

GLOBAL OCEAN
OBSERVING SYSTEM
(GOOS)
CENTER

2002 ANNUAL REPORT

The
Global
Ocean
Observing
System
(GOOS)
Center

Annual Report
January through December 2002

Robert L. Molinari, Ph.D Director GOOS Center NOAA/AOML Miami, Florida 33149

Steven K. Cook Manager GOOS Center NOAA/AOML La Jolla, California 92037

Additional GOOS Center information can be found at: www.aoml.noaa.gov/goos

GC 37 . A6 2007

TABLE OF CONTENTS

Executive Summary	i
Major GOOS Center Operations	
Voluntary Observing Ship (VOS) Program	1
Global Drifter Program	1
Expendable Bathythermograph (XBT) Program	2
Argo Program	2
Principle GOOS XBT Routes during 2002	3
High Density XBT Program	4
Future Plans	4
Data Availability and Web Products	5
Acknowledgements	5
GOOS Center Products	
Status of Global Drifter Array January-December 2002	6 - 11
Drifter Deployment Plan October 2002 – September 2003	12
Deployments by Global Drifter Center in 2002	13
5x5 degree square drifter plots (January - December 2002)	14 - 19
Monthly Radar plots of all SEAS data (January - December 2002)	20 - 31
Data Collection	
Dot plot of XBT observations during 2002	32
Dot plot of MET observations during 2002	33
Key to Call signs	34
2002 SEAS XBT Counts by route	35 - 38
Delayed Mode XBT Data Received at AOML	39 - 42
Delayed Mode Meteorological Data Received at AOML	43 - 46
Statistics	
Atlantic XBT DAC review of delayed mode data	47
FY 2002 XBT Probe Distribution	48
GTS XBT Observations	49
2002 Summary of Subsurface Data	50 - 51
2002 Summary of Platform Contributions	52
2002 Average Number of Observations per Platform	53
2002 Ship Observations	5.1

Executive Summary

Steven K. Cook GOOS Center Manager NOAA/AOML

The GOOS Center manages and operates NOAA's Global Drifter, Expendable-Bathythermograph and SEAS Meteorological Programs; migrates long term monitoring projects into operations when appropriate, provides timely, high quality and cost effective oceanographic data and products for NOAA now cast, forecast, detection, attribution and research mission requirements; and represents NOAA on international committees.

During the calendar year 2002 the GOOS Center Global Drifter Program deployed 378 Drifting Buoys; 181 in the Pacific Ocean, 79 in the Atlantic Ocean, 40 in the Indian Ocean and 78 in the southern Oceans. At the end of 2002 the global array totaled 730 Drifters reporting approximately 2500 sea surface temperatures daily. The Upper Ocean Thermal Center SEAS Program globally collected more than 120,000 sea surface meteorological and 9,000 Expendable Bathythermograph (XBT) observations from approximately 350 participating Voluntary Observing Ships (VOS). The GOOS Center XBT observations represented more than 38% of the total inserted by all groups onto the Global Telecommunications System. There were 34 successful deployments of ARGO Floats in the Atlantic Ocean conducted from Voluntary Observing Ships and NOAA research vessels. GOOS Center real-time data tracking activities of subsurface observations monitored more than 168,890 observations consisting of Bathy, Buoy, Float, TAO, Triton and TESAC data.

The Data Assembly Center of the Global Drifter Program continued to successfully update the research quality database at two-month intervals and develop new and improved products for web distribution. The Atlantic XBT Data Assembly Center, a component of the Global Temperature and Salinity Profile Program, continued to import real time data into the AOML database at monthly intervals. The research quality database (i.e. consisting of both real time and delayed mode data), which began in 1990, is current to 1998 and consists of approximately 110,000 observations.

The GOOS Center was able to continue limited XBT support and the upgrade of 20 Drifters with barometer capability for our international colleagues. The GOOS Center continues to represent the Global Drifter Program on the Data Buoy Cooperation Panel and our SEAS XBT and Met Programs on the Ship of Opportunity Implementation Panel, Ship Observations Team, VOSClim and the Working Group on Automated Systems.

The development of SEAS 2000 continues with Phase III by integrating Automated Weather Systems and Thermosalinograph capabilities into operations. The GOOS Center continues to struggle with the recruiting of VOS for both the Low and High Density XBT sampling in the Atlantic and Indian Oceans. The volatile shipping industry, increased price of expendables and lack of infrastructure support in the Indian Ocean region continues to cause serious logistical problems for that area.

GOOS Center Mission

To provide high quality ocean data and products in a timely and cost-effective manner to satisfy NOAA now-cast, forecast, detection, attribution and research mission requirements.

Major GOOS Center Operations

Voluntary Observing Ship (VOS) Program

The Global Ocean Observing System (GOOS) Center at NOAA's Atlantic Oceanographic and Meteorological Laboratory presently co-manages, with NWS, a global VOS fleet of about 400 domestic and foreign commercial vessels. The GOOS global fleet represents a subset of the larger National Weather Service Voluntary Observing Ship (VOS) fleet consisting of over 1000 vessels. These vessels voluntarily collect sea surface meteorological observations. A portion of this fleet also collects sub-surface expendable bathythermograph, and shipboard thermosalinograph observations, deploys Drifting Buoys and highly instrumented profiling type floats and sometimes tows Continuous Plankton Recorders. The GOOS global VOS fleet is the mechanism used to collect observations and deploy instrumentation that transmit, in real-time, data to National Operational Centers such as the National Center for Environmental Prediction (NCEP). In any given year this network provides the following approximate number of observations:

1,000,000 Sea Surface Temperature Observations from Drifting Buoys

110,000 Meteorological Observations from VOS

30,000 Thermosalinograph Observations from VOS

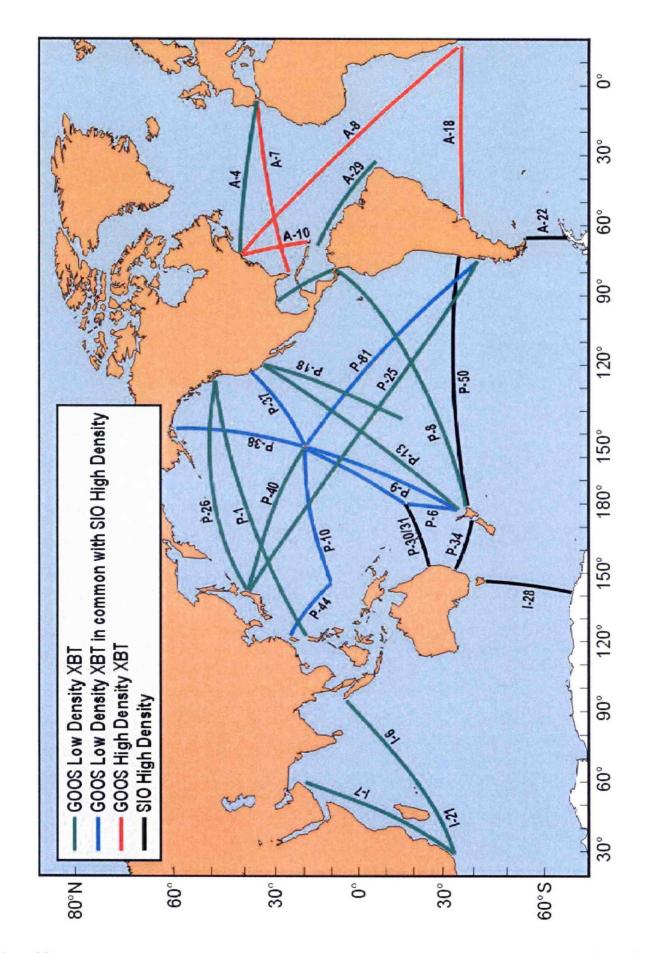
10,000 Expendable Bathythermograph Observations from VOS

Global Drifter Program (GDP)

The GOOS Center presently operates in cooperation with the Scripps Institution of Oceanography a global Drifting Buoy Center that annually deploys, via the VOS Program, research vessels and U.S. Navy aircraft, over 400 Drifters in all three ocean basins. These drifters are tracked daily via the ARGOS satellite system. Their positions and sea surface temperatures (and sometimes other parameters) are processed and inserted on to the Global Telecommunications System (GTS) for global distribution. Additionally, the GOOS Center operates the Data Assembly Center (DAC) for the Global Drifter Program

(GDP). When the deployed Drifters are verified as operational, data are forwarded to the DAC where the observations are quality controlled. This effort insures that research quality Drifter data are available from other organizations and countries programs. The DAC is a participating member of the Intergovernmental Oceanographic Commission (IOC) - World Meteorological Organization (WMO), Data Buoy Co-operation Panel (DBCP) and as such represents NOAA in this international forum.

Expendable Bathythermograph (XBT) Program


The GOOS Center operates a global XBT Program that utilizes approximately 40 VOS to monitor, on an approximately monthly basis, 22 transects in all three ocean basins. The XBT program is coordinated internationally by the IOC - WMO, Ship of Opportunity Program Implementation Panel (SOOPIP), and Ship Observations Team (SOT). Participating countries select transects of importance to national programs and manage the efforts along these lines. The United States has selected the 22 transects shown in Figure 1 to operate in high (eddy resolving, seasonal resolution) low (4 probes per day, monthly resolution) and frequently sampled (4 probes per day, 18 transects per year) mode.

The GOOS Center utilizes Shipboard Environmental data Acquisition Systems (SEAS) hardware/software to collect, quality control and transmit in real-time subsurface oceanographic observations (about 10,000 - 15,000 per year) and sea surface meteorological observations (about 110,000 per year). The XBT is an expendable temperature probe that is launched from the bridge wings or sterns of commercial vessels approximately 4 - 12 times per day, along certain scientifically selected shipping lanes (Figure 1). The data are collected by ship personnel via a wire link from the XBT probe to the SEAS computer where it is processed and formatted for satellite transmission. The transmitted data are routed to the GOOS Center where it is inserted on to the GTS for global distribution. NCEP and other national and international operational groups uses these data for weather and climate forecasting, and the international scientific community for seasonal, and international and decadal climate research.

Argo Program

AOML has been funded by the National Oceanographic Partnership Program (NOPP) as part of a larger group to develop, implement, and manage the real time data management infrastructure for the United States' component of the international Argo experiment. This methodology takes the data from the sensor through a real-time quality control to submission onto the GTS for dissemination to the user community. In addition, data accessibility and network evaluation issues will be addressed and procedures developed and implemented. The principle NOAA user for the float data is the climate forecast group of NCEP. To satisfy a diverse group of users data must be provided within 24 hours of collection, 24 hours a day, 7 days a week. Automatic quality control procedures have been implemented to meet these requirements.

Principle GOOS XBT Routes during 2002 Figure 1.

to meet these requirements. The real-time portion of the data management methodology is now operational.

High Density XBT

AOML presently operates a research and development High Density XBT Program utilizing VOS. Three routes: 1) Mediterranean Sea to Miami, FL (A7, Figure 1); 2) New York, NY to San Juan, Puerto Rico (A10, Figure 1); and 3) Cape Town, South Africa to New York City, New York (A8, Figure 1) are sampled four times per year by placing ship riders on board to collect XBT temperature data. 50 km observations are collected at closely spaced intervals. To enable the ship riders to conduct their operations continuously for the duration of a cruise, engineers at AOML designed an XBT Autolauncher which allows the XBT probes to be launched automatically at preset times and/or positions. In addition to allowing around the clock operations, by deploying XBT probes off the fan tail we reduce potential XBT probe failures. The mission is to measure the seasonal to interannual temperature variability in the upper ocean heat content and transport across the center of the subtropical gyre and tropical Atlantic. This effort will improve our ability to predict important climatic fluctuations such as the North Atlantic Oscillation. Plans are to integrate the Autolauncher System with (Shipboard Environmental data Acquisition System) SEAS 2000 shipboard software to improve positioning via GPS and facilitate the realtime transmission of these data to the GOOS Center.

