc)
LEMKE, Peter	(515),(t),(qq)
LEVITUS, Sydney	(291),(308),(328),(528),(mmm)
LEVY, Hiram II	(351),(399),(413),(414),(433),(453),(479), (495)
LEWIS, Lawrence	(360)
LILLY, Douglas K.	(6),(12),(15),(17),(19),(25),(29)
LINDER, David I.	(468)
LINDZEN, R.S.	(174)
LIN, Liang-Bee	(192),(231),(232)
LIPPS, Frank B.	(40),(87),(104),(106),(138),(156),(254), (259),(288),(303),(394),(448),(516),(pp)
LIST, R.J.	(188)
LIU, S.C.	(433),(479)
LUSEN, Ronald	(252)
MAC AYEAL, Douglas R.	(x),(ss)
MAHLMAN, Jerry D.	(137),(154),(155),(158),(188),(240),(264), (268),(287),(330),(331),(337),(351),(386), (399),(413),(414),(421),(431),(433),(436), (437),(453),(463),(479),(482),(495),(ii), (rr),(eee)
MALAGUZZI, P.	(oo)
MANABE, Syukuro	(13),(14),(27),(34),(35),(51),(52),(53), (60),(65),(66),(69),(72),(78),(81),(82), (88),(93),(94),(98),(99),(101),(109), (111),(119),(127),(137),(148),(172),(173), (189),(207),(208),(209),(214),(217),(226), (237),(268),(270),(301),(372),(382),(385), (388),(391),(393),(420),(428),(429),(440), (473),(474),(484),(525),(532),(545),(546) (550),(o),(bbb),(vv)
MANLEY, T.O.	(qq)
MATSUNO, Taroh	(118),(482),(eee)

MATSURRA, Tonomori	(ddd)
MC FARLAND, M.	(433), (479)
MECHOSO, Carlos R.	(432), (529)
MELLOR, George L.	(167), (201), (222), (230), (238), (285), (291), (307), (315), (321), (361), (362), (369), (383), (404), (517), (529), (p), (iii), (jjj), (kkk)
MERONEY, R.N.	(132), (198)
MESINGER, Fedor	(449), (553), (i)
MILLER, A.J.	(188)
MIYAKODA, Kikuro	(21), (62), (74), (86), (90), (92), (108), (110), (121), (122), (124), (136), (144), (159), (165), (177), (195), (197), (245), (252), (299), (312), (319), (356), (452), (493), (500), (513), (547), (548), (552), (a), (c), (11)
MOLLER, Fritz	(10), (11), (13), (14)
MOXIM, W.J.	(264), (337), (351), (399), (414), (421), (453), (495)
MOYER, R.W.	(62), (124)
MURGATROYD, R.J.	(eee)
NAPPO, C.J.	(110)
NIGAM, Sumant	(kk)
OEY, L.Y.	(p), (hhh), (iii)
OORT, Abraham H.	(75), (79), (91), (96), (107), (116), (120), (128), (150), (153), (179), (180), (182), (186), (187), (204), (216), (257), (269), (302), (308), (309), (318), (328), (392), (430), (445), (446), (461), (509), (533), (544), (551), (u), (w), (gg)
ORLANSKI, Isidoro	(63), (84), (85), (115), (134), (151), (166), (169), (185), (205), (219), (220), (249), (272), (300), (310), (325), (329), (381), (407), (409), (450), (454), (466), (467), (488), (q), (r), (v) (hh)
PACANOWSKI, Ronald C.	(208), (375), (396), (405), (447), (456), (477) (ww)

PAN, Yi Hong	(w)
PEIXOTO, Jose P.	(182),(186),(257),(533),(544)
PHILANDER, S.G.H.	(149),(164),(260),(275),(293),(317),(339), (352),(357),(373),(374),(396),(402),(405), (425),(444),(447),(456),(457),(477),(504), (521),(541),(s),(ww),(xx),(aaa),(ccc)
PHILLIPS, N.A.	(343)
PIACSEK, Steve A.	(102)
PIERREHUMBERT, R.T.	(543),(oo),(yy),(bbb)
PLOSHAY, J.	(552),(c),(11)
POLINSKY, L. J.	(185),(205),(310),(r)
POND, S.	(253)
PRATT, F.	(252)
RASMUSSEN, Eugene M.	(42),(54),(59),(67),(91),(105),(116),(145)
REDI, Martha	(555)
RINTEL, Lionel	(50),(61)
RIPA, Pedro	(327),(334),(480)
ROBINSON, John B.	(157),(200)
ROETHER, W.	(510)
RONTU, L.	(514)
ROOTH, Claes G.	(398),(510),(523),(fff)
ROSATI, Anthony	(299),(500),(a)
ROSS, Bruce B.	(169),(185),(205),(300),(325),(329),(381), (407),(488),(v),(hh)
ROSSOW, William B.	(282),(283),(314),(341),(354),(395)
ROTUNNO, Richard	(263),(298)
ROWNTREE, Peter R.	(129)
SADLER, J. C.	(195)

