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Abstract
Excessive warming from climate change has increased the total wildfire burned area over the past
several decades in California. This has increased population exposure to both hazardous
concentrations of air pollutants from fires such as fine particulate matter (smoke PM2.5) and
extreme heat events. Exposure to PM2.5 and extreme heat are individually associated with negative
health impacts and recent epidemiological evidence points to synergistic effects from concurrent
exposures. This study characterizes the frequency and spatial distribution of co-occurring extreme
heat and smoke PM2.5 events in California during the record-setting wildfire season of 2020. We
measure exceedances over extreme thresholds of modeled surface-level smoke PM2.5

concentrations and heat index based on observed temperature and humidity. We estimate that,
during the studied period, extreme smoke and heat co-occurred at least once within 68% of the
state’s area (∼288 000 km2) and an average 2.5 times across all affected areas. Additionally, 16.5
million people, mostly in lower population density areas, were impacted at least once in 2020 by
such synergistic events. Our findings suggest that public health guidance and adaptation policies
should account for co-exposures, not only distinct exposures, when confronting heat and smoke
PM2.5.

1. Introduction

An increase in the frequency and severity of climate-related hazards has renewed interest in the distribution
of multi-hazard events that can produce extraordinary risks (Field et al 2012). Hazards may coincide in space
and time by random chance, shared meteorological drivers or causal interdependency (Zscheischler et al
2020). Examples include a flood after an earthquake; the co-occurrence of extreme wind and flooding during
severe storms (Nielsen et al 2015); or the increased likelihood of landslides in wildfire-damaged areas,
respectively (Mazdiyasni and AghaKouchak 2015, Moftakhari et al 2017). Whereas multi-hazard systems
have been examined theoretically, empirical characterizations of their dynamics and drivers, not least in the
wildfire pollution context, are more limited (Gill and Malamud 2014).

Wildfires contribute to increased trace gas and aerosol concentrations that are harmful to human health.
Fine particulate matter contributed by fires (‘smoke PM2.5’; particles smaller than 2.5 µms in diameter) is
particularly dangerous because it directly enters bloodstreams and alveoli, impairing cardiorespiratory
functions (Brook et al 2010, Guo et al 2018) as well as other organs such as the brain (Weuve et al 2021).
Moreover, in comparison with PM2.5 from other sources, researchers have identified distinct mutagenic and
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oxidative stresses in humans from smoke PM2.5 (Nakayama Wong et al 2011, DeFlorio-Barker et al 2019,
Aguilera et al 2021). In the western United States and California, smoke PM2.5 was found to increase
respiratory hospitalizations by as much as 7% and 3.3%, respectively, over a six-year period (Liu et al 2017,
Heaney et al 2022).

While all-source PM2.5 concentrations declined in the Eastern United States from 2006–2016, many areas
in the west experienced an increase in PM2.5 attributable to summertime wildfires that offset declines in
non-fire anthropogenic sources (O’Dell et al 2019). Wildfire smoke accounted for as much as half of the
overall PM2.5 exposure in the western United States in recent years, compared to approximately 20% on
average in the mid-2000s (Burke et al 2021). Future climate scenarios project that, by 2100, wildfire smoke
will account for more than 50% of total PM2.5 across the entire continental United States (Ford et al 2018).

Extreme heat often precedes fire ignition as high temperatures predispose vegetational fuels to ignite and
burn (Goss et al 2020). Heat presents a sizable health risk of its own; it elevates heart and respiratory rates as
well as blood viscosity and cholesterol, which may aggravate pre-existing conditions (Keatinge et al 1986,
Davies and Maconochie 2009, Sherbakov et al 2018, Cheng et al 2019, Ebi et al 2021). In California, select
heat waves have been estimated to cause as much as a 6% increase in excess deaths (Hoshiko et al 2010) and
as much as a 39% and 47% increase in the likelihood of hospitalization for dehydration and renal failure,
respectively (Schwarz et al 2020).

