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Abstract we propose a simple way to define a field-line-following, general curvilinear coordinate system
for a general magnetic field. This definition of field-line-following coordinate system reduces to a usual
definition of dipole coordinate system when the magnetic field is approximated by an axisymmetric dipole.

In this way, it can facilitate the numerical implementation by enabling validation of various metric terms
computed numerically against those defined analytically in the case of the dipole field. Steps involved in grid
generation are also sketched. Highly accurate results are obtained using the high-order ordinary differential
equation (ODE) solver to solve the general magnetic field line equations. The accuracy and consistency of the
numerical implementation are validated against analytical results in the case of a dipole field. Numerical results
show that this field-line-following coordinate system for the general magnetic field, like the coordinates for the
dipole field, is also an Euler potential or Clebsch type coordinate system.

1. Introduction

A coordinate system provides a way of organizing data. The kind of coordinate systems to be used depends on the
kind of problems to be solved. Because of the fundamental role played by the geomagnetic main fields in plasma
motion in ionosphere and plasmasphere, it is often advantageous to organize ionosphere-plasmasphere data or
define model variables along magnetic field lines.

Several magnetic coordinate systems have been proposed for ionospheric studies in the past, see Laundal and Rich-
mond (2017) for a comprehensive review. The apex-based coordinates, such as the apex coordinates (VanZandt
et al. (1972)), the modified apex coordinates and quasi-dipole coordinates Richmond (1995), were discussed in
Emmert et al. (2010), along with the computational aspects of apex-type coordinates. Use of the Euler potentials as
coordinate variables is also appealing because of the special properties of the Euler potentials e.g., Stern (1967, 1970).

The Earth's main magnetic field can be best described by the International Geomagnetic Reference Field (IGRF;
Thébault et al. (2015)). Approximated magnetic field such as the eccentric dipole, a tilted dipole with an offset
center, is sometimes used in the ionospheric modeling (e.g., Bailey et al. (1993); Huba et al. (2000)).

It would be a helpful aid for ionosphere-plasmasphere model development to use the general curvilinear coor-
dinate system that is consistent with conventional mathematical notations. In this paper, we propose and derive
a magnetic field-line-following coordinate system that is consistent with the idea and notation of the rigorous
mathematics of general curvilinear coordinates. This definition also reduces to a usual definition of the dipole
coordinate system in the case of a dipole field.

This paper is organized as follows. In the next section, we present the definition of the general field-line-fol-
lowing coordinate system. Computation of the basis vectors is described in Section 3. Evaluation of numerical
implementation and computational results are given in Section 4. And the final section is a summary. Some
mathematical details related to algorithm development are presented in the appendices, where grid generation
procedures are also briefly described.

2. Definition of Coordinate Systems for the Magnetic Field
2.1. A Coordinate System for the Dipole Magnetic Field

The simplest configuration of a magnetic field is a dipole. To aid our discussion, we start with a definition of a
dipole coordinate system. Using the notation of Kageyama et al. (2006), the dipole coordinates (u, y, ¢) for an
axial-centered dipole field in terms of the spherical polar coordinates (7, 8, ¢) are defined as
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where r is the radial distance from Earth's center, normalized by the geomagnetic conventional Earth's mean
reference spherical radius a = 6,371.2 km, 6 the geocentric colatitude, and ¢ the east longitude. The coordinate y
is a magnetic scalar potential function for the dipole field, and the magnetic flux density is given by B = —mVy,
with m as the dipole moment. The dipole coordinates (u, y, ¢) are orthogonal.

It can be shown that
VyxVe=Vu. @)

Hence B = —mVu = —mVy X V¢. Thus, the coordinates y, ¢ are the Euler potentials (e.g., Stern, 1970). They
are also called the Clebsch-type coordinates (D'haeseleer et al., 1991, Chapter 5).