SALBY, Murry L.	(mm)
SARDESHMUKH, Prashant D.	(jj)
SARMIENTO, Jorge L.	(349),(398),(417),(485),(510),(523),(b), (h),(nnn),(ooo)
SASAO, T.	(d)
SCHEMM, Charles	(193),(254),(pp)
SCHOPF, Paul	(297)
SCHUURMANS, C.J.E.	(75)
SCHWARZKOPF, M. Daniel	(223),(330),(431),(441)
SEMTNER, Albert	(162)
SHELDON, John	(493)
SHUKLA, J.	(213),(271),(273)
SHULMAN, Irving	(144)
SIMMONDS, Ian	(258),(274),(336)
SINCLAIR, Russell W.	(287),(330),(431),(436),(463),(ii)
SIRUTIS, J.	(252),(312),(493),(547),(c)
SMAGORINSKY, Joseph	(1),(2),(5),(8),(9),(18),(23),(26),(34), (35),(44),(45),(46),(51),(60),(74),(76), (88),(92),(100),(113),(143),(199),(295), (342),(343),(358),(389),(406),(455),(470), (472),(494),(499),(502),(524),(531)
SO, R.M.C.	(321)
SOMERVILLE, Richard	(106),(112),(156)
SPELMAN, Michael J.	(148),(207),(372),(484),(o)
STAMBLER, H.	(124)
STARR, V.P.	(150),(187)
STEFANICK, Michael	(416),(458)
STEGEN, Gilbert R.	(190),(202),(212),(221),(228)
STERN, W.F.	(196),(547),(c),(z),(cc),(ee),(11)

STONE, Hugh M.	(69),(88),(93)
STONE, Peter H.	(395)
STOUFFER, Ronald J.	(388),(428),(429),(473),(545)
STRICKLER, Robert F.	(27),(35),(60),(74),(86),(92),(110),(124), (135),(144),(319),(356),(452),(553),(i)
STRUB, Paul T.	(404)
SUAREZ, Max J.	(171),(239),(267),(323),(377),(468)
SUN, Wen-Yih	(412),(466),(467)
TALAGRAND, Oliver	(121),(122)
TANG, D.H. Edward	(250)
TAYLOR, Albion	(79)
TERPSTRA, Theodore B.	(172),(c)
TRIPOLI, Gregory	(256),(355)
TULEYA, Robert E.	(184),(194),(211),(316),(322),(465),(483) (506),(519),(526),(ff),(111)
UMSCHEID, Ludwig, Jr.	(136),(165),(252),(277),(289),(c),(rr)
VONDER HAAR, Thomas H.	(153),(269),(328)
VIRASARO, M.A.	(471)
WAHR, J.M.	(d),(e),(f),(gg)
WELSH, JAMES G.	(518)
WETHERALD, Richard T.	(52),(127),(209),(237),(393),(420),(440), (473),(478),(550),(bb)
WHITE, Robert F.	(552)
WILLEBRAND, Jurgen	(346),(405),(b)
WILLIAMS, Gareth P.	(33),(48),(49),(73),(77),(95),(102),(117), (126),(133),(157),(178),(200),(225),(236), (314),(332),(354),(363),(367),(378),(497) (ppp)
WORTHEM, Sylvia	(369)

YAMADA, Tetsuji (132), (142), (198), (201), (218), (238), (251),
(306), (307), (315), (383), (517)

YEH, T.-C. (550), (bb)

YOON, Jong-Hwan (481), (504), (521)

ZENG, Q.-C. (527), (m)

APPENDIX C

Computational Support

APPENDIX C

Computational Support

FY82 saw the final stage of transition from the TI ASC to the CYBER 205 as the computational system for the Laboratory. The ASC was powered off in the middle of October 1982, completing eight years of steady service to the Laboratory.

The CYBER 205 finally passed acceptance testing on September 25, 1982. It also passed in December 1982 an increase in average daily availability from 20 hours to 21 hours.

The reliability of the CYBER 205 hardware has been generally good except for magnetic tapes and the link between the front-end 170 and the 205. The reliability of the CYBER 205 software, on the other hand, has been very disappointing. This past year has been largely occupied with identifying problems with the 205 software for CDC to repair. The implementation of user features has progressed at a slower than expected pace because of the many system problems that have been encountered as various purported capabilities are exercised.

FY84 will witness the delivery of a second 205 and, hopefully, more complete and reliable software from CDC.

TABLE C-1. Achieved CPU Hours for GFDL Systems

Month	TI/ASC	CYBER 170	CYBER 205
Sep 82*	466	204	**
Oct 82	294	266	**
Nov 82	***	192	**
Dec 82	***	272	524
Jan 83	***	169	520
Feb 83	***	182	458
Mar 83	***	283	570
Apr 83	***	238	535
May 83	***	262	548
Jun 83	***	306	495
Jul 83	***	254	496
Aug 83	***	**	**
Sep 83	***	**	**

* Not reported in the FY 82 Annual Report

** Not available

*** The ASC was turned off in October 1982

TABLE C-2. Average Monthly ASC CPU Hours by Fiscal Year

<u>Fiscal Year</u>	<u>CPU Hours per Month</u>
1982	498
1981	551
1980	508
1979	513
1978	497
1977	523
1976	499

APPENDIX D

Seminars Given at GFDL
During Fiscal Year 1983

Seminars not included in FY 82 Report

September 1, 1982 "Numerical Experiment with a Seven-level Primitive Equation Spectral Model" by Dr. Zheng Qinglin, Central Meteorological Bureau, Beijing, Peoples Republic of China

September 3, 1982 "Langrangian Mean Motions Forced by Planetary Waves" by Dr. Michiya Uryu, Department of Physics, Kyushu University, Kyushu, Japan

September 21, 1982 "Topics on Ice-Phase Microphysics-Dynamics Interaction" by Prof. Norihiko Fukuta, Department of Meteorology, University of Utah, Salt Lake City, Utah

FY 83

October 21, 1982 "Can We Assess the Impacts of Climatic Changes" by Dr. Jesse Ausubel, Climate Board, National Academy of Sciences, Washington, DC

