
1.  Introduction
A coordinate system provides a way of organizing data. The kind of coordinate systems to be used depends on the 
kind of problems to be solved. Because of the fundamental role played by the geomagnetic main fields in plasma 
motion in ionosphere and plasmasphere, it is often advantageous to organize ionosphere-plasmasphere data or 
define model variables along magnetic field lines.

Several magnetic coordinate systems have been proposed for ionospheric studies in the past, see Laundal and Rich-
mond (2017) for a comprehensive review. The apex-based coordinates, such as the apex coordinates (VanZandt 
et al.  (1972)), the modified apex coordinates and quasi-dipole coordinates Richmond (1995), were discussed in 
Emmert et al. (2010), along with the computational aspects of apex-type coordinates. Use of the Euler potentials as 
coordinate variables is also appealing because of the special properties of the Euler potentials e.g., Stern (1967, 1970).

The Earth's main magnetic field can be best described by the International Geomagnetic Reference Field (IGRF; 
Thébault et al. (2015)). Approximated magnetic field such as the eccentric dipole, a tilted dipole with an offset 
center, is sometimes used in the ionospheric modeling (e.g., Bailey et al. (1993); Huba et al. (2000)).

It would be a helpful aid for ionosphere-plasmasphere model development to use the general curvilinear coor-
dinate system that is consistent with conventional mathematical notations. In this paper, we propose and derive 
a magnetic field-line-following coordinate system that is consistent with the idea and notation of the rigorous 
mathematics of general curvilinear coordinates. This definition also reduces to a usual definition of the dipole 
coordinate system in the case of a dipole field.

This paper is organized as follows. In the next section, we present the definition of the general field-line-fol-
lowing coordinate system. Computation of the basis vectors is described in Section 3. Evaluation of numerical 
implementation and computational results are given in Section 4. And the final section is a summary. Some 
mathematical details related to algorithm development are presented in the appendices, where grid generation 
procedures are also briefly described.

2.  Definition of Coordinate Systems for the Magnetic Field
2.1.  A Coordinate System for the Dipole Magnetic Field

The simplest configuration of a magnetic field is a dipole. To aid our discussion, we start with a definition of a 
dipole coordinate system. Using the notation of Kageyama et al. (2006), the dipole coordinates (μ, χ, ϕ) for an 
axial-centered dipole field in terms of the spherical polar coordinates (r, θ, ϕ) are defined as
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𝜇𝜇 = −
cos𝜃𝜃

𝑟𝑟2
, 𝜒𝜒 =

sin
2
𝜃𝜃

𝑟𝑟
, 𝜙𝜙 = 𝜙𝜙𝜙� (1)

where r is the radial distance from Earth's center, normalized by the geomagnetic conventional Earth's mean 
reference spherical radius a = 6,371.2 km, θ the geocentric colatitude, and ϕ the east longitude. The coordinate μ 
is a magnetic scalar potential function for the dipole field, and the magnetic flux density is given by B = −m∇μ, 
with m as the dipole moment. The dipole coordinates (μ, χ, ϕ) are orthogonal.

It can be shown that

∇𝜒𝜒 × ∇𝜙𝜙 = ∇𝜇𝜇𝜇� (2)

Hence B = −m∇μ = −m∇χ × ∇ϕ. Thus, the coordinates χ, ϕ are the Euler potentials (e.g., Stern, 1970). They 
are also called the Clebsch-type coordinates (D'haeseleer et al., 1991, Chapter 5).

2.2.  A General Curvilinear Magnetic Field-Line-Following Coordinate System

We would like to define a general magnetic field-line-following coordinate system in such a way that, when the 
magnetic field becomes a dipole, the definition seamlessly and naturally becomes the definition of coordinates 
for a dipole field, the (μ, χ, ϕ) coordinates. Thus, we propose to define a magnetic coordinate system (μm, χm, ϕm) 
as follows:

𝜇𝜇𝑚𝑚 = Φ̂, 𝜒𝜒𝑚𝑚 =
sin

2
𝜃𝜃𝑚𝑚

𝑟𝑟
, 𝜙𝜙𝑚𝑚 = 𝜙𝜙𝐴𝐴,� (3)

where 𝐴𝐴 Φ̂ is a normalized magnetic scalar potential (more details later), θm is the magnetic colatitude defined by

sin
2
𝜃𝜃𝑚𝑚

𝑟𝑟
=

1

𝑟𝑟𝐴𝐴
,� (4)

with rA the radial distance to the apex (a constant for each field line), and ϕA is the geographic longitude at the 
apex. Both rA and ϕA are uniquely defined for each field line, as long as each field line has a unique, well-defined 
apex. Thus, they can be used to label each field line; hence (μm, χm, ϕm) as defined in Eq. (3) can be used as the 
coordinate variables.

The normalized magnetic scalar potential 𝐴𝐴 Φ̂ is defined as follows:

Φ̂ ≡
Φ

𝑔𝑔𝑚𝑚
,� (5)

where Φ is the magnetic scalar potential and gm is the dipole moment used here as the normalization factor. The 
magnetic flux density is then given by 𝐴𝐴 𝐁𝐁 ≡ −∇Φ = −𝑔𝑔𝑚𝑚∇Φ̂ = −𝑔𝑔𝑚𝑚∇𝜇𝜇𝑚𝑚 . For the IGRF magnetic field, Φ and gm 
are defined in Eqs. (A1) and (A3), respectively.

Remark 1. The differences between the coordinate variables used here and the modified apex coordinates of 
Richmond (1995) should be noted. As remarked in Emmert et al. (2010), almost all the definition of the apex-
like coordinates is motivated by the field line equation for a dipole field, that is, Eq. (B2). In Richmond (1995), 
modified apex latitude (λm) is used as one of the coordinate variables. But the motivation here is to define the 
general coordinates in direct analog to the dipole coordinates. Thus, χm = 1/rA is used as one of the coordinate 
variables instead. The magnetic colatitude θm can then be defined using Eq. (4), also different from the definition 
of modified apex latitude (λm) of Richmond (1995). (If one chose rE + h = r in Richmond (1995)'s definition of 
quasi-dipole latitude λq, one would have θm = π/2 − λq.) Moreover, the advantage of defining the general coordi-
nates analogous to the dipole coordinates is made explicit here, for example, by using it to verify the implemen-
tation of the numerical algorithms in grid generation, see Section 4.