2.2. A General Curvilinear Magnetic Field-Line-Following Coordinate System

We would like to define a general magnetic field-line-following coordinate system in such a way that, when the
magnetic field becomes a dipole, the definition seamlessly and naturally becomes the definition of coordinates
for a dipole field, the (u, ¥, ¢) coordinates. Thus, we propose to define a magnetic coordinate system (u,,, ¥,,» ¢,,)
as follows:

.2
a 0
Hm = D, Xm = SIHr s m = ¢Aa (3)

where @ is a normalized magnetic scalar potential (more details later), 0,, is the magnetic colatitude defined by

. 2
sin“6,, 1
sinfn _ 1 @)

r ra
with r, the radial distance to the apex (a constant for each field line), and ¢, is the geographic longitude at the
apex. Both r, and ¢, are uniguely defined for each field line, as long as each field line has a unique, well-defined

apex. Thus, they can be used to label each field line; hence (u,,, x,,» ¢,,) as defined in Eq. (3) can be used as the
coordinate variables.

The normalized magnetic scalar potential @ is defined as follows:

D
. (&)

b=—,
8m

where @ is the magnetic scalar potential and g, is the dipole moment used here as the normalization factor. The
magnetic flux density is then given by B = —V® = —g,,V® = —g,,V u,,. For the IGRF magnetic field, ® and g,,
are defined in Eqgs. (A1) and (A3), respectively.

Remark 1. The differences between the coordinate variables used here and the modified apex coordinates of
Richmond (1995) should be noted. As remarked in Emmert et al. (2010), almost all the definition of the apex-
like coordinates is motivated by the field line equation for a dipole field, that is, Eq. (B2). In Richmond (1995),
modified apex latitude (4,,) is used as one of the coordinate variables. But the motivation here is to define the
general coordinates in direct analog to the dipole coordinates. Thus, y,, = 1/r, is used as one of the coordinate
variables instead. The magnetic colatitude 8, can then be defined using Eq. (4), also different from the definition
of modified apex latitude (4,) of Richmond (1995). (If one chose r, + & = r in Richmond (1995)'s definition of
quasi-dipole latitude 4, one would have 6, = /2 — 1 .) Moreover, the advantage of defining the general coordi-
nates analogous to the dipole coordinates is made explicit here, for example, by using it to verify the implemen-
tation of the numerical algorithms in grid generation, see Section 4.

In Richmond (1995), as in VanZandt et al. (1972), the tilted-centered dipole longitude at apex is used as another
coordinate variable. The tilted-centered dipole longitude, or simply called the geomagnetic-dipole longitude in
Richmond (1995), is measured eastward from the meridian half plane bounded by the tilted-centered dipole
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axis and containing the south geographic pole (e.g., Fraser-Smith, 1987). Here we simply use the geographic
longitude at apex as one of the coordinate variables. This appears to make grid generation easier since the IGRF
magnetic field is defined in the geographic/geocentric spherical coordinate system. A grid generation strategy is
given in Appendix C. Given the geographic colatitude and longitude at apex, the tilted-centered dipole longitude
at apex can be calculated using the IGRF model coefficients; see Appendix C3.

In this work and in Richmond (1995), the magnetic potential, normalized or otherwise, is used as one of the
coordinate variables.

Remark 2. More importantly, the definition and computation of basis vectors are done here in more conventional
mathematical form, in the same spirit of D'haeseleer et al. (1991). The conventional covariant—contravariant
formalism can be seen more in recent works (e.g., Rankin et al., 2006). In contrast, the so-called scaled basis
vectors are used in Richmond (1995), involving several scaling factors. This approach appears to be cumbersome,
without obvious computational advantage. The desire for using the conventional covariant-contravariant formal-
ism is also expressed in the review paper by Laundal & Richmond (2017, p. 44-45).

Remark 3. Alternative numerical algorithms for grid generation are also introduced, see Appendix C. The
high-order ODE solver is used for more accurate and efficient solutions of magnetic field line equations, see
Appendix B.

3. Basis Vectors and Metric Terms

Two sets of basis vectors can be defined for a general curvilinear coordinate system. The contravariant-basis
vectors are defined as the gradient of the coordinate variables, while the covariant-basis vectors are tangent to the
coordinate curves. The two sets of basis vectors are reciprocal sets of vectors: One can derive one set of the basis
vectors once the other set is known or vice versa (D'haeseleer et al., 1991, Chapter 2).