October 25, 1982 "On the Variability of the Circulation in the Subtropical North Atlantic" by Dr. Friedrich Schott, Division of Meteorology and Physical Oceanography, University of Miami, Miami, Florida

October 26, 1982 "A Survey of Early Results of ALPEX" by Dr. R. T. Pierrehumbert, Geophysical Fluid Dynamics Laboratory

November 3, 1982 "Sampling Theory for Asynoptic Satellite Observations" by Dr. M. L. Salby, National Center for Atmospheric Research, Boulder, CO

November 4, 1982 "Newest Results of Climate Measurements from Satellites Including Cloud Climatologies" by Dr. Thomas H. Vonder Haar Department of Atmospheric Sciences, Colorado State University, Fort Collins, CO

November 5, 1982 "Drought Forecasting: Consequences and Responsibilities" by Dr. Michael J. Glantz, Environmental and Societal Impacts Group, National Center for Atmospheric Research, Boulder, CO

November 9, 1982 "Structure and Energetics of Mid-Latitude Disturbances Associated with Cold Air Outbreaks over Eastern Asia" by Dr. N.-C. Lau, Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ

November 12, 1982 "Numerical Simulation of the Dynamics of the Saharan Mixing Layer" by Dr. Toby N. Carlson, College of Earth and Mineral Sciences, Department of Meteorology, The Pennsylvania State University, University Park, PA

November 16, 1982 "The Potential Enstrophy Budget of Tropospheric Stationary Waves" by Dr. Isaac M. Held, Geophysical Fluid Dynamics Laboratory

November 19, 1982 "Observations of Wave-Mean Flow Interaction in the Southern Hemisphere Stratosphere" by Dr. Carlos R. Mechoso, Department of Atmospheric Sciences, University of California, Los Angeles, CA

November 23, 1982 "Influence of the CLIMAP Ice Sheet on the Climate of a General Circulation Model" by Anthony J. Broccoli, Geophysical Fluid Dynamics Laboratory

November 23, 1982 "Climate Simulations with a Simple Atmosphere-Ocean Energy Balance Model" by Prof. Erik Eliassen, University of Copenhagen, Institute for Theoretical Meteorology, Copenhagen, Denmark

November 29, 1982 "Dynamics of the Equatorial Middle Atmosphere" by Dr. Timothy J. Dunkerton, Physical Dynamics, Inc., Bellevue, WA

November 30, 1982 "Effects of Wave-Wave Interaction on Transient Planetary Waves" by Dr. Yoshikazu Hayashi and Mr. Donald G. Golder, Geophysical Fluid Dynamics Laboratory

December 7, 1982 "Two-point Turbulence Closure Model" by Dr. J. A. Domaradski, Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ

December 7, 1982 "Frequency Dependence and Lag Correlation of Teleconnection Pattern" by Dr. Maurice Blackmon, National Center for Atmospheric Research, Boulder, CO

December 8, 1982 "The Simultaneous Use of Tracers for Ocean Circulation Studies" by Prof. Bert Bolin, Department of Meteorology, University of Stockholm, Stockholm, Sweden

December 10, 1982 "Orographically Disturbed Wind and Pressure: Theory and Convection" by Dr. Ronald B. Smith, Department of Geology and Geophysics, Yale University, New Haven, CT

December 14, 1982 "Variation of Cloud Cover in Response to Changes of Various Model Climates" by Mr. R. T. Wetherald, Geophysical Fluid Dynamics Laboratory

December 14, 1982 "Experimental Study on Stratospheric Gravity Waves" by Prof. O. Talagrand, Laboratoire de Meteorologie Dynamique, Paris, France

December 17, 1982 "Seasonal Snow Cover and the Atmospheric Circulation in the Northern Hemisphere" by Dr. John Walsh, Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL

January 5, 1983 "Observed Relationships Between Extra-Tropical Circulations and Tropical Convectin at Low Frequencies" by Dr. Ennis L. Hartmann, University of Washington, Department of Atmospheric Sciences, Seattle, WA

January 14, 1983 "Estimates of Arctic Ocean Circulation from Sea-Ice Motion" by Dr. Alan S. Thorndike, Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA

January 27, 1983 "Statistical Dynamical Modeling of Large-Scale Atmospheric Flows" by Mr. Siegfried Schubert, Meteorology Department, University of Wisconsin, Madison, WI

February 4, 1983 "The Analysis of Upper-Level and Surface Fronts from the BAO Tower and Platteville-Denver Profiler System" by Dr. M. A. Shapiro, Cooperative Institute for Research and Environmental Sciences (CIRES), Boulder, CO

February 8, 1983 "Observations and a Simple Model of Multiple Vortices in Tornadoes" by Mr. David Dritschel, Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ

February 15, 1983 "The Formation of Comma Vortices in a Tropical Numerical Simulation Model" by Mr. Robert E. Tuleya and Dr. Yoshio Kurihara, Geophysical Fluid Dynamics Laboratory

February 22, 1983 "Stratospheric and Mesospheric Kelvin Waves Simulated by the "SKY HI" Model, by Dr. Yoshikazu Hayashi, Mr. Donald Golder, and Dr. Jerry Mahlman, Geophysical Fluid Dynamics Laboratory

March 1, 1983 "Evidence for Equatorial Models in Nimbus-7 LIMS" by Dr. Murry Salby, Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ

March 1, 1983 "Small-Scale Structure of the Taylor-Green Vortex" by Prof. Steven A. Orszag, Department of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, Mass.