Future Plans

Data Sparse Areas:

The GOOS Center is working closely with the Naval Oceanographic Office planning air deployments of Drifting Buoys into those traditionally difficult areas to service with VOS. The Gulf of Guinea, mid Indian Ocean, western south Atlantic and eastern south Pacific are areas we are focusing on to increase deployments. We have increased our efforts to work with the South African Weather Service, the U.K. Met Office, the Australian Bureau of Meteorology and the Argentina Hydrographic Office to locate VOS that consistently operate in those data sparse regions.

The GOOS Center is concentrating on improving the XBT sampling both within the Low and High Density networks by integrating hardware and logistical requirements. As SEAS 2000 Phase II software is implemented within the VOS fleet we expect an increase in the quality and quantity of real-time temperature observations. Enhancements to the database have lead to improvements in the production of real-time and delayed mode monitoring products that will assist in identifying under sampling problems in a timely fashion.

Data Availability and Web Products

Websites for obtaining GOOS data and information:

Real Time Products/GOOS database queries: http://seas.amverseas.noaa.gov/seas/seas.html

AOML ARGO Floats:

http://www.aoml.noaa.gov/phod/ARGO/HomePage/

Global Drifter Center/Data Assembly Center: http://www.aoml.noaa.gov/phod/dac/dacdata.html

AOML High Density XBT:

http://www.aoml.noaa.gov/phod/hdenxbt/

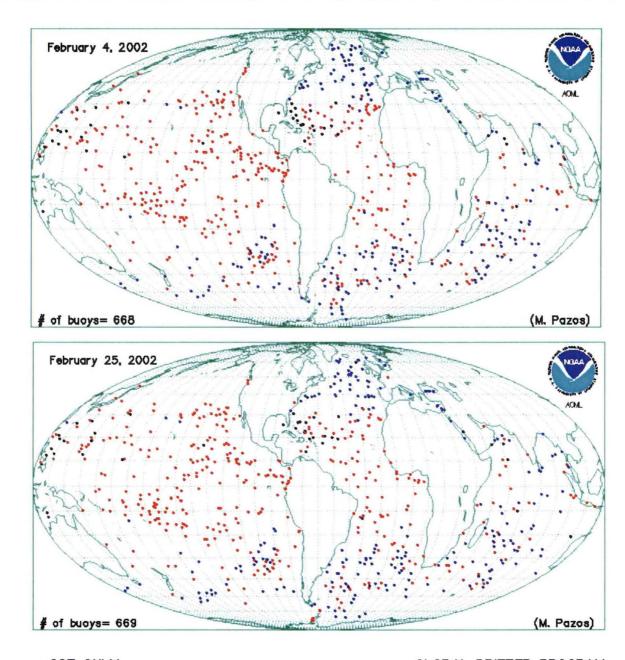
Interactive Plots:

http://www.aoml.noaa.gov/phod/trinanes/SEAS/SEAS3.html

ACKNOWLEDGEMENTS

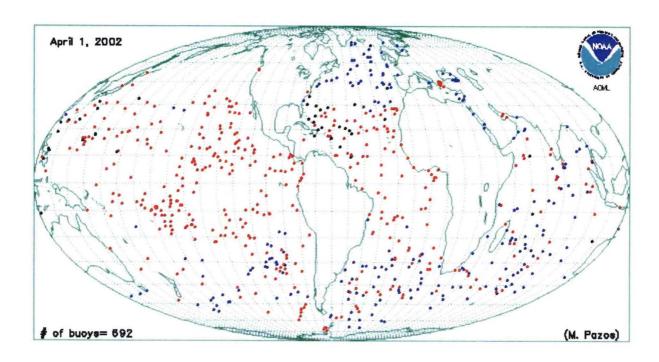
The GOOS Center would like to acknowledge the following people and thank them for their generous support of the GOOS Center monitoring efforts. We greatly appreciate the time and effort that these people have donated toward making these activities a success and look forward to their continued cooperation in the future.

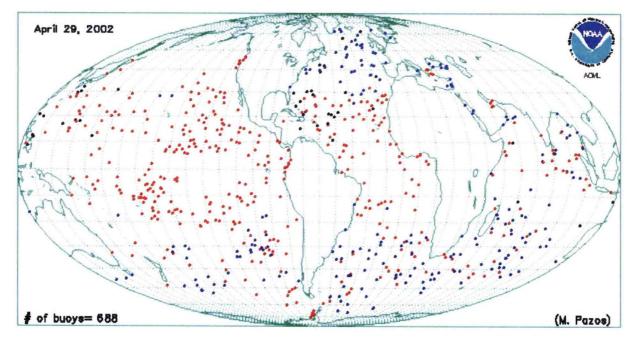
The Captain and crewmembers of all of the participating VOS ships The many Shipping companies who provide us with the use of their vessels


Funding Sources:

ENSO Observing Network – Office of Global Programs
Tropical Atlantic Drifter Array – Office of Global Programs
South Atlantic Drifter and XBT Array – Office of Global Program
SEAS 2000 Development – NESDIS (two years)
SEAS Support – U.S. Coast Guard and NWS
ARGO Float Deployments – National Ocean Partnership Program
PhOD Base – OAR/AOML

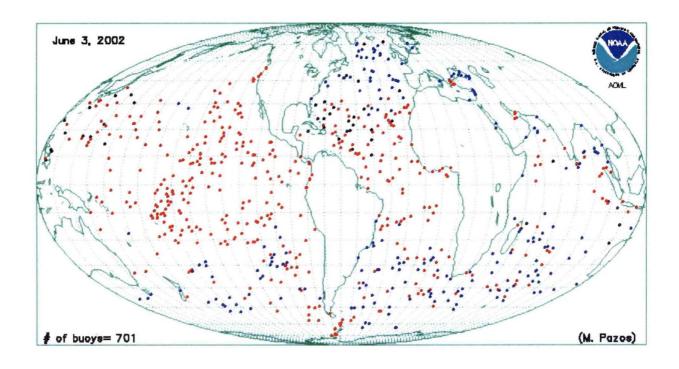
GOOS Center Products

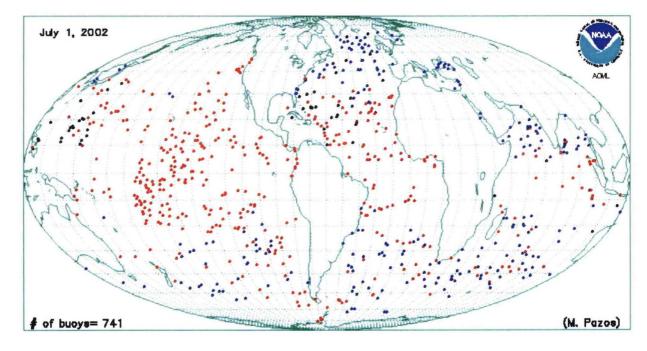

Status of Global Drifter Arrays during 2002


The number in the lower left corner of the plot indicates the number of drifters that were in the water as of the date listed in the upper left corner.

- SST ONLY
- SST/SLP
- SST/SLP/WIND

GLOBAL DRIFTER PROGRAM

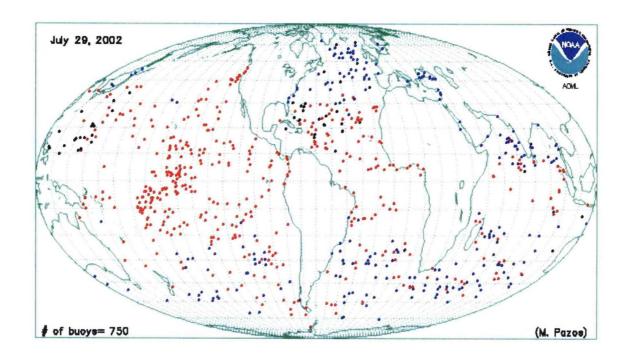


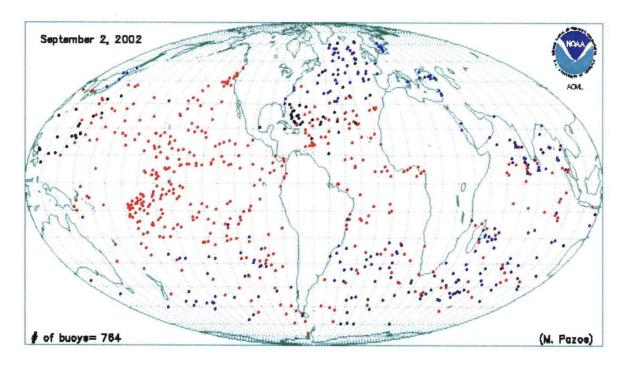


- SST ONLY
- SST/SLP
- SST/SLP/WIND

GLOBAL DRIFTER PROGRAM

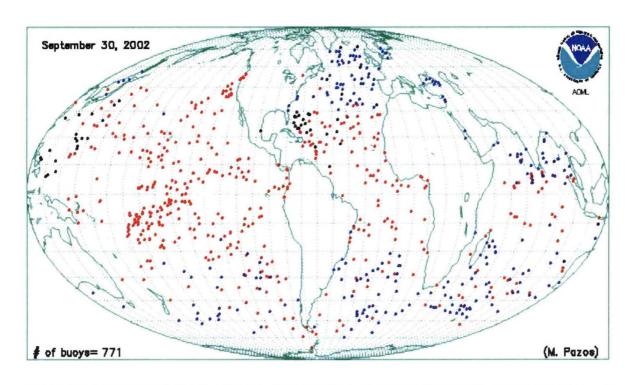
Page 7

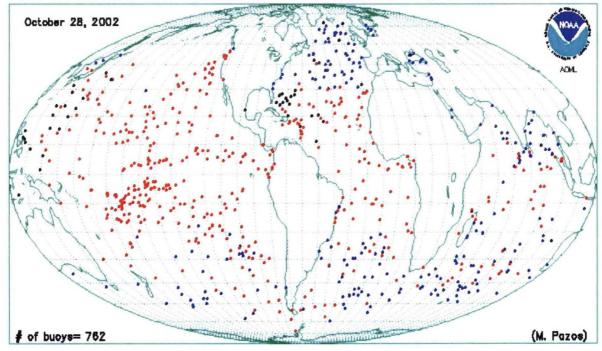




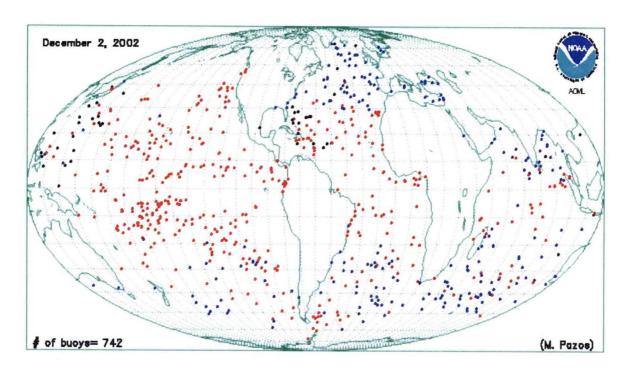
- SST ONLY
- SST/SLPSST/SLP/WIND

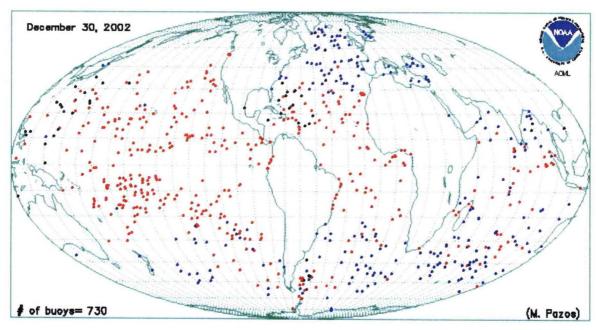
GLOBAL DRIFTER PROGRAM


Page 8 **GOOS Center Annual Report**



- SST ONLY
- SST/SLP
- SST/SLP/WIND


GLOBAL DRIFTER PROGRAM



- SST ONLY
- SST/SLP
- SST/SLP/WIND

GLOBAL DRIFTER PROGRAM

- SST ONLY
- SST/SLP
- SST/SLP/WIND

GLOBAL DRIFTER PROGRAM

Drifter Deployment Plan from October 2002 through September 2003

TROPICAL OCEANS (20N - 20S)