3.1. Basis Vectors and Metric Terms for a Dipole Field

For a dipole field, the metric terms can be derived analytically. The contravariant-basis vectors are the gradient of
the coordinate variables (i, y, ¢), which can be written in terms of the spherical coordinates as.

o= vy = 2005, sindy (6a)
P P
.2 .
e =Vy=— sm2 (% - 2sm020056 3 (6b)
r r
e =Vep= ‘.1 o, (6¢)
rsind

where (i', 0, g?)) are unit vectors of the spherical polar coordinates (r, 8, ¢). The covariant-basis vectors, as the
reciprocal of the contravariant-basis vectors, can be computed from the contravariant-basis vectors as follows:

e’ x e 2r3cosf r3sind ,
e, = = r+ 0, 7
M7 en - (er X et) 02 02 (7a)
e? x et r 2rr .
& = e xen o T onann’ b
T (e xen @ ©tand (70)
el x e .o
= e 09 e

where © is defined as

© = V1 + 3cos20. €]

The scale factors can be computed as

WANG

3of 14



A7t |

A\ Journal of Geophysical Research: Space Physics 10.1029/2021JA030017
hu = leyl = 1/IVu| =r’/0, (%a)
hy = le,| = 1/|V x| = */(@sind), (9b)
hy = leg| = 1/|V@| = rsiné. (9¢)

And, in terms of the scale factors, the differential arc length ds is given by
ds® = ds? + ds’ + ds?, = (hudu) + (hydy)’ + (hyd)*. (10)

For a dipole magnetic field, an analytical expression for the arc length can be obtained, see Eq. (B6). We will
compare the arc length computed using Eqs. (B6), (10), and (18) of the general coordinates in the case of a dipole
field; see Section 4.1, especially Table 2.

3.2. Basis Vectors and Metric Terms for a General Magnetic Field

For the general magnetic field, the basis vectors and metric terms can only be computed numerically. We first
compute contravariant-basis vectors as the gradient of the coordinate variables (e.g., D'haeseleer et al., 1991):

e =V an

Then, the covariant-basis vectors can be computed from the contravariant-basis vectors as follows:

e/ x e
“ T @xey (12
where i, j and k are chosen such that (i, j, k) forms a cyclic permutation of (1, 2, 3). We will use the correspond-
ence notation (1, 2, 3) & (u,,, ¥,» ,,)-

The computation of e#» and e#» are performed in the spherical coordinate system as follows:

Ofm, 10)ms 1 Ofm,
=V g = gy LW, 1 g
€ =t 0 Ot eing g @ (13

%;-4_ l%@+ 1 %&5 (14)

b =V, =
¢ b= Tt 20 0t ind 09

where the partial derivatives are evaluated using the second-order central difference scheme. Note that the evalua-
tion of the partial derivatives involves tracing along the field line to the apex in order to determine the coordinate
values (defined in reference to the apex!) of the neighboring field lines. And that is why an accurate and efficient
high-order ODE solver is needed for field line tracing, see Appendix B on solution of field line equations. But the
computation of e#» is done as follows:

e'n =V, =Vhb=Vd/g, = -B/gn, 15)
where B = B, + ByO + Bd,(i) is computed using the analytical expressions of Eqgs. (A4).
Two important metric coefficients g; and gV are defined as
gj=e-¢e, gl=¢e-¢. (16)

The off-diagonal metric coefficients are all zero for an orthogonal but not necessarily orthonormal coordinate
system. The scale factors are defined as /; = le|. Thus

8ii = h,? or h;= \V 8ii» a7

and so h/'s are also called metric coefficients; no summation rule is implied here. Although the £,'s are usually
used for orthogonal coordinate systems, the above definition is valid for any coordinate system (D'haeseleer
et al., 1991). The arc length can then be computed the same as in the dipole case:
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Figure 1. The relative errors of numerically computed spherical coordinate variables (r, 1), magnetic flux density (B), and
scale factors (h,, h,, h;) with respect to those computed using analytical expressions in the case of a dipole field line.
ds’ = ds, +dsy, +ds;, = (hidun)’ + (hadyn)® + (hadepn)’, (18)
where hy = hy,, hy = hy, , hs = hy,,, using the correspondence notation (1, 2, 3) & (i, ¥,» P,,)-
4. Grid Generation and Computational Results
Grid generation is an important step in ionosphere-plasmasphere model development. It is usually non-trivial,
especially for the general magnetic field-line-following coordinates. The procedures of grid generation are briefly
described in Appendix C. In this section we evaluate the accuracy of numerical implementation of the algorithms
for various coordinate variables and metric terms. In the following presentation, the IGRF-13 coefficients of
epoch 2000 are used for the magnetic field, and double precision is used in all numerical computations.
4.1. Evaluation in the Case of a Dipole Field
Table 1 Because of the way we define the general coordinate system, we find that the