In Richmond (1995), as in VanZandt et al. (1972), the tilted-centered dipole longitude at apex is used as another 
coordinate variable. The tilted-centered dipole longitude, or simply called the geomagnetic-dipole longitude in 
Richmond  (1995), is measured eastward from the meridian half plane bounded by the tilted-centered dipole 
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axis and containing the south geographic pole (e.g., Fraser-Smith, 1987). Here we simply use the geographic 
longitude at apex as one of the coordinate variables. This appears to make grid generation easier since the IGRF 
magnetic field is defined in the geographic/geocentric spherical coordinate system. A grid generation strategy is 
given in Appendix C. Given the geographic colatitude and longitude at apex, the tilted-centered dipole longitude 
at apex can be calculated using the IGRF model coefficients; see Appendix C3.

In this work and in Richmond (1995), the magnetic potential, normalized or otherwise, is used as one of the 
coordinate variables.

Remark 2. More importantly, the definition and computation of basis vectors are done here in more conventional 
mathematical form, in the same spirit of D'haeseleer et  al.  (1991). The conventional covariant–contravariant 
formalism can be seen more in recent works (e.g., Rankin et al., 2006). In contrast, the so-called scaled basis 
vectors are used in Richmond (1995), involving several scaling factors. This approach appears to be cumbersome, 
without obvious computational advantage. The desire for using the conventional covariant-contravariant formal-
ism is also expressed in the review paper by Laundal & Richmond (2017, p. 44–45).

Remark 3. Alternative numerical algorithms for grid generation are also introduced, see Appendix  C. The 
high-order ODE solver is used for more accurate and efficient solutions of magnetic field line equations, see 
Appendix B.

3.  Basis Vectors and Metric Terms
Two sets of basis vectors can be defined for a general curvilinear coordinate system. The contravariant-basis 
vectors are defined as the gradient of the coordinate variables, while the covariant-basis vectors are tangent to the 
coordinate curves. The two sets of basis vectors are reciprocal sets of vectors: One can derive one set of the basis 
vectors once the other set is known or vice versa (D'haeseleer et al., 1991, Chapter 2).

3.1.  Basis Vectors and Metric Terms for a Dipole Field

For a dipole field, the metric terms can be derived analytically. The contravariant-basis vectors are the gradient of 
the coordinate variables (μ, χ, ϕ), which can be written in terms of the spherical coordinates as.

𝐞𝐞
𝜇𝜇
≡ ∇𝜇𝜇 =

2cos𝜃𝜃

𝑟𝑟3
𝒓̂𝒓 +

sin𝜃𝜃

𝑟𝑟3
𝜽̂𝜽,� (6a)

�� ≡ ∇� = −sin2�
�2

�̂ + 2sin� cos�
�2

�̂,� (6b)

𝐞𝐞
𝜙𝜙
≡ ∇𝜙𝜙 =

1

𝑟𝑟sin𝜃𝜃
𝝓̂𝝓,� (6c)

where 𝐴𝐴
(

𝒓̂𝒓, 𝜽̂𝜽, 𝝓̂𝝓
)

 are unit vectors of the spherical polar coordinates (r, θ, ϕ). The covariant-basis vectors, as the 
reciprocal of the contravariant-basis vectors, can be computed from the contravariant-basis vectors as follows:

𝐞𝐞𝜇𝜇 =
𝐞𝐞
𝜒𝜒
× 𝐞𝐞

𝜙𝜙

𝐞𝐞𝜇𝜇 ⋅ (𝐞𝐞𝜒𝜒 × 𝐞𝐞𝜙𝜙)
=

2𝑟𝑟3cos𝜃𝜃

Θ2
𝒓̂𝒓 +

𝑟𝑟3sin𝜃𝜃

Θ2
𝜽̂𝜽,� (7a)

𝐞𝐞𝜒𝜒 =
𝐞𝐞
𝜙𝜙
× 𝐞𝐞

𝜇𝜇

𝐞𝐞𝜒𝜒 ⋅ (𝐞𝐞𝜙𝜙 × 𝐞𝐞𝜇𝜇)
= −

𝑟𝑟2

Θ2
𝒓̂𝒓 +

2𝑟𝑟2

Θ2tan𝜃𝜃
𝜽̂𝜽,� (7b)

𝐞𝐞𝜙𝜙 =
𝐞𝐞
𝜇𝜇
× 𝐞𝐞

𝜒𝜒

𝐞𝐞𝜙𝜙 ⋅ (𝐞𝐞𝜇𝜇 × 𝐞𝐞𝜒𝜒 )
= 𝑟𝑟 sin𝜃𝜃𝝓̂𝝓,� (7c)

where Θ is defined as

Θ =

√

1 + 3cos2𝜃𝜃𝜃� (8)

The scale factors can be computed as
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ℎ𝜇𝜇 = |𝐞𝐞𝜇𝜇| = 1∕|∇𝜇𝜇| = 𝑟𝑟3∕Θ,� (9a)

ℎ𝜒𝜒 = |𝐞𝐞𝜒𝜒 | = 1∕|∇𝜒𝜒| = 𝑟𝑟2∕(Θsin𝜃𝜃),� (9b)

ℎ𝜙𝜙 = |𝐞𝐞𝜙𝜙| = 1∕|∇𝜙𝜙| = 𝑟𝑟sin𝜃𝜃𝜃� (9c)

And, in terms of the scale factors, the differential arc length ds is given by

��2 = ��2� + ��2� + ��2� = (ℎ���)2 +
(

ℎ���
)2 + (ℎ���)2.� (10)

For a dipole magnetic field, an analytical expression for the arc length can be obtained, see Eq. (B6). We will 
compare the arc length computed using Eqs. (B6), (10), and (18) of the general coordinates in the case of a dipole 
field; see Section 4.1, especially Table 2.