Number of Drifters

• Tropical Pacific 200 (100 CORC¹)

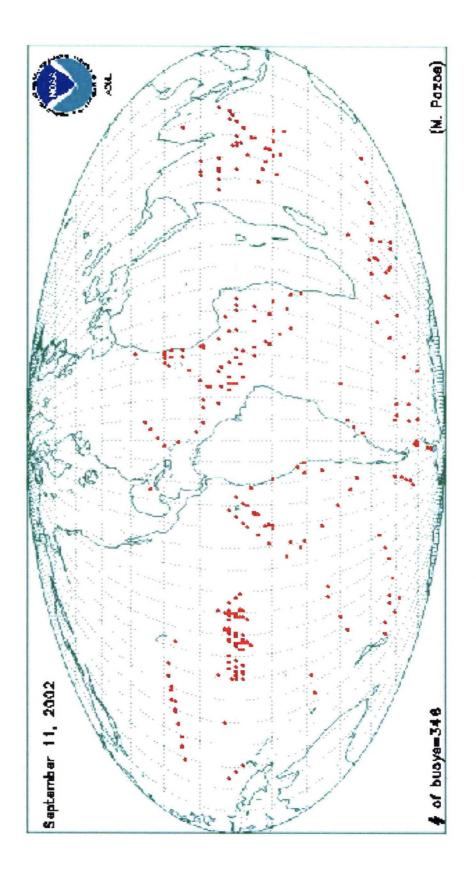
• Tropical Atlantic 79

• Tropical Indian 54 (10 SVP² Meteo-France)

EXTRA-TROPICAL OCEANS (20S - 40S)

Number of Drifters

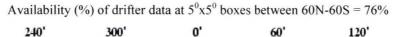
Pacific 40
 Atlantic 14
 Indian 12

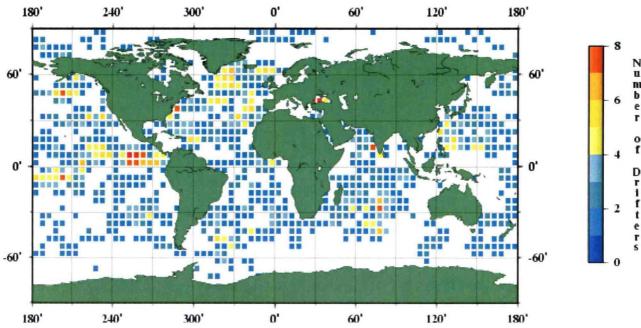

SOUTHERN OCEANS (40S - 60 S)

Number of Drifters

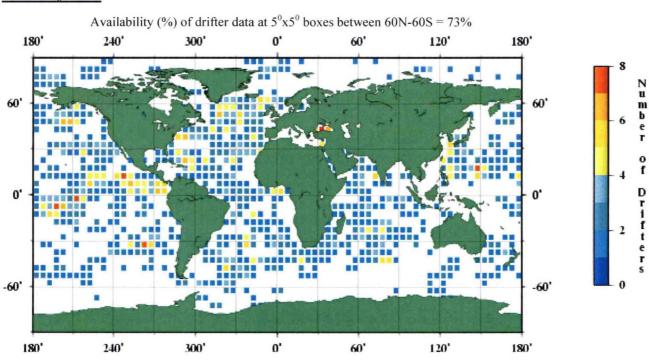
Pacific
 Atlantic
 Indian
 26 (20 SVP-B³ NOAA/SIO⁴, 6 SVP-B,MSNZ⁵)
 30 (10 SVP-B NOAA/SIO, 20 SVP-B SAWS⁶)
 21 (6 SVP-B NOAA/SIO, 10 SVP-B ABOM⁻, 5 SVP-B Meteo-France)

¹CORCConsortium of Ocean Research in Climate²SVPStandard Surface Velocity Program drifter³SVP-BStandard Surface Velocity Program drifter with Barometer upgrade⁴SIOScripps Institution of Oceanography⁵MSNZMeteorological Service of New Zealand⁶SAWSSouth African Weather Service7ABOMAustralia Bureau of Meteorology

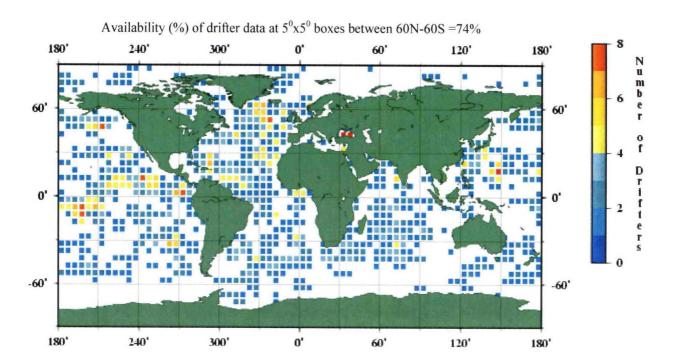

Deployments by Global Drifter Center in Fiscal Year 2002

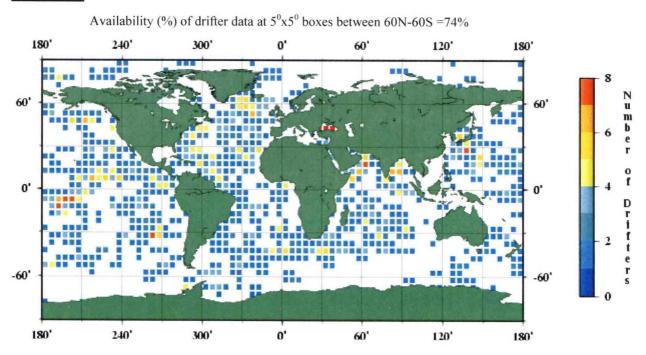


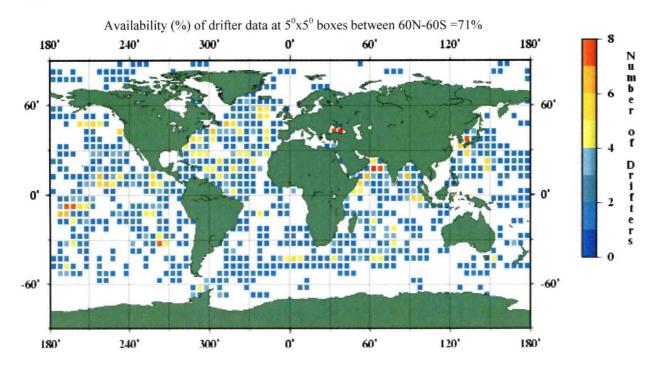
DRIFTER DATA ASSEMBLY CENTER

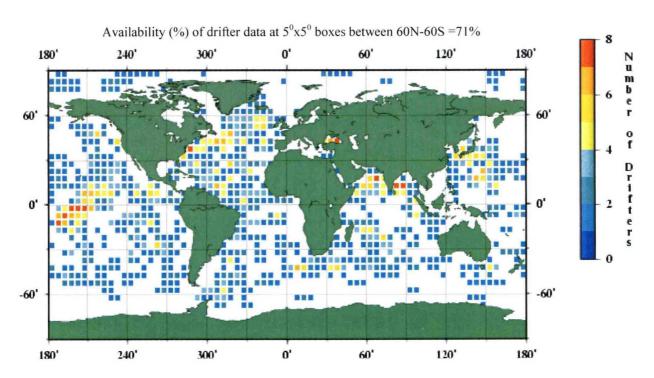

The plots on the following pages show the number of drifters in 5x5 degree squares (resolution required for satellite validation) for each month during the year 2002. Availability (%) is the percentage of ocean surface covered by drifters. Number of drifters per cell is represented by the different color boxes. See color bar to determine the number of drifters for each cell.