March 3, 1983 "NOAA Satellite Detection of the El Chichon Eruptions and Stratospheric Cloud" by Mr. Michael Matson, NOAA/National Earth Satellite Service

" " " " "Optical Thickness Measurements of El Chichon Aerosol from NOAA-7 AVHRR Data" by Mr. Larry L. Stowe, NOAA/NESS

March 3, 1983 "The Effect of El Chichon on Sea Surface Temperatures and Their Measurements by NOAA-AVHRR by Mr. Alan E. Strong, NOAA/NESS

March 4, 1983 "V-States: Steady Solutions of the Euler Equations and Their Stability and Nonlinear Evolution" by Prof. Norman L. Zabusky, Dept. of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA

March 8, 1983 "Simple Ice Sheet Models" by Mr. K. Bowman, Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ

March 11, 1983 "Mixed Layer Models of the North Sea" by Dr. H. Friedrich Institute fur Meereskunde, Hamburg University, Hamburg, Republic of West Germany

March 15, 1983 "Eliassen-Palm Diagnostics of Wave, Mean-Flow Interaction in the "SKYHI" Model" by Drs. D. Andrews, J. Mahlman, and Mr. R. Sinclair, Geophysical Fluid Dynamics Laboratory, Princeton, NJ

March 15, 1983 "New Insights on the Thermocline" by Dr. Joseph Pedlosky, Woods Hole Oceanographic Institution, Woods Hole, MA

March 24, 1983 "A Diagnostic, Ice Covered Ocean Model" by Dr. W. Hibler, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH

March 25, 1983 "SST Anomalies and U.S. Summer Climate" by Prof. P. Handler University of Illinois at Urbana-Champaign, College of Engineering, Coordinated Science Laboratory, Urbana, IL

March 29, 1983 "The Relationship Between Convective Adjustment, Hadley Circulation and Normal Modes of the ANMRC Spectral Model by Dr. Kamal Puri, Geophysical Fluid Dynamics Program, Princeton University

March 29, 1983 "Internal Baroclinic Instability" by Dr. Ian James, University of Reading, United Kingdom

April 5, 1983 "Stationary Waves in Linear and Nonlinear Models" by Mr. James L. Kinter, Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ

April 7, 1983 "Practical Use of Hamilton's Principle in Oceanography and Meteorology" by Prof. Richard Salmon, Scripps Institution of Oceanography, University of California, San Diego, CA

April 19, 1983 "Statistical Prediction of Sea Ice" by Dr. Peter Lemke, Geophysical Fluid Dynamics Program, Princeton University

April 21, 1983 "Structure and Life Cycle of Mesoscale Convective Systems in the Tropics and Mid-Latitudes" by Dr. Edward J. Zipser, Convective Storms Division, National Center for Atmospheric Research, Boulder, CO

29 April 1981 "Are Glaciation Cycles Predictable?" by Prof. Michael Ghil, Courant Institute of Mathematical Sciences, New York University, New York, NY

3 May 1983 "Numerical Simulation of the Landfall of Tropical Cyclones" by Messrs. M. Bender and R. Tuleya, and Dr. Y. Kurihara, Geophysical Fluid Dynamics Laboratory

5 May 1983 "Chemical Dynamics in the Amazon Estuary" by Prof. R.F. Stallard Princeton University, Princeton, NJ

10 May 1983 "Tides in the Venusian Atmosphere" by Dr. Stephen B. Fels, Geophysical Fluid Dynamics Laboratory

17 May 1983 "Dynamics of Narrow Cold Frontal Rainbands" by Mr. K. Moore, Geophysical Fluid Dynamics Program, Princeton University

19 May 1983 "Weather on Venus: Continuing Observations by Pioneer Venus Spacecraft" by Dr. William B. Rossow, NASA Goddard Institute for Space Studies, New York, NY

20 May 1983 "Modeling of Warm Core Rings: Their Structure, Motion and Radiation Fields" by Dr. Glenn R. Flierl, Massachusetts Institute of Technology, Cambridge, Mass.

24 May 1983 "Effect of Baroclinic Eddies on the Zonal Mean Flows" by Dr. Yoshikazu Hayashi, Geophysical Fluid Dynamics Laboratory

26 May 1983 "The Onset of the Asian Summer Monsoon and Tibetan Heat Sources" by Prof. Mishio Yanai, University of California, Los Angeles, Dept. of Atmospheric Sciences, Los Angeles, CA

31 May 1983 "Continuous Assimilation System Used for Processing FGGE Data" Messrs. W.F. Stern and J. Poshay, and Dr. K. Miyakoda, Geophysical Fluid Dynamics Laboratory

7 June 1983 "Soaring the Mountain Wave" by Dr. Murry Salby, Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ

7 June 1983 "Isentropic Trajectories and Regional Scale Transport Modeling of SEAREX Data by Dr. John Merrill, University of Rhode Island

9 June 1983 "Stratospheric Circulation Research at Goddard" by Dr. Marvin A. Geller, NASA/Goddard Space Flight Center, Greenbelt, MD

17 June 1983 "Climate Model Response to the El Chichon Volcanic Eruption" by Dr. Alan Robock, University of Maryland, College Park, MD

24 June 1983 "Weakly Nonlinear Theory of Vacillation" by Dr. A. Barcilon, Florida State University, Tallahassee, FL

28 June 1983 "Recent Research Activities at the European Centre" by Dr. D.M. Burridge, Head, Research Department, European Centre for Medium Range Weather Forecasts, Reading, Berkshire, United Kingdom