3.2.  Basis Vectors and Metric Terms for a General Magnetic Field

For the general magnetic field, the basis vectors and metric terms can only be computed numerically. We first 
compute contravariant-basis vectors as the gradient of the coordinate variables (e.g., D'haeseleer et al., 1991):

𝐞𝐞
𝑖𝑖
≡ ∇𝑢𝑢𝑖𝑖.� (11)

Then, the covariant-basis vectors can be computed from the contravariant-basis vectors as follows:

𝐞𝐞𝑖𝑖 =
𝐞𝐞
𝑗𝑗
× 𝐞𝐞

𝑘𝑘

𝐞𝐞𝑖𝑖 ⋅ (𝐞𝐞𝑗𝑗 × 𝐞𝐞𝑘𝑘)
,� (12)

where i, j and k are chosen such that (i, j, k) forms a cyclic permutation of (1, 2, 3). We will use the correspond-
ence notation (1, 2, 3) ⇔ (μm, χm, ϕm).

The computation of 𝐴𝐴 𝐞𝐞
𝜒𝜒𝑚𝑚 and 𝐴𝐴 𝐞𝐞

𝜙𝜙𝑚𝑚 are performed in the spherical coordinate system as follows:

𝐞𝐞
𝜒𝜒𝑚𝑚 ≡ ∇𝜒𝜒𝑚𝑚 =

𝜕𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕
𝒓̂𝒓 +

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕
𝜽̂𝜽 +

1

𝑟𝑟sin𝜃𝜃

𝜕𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕
𝝓̂𝝓,� (13)

𝐞𝐞
𝜙𝜙𝑚𝑚 ≡ ∇𝜙𝜙𝑚𝑚 =

𝜕𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕
𝒓̂𝒓 +

1

𝑟𝑟

𝜕𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕
𝜽̂𝜽 +

1

𝑟𝑟sin𝜃𝜃

𝜕𝜕𝜕𝜕𝑚𝑚

𝜕𝜕𝜕𝜕
𝝓̂𝝓,� (14)

where the partial derivatives are evaluated using the second-order central difference scheme. Note that the evalua-
tion of the partial derivatives involves tracing along the field line to the apex in order to determine the coordinate 
values (defined in reference to the apex!) of the neighboring field lines. And that is why an accurate and efficient 
high-order ODE solver is needed for field line tracing, see Appendix B on solution of field line equations. But the 
computation of 𝐴𝐴 𝐞𝐞

𝜇𝜇𝑚𝑚 is done as follows:

𝐞𝐞
𝜇𝜇𝑚𝑚 ≡ ∇𝜇𝜇𝑚𝑚 = ∇Φ̂ = ∇Φ∕𝑔𝑔𝑚𝑚 = −𝐁𝐁∕𝑔𝑔𝑚𝑚,� (15)

where 𝐴𝐴 𝐁𝐁 = 𝐵𝐵𝑟𝑟𝒓̂𝒓 + 𝐵𝐵𝜃𝜃𝜽̂𝜽 + 𝐵𝐵𝜙𝜙𝝓̂𝝓 is computed using the analytical expressions of Eqs. (A4).

Two important metric coefficients gij and g ij are defined as

𝑔𝑔𝑖𝑖𝑖𝑖 = 𝐞𝐞𝑖𝑖 ⋅ 𝐞𝐞𝑗𝑗 , 𝑔𝑔𝑖𝑖𝑖𝑖
= 𝐞𝐞

𝑖𝑖
⋅ 𝐞𝐞

𝑗𝑗 .� (16)

The off-diagonal metric coefficients are all zero for an orthogonal but not necessarily orthonormal coordinate 
system. The scale factors are defined as hi = |ei|. Thus

𝑔𝑔𝑖𝑖𝑖𝑖 = ℎ2

𝑖𝑖 or ℎ𝑖𝑖 =

√

𝑔𝑔𝑖𝑖𝑖𝑖,� (17)

and so hi's are also called metric coefficients; no summation rule is implied here. Although the hi's are usually 
used for orthogonal coordinate systems, the above definition is valid for any coordinate system (D'haeseleer 
et al., 1991). The arc length can then be computed the same as in the dipole case:
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��2 = ��2�� + ��2�� + ��2�� = (ℎ1���)2 + (ℎ2���)2 + (ℎ3���)2,� (18)

where 𝐴𝐴 𝐴1 = ℎ𝜇𝜇𝑚𝑚 , ℎ2 = ℎ𝜒𝜒𝑚𝑚 , ℎ3 = ℎ𝜙𝜙𝑚𝑚 , using the correspondence notation (1, 2, 3) ⇔ (μm, χm, ϕm).

4.  Grid Generation and Computational Results
Grid generation is an important step in ionosphere-plasmasphere model development. It is usually non-trivial, 
especially for the general magnetic field-line-following coordinates. The procedures of grid generation are briefly 
described in Appendix C. In this section we evaluate the accuracy of numerical implementation of the algorithms 
for various coordinate variables and metric terms. In the following presentation, the IGRF-13 coefficients of 
epoch 2000 are used for the magnetic field, and double precision is used in all numerical computations.

4.1.  Evaluation in the Case of a Dipole Field

Because of the way we define the general coordinate system, we find that the 
validation of the implementation and the assessment of numerical algorithms 
can be conveniently performed in the case of a dipole field. This is done as 
follows:

1.	 �For dipole coordinates, grid generation is done as described in Appen-
dix C1. The basis vectors and metric terms are computed using analytical 
expressions given in Section 3.1

2.	 �For general coordinates, grid generation is done as described in Appen-
dix  C2. Note in choosing/specializing the axial-centered dipole field 
from the IGRF model, instead of using all the terms as in Eq. (A1), only 
one term, the 𝐴𝐴 𝐴𝐴0

1
 term, is used as in Eq. (A2). The basis vectors and metric 

terms are then computed as described in Section 3.2

Figure 1.  The relative errors of numerically computed spherical coordinate variables (r, λ), magnetic flux density (B), and 
scale factors (h1, h2, h3) with respect to those computed using analytical expressions in the case of a dipole field line.