The Minima and Maxima of the Relative Errors € of Spherical Coordinate
Variables (1, ), Magnetic Flux Density (B), and Metric Coefficients (h,, h,,

validation of the implementation and the assessment of numerical algorithms
can be conveniently performed in the case of a dipole field. This is done as

h;) for a Dipole Field Line follows:

€ Min Max 1. For dipole coordinates, grid generation is done as described in Appen-

R —8.9068 x 10~* 3.67x107° dix C1. The basis vectors and metric terms are computed using analytical

A —1.8329 x 1077 4.93 x 10712 expressions given in Section 3.1

B _2.0742 % 10-8 232 % 10-7 2. For general coordinates, grid generation is done as described in Appen-

h, 23177 % 10~ 208 % 10-% dix C2. Note in choosing/specializing the axial-centered dipole field
from the IGRF model, instead of using all the terms as in Eq. (A1), only

h, —3.6691 x 1073 2.87 x 107 0 . . . .
one term, the g, term, is used as in Eq. (A2). The basis vectors and metric

{2 73187 x 10 170 x 107 terms are then computed as described in Section 3.2
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Table 3

The Minima and Maxima of the Departures From 90° of the Angles Between

Table 2

The Discretized and Continuous Arc Lengths of a Dipole Field Line (s ?) in km and Their Relative Errors

g sd("
(egc/dm Ege/ts Edc/f)

K See Sye 7 Ege/de Ege/t Edc/t

K51 21,353.9305 21,353.9316 21,355.1369 —4.7904 x 1078 —5.6493 x 107> —5.6445x 1073
K101 21,480.2391 21,480.2403 21,480.5278 —5.4434 x 1078 —1.3438 x 1073 —1.3383 1073
K201 21,541.8472 21,541.8489 21,541.9191 —7.8555 x 1078 —3.3380 x 10-° —3.2595 10~

Note. The K number denotes different number of points along the field line.

We compare different ways of computing the spherical coordinate variables (radial distance r and latitude
A = n/2 — 0), magnetic flux density B, and scale factors &, h, and h,, for grid points along a dipole field line. We
choose the field line crossing the earth's surface at colatitude 8 = 45° at longitude ¢ = 0°. The field line is divided
equally into 101 points in y, which will be denoted by K101. When computing the gradients in Eq. (15), we use
the central finite differences (+6r, +60, +5¢), with step sizes 6r = 20 km, 66 = 0.25°, and 6¢ = 0.25°. In the ODE
solver for field line equations, the step size is 5 km and error tolerance is 1.00 x 10712,

We compute the relative errors of numerically computed values based on the procedure (2) above, relative to their
corresponding values based on procedure (1) in the case of axial symmetric dipole field. The relative error &, of
a variable x is defined as

E = (X - X()) /X(), (19)

where Xx; is the expected value of the variable x. Figure 1 shows the results. They are plotted as the function of
the arc length/distance along the field line. First, we notice that these errors are all very small; see also Table 1,
which lists the minimum and maximum of these relative errors. Another noticeable feature is that these errors are
symmetric about the apex point. This symmetry in the case of the dipole field is a good indicator of the consist-
ency and accuracy of the numerical implementation of the algorithms.

We also calculate the relative errors of different ways of computing the arc length for the field line. We call the
arc length calculated using the scale factors from Eqgs. (10) and (18) the discretized arc length, denoted by s,
and s, for dipole coordinates and general coordinates, respectively; while the arc length calculated using the
analytical expression Eq. (B6) the continuous arc length, denoted by £. Table 2 shows the computed arc lengths
[km] of a dipole field line, and their relative errors: w.r.t. s, (egc /d(.) or W.r.t. £ (ggc/¢ and g4./¢). Three different
resolutions are shown with K51, K101 and K201 denoting different number of points along the field line. As
noted in Appendix C, we use only points above the spherical Earth's surface that satisfy 7>a + 90 km; so the arc
lengths are different for different resolutions as their end points are not all the same. Again these errors are very
small, indicating the high accuracy of the numerical scheme and robustness of the numerical implementation. We
also notice the reduction of relative errors w.r.t. £ (€4, and £4./¢) as the resolution increases.