29 June 1983 "Coastal Wave Measurements off Japan" by Prof. M. Kubota, Tokai University, Japan

21 July 1983 "Numerical Experiments in Mesoscale Prediction in the Australian Region" by Dr. Lance Leslie, Australian Numerical Meteorological Research Centre/CSIRO, Melbourne, Australia

9 August 1983 "A Simple Diagnostic Model for the 30-50 day Oscillation in the Tropics" by Drs. T. Yamagata, Geophysical Fluid Dynamics Program, Princeton University, and Y. Hayashi, Geophysical Fluid Dynamics Laboratory

APPENDIX E

Talks, Seminars, and Papers Presented Outside GFDL
During Fiscal Year 1983

TALKS, SEMINARS, AND PAPERS PRESENTED OUTSIDE GFDL
DURING FISCAL YEAR 1983

Not included in FY 82 Report

September 13, 1982 Dr. Murry L. Salby
"Sampling Theory for Asynoptic Satellite Observations" at the International Symposium on Remote Sensing and Data Interpolation, Toulouse, France

September 16, 1982 Dr. Murry L. Salby
"Synoptic Field Retrieval from Asynoptic Satellite Observations" at the International Symposium on Remote Sensing and Data Interpolation, Toulouse, France

September 17, 1982 Dr. Murry L. Salby
"Sampling Considerations for Asynoptic Satellite Measurements" at the Institut Spatiale d'Aeronomie, Brussels

September 20, 1982 Dr. Murry L. Salby
"Sampling Considerations for Asynoptic Satellite Measurements" at the British Meteorological Office, Berkshire, Reading, UK

September 21, 1982 Dr. Syukuro Manabe
"Influence of Ocean's Heat Transport on the Sensitivity of Climate" at the Department of Energy CO₂ Research Conference Berkley Springs, WV

September 27, 1982 Dr. Hiram Levy II
"Research Needs in Tropospheric Ozone" at the 1st Meeting of Global Tropospheric Chemistry Panel, West Greenwich, RI

September 27, 1982 Dr. Kikuro Miyakoda
"Large-Scale Weather Systems - Modeling" at Weather Observation and Prediction Research Review Meeting, Boulder, CO

FY 83

October 12, 1982 Dr. Isidoro Orlanski
"The Effect of Initial and Boundary Data in Mesoscale Forecasts" at the National Meteorological Center, Camp Springs, MD

October 14, 1982 Dr. Yoshio Kurihara
"On the Genesis of Typhoons" at the Japan Meteorological Agency, Tokyo, Japan

October 15, 1982 Dr. Yoshio Kurihara
"Typhoons - Prediction and Numerical Experiments" at the Electronic Computation Center, Japan Meteorological Agency, Tokyo, Japan

October 15, 1982 Dr. Stephen B. Fels
"Tidal Forcing and the Circulation of the Venus Mesosphere" at the University of Reading, Reading, UK

October 18, 1982 Mr. James L. Kinter, III
"A Numerical Study of Planetary Scale Waves and the Blocking Phenomenon Using Barotropic Models" at the 7th Climate Diagnostics Workshop, National Center for Atmospheric Research, Boulder, CO

October 18, 1982 Dr. Yoshio Kurihara
"On a Mechanism of the Genesis of Tropical Storms" at the Regional Scientific Conference on Tropical Meteorology, Tsukuba, Ibaraki, Japan

October 18, 1982 Dr. Kikuro Miyakoda
"Anomaly Model Using a Barotropic Vorticity Equation" at the Climate Diagnostic Workshop, Boulder, CO

October 20, 1982 Dr. Kirk Bryan
"The Ocean as a Climatic Buffer" at the Department of Earth Sciences, Massachusetts Institute of Technology, Cambridge, MA

October 21, 1982 Dr. Stephen B. Fels
"Radiative Damping in the Terrestrial Middle Atmosphere" at Oxford University, Department of Atmospheric Physics, Oxford, UK

October 21, 1983 Mr. Douglas MacAyeal
"Ocean Currents Below the Ross Ice Shelf" at the Institute of Polar Studies, Ohio State University, Columbus, OH

October 27, 1982 Dr. J. D. Mahlman
"Atmospheric Physics and Chemistry: Some Major Environmental Issues" at the Science Awareness Seminar, "Scientist Meets Science Teacher", Princeton University, Princeton, NJ

October 28, 1982 Prof. George L. Mellor
"Mixed Layer Modeling" at a workshop on Weather Modification, Cesarea, Israel

October 29, 1982 Mr. Douglas R. MacAyeal
"Tidal Rectification Below the Ross Ice Shelf" at the Institute for Quaternary Studies and Department of Physics and Astronomy, University of Maine, Orono, ME

November 4, 1982 Dr. Hiram Levy II
"Tropospheric O₃: Who Needs Photochemistry?" at Harvard University, Center for Planetary Sciences, Cambridge, MA

November 9, 1982 Dr. J. D. Mahlman
"A Conceptual View of Stratospheric Transports" at the U.S.-Japan Seminar on Middle Atmospheric Dynamics, Honolulu, HI

November 10, 1982 Mr. Douglas R. MacAyeal
"Tidal Rectification and Tidal Front Formation Below the Ross Ice Shelf" at the Lamont-Doherty Geological Observatory, Columbia University, Palisades, NY

November 11, 1982 Dr. J. D. Mahlman
"Some Conceptual Difficulties with the Transformed Eulerian Equations at the U.S.-Japan Seminar on Middle Atmospheric Dynamics, Honolulu, HI