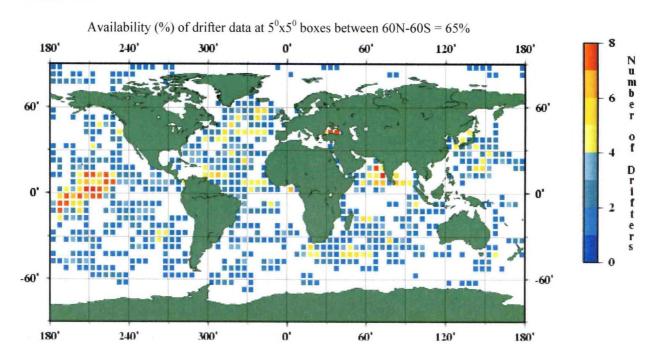
January 2002

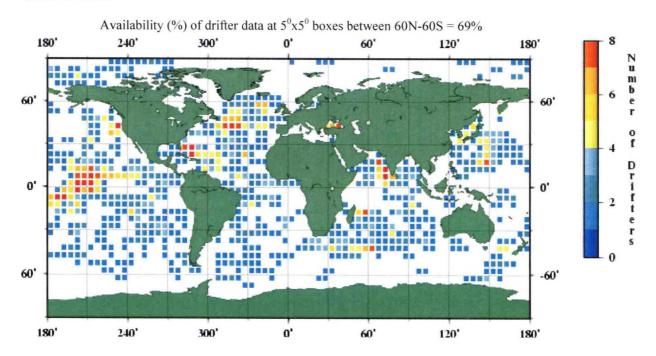


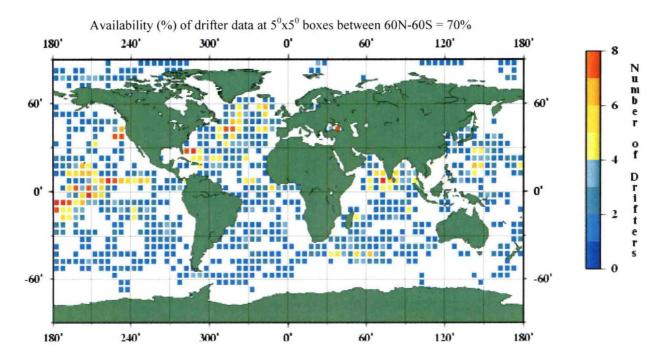

February 2002

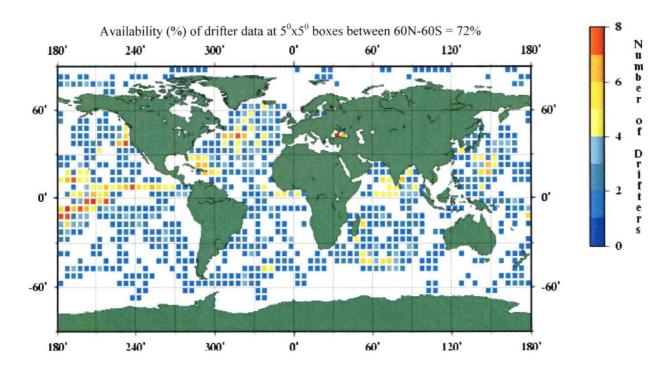

March 2002

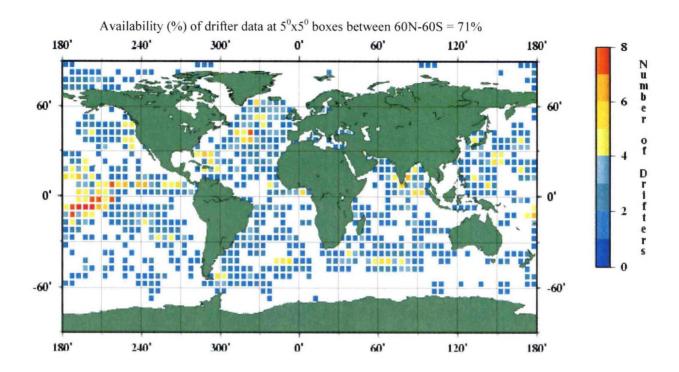

April 2002

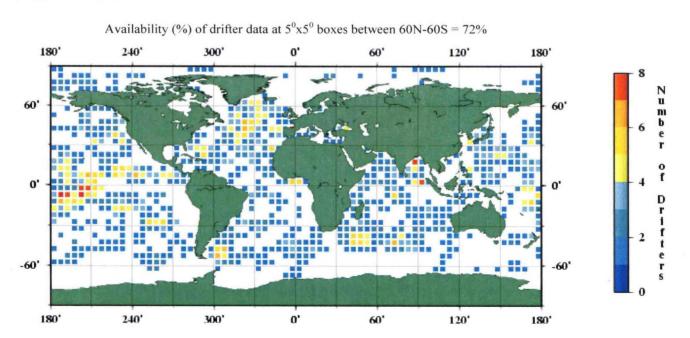

May 2002

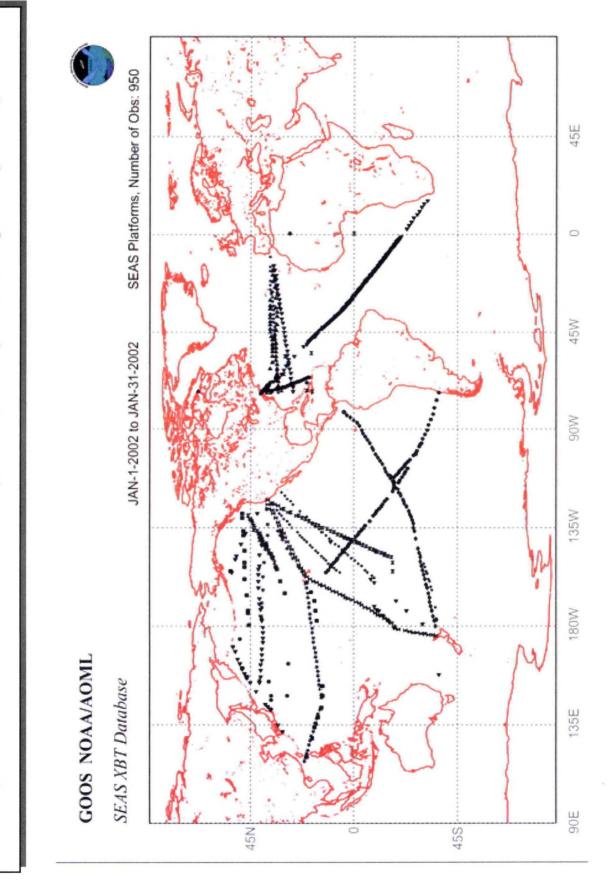

June 2002

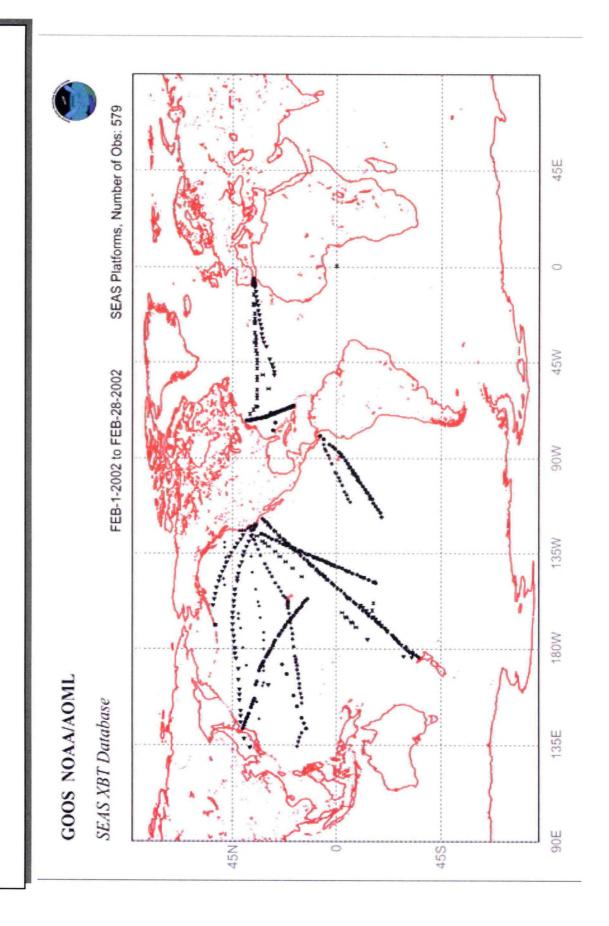

July 2002

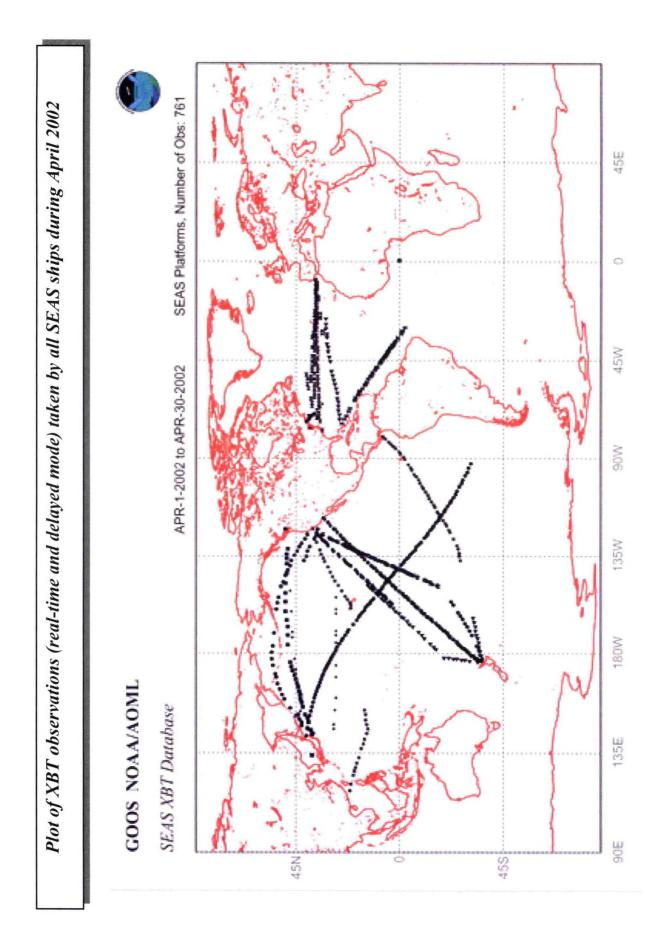

August 2002


September 2002

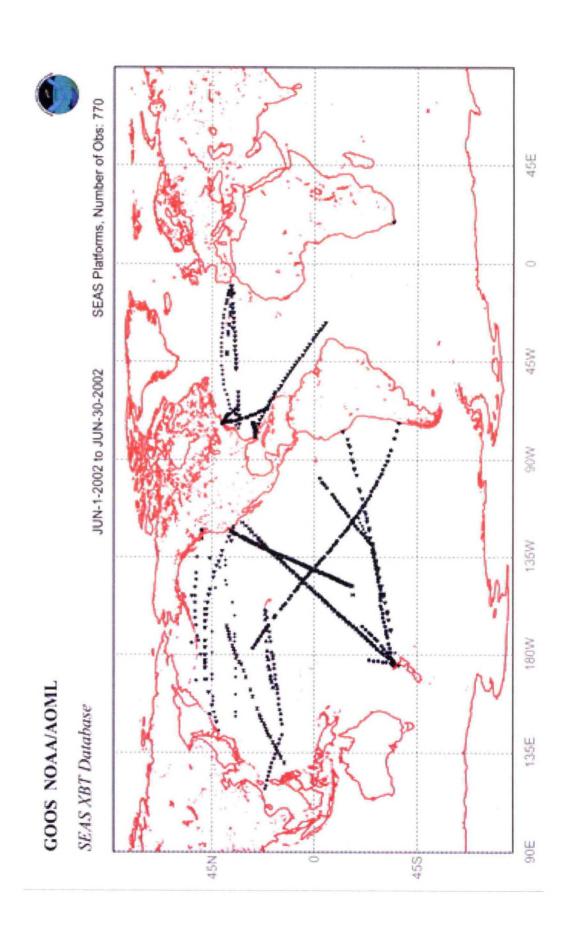

October 2002


November 2002


December 2002


Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during January 2002

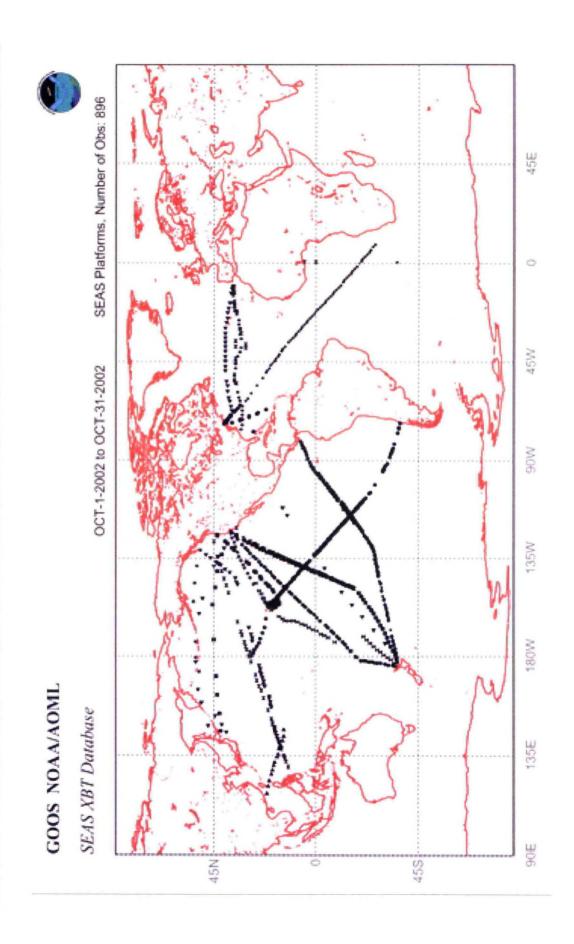
Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during February 2002