4.2. Into the General Magnetic Field

For the general magnetic field, two-dimensional grids are generated from the

the Three Contravariant Basis Vectors in Four Longitudinal Sectors

IGRF magnetic field using the grid generation procedure of Appendix C2.

b by b P The outermost and innermost field lines cross the earth's surface at colati-
0° —5.8173 x 1073 —1.5645 x 10~* —5.8443 tudes 8, = 45° and 6, = 82°, respectively. They are divided equally into 45
474 % 103 5.59 x 10~ 11.0156 points in y, . The resolution along the field lines are determined by dividing
90° _4.4363 x 103 13374 % 10-* ~9.5587 the .the outermost field ll.ne equally 1n.t0 101 Pomts inp, .or KIOI: Other
settings are the same as in the preceding section. Results in four different
5.25x 1073 3.83 x 10~ 0.6749 o 1. .
longitudinal sectors will be presented.
180° —3.9086 x 1073 —2.6662 x 10+ 0.0034
427 % 10-3 175 % 10~ 3.6654 We first check the orthogonality of the coordinates. For this we compute the
angles between the contravariant basis vectors. The angles between the three
270° —3.7511 x 1073 —5.2605 x 10~ -5.0107 . . . .
contravariant basis vectors e' and ¢/, denoted by a;, can be computed from
4.07 x 1073 5.72 x 10 6.4699

their dot product
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Figure 2. The departures from 90° of the angles between the basis vectors: f,, (the 1st column), 3, (the 2nd column), and /3, (the 3rd column). The four rows are for
four longitudinal sectors ¢,, = 0°, 90°, 180°, and 270°, respectively.

e e =|e||e/|cos (a;). (20)
The departures from 90° of the angles between the basis vectors

ﬂ,’j =aij — 900, (21)
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Figure 3. The ratio y = c/g,, in four different longitudinal sectors: (a) ¢,, = 0° with 7, = 0.9528, y, . = 1.0820, (b) ¢,, = 90° with y, .. = 1.1294,y_ = 1.3653, (c)
¢, = 180° with y, . = 1.1054, y, . = 1.1624, and (d) ¢,, = 270° with y_. = 0.9411, y,.. = 0.9545. The color curves are a few selected field lines, illustrating how the

contours of ratio y follow the field lines.

are shown in Figure 2 for four different longitudinal sectors at ¢,, = 0°, 90°, 180°, and 270°, respectively. Their
minima and maxima are listed in Table 3. They show that both f,, and j3,, are very small. Thus, the two basis
vectors e” and e?, though not orthogonal to each other (f,, not small), they are both perpendicular to e', that is,
the magnetic field. Here again we use the correspondence notation (1, 2, 3) & (4,,, ¥,.» ¢,,)-

Since both e? and e are perpendicular to e!, their cross product e? X e would be parallel to e!, hence also the
magnetic field B. Thus, we can write the magnetic field in the following way:

= —ngllm = _CVIm X Vd’m’ (22)

Figure 3 presents the ratio y = ¢/g,,, and a few selected field lines, in four different longitudinal sectors. It shows
that the ratio follows the field lines, that is, it is constant along each field line. Thus, the constant ¢ depends
only on the field line, and is fixed for each field line. Therefore, y,, and ¢, in the general coordinates, as the
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corresponding y and ¢ in the dipole coordinates, are also Euler potentials. For a dipole field, the ratio y = c/g,,
would be a constant 1 everywhere.

The Euler potential, as a potential function, is not uniquely defined. Several different ways to define and construct
the Euler potentials have been proposed and used, for example, Stern (1967, 1976, 1994); Ho et al. (1997);
Peymirat and Fontaine (1999); Wolf et al. (2006); Rankin et al. (2006). Sometimes the computational procedures
can get quite complicated. So depending on the application, the simple approach proposed here may be preferable.

5. Summary

A general curvilinear coordinate system is proposed for ionosphere-plasmasphere modeling. This magnetic
field-line-following curvilinear coordinate system reduces to a dipole coordinate system when the magnetic field
is a pure dipole.