November 12, 1982 Dr. J. D. Mahlman
"The Circulation of the Winter Polar Stratosphere: Problems of Modeling" at the U.S.-Japan Seminar on Middle Atmospheric Dynamics, Honolulu, HI

November 17, 1982 Dr. J. D. Mahlman
"Global Atmospheric Modeling from the Ground to the Mesopause" at the Institute for Atmospheric Physics, Academia Sinica, Beijing, Peoples Republic of China

November 17, 1982 Dr. Stephen B. Fels
"Radiative Damping in the Terrestrial Middle Atmosphere" at the European Centre for Medium Range Weather Forecasting, Reading, UK

November 18, 1982 Dr. Stephen B. Fels
"Radiative Damping in the Terrestrial Middle Atmosphere" at the Imperial College, London, UK

November 18, 1982 Dr. J. D. Mahlman
"Dynamics of Atmospheric Tracer Transports" at the Institute for Atmospheric Physics Academia Sinica, Beijing, Peoples Republic of China

November 23, 1982 Dr. Kirk Bryan
"The Ocean as a Thermal Buffer in Climate" at the Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA

November 29, 1982 Mr. Douglas R. MacAyeal
"Tidal Rectification and Tidal Front Formation Below the Ross Ice Shelf" at the Department of the Geophysical Sciences, University of Chicago, Chicago, IL

November 30, 1982 Dr. Isaac M. Held
"Interhemispheric Interaction and the Southern Hemisphere's Response to Insolation Anomalies" at the Milankovitch and Climate Symposium, Lamont-Doherty Geological Observatory, Palisades, NY

November 30, 1982 Dr. Hiram Levy II
"The Role of Precipitation Scavenging and Dry Deposition in a General Circulation/Transport Model of Tropospheric Chemistry" at the Fourth International Conference on Precipitation, Scavenging, Dry Deposition and Resuspension, Los Angeles, CA

December 1, 1982 Mr. Kenneth P. Bowman
"Snowfall Parameterizations in Energy Balance Models and Ice Sheet Size" at the Milankovitch and Climate Symposium, Lamont-Doherty Geological Observatory, Palisades, NY

December 2, 1982 Mr. Anthony J. Broccoli
"Influence of the CLIMAP Ice Sheet on the Climate of a General Circulation Model: Implications for the Milankovitch Theory" at the Milankovitch and Climate Symposium, Lamont-Doherty Geological Observatory, Palisades, NY

December 2, 1982 Dr. Syukuro Manabe
"Influence of the CLIMAP Ice Sheet on the Climate of a General Circulation Model" at the Milankovitch and Climate Symposium, Lamont-Doherty Geological Observatory, Palisades, NY

December 3, 1982 Dr. Stephen B. Fels
"Tidal Forcing and the Circulation of the Venus Mesosphere" at Cambridge University, Department of Applied Mathematics and Physics, Cambridge, UK

December 6, 1982 Mr. Douglas R. MacAyeal
"Ocean Circulation Below the Ross Ice Shelf, Antarctica" at the Department of Geological Sciences, Brown University, Providence, RI

December 9, 1982 Mr. James G. Welsh
"Supercomputers: Parallel and Vector Processors" at the Association for Computing Machinery, Princeton University, Princeton, NJ

December 13, 1982 Dr. Kikuro Miyakoda
"Forecast Impact of Subgrid-Scale Parameterization in Global Models" at the Workshop on Impact of Cumulus Parameterization on Large-Scale Numerical Weather Prediction, Tallahassee, FL

December 14, 1983 Prof. George L. Mellor
"Diagnostic and Prognostic Ocean Modeling" at the Joint US/Australian Workshop on the Wind Driven, Transient Circulation on Continental Shelves, Monterey, CA

January 7, 1983 Mr. Douglas R. MacAyeal
"Modeling the Flow of the Ross Ice Shelf" at the Standard Oil of Ohio, Arctic Research Group, Cleveland, OH

January 10, 1983 Dr. Kikuro Miyakoda
"A Review of Dynamic Modeling Approaches to Short-Term Climate Prediction" at the Second Conference on Climate Variations, New Orleans, LA

January 11, 1983 Mr. Douglas R. MacAyeal
"Ocean Circulation Below the Ross Ice Shelf: A Consequence of Tidal Rectification, Tidally-Induced Vertical Mixing and Basal Melting" at the Applied Physics Lab and the Joint Institute of Studies of the Atmosphere and Ocean, University of Washington, Seattle, WA

January 12, 1983 Mr. Douglas R. MacAyeal
"Modeling the Deformation of the Ross Ice Shelf" at the University of Washington, Geophysics Program, Seattle, WA

January 12, 1983 Dr. S.G.H. Philander
"Southern Oscillation/El Nino Phenomena" at Columbia University, Palisades, NY

January 14, 1983 Mr. Douglas R. MacAyeal
"Ocean Circulation Below the Ross Ice Shelf: A Consequence Of Tidal Rectification, Tidally-Induced Vertical Mixing and Basal Melting" at CIRES/NCAR, University of Colorado, Boulder, CO

January 17, 1983 Mr. Douglas R. MacAyeal
"Ocean Circulation Below the Ross Ice Shelf, Antarctica" at the Department of Meteorology, University of Wisconsin, Madison, WI

January 19, 1983 Dr. Stephen B. Fels
"Effect of CO₂ Increase in the Middle Atmosphere" at the Royal Meteorological Society, London, UK

January 20, 1983 Dr. Stephen B. Fels
"Tides in the Atmosphere of Venus" at Oxford University, Department of Atmospheric Physics, Oxford, UK