𝐴𝐴 𝐴𝐴 Min Max

R −8.9068 × 10 −8 3.67 × 10 −9

Λ −1.8329 × 10 −7 4.93 × 10 −12

B −2.0742 × 10 −8 2.32 × 10 −7

h1 −2.3177 × 10 −7 2.08 × 10 −8

h2 −3.6691 × 10 −5 2.87 × 10 −5

h3 −7.3187 × 10 −8 1.70 × 10 −8

Table 1 
The Minima and Maxima of the Relative Errors 𝐴𝐴 𝐴𝐴 of Spherical Coordinate 
Variables (r, λ), Magnetic Flux Density (B), and Metric Coefficients (h1, h2, 
h3) for a Dipole Field Line
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We compare different ways of computing the spherical coordinate variables (radial distance r and latitude 
λ = π/2 − θ), magnetic flux density B, and scale factors h1, h2 and h3, for grid points along a dipole field line. We 
choose the field line crossing the earth's surface at colatitude θ = 45° at longitude ϕ = 0°. The field line is divided 
equally into 101 points in μ, which will be denoted by K101. When computing the gradients in Eq. (15), we use 
the central finite differences (±δr, ±δθ, ±δϕ), with step sizes δr = 20 km, δθ = 0.25°, and δϕ = 0.25°. In the ODE 
solver for field line equations, the step size is 5 km and error tolerance is 1.00 × 10 −12.

We compute the relative errors of numerically computed values based on the procedure (2) above, relative to their 
corresponding values based on procedure (1) in the case of axial symmetric dipole field. The relative error 𝐴𝐴 𝑥𝑥 of 
a variable x is defined as

𝑥𝑥 = (𝑥𝑥 − 𝑥𝑥0) ∕𝑥𝑥0,� (19)

where x0 is the expected value of the variable x. Figure 1 shows the results. They are plotted as the function of 
the arc length/distance along the field line. First, we notice that these errors are all very small; see also Table 1, 
which lists the minimum and maximum of these relative errors. Another noticeable feature is that these errors are 
symmetric about the apex point. This symmetry in the case of the dipole field is a good indicator of the consist-
ency and accuracy of the numerical implementation of the algorithms.

We also calculate the relative errors of different ways of computing the arc length for the field line. We call the 
arc length calculated using the scale factors from Eqs. (10) and (18) the discretized arc length, denoted by sdc 
and sgc, for dipole coordinates and general coordinates, respectively; while the arc length calculated using the 
analytical expression Eq. (B6) the continuous arc length, denoted by ℓ. Table 2 shows the computed arc lengths 
[km] of a dipole field line, and their relative errors: w.r.t. sdc 𝐴𝐴

(

𝜀𝜀𝑔𝑔𝑔𝑔∕𝑑𝑑𝑑𝑑
)

 or w.r.t. ℓ (𝐴𝐴 𝐴𝐴𝑔𝑔𝑔𝑔∕𝓁𝓁 and 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑∕𝓁𝓁 ). Three different 
resolutions are shown with K51, K101 and K201 denoting different number of points along the field line. As 
noted in Appendix C, we use only points above the spherical Earth's surface that satisfy r⩾a + 90 km; so the arc 
lengths are different for different resolutions as their end points are not all the same. Again these errors are very 
small, indicating the high accuracy of the numerical scheme and robustness of the numerical implementation. We 
also notice the reduction of relative errors w.r.t. ℓ (𝐴𝐴 𝐴𝐴𝑔𝑔𝑔𝑔∕𝓁𝓁 and 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑∕𝓁𝓁 ) as the resolution increases.

4.2.  Into the General Magnetic Field

For the general magnetic field, two-dimensional grids are generated from the 
IGRF magnetic field using the grid generation procedure of Appendix C2. 
The outermost and innermost field lines cross the earth's surface at colati-
tudes θm = 45° and θm = 82°, respectively. They are divided equally into 45 
points in χm. The resolution along the field lines are determined by dividing 
the the outermost field line equally into 101 points in μm, or K101. Other 
settings are the same as in the preceding section. Results in four different 
longitudinal sectors will be presented.

We first check the orthogonality of the coordinates. For this we compute the 
angles between the contravariant basis vectors. The angles between the three 
contravariant basis vectors e i and e j, denoted by αij, can be computed from 
their dot product

K sgc sdc ℓ 𝐴𝐴 𝐴𝐴𝑔𝑔𝑔𝑔∕𝑑𝑑𝑑𝑑 𝐴𝐴 𝐴𝐴𝑔𝑔𝑔𝑔∕𝓁𝓁 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑∕𝓁𝓁

K51 21,353.9305 21,353.931 6 21,355.1369 −4.7904 × 10 −8 −5.6493 × 10 −5 −5.6445 x 10 −5

K101 21,480.239 1 21,480.240 3 21,480.5278 −5.4434 × 10 −8 −1.3438 × 10 −5 −1.3383 10 −5

K201 21,541.847 2 21,541.848 9 21,541.9191 −7.8555 × 10 −8 −3.3380 × 10 −6 −3.2595 10 −6

Note. The K number denotes different number of points along the field line.