A high-order ordinary differential equation (ODE) solver is used to solve the magnetic field line equations for
the general magnetic field of the IGRF model. The numerical accuracy and consistency of the implementation is
validated against the analytical results in the case of a dipole magnetic field. The symmetry of the dipole field can
also be used to check the consistency and accuracy of implementation: Any loss of symmetry may indicate loss
of accuracy or lack of consistency in the implementation of numerical algorithms.

The general coordinate system is also the Euler potential or Clebsch-type coordinate system. There are infinite
choices of Euler potentials for coordinate variables, and it can become complicated sometimes. So depending on
the applications, the simple approach used here may be preferred in some cases.

The general curvilinear magnetic field-line-following coordinate system proposed here is developed and imple-
mented while developing a new ionosphere-plasmasphere model. It is also an attempt to put the field-line-follow-
ing coordinate system on a more rigorous or conventional mathematical framework. Applications of the general
coordinates will be presented in a separate paper on ionosphere-plasmasphere modeling (Wang, 2022).

Appendix A: The IGRF Magnetic Field

The Earth's main magnetic field can be best described by the IGRF magnetic field (Thébault et al., 2015; Alken
et al., 2021). The magnetic potential ® of IGRF is approximated by the truncated series, written in the geocentric
spherical coordinates (r, 0, ¢), as follows:

N n +
or0.pn=ay, ¥ (%) ' Lgh (cos(m) + R (p)sin(mep)] PY'(cosb), (A1)
n=1 m=0

where r is the radial distance from the center of the Earth, a = 6,371.2 km is the geomagnetic conventional Earth's
mean reference spherical radius, 6 is the geocentric colatitude, and ¢ the east longitude. The functions P,"(cos@)
are the Schmidt quasi-normalized associated Legendre functions of degree n and order m. The order of approx-
imation is truncated to N = 10 for epochs up to 1,995 and N = 13 from epoch 2000. In numerical computation
of this study, the Schmidt quasi-normalized associated Legendre functions are evaluated using the SHTOOLS
(Wieczorek & Meschede, 2018).

The lowest-order approximation, by setting n = 1 and m = 0 in the truncated series of Eq. (Al), defines an
axial-centered dipole field (e.g., Bailey et al., 1993):

a 2 0 a 2
®(r.0) = a(-) g’cosf = g,,,(—) coso, (A2)
r r
where we have defined
gn = ag) (A3)

and may simply be called the dipole moment.
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The three components of the magnetic field B = —V® in the spherical coordinates are computed by.
N a n+2
B.=Ym+1)(%) " X lercostng) + hsin(me)] PY'(coso). (Ada)
n=1 m=0
By = sind i (¢ )"” Z [glcos(mep) + Asin(mep)] 22 (A4b)
0 = e P ~ 8n n Ox B
1 N a n+2 &
- “ meys M m Ad
By= — ; (%) Z{)m [gsin(me) — hiicos(mep)] Py'(cosO), (Adc)
where we have used
daP, a(ZOSH) - _sin® dP)(x) (AS5)

by chain rule with x = cos 6.

Appendix B: Numerical Solution of the Differential Equations for the Magnetic Field
Line

B1. The Differential Equations for the Dipole Magnetic Field Line
The differential equations for a dipole field line can be written in the spherical coordinates as

dr _ B, _ 2cosf

rd0 ~ B,  sind

(B

An analytical expression for the arc length of a dipole field line can be obtained, see for example, (Walt, 1994, pp.
30-31). Integrating the field line equation (B1) gives

r = rasin’0, (B2)

where r, is the value of r at apex € = n/2. The arc distance element dZ along a field line

dt =\/(dr)* + (rd0)*, (B3)

can be integrated analytically as follows. Differentiating r = r, sin?0 gives
dr =2rusinf cos 0 dé. (B4)

Thus,

d¢ = \/4risin29cos20 +risin49d9

=raV 1+ 3cos?6sinfd6.