January 20, 1983 Mr. Douglas R. MacAyeal
"Ocean Circulation Below the Ross Ice Shelf: A Consequence of Tidal Rectification, Tidally-Induced Vertical Mixing and Basal Melting" at Yale University, Department of Geology and Geophysics, New Haven, CT

January 27, 1983 Dr. Kikuro Miyakoda
"Monthly Dynamical Prediction at GFDL" at the Climate Research Committee Meeting, Washington, DC

February 4, 1983 Dr. Syukuro Manabe
"Numerical Modeling Studies of CO₂ Induced Climate Change" at Goddard Space Flight Center, Greenbelt, MD

February 8, 1983 Dr. S.G.H. Philander
"El Nino/Southern Oscillation" at the Laboratoire Oceano-graphic Physique, Paris, France

February 9, 1983 Dr. J. D. Mahlman
"Some Research Recommendations for U.S. Participation in the Middle Atmospheric Program (MAP)" at the Meeting of the Interagency Working Group on the Middle Atmosphere Program (MAP), Washington, DC

February 14, 1983 Dr. Hiram Levy II
"Tropospheric Modeling-Chemical Processes" by at NOAA Air Quality Bin Review Meeting, Rockville, MD

February 14, 1983 Dr. Kikuro Miyakoda
"GFDL 4-Dimensional Analysis System" at the Design of Credible Simulation Studies Workshop, Washington, DC

February 15, 1983 Dr. Kamal Puri
"Impact of FGGE Observing Systems on Numerical Weather Prediction in the Southern Hemisphere" at the Workshop on the Design of Credible Simulation Experiment, Washington, DC

February 25, 1983 Mr. Anthony J. Broccoli
"The Influence of Continental Ice Sheets on the Climate of an Ice Age" at Rutgers University, Dept. of Meteorology and Physical Oceanography, Brunswick, NJ

March 3, 1983 Dr. Bruce B. Ross
"Sensitivity of a Moist Front Simulation to Decreased Temperature/Water Vapor Resolution" at the Profiler Workshop Wave Propagation Laboratory, Boulder, CO

March 8, 1983 Dr. J. D. Mahlman
"Tropospheric Modeling of Chemical Processes" at the Atmospheric Quality Research Review, NOAA Headquarters, Rockville, MD

March 14, 1983 Dr. Yoshio Kurihara
"A Genesis Mechanism of Tropical Storms" at Florida State University, Tallahassee, FL

March 15, 1983 Dr. S.G.H. Philander
"El Nino/Southern Oscillation Phenomena" at Harvard University, Boston, MA

March 16, 1983 Dr. Yoshio Kurihara
"On the Formation of Tropical Storms" at NOAA Ad hoc Hurricane Committee Meeting, Hurricane Research Laboratory/NOAA, Coral Gables, FL

March 22, 1983 Prof. George L. Mellor
"A Turbulence Closure Model with Application to Geophysical Fluid Problems" at Naval Post Graduate School seminar, Monterey, CA

March 22, 1983 Dr. Yoshikazu Hayashi
"Nonlinear Energy Transfer of Transient Planetary Waves Simulated by GFDL Spectral Models" at the Fourth Conference on Atmospheric and Oceanic Waves and Stability sponsored by the American Meteorological Society, Boston, MA

March 22, 1983 Dr. Murry L. Salby
(1) "Evidence for Equatorial Kelvin Modes in Nimbus-7 LIMS"; (2) "Transient Wave Response to Impulsive Latent Heat Release in the Tropical Convergence Zone"; (3) "Survey of Planetary-Scale Traveling Wave: The Current State of Observations and Theory" at the Fourth Conference on the Meteorology of the Upper Atmosphere sponsored by the American Meteorological Society, Boston, MA

March 22, 1983 Mr. Ludwig J. Umscheid
"Modeling Seasonal Behavior of the Middle Atmosphere: Progress and Problems" at the Fourth Conference on the Meteorology of the Upper Atmosphere sponsored by the American Meteorological Society, Boston, MA

March 22, 1983 Dr. J. D. Mahlman
"Eliassen-Palm Diagnostics of Wave, Mean-flow Interaction in the GFDL "SKIHI" General Circulation Model" at the Fourth Conference on the Meteorology of the Upper Atmosphere sponsored by the American Meteorological Society, Boston, MA

March 22, 1983 Dr. Raymond T. Pierrehumbert
"A Simple Model of the Local Baroclinic Instability" at the Fourth Conference on Atmospheric and Oceanic Waves and Stability sponsored by the American Meteorological Society, Boston, MA

March 22, 1983 Mr. Marcel D. Schwarzkopf
"Radiative Calculation of the Annual Cycle of Middle Atmosphere Temperatures and Winds" at the Fourth Conference on Meteorology of the Upper Atmosphere sponsored by the American Meteorological Society, Boston, MA

March 22, 1983 Dr. Isaac M. Held
"On the Interaction of the Hadley Cell with Rossby Waves Forced in Mid-Latitudes" at the Fourth Conference on Atmospheric and Oceanic Waves and Stability sponsored by the American Meteorological Society, Boston, MA

July 25, 1973 Dr. Raymond T. Pierrehumbert
 "Passage of Fronts Across the Alps" at Yale University,
 New Haven, CT

July 26, 1983 Dr. S.G.H. Philander
 "El Nino/Southern Oscillation Phenomenon" at the National
 Aeronautics and Space Admin., Washington, DC