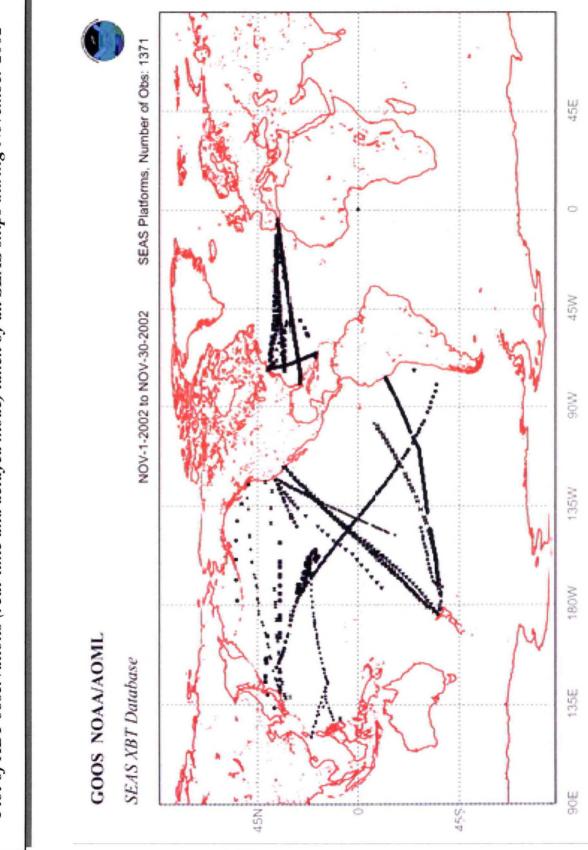
Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during March 2002 SEAS Platforms, Number of Obs: 893 45E 0 45W MAR-1-2002 to MAR-31-2002 W06 135W 180W GOOS NOAA/AOML SEAS XBT Database 135E 90E 458 45N


Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during May 2002 SEAS Platforms, Number of Obs. 1246 45E 45% MAY-1-2002 to MAY-31-2002 **M06** 135W 180W GOOS NOAA/AOML SEAS XBT Database 135E 455

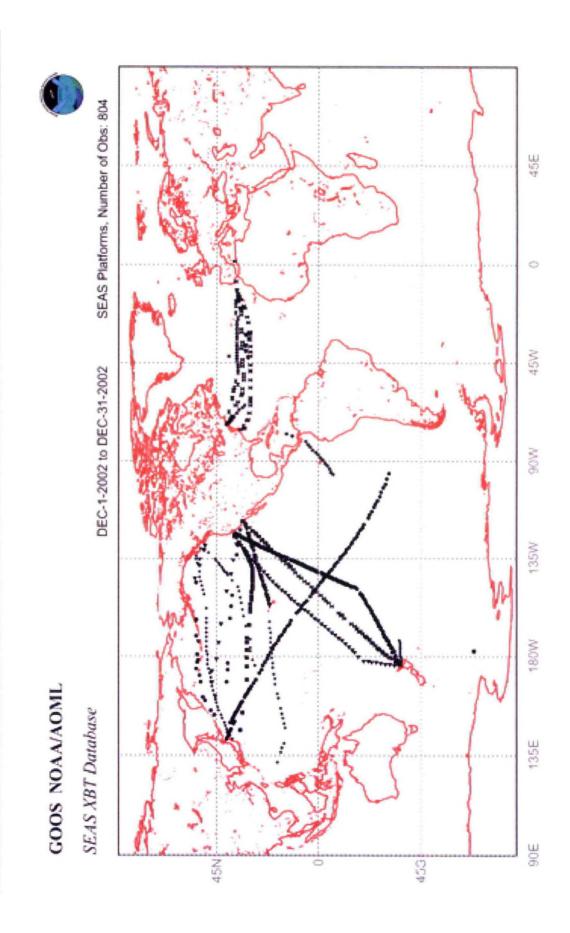
Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during June 2002


SEAS Platforms, Number of Obs: 891 Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during July 2002 #5E 45W JUL-1-2002 to JUL-31-2002 W06 135W 180W GOOS NOAA/AOML SEAS XBT Database 35E 98 455 45N

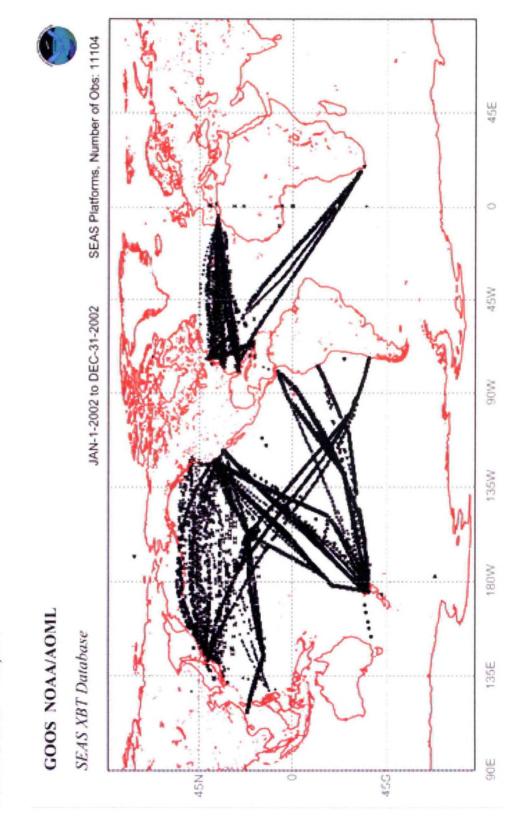
Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during August 2002



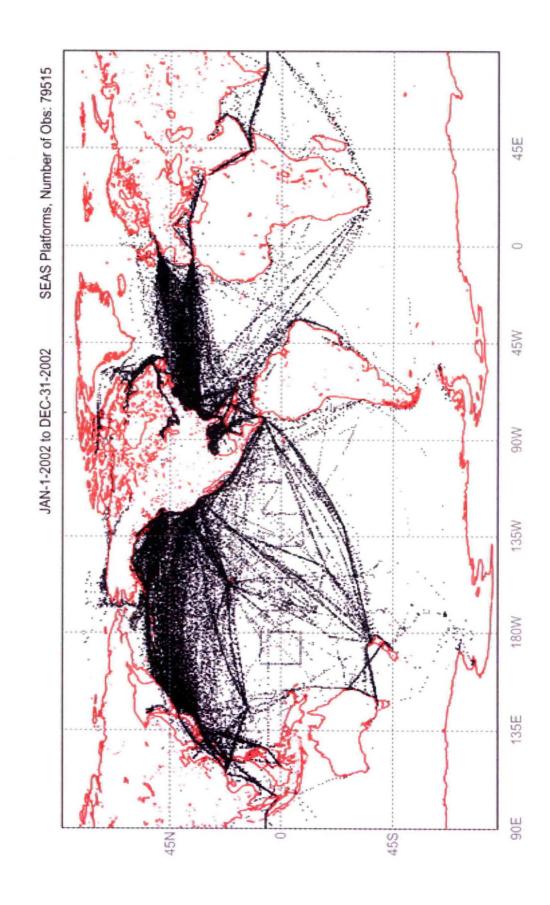
Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during September 2002 SEAS Platforms, Number of Obs: 762 45E 45W SEP-1-2002 to SEP-30-2002 W08 135W 180W GOOS NOAA/AOML SEAS XBT Database 135E 30E 455 45N


Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during October 2002

Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during November 2002



Plot of XBT observations (real-time and delayed mode) taken by all SEAS ships during December 2002



Data Collection

Plot of all XBT observations collected via SEAS during the year 2002. Total number of XBT observations = 11,104

Plot of all Meteorological observations collected via SEAS during the year 2002. Total number of SEAS Meteorological observations = 79,515

Key to Call Signs for the ships listed in the 2002 XBT Counts by Route tables:

CALL SIGN	SHIP NAME
3EZI6	NACRE
3FCS7	MOL KAURI
3FPA9	NUEVO LEON
3FRY9	LYKES COMMANDER
9VND	RUBY INDAH
9VRA	DIRECT EAGLE
BOAB	TAI HE
DDGY	COLUMBUS COROMANDEL
DDQI	CONTI ASIA
ELRR4	SAFMARINE TUGELA
ELYT5	DIRECT FALCON
ELTZ3	COLUMBUS FLORIDA
GOVL	MELBOURNE STAR
GZKA	AMERICA STAR
H9IM	WESTWOOD BELINDA
KGJB	SEA-LAND DEFENDER
KIRF	CSX HAWAII
KRGB	CSX ENTERPRISE
LADB2	SKAUGRAN
LAJV4	SKAUBRYN
MZBM7	QUEENSLAND STAR
NBTM	POLAR STAR
NRUO	POLAR SEA
P3XQ7	LYKES WINNER
PJJU	OLEANDER
S6ID	EMERALD INDAH
V2CA2	POLYNESIA
V2FA2	TAUSALA SAMOA
V2XM	SKOGAFOSS
WAUW	ENDEAVOR
WAUY	ENTERPRISE
WCX5083	MAERSK CALIFORNIA
WMLG	DELAWARE BAY
WPGK	CSX NAVIGATOR
WSRL	CSX PACIFIC
WTEJ	MCARTHUR

SEAS XBT Counts by Route

The Chart below is a list showing the XBT routes and the number of XBTs collected by each VOS ship for each month during the year 2002. The number per year indicates the required number of XBTs that should be collected per year as mandated by the SOOPIP. The number per month indicates the required number of XBTs that should be collected per month per ship, for 4 samples collected per day and monthly resolution. The monthly totals indicate the actual number of XBTs collected per month.

Ship	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
AX04, N	New Yo	ork to	Spain			#/Yea	ar =440)	#M	on = 3'	7		
WAUW	16	5	17	4	20	12	26	9	6	23	26	43	207
WAUY	33	1	40	35	0	26	17	0	0	0	1	8	161
WMLG	45	24	30	46	26	20	19	17	35	20	51	25	358
TOTAL	94	30	87	85	46	58	62	26	41	43	78	76	726
AX07, (Gulf of	Mexic	o to Gi	ibralta	r	#/Yea	ar = 52	0	#/M	on = 4	3		
3FPA9	31	21	6	24	18	0	0	1	0	0	0	0	101
3FRY9	0	16	222	0	186	44	0	76	0	0	95	0	639
TOTAL	31	37	228	24	204	44	0	77	0	0	95	0	740
AX08, N	New Yo	ork to	Cape o	f Good	Hope	#/Yea	ar = 96	0	#/M	on = 8	0		
WCX 5083	250	0	0	0	0	0	0	0	0	0	0	0	250
ELRR4	0	0	0	0	0	0	29	100	66	56	0	0	251
P3XQ7	0	0	0	0	0	0	0	21	0	0	0	0	21
TOTAL	250	0	0	0	0	0	29	121	66	56	0	0	522
AX10, N	New Yo	ork to	Trinida	ad/Car	acas	#/Yea	ar = 20	0	#/M	on = 1	7		
KIRF	32	126	13	0	124	12	21	6	9	7	0	0	350
TOTAL	32	126	13	0	124	12	21	6	9	7	0	0	350
AX29, N	New Yo	ork to l	Brazil			#/Yea	ır = 36	0	#/M	on = 3	0		
ELRR4	0	0	0	76	0	31	34	0	0	0	0	0	141
TOTAL	0	0	0	76	0	31	34	0	0	0	0	0	141
AX32, N	New Yo	ork to]	Bermu	da		#/Yea	ar = 12	0	#/M	on = 1	0		
PJJU	29	1	2	1	22	21	26	0	0	8	16	7	133
TOTAL	29	1	2	1	22	21	26	0	0	8	16	7	133