Table 2 
The Discretized and Continuous Arc Lengths of a Dipole Field Line (sgc, sdc, ℓ) in km and Their Relative Errors 

𝐴𝐴
(

𝜀𝜀𝑔𝑔𝑔𝑔∕𝑑𝑑𝑑𝑑 , 𝜀𝜀𝑔𝑔𝑔𝑔∕𝓁𝓁 , 𝜀𝜀𝑑𝑑𝑑𝑑∕𝓁𝓁
)

ϕm β12 β13 β23

0° −5.8173 × 10 −3 −1.5645 × 10 −4 −5.8443

4.74 × 10 −3 5.59 × 10 −4 11.0156

90° −4.4363 × 10 −3 −1.3374 × 10 −4 −9.5587

5.25 × 10 −3 3.83 × 10 −4 0.6749

180° −3.9086 × 10 −3 −2.6662 × 10 −4 0.0034

4.27 × 10 −3 1.75 × 10 −4 3.6654

270° −3.7511 × 10 −3 −5.2605 × 10 −4 −5.0107

4.07 × 10 −3 5.72 × 10 −4 6.4699

Table 3 
The Minima and Maxima of the Departures From 90° of the Angles Between 
the Three Contravariant Basis Vectors in Four Longitudinal Sectors
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𝐞𝐞
𝑖𝑖
⋅ 𝐞𝐞

𝑗𝑗
= |𝐞𝐞

𝑖𝑖
||𝐞𝐞

𝑗𝑗
|cos (𝛼𝛼𝑖𝑖𝑖𝑖) .� (20)

The departures from 90° of the angles between the basis vectors

𝛽𝛽𝑖𝑖𝑖𝑖 ≡ 𝛼𝛼𝑖𝑖𝑖𝑖 − 90
◦,� (21)

Figure 2.  The departures from 90° of the angles between the basis vectors: β12 (the 1st column), β13 (the 2nd column), and β23 (the 3rd column). The four rows are for 
four longitudinal sectors ϕm = 0°, 90°, 180°, and 270°, respectively.
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are shown in Figure 2 for four different longitudinal sectors at ϕm = 0°, 90°, 180°, and 270°, respectively. Their 
minima and maxima are listed in Table 3. They show that both β12 and β13 are very small. Thus, the two basis 
vectors e 2 and e 3, though not orthogonal to each other (β23 not small), they are both perpendicular to e 1, that is, 
the magnetic field. Here again we use the correspondence notation (1, 2, 3) ⇔ (μm, χm, ϕm).

Since both e 2 and e 3 are perpendicular to e 1, their cross product e 2 × e 3 would be parallel to e 1, hence also the 
magnetic field B. Thus, we can write the magnetic field in the following way:

𝐁𝐁 ≡ −𝑔𝑔𝑚𝑚∇𝜇𝜇𝑚𝑚 = −𝑐𝑐∇𝜒𝜒𝑚𝑚 × ∇𝜙𝜙𝑚𝑚,� (22)

Figure 3 presents the ratio γ = c/gm, and a few selected field lines, in four different longitudinal sectors. It shows 
that the ratio follows the field lines, that is, it is constant along each field line. Thus, the constant c depends 
only on the field line, and is fixed for each field line. Therefore, χm and ϕm in the general coordinates, as the 

Figure 3.  The ratio γ = c/gm in four different longitudinal sectors: (a) ϕm = 0° with γmin = 0.9528, γmax = 1.0820, (b) ϕm = 90° with γmin = 1.1294, γmax = 1.3653, (c) 
ϕm = 180° with γmin = 1.1054, γmax = 1.1624, and (d) ϕm = 270° with γmin = 0.9411, γmax = 0.9545. The color curves are a few selected field lines, illustrating how the 
contours of ratio γ follow the field lines.



Journal of Geophysical Research: Space Physics

WANG

10.1029/2021JA030017

9 of 14

corresponding χ and ϕ in the dipole coordinates, are also Euler potentials. For a dipole field, the ratio γ = c/gm 
would be a constant 1 everywhere.

The Euler potential, as a potential function, is not uniquely defined. Several different ways to define and construct 
the Euler potentials have been proposed and used, for example, Stern  (1967,  1976,  1994); Ho et  al.  (1997); 
Peymirat and Fontaine (1999); Wolf et al. (2006); Rankin et al. (2006). Sometimes the computational procedures 
can get quite complicated. So depending on the application, the simple approach proposed here may be preferable.

5.  Summary
A general curvilinear coordinate system is proposed for ionosphere-plasmasphere modeling. This magnetic 
field-line-following curvilinear coordinate system reduces to a dipole coordinate system when the magnetic field 
is a pure dipole.

A high-order ordinary differential equation (ODE) solver is used to solve the magnetic field line equations for 
the general magnetic field of the IGRF model. The numerical accuracy and consistency of the implementation is 
validated against the analytical results in the case of a dipole magnetic field. The symmetry of the dipole field can 
also be used to check the consistency and accuracy of implementation: Any loss of symmetry may indicate loss 
of accuracy or lack of consistency in the implementation of numerical algorithms.

The general coordinate system is also the Euler potential or Clebsch-type coordinate system. There are infinite 
choices of Euler potentials for coordinate variables, and it can become complicated sometimes. So depending on 
the applications, the simple approach used here may be preferred in some cases.

The general curvilinear magnetic field-line-following coordinate system proposed here is developed and imple-
mented while developing a new ionosphere-plasmasphere model. It is also an attempt to put the field-line-follow-
ing coordinate system on a more rigorous or conventional mathematical framework. Applications of the general 
coordinates will be presented in a separate paper on ionosphere-plasmasphere modeling (Wang, 2022).