Let x = cos 0, integrating from x = cos @ to the equator x = cos (2/2) = 0, we get an analytical expression for the
arc length of a dipole field line as follows:

r="1 [xm+ L\/_1n<\/1 +3x2 + ﬁx)] : (B6)
3

(B5)

2

Note that we use £ here to distinguish it from the arc length s calculated from the discretized form Eq. (10).
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Figure B1. The footpoints of the IGRF field lines on the r = a surface, using 25 longitudinal points and 15 latitudinal points
between magnetic colatitudes 5° and 85°.

B2. The Differential Equations for the General Magnetic Field Line

For a general magnetic field such as IGREF, the differential equations for a field line can be written as

bs _ or _réf _ M

BB B B (B7)
which can be solved for field line (tracing) as follows.
= () Gy, (BSa)
B
ol = o 4 £ ( &> (5s)", (B8b)
m\ B
n+1 n A 1 B¢ ! n

= —_ 5

¢ P i\ ) @9 (B8c)

where superscripts 7 and n + 1 are position indices; £ = § - b = +1, with + (or —) sign depending on whether 3
moving/tracing in the same (or opposite) direction of b (the unit vector of the magnetic field B).

B3. Numerical Solution of the General Magnetic Field Line Equations

In many applications, such as grid generation described in Appendix C2, accurate and efficient high-order ODE
solvers are needed to solve the magnetic field line tracing equations (B8) numerically. In this study, we use the
higher-order embedded method, the Runge-Kutta-Fehlberg (RKF45) method. RKF45 is a method of order O(h*)
with an error estimator of order O(h°), which automatically determines the step-size to achieve the pre-defined
accuracy. The RKF45 solver implemented in package rksuite_90 (Brankin & Gladwell, 1997) is used in this
study. Highly accurate results are obtained, as shown in Section 4.1 on comparing the numerically computed and
the analytically derived results in the case of the dipole field.

Due to singularity at the geographic poles, the values of the magnetic potential and its derivatives at the poles, if
needed, are evaluated slightly away from the poles, that is, 5.00 x 10~* degrees away from the poles. Numerical
experiments show that the field line tracing program works near the poles. As an illustration, we use the same
grid generation program to trace the IGRF field lines down to the r = a surface. Figure B1 shows the footpoints
of the field lines on the surface. However, it should be noted that at higher latitudes (e.g., higher than 85° lati-
tudes), field line tracing can become expensive due to long field lines. Alternative computational strategy, for
example, interpolation instead of repeated field line tracing, can be used near the magnetic poles. In addition,
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for modeling studies at higher latitudes and higher altitudes, it is also advisable to modify the x, coordinate to
increase the resolution near the apex. This can be done by a pair of transformations, similar to the dipole coordi-
nate (Kageyama et al., 2006), as follows:

W = sinh™ (bu) /b, (B9a)
pm = sinh (by) /b, (B9b)

where b is parameter controlling the grid distribution along field lines, increasing b leads to the increased reso-
lution near the apex; and b = sinh™'b.

Appendix C: Grid Generation for Ionosphere-Plasmasphere Modeling
C1. Grid Generation for Dipole Coordinates

For the dipole coordinates, a uniform grid in (i, y, ¢) with constant (du, dy, d¢) can be generated as follows:

1. Choose two magnetic colatitudes 8, and 6,, where the outermost and innermost field lines intersect with the
earth's surface, and a longitude ¢

2. From the constancy of y = sin?/r along each field line, find the corresponding radial distances at the magnetic
equator, that is, at apex where @ = 7/2. These are given by r,, = 1/sin? 6, and r,, = 1/sin’ 6,. Grid increment
dy is determined by dividing y, = 1/r,, and y, = 1/r,, into a predefined number of field lines in the meridional
plane (¢ = const.)

3. Grid distribution along the field lines: Grid increment du is determined by dividing the outermost field line
equally in y into K points between the two foot points on the earth's surface, that is, du = (u, — p /(K — 1)/2),
where K is an odd number, y, = 0 is the potential at the apex, and y, = —cos (6,) is the potential at the foot
point on the earth's surface in the northern hemisphere. Grids along the inner field lines are generated using
the same grid increment du, starting from the apex of each field line. The foot points for each field line are
chosen to be the lowest points above the spherical Earth's surface that satisfy for example, r > a + 90 km

4. Compute magnetic flux density, basis vectors, metric terms, scale factors, and the arc length etc

Analytical expressions of the inverse transformation from the dipole coordinates (u, y, ¢) to the spherical coor-
dinates (r, 0, ¢) are given by Kageyama et al. (2006). These are used in the grid generation for the dipole
coordinates.