Ship	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
PX01, S	Seattle	Vanco	uver to	Indor	iesia	#/Ye	ar = 86	0	#/N	1on = 7	2		
9VND	12	8	0	0	14	0	0	0	35	0	7	0	70
S6ID	22	0	0	0	0	32	0	0	0	26	4	28	112
TOTAL	34	8	0	0	14	32	0	0	35	26	11	28	188
PX06, S	_	Ť	_	_	T.	_	ar = 16			Ion = 1			
DDGY	0	0	0	20	0	0	0	10	0	10	0	0	40
ELYT5	0	0	6	0	0	0	0	0	4	0	0	0	10
ELZT3	11	0	10	0	9	0	0	0	0	0	0	0	30
9VRA	0	0	0	0	0	0	0	0	0	0	0	9	9
TOTAL	11	0	16	20	9	0	0	10	4	10	0	9	89
PX08, A	Auckla	nd to F	Panama	ı		#/Ye	ar = 70	00	#/ N	1on = 5	8		
3FCS7	0	0	2	0	0	40	0	7	25	0	1	0	75
DDQI	0	0	0	0	0	0	0	0	0	0	184	11	195
GOVL	0	27	35	9	54	0	32	20	0	46	0	0	223
GZKA	57	0	49	10	10	48	0	39	0	27	21	0	261
MZBM7	20	23	51	39	47	13	26	55	40	32	26	13	385
TOTAL	77	50	137	58	111	101	58	121	65	105	232	24	1139
							•				•		
PX09, I						-	ar = 44	0	_	10n = 3	37		
DDGY	0	0	0	0	0	0	0	23	0	35	0	0	5
ELZT3	39	0	27	0	23	0	38	0	0	24	0	0	15
TOTAL	39	0	27	0	23	00	38	23	0	59	0	0	209
PY10 I	Hawaii	to Gua	am/Sai	pan		#/Ye	ar = 44	10	#/N	1on = 3	37		
1 110, 1	28	22	19	0	25	24	19	18	16	0	26	0	19
KRGB		1		-			0		0	0	0	0	
KRGB	7	0	0	0	0	0	0	0	0	0	0		
	7	0	0	0	0	14	11	2	17	0	11	17	7

Ship	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
PX13, 1	T		to Cali	fornia		#/Ye	ar = 77	0	#/N	1on = 6	54		
9VRA	0	0	44	14	59	12	34	22	34	35	41	37	323
DDGY	53	21	69	23	75	0	43	0	35	0	43	20	382
ELYT5	17	38	34	96	2	49	38	45	34	9	23	61	446
ELZT3	0	52	0	49	0	54	18	26	76	11	58	20	364
TOTAL	70	111	147	182	136	115	133	93	179	55	165	138	1515
DV10 7	Fab:4: 4	o Calif	C : .			шлу.		0	11.03		-		
PX18, 7			0	0	0		ar = 44			lon = 3		20	
ELZT3	0	0	0			0	0	0	0	0	0	38	38
	13	_		0	0	0	0	0	0	0	0	26	26
V2CA2		32	25	32	27	61	31	0	0	0	0	0	221
V2FA2	38	20	35	36	57	52	32	35	39	39	12	36	431
TOTAL	51	52	60	68	84	113	63	35	39	39	12	100	716
PX25, V	Valpara	aiso to	Japan	Korea		#/Yea	ar = 1,3	320	#/ N	Ion = 1	10		
3EZ16	40	40	0	94	0	72	127	118	83	0	88	94	756
TOTAL	40	40	0	94	0	72	127	118	83	0	88	94	756
PX26, 7	Γransp	ac to T	ranspa	ıc		#/Yea	ar = 5,5	500	#/M	Ion = 4	58		
9VND	13	0	0	30	0	0	0	0	0	0	0	0	43
BOAB	8	29	18	24	21	30	22	19	0	0	0	22	193
KGJB	45	0	41	42	55	27	23	26	28	7	22	15	331
KRGB	0	50	0	0	0	11	0	0	0	0	23	0	84
LADB2	3	0	1	2	11	0	5	2	7	9	10	16	66
LAJV4	12	1	4	0	2	6	15	9	12	7	12	5	85
S6ID	0	0	0	0	45	0	0	0	29	0	0	34	108
TOTAL	81	80	64	98	134	74	65	56	76	23	67	92	910
PX37, I	Hawaii	to Cal	ifornia			#/Va	ar = 25	0	#/ M	Ion = 2	1		
ELZT3	22	0	18	0	23	0	20	0	0	0	0	0	8
	7	18	10	22	0	0	0	15	0	16	0	0	8
KRGB	/											. v	
KRGB WTEJ	0	0	0	0	0	0	0	0	0	54	66	43	16

Ship	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-------

PX40, I	Hawaii	to Japa	n			#/Yea	r = 450		#/M	on = 38	3		
3EZI6	25	0	65	0	190	0	0	0	137	0	0	0	417
TOTAL	25	0	65	0	190	0	0	0	137	0	0	0	417

PX44, Taiwan to Guam			#/Year = 160			#/Mon = 13							
KRGB	13	4	0	13	9	13	5	12	7	0	13	0	89
WPGK	8	0	0	0	0	0	0	0	0	0	0	0	8
WSRL	0	0	0	0	39	0	2	0	12	0	9	5	67
TOTAL	21	4	0	13	48	13	7	12	19	0	22	5	164

PX81, H	lonolu	lu to C	corone	(Chile	e)	#/Yea	ar = 80	0	#/M	lon = 6	7		
3EZI6	25	0	65	0	190	0	0	0	137	0	0	0	417
TOTAL	25	0	65	0	190	0	0	0	137	0	0	0	417

GOOS un-specified Routes,

Н9ІМ	1	0	0	0	0	0	0	0	0	0	0	0	1
NBTM	0	0	0	0	0	0	0	1	0	0	0	0	1
NRUO	0	0	0	0	0	0	0	0	0	0	0	1	1
S6QW	0	0	0	0	0	0	1	0	0	0	0	0	1
TOTAL	1	0	0	0	0	0	1	1	0	0	0	1	4

<u>Delayed Mode XBT Data Received at AOML</u> <u>from January through December 2002 and forwarded to the</u> <u>National Oceanographic Data Center (NODC) for archival</u>

Call sign	Ship Name	<u>Dates</u>	# of Drops
3EZI6	NACRE	12/6/99 - 1/24/00	86
3EZI6	NACRE	12/6/99 - 4/10/00	250
3EZI6	NACRE	5/7/00 - 6/24/00	170
3EZI6	NACRE	7/22/00 - 2/13/01	631
3EZI6	NACRE	3/7/01 - 4/17/01	115
3FPA9	TMM NUEVO LEON	12/20/01 - 2/2/02	53
3FPA9	TMM NUEVO LEON	3/2/02 - 4/7/02	30
3FPA9	TMM NUEVO LEON	5/1/02 - 5/18/02	25
3FRY9	LYKES COMMANDER	2/28/02 - 3/9/02	238
3FRY9	LYKES COMMANDER	5/24/02 - 6/1/02	228
3FRY9	LYKES COMMANDER	8/18/02 - 8/26/02	216
3FRY9	LYKES COMMANDER	11/10/02 - 11/18/02	234
9VND	RUBY INDAH	3/9/01 - 1/12/02	103
9VRA	DIRECT EAGLE	3/15/02 - 5/4/02	70
9VRA	DIRECT EAGLE	5/22/02 - 6/4/02	52
9VRA	DIRECT EAGLE	7/19/02 - 8/31/02	83
9VRA	DIRECT EAGLE	9/12/02 - 10/26/02	94
BOAB	TAI-HE	11/22/01 - 12/3/01	19
BOAB	TAI-HE	1/5/02 - 2/7/02	20
BOAB	TAI-HE	2/14/02 - 3/18/02	34
BOAB	TAI-HE	3/27/02 - 4/29/02	30
BOAB	TAI-HE	5/9/02 - 6/11/02	33
BOAB	TAI-HE	6/17/02 - 7/22/02	35
BOAB	TAI-HE	7/29/03 - 8/31/02	32
C6CE7	WESTWOOD BELINDA	9/21/00 - 1/1/01	27
H9IM	WESTWOOD BELINDA	10/30/01 - 12/11/01	51
H9IM	WESTWOOD BELINDA	12/25/01 - 1/1/02	21
DDGY	COLUMBUS COROMANDEL	11/29/01 -1/13/02	74
DDGY	COLUMBUS COROMANDEL	1/24/02 - 3/11/02	101
DDGY	COLUMBUS COROMANDEL	3/21/02 - 5/5/02	107
DDGY	COLUMBUS COROMANDEL	5/16/02 - 5/18/02	55
DDGY	COLUMBUS COROMANDEL	7/7/02 - 8/22/02	84
DDGY	COLUMBUS COROMANDEL	9/4/02 - 10/20/02	92
DDGY	COLUMBUS COROMANDEL	11/5/02 - 12/15/02	97
ELRR4	SAFMARINE TUGELA	4/18/02 - 4/24/02	97
ELRR4	SAFMARINE TUGELA	6/3/02 - 7/12/02	70
ELYT5	DIRECT FALCON	11/02/01 - 2/18/02	103
ELYT5	DIRECT FALCON	2/21/01 - 4/7/01	100
ELYT5	DIRECT FALCON	4/18/02 - 5/23/02	56
ELYT5	DIRECT FALCON	6/13/02 - 7/28/02	105
ELYT5	DIRECT FALCON	8/8/02 - 11/19/02	135
ELZT3	COLUMBUS FLORIDA	12/13/01 - 1/28/02	124
ELZT3	COLUMBUS FLORIDA	2/6/02 - 3/25/02	75
ELZT3	COLUMBUS FLORIDA	4/3/02 - 5/20/02	68
ELZT3	COLUMBUS FLORIDA	10/12/01 - 5/28/02	76
ELZT3	COLUMBUS FLORIDA	7/25/02 - 9/14/02	105
ELZT3	COLUMBUS FLORIDA	9/21/02 - 11/3/02	70

Call sign	Ship Name	<u>Dates</u>	# of Drops
GOVL	MELBOURNE STAR	12/10/01 - 12/25/01	61
GOVL	MELBOURNE STAR	2/22/02 - 3/9/02	62
GOVL	MELBOURNE STAR	5/6/02 - 5/22/02	64
GZKA	AMERICA STAR	10/24/01 - 11/7/01	63
GZKA	AMERICA STAR	1/1//02 - 1/18/02	57
GZKA	AMERICA STAR	1/1/02 - 5/17/02	117
GZKA	AMERICA STAR	5/29/02 - 6/14/02	64
KGJB	SEA-LAND DEFENDER	12/2/01 - 1/7/02	41
KGJB	SEA-LAND DEFENDER	1/13/02 - 2/20/02	58
KGJB	SEA-LAND DEFENDER	2/24/02 - 4/2/02	63
KGJB	SEA-LAND DEFENDER	4/7/02 - 5/14/02	65
KGJB	SEA-LAND DEFENDER	5/17/02 - 6/24/02	52
KGJB	SEA-LAND DEFENDER	7/4/02 - 8/6/02	40
KGJB	SEA-LAND DEFENDER	8/12/02 - 9/17/02	35
KGJB	SEA-LAND DEFENDER	9/22/02 - 10/29/02	26
KGJB	SEA-LAND DEFENDER	11/4/02 - 12/17/02	30
KIRF	CSX HAWAII	12/12/01 - 3/12/01	96
KIRF	CSX HAWAII	2/23/02 - 2/26/02	106
KIRF	CSX HAWAII	5/18/02 - 5/21/02	125
KIRF	CSX HAWAII	8/10/02 - 8/13/02	124
KIRF	CSX HAWAII	11/16/02 - 11/19/02	139
KRGB	SEALAND ENTERPRISE	10/14/01 - 10/14/01	1
KRGB	SEALAND ENTERPRISE	1/11/02 - 1/26/02	49
KRGB	SEALAND ENTERPRISE	3/22/02 - 4/6/02	46
KRGB	SEALAND ENTERPRISE	7/10/02 - 7/19/02	35
KRGB	SEALAND ENTERPRISE	9/19/02 - 9/28/02	31
KRGB	SEALAND ENTERPRISE	11/15/02 - 11/23/02	31
LADB2	SKAUGRAN	11/6/01 - 4/8/02	17
LADB2	SKAUGRAN	4/30/02 - 5/14/02	12
LADB2	SKAUGRAN	6/30/02 - 8/20/02	24
LADB2	SKAUGRAN	8/24/02 - 10/10/02	16
LADB2	SKAUGRAN	10/11/02 - 10/12/02	2
LADB2	SKAUGRAN	11/2/02 - 12/12/02	21
LAJV4	SKAUBRYN	7/29/01 - 1/29/02	58
LAJV4	SKAUBRYN	2/19/02 - 3/15/02	5
LAJV4	SKAUBRYN	5/10/02 - 5/10/02	1
LAJV4	SKAUBRYN	6/1/02 - 7/24/02	21
LAJV4	SKAUBRYN	10/5/02 - 11/26/02	21
MZBM7	QUEENSLAND STAR	9/23/01 - 11/23/01	100
MZBM7	QUEENSLAND STAR	12/3/01 - 2/6/02	86
MZBM7	QUEENSLAND STAR	2/24/01 - 4/10/02	72
MZBM7	QUEENSLAND STAR	2/24/02 - 7/7/02	201
MZBM7	QUEENSLAND STAR	7/31/02 - 9/8/02	116
NRUO	USCGC POLAR SEA	7/26/01 - 8/18/01	38
P3XT4	LYKES ENERGIZER	5/3/02 - 5/22/02	264
PJJU	OLEANDER	12/8/01 - 12/12/01	23
PJJU	OLEANDER	1/12/02 -1/16/02	29
PJJU	OLEANDER	3/8/02 - 3/13/02	21
PJJU	OLEANDER	4/5/02 - 4/10/02	23
PJJU	OLEANDER	5/2/02 - 5/8/02	22
PJJU	OLEANDER	6/8/02 - 6/8/02	7
PJJU	OLEANDER	6/10/02 - 6/13/02	15
PJJU	OLEANDER	7/12/02 - 7/17/02	26