Appendix A:  The IGRF Magnetic Field
The Earth's main magnetic field can be best described by the IGRF magnetic field (Thébault et al., 2015; Alken 
et al., 2021). The magnetic potential Φ of IGRF is approximated by the truncated series, written in the geocentric 
spherical coordinates (r, θ, ϕ), as follows:

Φ(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = 𝑎𝑎

𝑁𝑁
∑

𝑛𝑛=1

𝑛𝑛
∑

𝑚𝑚=0

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+1

[𝑔𝑔𝑚𝑚
𝑛𝑛 (𝑡𝑡)cos(𝑚𝑚𝑚𝑚) + ℎ𝑚𝑚

𝑛𝑛 (𝑡𝑡)sin(𝑚𝑚𝑚𝑚)]𝑃𝑃
𝑚𝑚
𝑛𝑛 (cos𝜃𝜃),� (A1)

where r is the radial distance from the center of the Earth, a = 6,371.2 km is the geomagnetic conventional Earth's 
mean reference spherical radius, θ is the geocentric colatitude, and ϕ the east longitude. The functions 𝐴𝐴 𝐴𝐴𝑚𝑚

𝑛𝑛 (cos𝜃𝜃) 
are the Schmidt quasi-normalized associated Legendre functions of degree n and order m. The order of approx-
imation is truncated to N = 10 for epochs up to 1,995 and N = 13 from epoch 2000. In numerical computation 
of this study, the Schmidt quasi-normalized associated Legendre functions are evaluated using the SHTOOLS 
(Wieczorek & Meschede, 2018).

The lowest-order approximation, by setting n = 1 and m = 0 in the truncated series of Eq.  (A1), defines an 
axial-centered dipole field (e.g., Bailey et al., 1993):

Φ(𝑟𝑟𝑟 𝑟𝑟) = 𝑎𝑎

(

𝑎𝑎

𝑟𝑟

)2

𝑔𝑔0

1
cos𝜃𝜃 ≡ 𝑔𝑔𝑚𝑚

(

𝑎𝑎

𝑟𝑟

)2

cos𝜃𝜃𝜃� (A2)

where we have defined

𝑔𝑔𝑚𝑚 ≡ 𝑎𝑎𝑎𝑎0

1
� (A3)

and may simply be called the dipole moment.
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The three components of the magnetic field B = −∇Φ in the spherical coordinates are computed by.

𝐵𝐵𝑟𝑟 =

𝑁𝑁
∑

𝑛𝑛=1

(𝑛𝑛 + 1)

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+2
𝑛𝑛
∑

𝑚𝑚=0

[𝑔𝑔𝑚𝑚
𝑛𝑛 cos(𝑚𝑚𝑚𝑚) + ℎ𝑚𝑚

𝑛𝑛 sin(𝑚𝑚𝑚𝑚)]𝑃𝑃
𝑚𝑚
𝑛𝑛 (cos𝜃𝜃),� (A4a)

𝐵𝐵𝜃𝜃 = sin𝜃𝜃

𝑁𝑁
∑

𝑛𝑛=1

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+2
𝑛𝑛
∑

𝑚𝑚=0

[𝑔𝑔𝑚𝑚
𝑛𝑛 cos(𝑚𝑚𝑚𝑚) + ℎ𝑚𝑚

𝑛𝑛 sin(𝑚𝑚𝑚𝑚)]
𝜕𝜕𝜕𝜕 𝑚𝑚

𝑛𝑛 (𝑥𝑥)

𝜕𝜕𝜕𝜕
,� (A4b)

𝐵𝐵𝜙𝜙 =
1

sin𝜃𝜃

𝑁𝑁
∑

𝑛𝑛=1

(

𝑎𝑎

𝑟𝑟

)𝑛𝑛+2
𝑛𝑛
∑

𝑚𝑚=0

𝑚𝑚 [𝑔𝑔𝑚𝑚
𝑛𝑛 sin(𝑚𝑚𝑚𝑚) − ℎ𝑚𝑚

𝑛𝑛 cos(𝑚𝑚𝑚𝑚)]𝑃𝑃
𝑚𝑚
𝑛𝑛 (cos𝜃𝜃),� (A4c)

where we have used

𝜕𝜕𝜕𝜕 𝑚𝑚
𝑛𝑛 (cos𝜃𝜃)

𝜕𝜕𝜕𝜕
= −sin𝜃𝜃

𝜕𝜕𝜕𝜕 𝑚𝑚
𝑛𝑛 (𝑥𝑥)

𝜕𝜕𝜕𝜕
� (A5)

by chain rule with x = cos θ.

Appendix B:  Numerical Solution of the Differential Equations for the Magnetic Field 
Line
B1.  The Differential Equations for the Dipole Magnetic Field Line

The differential equations for a dipole field line can be written in the spherical coordinates as

𝑑𝑑𝑑𝑑

𝑟𝑟𝑟𝑟𝑟𝑟
=

𝐵𝐵𝑟𝑟

𝐵𝐵𝜃𝜃

=
2cos𝜃𝜃

sin𝜃𝜃
.� (B1)

An analytical expression for the arc length of a dipole field line can be obtained, see for example, (Walt, 1994, pp. 
30–31). Integrating the field line equation (B1) gives

𝑟𝑟 = 𝑟𝑟𝐴𝐴sin
2
𝜃𝜃𝜃� (B2)

where rA is the value of r at apex θ = π/2. The arc distance element dℓ along a field line

𝑑𝑑𝓁𝓁 =

√

(𝑑𝑑𝑑𝑑)
2
+ (𝑟𝑟𝑟𝑟𝑟𝑟)

2
,� (B3)

can be integrated analytically as follows. Differentiating r = rA  sin 2θ gives

𝑑𝑑𝑑𝑑 = 2𝑟𝑟𝐴𝐴sin 𝜃𝜃 cos 𝜃𝜃 𝜃𝜃𝜃𝜃𝜃� (B4)

Thus,

𝑑𝑑𝓁𝓁 =

√

4𝑟𝑟2
𝐴𝐴
sin

2
𝜃𝜃 cos2 𝜃𝜃 + 𝑟𝑟2

𝐴𝐴
sin

4
𝜃𝜃 𝜃𝜃𝜃𝜃

= 𝑟𝑟𝐴𝐴
√

1 + 3cos2𝜃𝜃sin𝜃𝜃𝜃𝜃𝜃𝜃𝜃

� (B5)

Let x = cos θ, integrating from x = cos θ to the equator x = cos (π/2) = 0, we get an analytical expression for the 
arc length of a dipole field line as follows:

𝓁𝓁 =
𝑟𝑟𝐴𝐴

2

[

𝑥𝑥
√

1 + 3𝑥𝑥2 +
1
√

3

ln

(
√

1 + 3𝑥𝑥2 +

√

3𝑥𝑥

)

]

.� (B6)

Note that we use ℓ here to distinguish it from the arc length s calculated from the discretized form Eq. (10).
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B2.  The Differential Equations for the General Magnetic Field Line

For a general magnetic field such as IGRF, the differential equations for a field line can be written as

𝛿𝛿𝛿𝛿

𝐵𝐵
=

𝛿𝛿𝛿𝛿

𝐵𝐵𝑟𝑟

=
𝑟𝑟𝑟𝑟𝑟𝑟

𝐵𝐵𝜃𝜃

=
𝑟𝑟sin 𝜃𝜃𝜃𝜃 𝜃𝜃

𝐵𝐵𝜙𝜙

,� (B7)

which can be solved for field line (tracing) as follows.

𝑟𝑟𝑛𝑛+1 = 𝑟𝑟𝑛𝑛 + 𝜏𝜏

(

𝐵𝐵𝑟𝑟

𝐵𝐵

)𝑛𝑛

(𝛿𝛿𝛿𝛿)
𝑛𝑛
,� (B8a)

𝜃𝜃𝑛𝑛+1 = 𝜃𝜃𝑛𝑛 + 𝜏𝜏
1

𝑟𝑟𝑛𝑛

(

𝐵𝐵𝜃𝜃

𝐵𝐵

)𝑛𝑛

(𝛿𝛿𝛿𝛿)
𝑛𝑛
,� (B8b)

𝜙𝜙𝑛𝑛+1
= 𝜙𝜙𝑛𝑛

+ 𝜏𝜏
1

𝑟𝑟𝑛𝑛sin𝜃𝜃𝑛𝑛

(

𝐵𝐵𝜙𝜙

𝐵𝐵

)𝑛𝑛

(𝛿𝛿𝛿𝛿)
𝑛𝑛
,� (B8c)

where superscripts n and n + 1 are position indices; 𝐴𝐴 𝐴𝐴𝐴 = 𝒔̂𝒔 ⋅ 𝒃̂𝒃 = ±1 , with + (or −) sign depending on whether 𝐴𝐴 𝒔̂𝒔 
moving/tracing in the same (or opposite) direction of 𝐴𝐴 𝒃̂𝒃 (the unit vector of the magnetic field B).

B3.  Numerical Solution of the General Magnetic Field Line Equations

In many applications, such as grid generation described in Appendix C2, accurate and efficient high-order ODE 
solvers are needed to solve the magnetic field line tracing equations (B8) numerically. In this study, we use the 
higher-order embedded method, the Runge-Kutta-Fehlberg (RKF45) method. RKF45 is a method of order O(h 4) 
with an error estimator of order O(h 5), which automatically determines the step-size to achieve the pre-defined 
accuracy. The RKF45 solver implemented in package rksuite_90 (Brankin & Gladwell, 1997) is used in this 
study. Highly accurate results are obtained, as shown in Section 4.1 on comparing the numerically computed and 
the analytically derived results in the case of the dipole field.

Due to singularity at the geographic poles, the values of the magnetic potential and its derivatives at the poles, if 
needed, are evaluated slightly away from the poles, that is, 5.00 × 10 −4 degrees away from the poles. Numerical 
experiments show that the field line tracing program works near the poles. As an illustration, we use the same 
grid generation program to trace the IGRF field lines down to the r = a surface. Figure B1 shows the footpoints 
of the field lines on the surface. However, it should be noted that at higher latitudes (e.g., higher than 85° lati-
tudes), field line tracing can become expensive due to long field lines. Alternative computational strategy, for 
example, interpolation instead of repeated field line tracing, can be used near the magnetic poles. In addition, 

Figure B1.  The footpoints of the IGRF field lines on the r = a surface, using 25 longitudinal points and 15 latitudinal points 
between magnetic colatitudes 5° and 85°.



Journal of Geophysical Research: Space Physics

WANG

10.1029/2021JA030017

12 of 14

for modeling studies at higher latitudes and higher altitudes, it is also advisable to modify the μm coordinate to 
increase the resolution near the apex. This can be done by a pair of transformations, similar to the dipole coordi-
nate (Kageyama et al., 2006), as follows:

𝜓𝜓𝑚𝑚 = sinh
−1
(𝑏𝑏𝑏𝑏)∕𝑏̄𝑏𝑏� (B9a)

𝜇𝜇𝑚𝑚 = sinh
(

𝑏̄𝑏𝑏𝑏
)

∕𝑏𝑏𝑏� (B9b)

where b is parameter controlling the grid distribution along field lines, increasing b leads to the increased reso-
lution near the apex; and 𝐴𝐴 𝑏̄𝑏 = sinh

−1
𝑏𝑏 .

Appendix C:  Grid Generation for Ionosphere-Plasmasphere Modeling
C1.  Grid Generation for Dipole Coordinates

For the dipole coordinates, a uniform grid in (μ, χ, ϕ) with constant (dμ, dχ, dϕ) can be generated as follows:

1.	 �Choose two magnetic colatitudes θ1 and θ2, where the outermost and innermost field lines intersect with the 
earth's surface, and a longitude ϕ

2.	 �From the constancy of χ = sin 2θ/r along each field line, find the corresponding radial distances at the magnetic 
equator, that is, at apex where θ = π/2. These are given by rA1 = 1/sin 2 θ1 and rA2 = 1/sin 2 θ2. Grid increment 
dχ is determined by dividing χ1 = 1/rA1 and χ2 = 1/rA2 into a predefined number of field lines in the meridional 
plane (ϕ = const.)