July 26, 1983 Dr. J. D. Mahlman
 "Global Dispersion and Removal of a Ground-Source Trace Con-
 taminant" at the National Academy of Sciences Workshop on
 "Atmospheric Response to a Nuclear Exchange", Palo Alto, CA
 Exchange", Palo Alto, CA

July 26, 1983 Dr. S.G.H. Philander
 "El Nino Southern Oscillation Phenomena: Unstable Air-Sea
 Interactions Modulated by Seasonal Cycle" at the Goddard
 Space Flight Center, Greenbelt MD

July 29, 1983 Dr. Toshio Yamagata
 "The Evolution of Intermediate-Geostrophic Eddies in Planetary
 Fluids" at Florida State University, Department of
 Meteorology, Tallahassee, FL

August 1, 1983 Dr. Abraham H. Oort
 "Interhemispheric Comparisons Based on a 10-Year Global Data
 Set" at the First International Conference on Southern Hemi-
 sphere Meteorology, Sao Jose' dos Campos, Brazil

August 3, 1983 Dr. Kamal Puri
 "Assimilation Analysis and Data Impact in the Southern Hemi-
 sphere During SOP-2 Period FGGE" at the First International
 Conference on Southern Hemisphere Meteorology, Sao Jose'
 dos Campos, Brazil

August 8, 1983 Dr. Kirk Bryan
 "Climate Models for Stream 3" at the National Academy of
 Sciences Workshop on Global Observations and Understanding
 of the Oceans, Woods Hole, MA

August 9, 1983 Dr. Lie-Yauw Oey
 "Second Order Turbulence Closure and Estuarine Numerical
 Modeling" at the ASCE Conference, Massachusetts Institute
 of Technology, Cambridge, MA

August 10, 1983 Prof. Jorge L. Sarmiento
 "Tracers and Modeling" at the Workshop on Global Observations
 and Understanding of the General Circulation of the Oceans,
 Woods Hole Oceanographic Institution, Woods Hole, MA

August 11, 1983 Prof. George L. Mellor
 "Turbulence Closure and Estuarine Numerical Modeling at the ASCE Conference, Massachusetts Institute of Technology, Cambridge, MA

August 16, 1983 Dr. Isidoro Orlanski
 "Model Initialization" at the WMO Workshop on Very Short-Range Forecasting Systems Research Aspects, National Center for Atmospheric Research, Boulder, CO

August 19, 1983 Dr. R. Alan Plumb
 "Super-rotation in Planetary Atmospheres" at the IUGG/IAMAP General Assembly, Hamburg, Federal Republic of Germany

August 19, 1983 Dr. Murry L. Salby
 "Traveling Waves in the Stratosphere: Implications for Theory and Observations" at the IUGG/IAMAP General Assembly, Hamburg, Federal Republic of Germany

August 24-25, 1983 Dr. Isidoro Orlanski
 "The Influence of Nesting in Limiting Mesoscale Predictability" at the IUGG/IAMAP XVIII General Assembly, Hamburg, Federal Republic of Germany

August 24-25, 1983 Dr. Raymond T. Pierrehumbert
 (1) "Formation of Shear Layers Upstream of the Alps: Observations and a Theory"; (2) "Local Multiple Equilibria of the Barotropic Vorticity Equation" at the IAMAP/WMO Symposium on Maintenance of the Quasi-Stationary Components of the Flow in Atmospheric Models, Paris, France

August 26, 1983 Mr. Sumant Nigam
 "The Influence of a Critical Latitude on Topographically Forced Stationary Waves in a Barotropic Model" at the IUGG/IAMAP XVIII General Assembly, Hamburg, Federal Republic of Germany

August 26, 1983 Mr. James L. Kinter III
 "Numerical Simulation of Anomalous Stationary Waves in a Barotropic Atmosphere" at the IAMAP/WMO Symposium, Paris, France

August 29, 1983 Dr. Hiram H. Levy II
 "The Global Impact of Combustion NO_x: A Preliminary General Circulation/Transport Study" at the CACGP Symposium on Tropospheric Chemistry, Oxford, UK

August 30, 1983 Dr. Ray T. Pierrehumbert
 "Towards a Physical Basis for Envelope Orography" at the IAMAP/WMO Symposium on Maintenance of the Quasi-stationary Components of the Flow in Atmospheric Models, Paris, France

August 30, 1983 Dr. R. Alan Plumb
 "The Interaction of Transient Eddies with the Time-Mean Flow"
 at the IAMAP/WMO Symposium on Maintenance of the Quasi-
 Stationary Components of the Flow in Atmospheric Models,
 Paris, France

August 30, 1983 Dr. Isaac M. Held
 "Review of Work with Barotropic Models of Quasi-Stationary
 Flows" at the IAMAP/WMO Symposium on Maintenance of the Quasi-
 Stationary Components of the Flow Atmospheric Models, Paris,
 France

August 30, 1983 Mr. Sumant Nigam
 "Linear and Quasi-linear Stationary Waves: Influence of a
 Critical Latitude" at the IAMAP/WMO Symposium on Maintenance
 of the Quasi-Stationary Components of the Flow in Atmospheric
 Models, Paris, France

August 31, 1983 Dr. Ngar-cheung Lau
 "The Structures of Stationary and Quasi-Stationary Flows in
 General Circulation Models and their Seasonal Dependence" at
 the First International Conference on Southern Hemisphere
 Meteorology, Sao Jose' dos Campos, Brazil

September 7, 1983 Prof. George L. Mellor
 "A Numerical Ocean Model" at the Fleet Numerical Ocean Center
 Monterey, CA