Note that for the axial-centered dipole coordinates, the geographic/geocentric and magnetic colatitudes are the
same, that is, 8, = 6. So we do not differentiate between the two in the dipole coordinates.

C2. Grid Generation for General Coordinates

As in defining the general coordinates, which becomes a usual definition of dipole coordinates the field becomes
adipole, grid generation for the general coordinates can be done in a similar way as that for the dipole coordinates.

For the general coordinates, a uniform grid in (u,, y,,, ¢,,) with constant (du,,, dy,,. d¢,) can be generated as
follows:

1. Choose two magnetic colatitudes 8, , and 6 ,, where the outermost and innermost field lines intersect with the
earth's surface, and a longitude ¢, = ¢,, where ¢, is the geographic longitude at apex
2. From the constancy of y, = sin? 6, /r along each field line, find the corresponding radial distances at the
magnetic equator, that is, at apex where 6, = #/2. These are given by r,, = 1/sin 6, , and r,, = 1/sin? 6, ,. Grid
increment dy,, is determined by dividing y,,, = 1/r,, and y, , = 1/r,, into a predefined number of field lines in
the meridional plane (¢,, = ¢, = const.)
3. Grid distribution along the field lines
a. Find the geographic/geocentric colatitude at apex: Given the geographic coordinates at apex (r,, ¢,) and
a first-guess of ¢', = /2, find 6, (the geocentric colatitude at apex) using the Newton-Raphson method;
and compute the magnetic potential ®, at apex. The apex is defined by B, = 0, thus a turning point.
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b. Tracing down from apex to locate where the field line cross the Earth's surface on both hemispheres, (r,,
Oy, ¢y and (rg, O, ), and compute the magnetic potentials on both hemispheres, @, and ®, on the
Earth's surface.

c.  Grid increment du,, along the field lines is determined by dividing the outermost field line equally in
u,, into K points between the two foot points on the earth's surface, that is, du,, = (&5 — @,)/g, /(K — 1),
where g is the normalization constant used in the definition of y,,. Grids along the inner field lines are
generated using the same grid increment dpu,,, starting from the apex of each field line. The foot points
for each field line are chosen to be the lowest points above the spherical Earth's surface that satisfy for
example, r> a + 90 km.

4. Compute magnetic flux density, basis vectors, metric terms, scale factors, and the arc length etc

C3. Computation of the Tilted-Centered Dipole Longitude at Apex

Given the geographic/geocentric colatitude and longitude at apex, (8,, ¢,), the tilted-centered dipole (TD) longi-
tude at apex can be calculated as follows. The TD are specified by the first three coefficients g‘l), gll, h} of the IGRF
model. The geographic colatitude and longitude of the north magnetic pole, (6, ¢,), are calculated from (Bailey
et al., 1993; Fraser-Smith, 1987).

cosOy = —g?/Bo, (Cla)

tanpy = h/g!. (Clb)

where B2 = ( g?)2 + (g )2 + (h! )2 is a reference magnetic field.

The TD colatitude () is measured from the north TD pole and the TD longitude (¢) is measured eastward from
the meridian half-plane bounded by the dipole axis and containing the south geographic pole. The TD colat-
itude and longitude at apex, (9,, ¢,), are computed from (Bailey et al., 1993; Fraser-Smith, 1987; VanZandt
etal., 1972).

94 = cos™! [cosOncosh4 + sinfysinf4cos (pa — PN)], (C2a)
@4 =sin”" [sinfasin (¢pa — ) /sinda] . (C2b)

We notice that there is a one-to-one correspondence between (6, ¢,) and (3, ¢,). Numerical experiments show
that if ¢, is used as one coordinate variable in place of ¢,, the nice properties of the angles between basis vectors
and the ratio y for Euler potentials are still maintained. This is understandable as it is just a different way of
labeling the field line. But caution should be exercised when interpolating model results or coupling with other
models that use the geomagnetic-dipole longitude as the longitude coordinate. And the geographic/geocentric
spherical coordinates are the bases of all other coordinate systems.

Data Availability Statement
Data available at https://doi.org/10.5281/zenodo.5768675.
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