3.	 �Grid distribution along the field lines: Grid increment dμ is determined by dividing the outermost field line 
equally in μ into K points between the two foot points on the earth's surface, that is, dμ = (μA − μ1)/((K − 1)/2), 
where K is an odd number, μA = 0 is the potential at the apex, and μ1 = −cos (θ1) is the potential at the foot 
point on the earth's surface in the northern hemisphere. Grids along the inner field lines are generated using 
the same grid increment dμ, starting from the apex of each field line. The foot points for each field line are 
chosen to be the lowest points above the spherical Earth's surface that satisfy for example, r ⩾ a + 90 km

4.	 �Compute magnetic flux density, basis vectors, metric terms, scale factors, and the arc length etc

Analytical expressions of the inverse transformation from the dipole coordinates (μ, χ, ϕ) to the spherical coor-
dinates (r, θ, ϕ) are given by Kageyama et  al.  (2006). These are used in the grid generation for the dipole 
coordinates.

Note that for the axial-centered dipole coordinates, the geographic/geocentric and magnetic colatitudes are the 
same, that is, θm = θ. So we do not differentiate between the two in the dipole coordinates.

C2.  Grid Generation for General Coordinates

As in defining the general coordinates, which becomes a usual definition of dipole coordinates the field becomes 
a dipole, grid generation for the general coordinates can be done in a similar way as that for the dipole coordinates.

For the general coordinates, a uniform grid in (μm, χm, ϕm) with constant (dμm, dχm, dϕm) can be generated as 
follows:

1.	 �Choose two magnetic colatitudes θm1 and θm2, where the outermost and innermost field lines intersect with the 
earth's surface, and a longitude ϕm = ϕA, where ϕA is the geographic longitude at apex

2.	 �From the constancy of χm = sin 2 θm/r along each field line, find the corresponding radial distances at the 
magnetic equator, that is, at apex where θm = π/2. These are given by rA1 = 1/sin 2 θm1 and rA2 = 1/sin 2 θm2. Grid 
increment dχm is determined by dividing χm1 = 1/rA1 and χm2 = 1/rA2 into a predefined number of field lines in 
the meridional plane (ϕm = ϕA = const.)

3.	 �Grid distribution along the field lines
a.	 �Find the geographic/geocentric colatitude at apex: Given the geographic coordinates at apex (rA, ϕA) and 

a first-guess of 𝐴𝐴 𝐴𝐴′
𝐴𝐴
= 𝜋𝜋∕2 , find θA (the geocentric colatitude at apex) using the Newton-Raphson method; 

and compute the magnetic potential ΦA at apex. The apex is defined by Br = 0, thus a turning point.
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b.	 �Tracing down from apex to locate where the field line cross the Earth's surface on both hemispheres, (rN, 
θN, ϕN) and (rS, θS, ϕS), and compute the magnetic potentials on both hemispheres, ΦN and ΦS, on the 
Earth's surface.

c.	� Grid increment dμm along the field lines is determined by dividing the outermost field line equally in 
μm into K points between the two foot points on the earth's surface, that is, dμm = (ΦS − ΦN)/gm/(K − 1), 
where gm is the normalization constant used in the definition of μm. Grids along the inner field lines are 
generated using the same grid increment dμm, starting from the apex of each field line. The foot points 
for each field line are chosen to be the lowest points above the spherical Earth's surface that satisfy for 
example, r⩾ a + 90 km.

4.	 �Compute magnetic flux density, basis vectors, metric terms, scale factors, and the arc length etc

C3.  Computation of the Tilted-Centered Dipole Longitude at Apex

Given the geographic/geocentric colatitude and longitude at apex, (θA, ϕA), the tilted-centered dipole (TD) longi-
tude at apex can be calculated as follows. The TD are specified by the first three coefficients 𝐴𝐴 𝐴𝐴0

1
, 𝑔𝑔1

1
, ℎ1

1
 of the IGRF 

model. The geographic colatitude and longitude of the north magnetic pole, (θN, ϕN), are calculated from (Bailey 
et al., 1993; Fraser-Smith, 1987).

cos𝜃𝜃𝑁𝑁 = −𝑔𝑔0

1
∕𝐵𝐵0,� (C1a)

tan𝜙𝜙𝑁𝑁 = ℎ1

1
∕𝑔𝑔1

1
,� (C1b)

where 𝐴𝐴 𝐴𝐴2

0
=

(

𝑔𝑔0

1

)2

+

(

𝑔𝑔1

1

)2

+

(

ℎ1

1

)2 is a reference magnetic field.

The TD colatitude (ϑ) is measured from the north TD pole and the TD longitude (φ) is measured eastward from 
the meridian half-plane bounded by the dipole axis and containing the south geographic pole. The TD colat-
itude and longitude at apex, (ϑA, φA), are computed from (Bailey et al., 1993; Fraser-Smith, 1987; VanZandt 
et al., 1972).

𝜗𝜗𝐴𝐴 = cos
−1
[cos𝜃𝜃𝑁𝑁cos𝜃𝜃𝐴𝐴 + sin𝜃𝜃𝑁𝑁sin𝜃𝜃𝐴𝐴cos (𝜙𝜙𝐴𝐴 − 𝜙𝜙𝑁𝑁 )] ,� (C2a)

𝜑𝜑𝐴𝐴 = sin
−1
[

sin𝜃𝜃𝐴𝐴sin (𝜙𝜙𝐴𝐴 − 𝜙𝜙𝑁𝑁 ) ∕sin𝜗𝜗𝐴𝐴

]

.� (C2b)

We notice that there is a one-to-one correspondence between (θA, ϕA) and (ϑA, φA). Numerical experiments show 
that if φA is used as one coordinate variable in place of ϕA, the nice properties of the angles between basis vectors 
and the ratio γ for Euler potentials are still maintained. This is understandable as it is just a different way of 
labeling the field line. But caution should be exercised when interpolating model results or coupling with other 
models that use the geomagnetic-dipole longitude as the longitude coordinate. And the geographic/geocentric 
spherical coordinates are the bases of all other coordinate systems.

Data Availability Statement
Data available at https://doi.org/10.5281/zenodo.5768675.
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