Call sign	Ship Name	<u>Dates</u>	# of Drops
PJJU	OLEANDER	8/10/02 - 8/12/02	25
PJJU	OLEANDER	10/19/02 - 10/23/02	21
PJJU	OLEANDER	11/8/02 - 11/13/02	21
PJJU	OLEANDER	12/6/02 - 12/11/02	23
S6ID	EMERALD INDAH	7/26/01 - 12/13/01	89
S6ID	EMERALD INDAH	1/2/02 - 5/21/02	67
S6ID	EMERALD INDAH	10/3/02 - 12/12/02	82
S6QW	JUSTICE CONTAINER	7/6/02 - 7/14/02	183
V2CA2	POLYNESIA	10/9/01 - 10/17/01	25
V2CA2	POLYNESIA	12/6/01 - 12/15/01	34
V2CA2	POLYNESIA	1/6/02 - 1/13/02	13
V2CA2	POLYNESIA	2/4/02 - 2/12/02	32
V2CA2	POLYNESIA	3/5/02 - 3/12/02	25
V2CA2	POLYNESIA	4/3/02 - 4/12/02	32
V2CA2	POLYNESIA	4/3/02 - 5/9/02	58
V2CA2	POLYNESIA	5/31/02 - 6/1/02	46
V2CA2	POLYNESIA	6/28/02 - 7/6/02	47
V2CA2	POLYNESIA	7/27/02 - 8/4/02	46
V2CA2	POLYNESIA	8/27/02 - 9/4/02	44
V2CA2	POLYNESIA	9/24/02 - 10/2/02	51
V2CA2	POLYNESIA	11/4/02 - 11/12/02	50
V2FA2	TAUSALA SAMOA	11/24/01 - 12/2/01	35
V2FA2	TAUSALA SAMOA	12/24/01-1/2/02	35
V2FA2	TAUSALA SAMOA	1/22/02 - 2/2/02	35
V2FA2	TAUSALA SAMOA	2/19/02 - 2/28/02	31
V2FA2	TAUSALA SAMOA	3/12/02 - 3/30/02	35
V2FA2	TAUSALA SAMOA	4/20/02 - 4/29/02	35
V2FA2	TAUSALA SAMOA	5/17/02 - 5/27/02	57
V2FA2	TAUSALA SAMOA	6/15/02 - 6/25/02	52
V2FA2	TAUSALA SAMOA	7/15/02 - 7/23/02	47
V2FA2	TAUSALA SAMOA	8/12/02 - 8/21/02	43
V2FA2	TAUSALA SAMOA	9/10/02 - 9/18/02	49
V2FA2	TAUSALA SAMOA	9/10/02 - 11/17/02	115
V2XM	SKOGAFOSS	12/4/01 - 12/13/01	37
V2XM	SKOGAFOSS	1/5/02 - 1/5/02	8
V2XM	SKOGAFOSS	2/2/02 - 2/3/02	3
V2XM	SKOGAFOSS	3/31/02 - 3/31/02	9
V2XM	SKOGAFOSS	4/27/02 - 4/29/02	32
V2XM	SKOGAFOSS	5/18/02 - 5/26/02	31
V2XM	SKOGAFOSS	8/17/02 - 8/18/02	8
V2XM	SKOGAFOSS	9/7/02 - 9/14/02	40
V2XM	SKOGAFOSS	10/13/02 - 10/14/02	8
V2XM	SKOGAFOSS	11/9/02 - 11/10/02	10
V2XM	SKOGAFOSS	12/1/02 - 12/11/02	21
WAUW	ENDEAVOR	11/28/01 - 2/22/02	49
WAUW	ENDEAVOR	3/1/02 - 3/9/02	17
WAUW	ENDEAVOR	4/21/02 - 5/20/02	35
WAUW	ENDEAVOR	5/25/02 - 7/3/02	40
WAUW	ENDEAVOR	7/10/02 - 8/9/02	37
WAUY	M/V ENTERPRISE	11/23/01 - 12/4/01	15
WAUY	M/V ENTERPRISE	12/9/01 - 1/15/02	35
WAUY	M/V ENTERPRISE	12/9/01 - 3/7/02	79
WAUY	M/V ENTERPRISE	3/14/02 - 4/27/02	61

Call sign	Ship Name	<u>Dates</u>	# of Drops
WAUY	M/V ENTERPRISE	6/8/02 - 7/22/02	54
WMLG	DELAWARE BAY	9/9/01 - 1/15/02	129
WMLG	DELAWARE BAY	9/9/01 - 2/28/02	62
WMLG	DELAWARE BAY	3/2/02 - 4/12/02	49
WMLG	DELAWARE BAY	4/20/02 - 5/26/02	53
	DELAWARE BAY	5/31/02 - 7/11/02	51
WMLG		7/17/02 - 9/30/02	96
WMLG	DELAWARE BAY		
WPGK	CSX NAVIGATOR	11/28/01 - 12/8/01	35
WPGK	CSX NAVIGATOR	1/4/02 - 1/13/02	15
WSRL	CSX PACIFIC	5/7/02 - 5/18/02	40
WSRL	CSX PACIFIC	7/8/02 - 7/26/02	19
WSRL	CSX PACIFIC	8/10/02 - 8/22/02	7
WSRL	CSX PACIFIC	9/14/02 - 10/6/02	39
WSRL	CSX PACIFIC	11/15/02 - 11/25/02	25
WTEJ	NOAA MCARTHUR	11/16/01 - 12/7/01	95
WXC5	MAERSK CALIFORNIA	1/8/02 - 1/19/02	231

<u>Delayed Mode Meteorological Data Received at AOML</u> and submitted to the National Climatic Data Center (NCDC) from January through December 2002

CALL SIGN

SHIP NAME

January 2002

BOAB TAI-HE

KGJB SEA-LAND DEFENDER

PJJU OLEANDER

V2FA2 TAUSALA SAMOA

February 2002

BOAB TAI-HE

ELYT5 DIRECT FALCON
KGJB SEA-LAND DEFENDER
V2FA2 TAUSALA SAMOA

WTEJ NOAA MCARTHUR

March 2002

3F9PA TMM NUEVO LEON

9VND RUBY INDAH

BOAB TAI HE

C6CE7 WESTWOOD BELINDA
GOVL MELBOURNE STAR
GZKA AMERICA STAR
H9IM WESTWOOD BELINDA
KRGB SEALAND ENTERPRISE

KRGB SEALAND ENTERPRISE LAJV4 SKAUBRYN

MZBM7 QUEENSLAND STAR
NRUO USCGC POLAR SEA
S6ID EMERALD INDAH
V2FA2 TAUSALA SAMOA

WAUW ENDEAVOR

WAUY M/V ENTERPRISE
WMLG DELAWARE BAY
WPGK CSX NAVIGATOR

CALL SIGN

SHIP NAME

April 2002

3FPA9 TMM NUEVO LEON
ELYT5 DIRECT FALCON
KGJB SEA-LAND DEFENDER
KRGB SEALAND ENTERPRISE
LAJV4 SKAUBRYN
V2FA2 TAUSALA SAMOA

May 2002

9VRA **DIRECT EAGLE BOAB** TAI HE **GOVL** MELBOURNE STAR **GZKA** AMERICA STAR **KGJB** SEA-LAND DEFENDER KIRF **CSX HAWAII KRGB** SEALAND ENTERPRISE LADB2 **SKAUGRAN** MZBM7 QUEENSLAND STAR V2FA2 TAUSALA SAMOA WAUW **ENDEAVOR WMLG DELAWARE BAY**

June 2002

BOAB
ELRR4
ELRR4
ELYT5
DIRECT FALCON
KGJB
V2FA2
WAUY
WAUY
ENTERPRISE
WMLG

TAI HE
SAFMARINE TUGELA
DIRECT FALCON
SEA-LAND DEFENDER
TAUSALA SAMOA
ENTERPRISE
DELAWARE BAY

CALL SIGN

SHIP NAME

July 2002

BOAB ELZT3 KRGB LADB2 LAJV4 S6ID V2FA2 WHRN TAI HE
COLUMBUS FLORIDA
CSX ENTERPRISE
SKAUGRAN
SKAUBRYN
EMERALD INDAH
TAUSALA SAMOA
MAHI MAHI

August 2002

3FPA9
ELRR4
ELYT5
GOVL
GZKA
KGJB
KRGB
LAJV4
MZBM7
PJJU
V2FA2
WAUW
WMLG

TMM NUEVO LEON
SAFMARINE TUGELA
DIRECT FALCON
MELBOURNE STAR
AMERICA STAR
SEA-LAND DEFENDER
SEALAND ENTERPRISE
SKAUBRYN
QUEENSLAND STAR
OLEANDER
TAUSALA SAMOA
ENDEAVOR
DELAWARE BAY

September 2002

BOAB LADB2 V2FA2 WCHF TAI HE SKAUGRAN TAUSALA SAMOA CSX CONSUMER

CALL SIGN

SHIP NAME

October /November 2002

DIRECT EAGLE 9VRA

SEA-LAND DEFENDER KGJB

CSX ENTERPRISE **KRGB**

LADB2 **SKAUGRAN POLYNESIA** V2CA2

December 2002

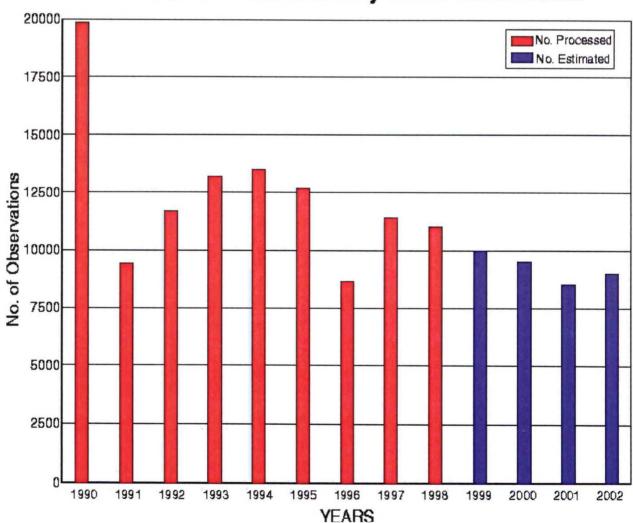
BOAB TAI HE

ELYT5 DIRECT FALCON **KIRF** CSX HAWAII **KRGB** CSX ENTERPRISE

LADB2 **SKAUGRAN** LAJV4 **SKAUBRYN**

QUEENSLAND STAR MZBM7 S6ID **EMERALD INDAH**

ENDEAVOR WAUW **ENTERPRISE** WAUY **WMLG DELAWARE BAY**

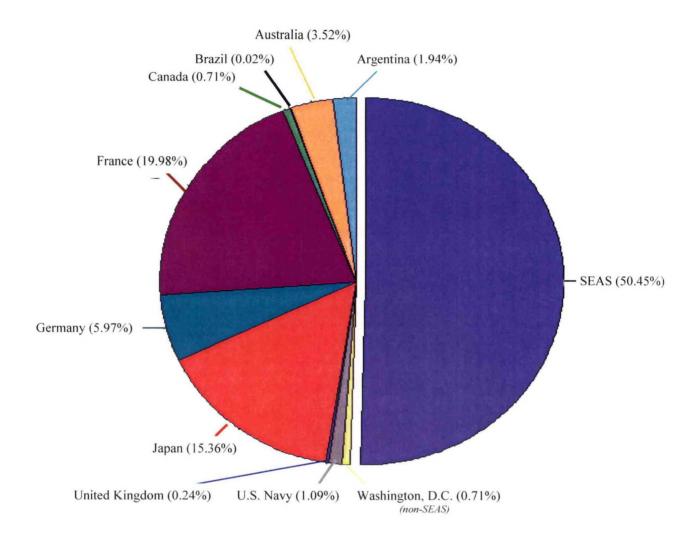

WTEJ **MCARTHUR**

Statistics

Atlantic XBT DAC review of delayed mode data

The Atlantic XBT Data Assembly Center at AOML is a component of the Global Temperature and Salinity Profile Program (GTSPP). The AOML DAC receives delayed mode data from NODC annually. It quality controls the data and returns the edited data to NODC for archiving. Scientific quality control of the delayed mode data has been completed for the years 1990 through 1998. Data collected in 1999 are currently being processed. Data collected from 2000 and 2001 are presently being collated at NODC. Since 1990, the Atlantic XBT DAC has processed and quality controlled over 110,000 observations (see figure below).

Atlantic XBT Data Assembly Center Observations



FY 2002 XBT Probe Distribution

Destination	Cases	Freight	Purchase	Total Cost
Bay St.Louis	81	\$ 417.19	\$30,375.00	\$30,792.19
Cape Town	81	2,264.30	30,375.00	32,639.30
Honolulu	108	1,323.30	40,500.00	41,823.30
Houston	189	680.21	70,875.00	71,555.21
Miami	81	545.10	30,375.00	30,920.10
Newark	27	237.52	10,125.00	10,362.52
Norfolk	135	781.50	50,625.00	51,406.50
San Diego	54	0.00	20,250.00	20,250.00
Seattle	513	2,145.30	192,375.00	194,520.30
Terminal Is.	54	247.20	20,250.00	20,497.20
	·			
<u>Total</u>	<u>1,323</u>	<u>8,641.62</u>	<u>496,125.00</u>	<u>504,766.62</u>

The Table above includes supporting funds from NMFS and the Naval Oceanographic Office for their operations.

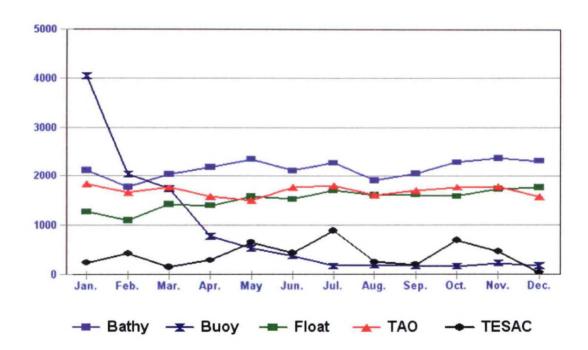
GTS XBT Observations January 1 - December 31, 2002

- Total Observations 18.285
- BATHY data from moored platforms are excluded.
- Data decoded from GTS msgs by GOOS data tracking decoders.
- All data sources identified by GTS bulletin Header.

GTS Insertion Points

Buenos Aires, Argentina Melbourne, Australia Brasilia, Brazil Ottawa, Canada Toulouse, France Offenbach, Germany Tokyo, Japan Bracknell, U.K. Washington, U.S.A.

For this report, only SEAS is identified as a program. Nations listed represent the GTS insertion point, not necessarily any program associated with those nations.


2002 Summary of Subsurface Data

Data	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
D 41	2.110	1.761	2.024	2 170	2.246	2.110	2.270	1.011	2.050	2 200	2 277	2 217	25.761
Bathy	2,118	1,761	2,034	2,179	2,346	2,110	2,270	1,911	2,050	2,288	2,377	2,317	25,761
Buoy	4,053	2,035	1,735	778	534	380	177	197	185	175	239	180	10,668
Float	1,263	1,089	1,410	1,388	1,568	1,519	1,695	1,602	1,610	1,586	1,731	1,764	18,225
TAO	1,829	1,653	1,759	1,569	1,489	1,767	1,800	1,602	1,697	1,772	1,786	1,574	20,297
TESAC	C 238	419	154	286	654	440	890	257	202	693	473	44	4,750
TRITO	N*												
	6,877	6,389	6,237	7,009	7,034	7,017	7,944	8,877	8,940	8,697	7,746	7,408	90,175

Total 16,378 13,346 13,329 13,209 13,625 13,233 14,776 14,446 14,684 15,211 14,352 13,287 169,876

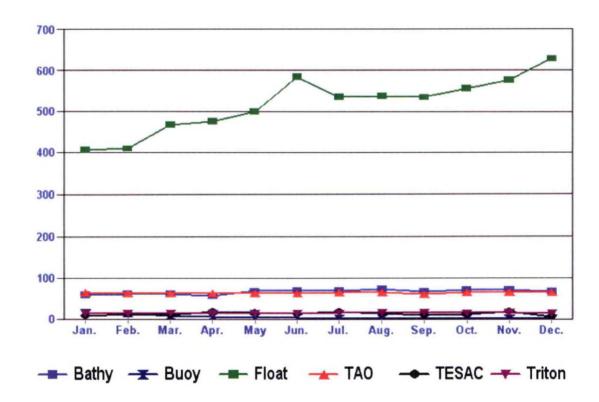
Below is a graphical presentation of data shown in the table above.

^{*}Triton observations excluded from graph due to scaling.

The Global Telecommunications System (GTS) is the source of all marine data displayed on these plots. In order to facilitate the exchange of data, observations are encoded into a set of internationally agreed upon formats. Knowledge of these formats and the operational data collection programs enable database designers to classify incoming records.

The terms BATHY, BUOY, and TESAC refer to the World Meteorological Organization coded formats for data exchange. All of the subsurface data identified in this report originates in one of these formats. TAO and Float program observations are received in BUOY and TESAC format respectively. They are distinguished from other observations arriving in these formats because more is known about the programs supporting those data.

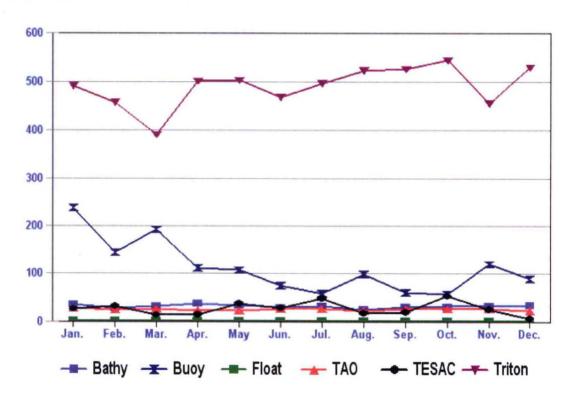
BATHY format is typically associated with XBT observations and is characterized by five digit depth/temperature groups. It is important to recognize that not all BATHY observations are from XBTs. Fixed platforms equipped with thermistors also report in BATHY format. The format has only limited meteorological information associated with it.

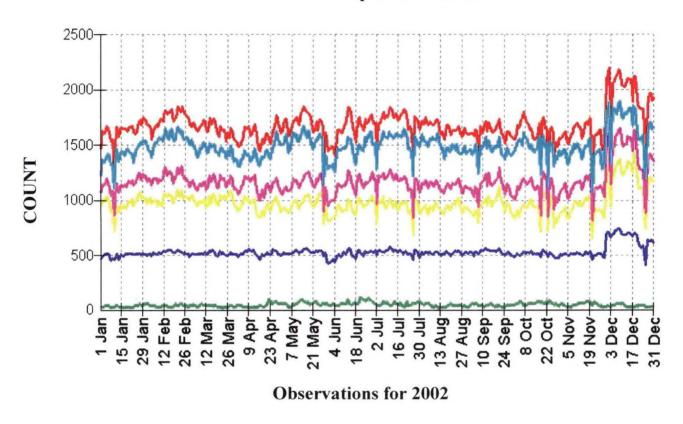

BUOY format is the most comprehensive format decoded. It permits an extensive list of atmospheric variables as well as oceanographic information. The oceanographic variables include depth/temperature/salinity as well as surface temperature and drift. TAO observations are received in BUOY format.

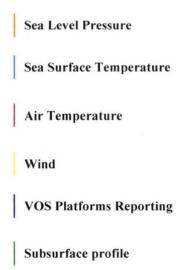
TESAC format is used when any combination of depth/temperature/salinity/current data is known. There is no accommodation for atmospheric information in the code. TESAC observations are associated with CTD's and profiling floats.

2002 Summary of the Number of Platforms Contributing Data

Data	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
BATHY	59	61	61	58	69	70	70	73	67	72	71	68
BUOY	17	14	9	7	5	5	3	2	3	3	2	2
FLOAT	406	409	467	475	499	586	536	538	535	556	577	629
TAO	65	63	64	64	64	64	65	65	61	65	65	65
TESAC	9	13	11	19	17	15	18	14	10	13	18	6
Triton	14	14	16	14	14	15	16	17	17	16	17	14
TOTAL	570	574	628	637	668	755	708	709	693	725	750	784


Below is a graphical presentation of data shown in the table above.


2002 Average Number of Observations per Platform


Data	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	A Dec	nnual Avg.
•				37.57		30.14	32.43	26.18	30.60	31.78	33.48	34.07	32.36
Buoy	238.41	145.36	192.78	111.14	106.80	76.00	59.00	98.50	61.67	58.33	119.50	90.00	113.12
Float	3.11	2.66	3.02	2.92	3.14	2.59	3.16	2.98	3.01	2.85	3.00	2.80	2.94
TAO	28.14	26.24	27.48	24.52	23.27	27.61	27.69	24.65	27.82	27.26	27.48	24.22	26.36
TESA	C 26.44	32.23	14.00	15.05	38.47	29.33	49.44	18.36	20.20	53.31	26.28	7.33	27.54
Triton	491.21	456.36	389.81	500.64	502.43	467.80	496.50	522.18	525.88	543.56	455.65	529.14	490.10

Below is a graphical presentation of data shown in the table above:

2002 Ship Observations

Legend values are decoded from various GTS formatted messages by the GOOS decoders.