Rising global temperatures and more frequent extreme heat events are expected to increase wildfire size
and intensity, signaling a growing public health threat from concurrent heat-smoke exposure (Perkins et al
2012, Abatzoglou and Williams 2016, Westerling 2018). However, exposure inventories of heat-smoke
co-occurrence (HSC) that include smoke PM2.5, which would help elucidate the drivers of hospitalization
and death, are comparatively scarce. Austin et al (2020) examined exposure to HSC among outdoor
agricultural workers at the county level in Washington and found strong spatiotemporal variability in areas
exposed to high heat and high levels of PM2.5, and that these exposures occured prima during the summer
wildfire season (Austin et al 2020). More recently, researchers examined the co-occurrence of heat, ozone and
PM2.5 in the Western United States (Kalashnikov et al 2022). These two studies, however, used concentration
measurements that include all sources of PM2.5 (versus smoke-specific PM2.5) and relied on either unevenly
distributed air quality stations or a coarse 10 km resolution, respectively. These spatially coarse measures of
compound exposure constrain policymaking because they preclude investigation into the sociodemographic
correlates of exposure (Schwarz et al 2021).

In this study, we investigate the frequency, intensity and duration of individual and combined extreme
heat and smoke PM2.5 exposures in California from June through November 2020. During this time period
wildfires burned over four million acres—the largest burned area in the State’s recorded history dating back
to 1878—and coincided with the fourth hottest summer since 1895 (CalFire 2020, National Centers for
Environmental Information 2020). Our analysis is done at a 3 km spatial resolution and maps single and
compound hazard exposures at surface level across different population characteristics, including race,
ethnicity, income and health, to identify the communities most exposed to HSC. We contribute to the
literature of compound climate exposures in California by: (a) modeling smoke PM2.5 rather than total
PM2.5 to isolate fire contributions, (b) mapping compound exposures at fine spatial scale, and (c) identifying
sociodemographic correlates of exposure.

2. Materials andmethods

2.1. Smoke PM2.5 exposure
We quantify smoke pollution exposure using NOAA’s High-Resolution Rapid Refresh coupled with smoke
(HRRR-Smoke) atmospheric model. Based on the Weather Research and Forecasting model coupled to
Chemistry model, HRRR-Smoke provides surface-level smoke PM2.5 estimates across the United States in
near real-time. Fire emissions estimates are based on satellite observations of fire radiative power as detected
by the Visible Infrared Imaging Radiometer Suite (VIIRS) and Moderate Resolution Imaging
Spectroradiometer (MODIS) satellites (Ahmadov et al 2017). The model is initialized every 12 h at a 3 km
horizontal grid spacing; for this study, we utilize 48 h forecasts initialized at 00 and 12 UTC. HRRR-Smoke
PM2.5 estimates do not account for non-fire sources of pollution (from traffic, industry, etc) and are
therefore specific to fire contributions only. Previous validation of HRRR-Smoke with all-source ground
station measurements during the 2018 Camp Fire identified strong spatiotemporal agreement with observed
progressions of smoke plume locations and magnitudes (Chow et al 2021).

We use the average of 24 individual hourly HRRR-Smoke forecasts to estimate daily smoke PM2.5. All
hourly concentration forecasts are based on the most recent available 00 or 12 UTC model initialization
(n= 364) given the increased accuracy of meteorological conditions closer to the forecast. In the event that
an initialization is skipped (n= 57) predictions from the most proximate initialization timestamp are used
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(i.e. the previous day’s forecasts). Following this correction there are 3 d, out of 182 total, that are missing
data for all initializations. These gaps, resulting from computer outages during the model run, are omitted
from our analysis.

In the absence of smoke-specific observed PM2.5 mass concentrations, we compare HRRR-Smoke
forecasts with a network of 166 ground station all-source PM2.5 measurements managed by the EPA’s Air
Quality System (AQS) (figure S4). This dataset is an imperfect validation dataset since it includes
anthropogenic sources of PM2.5 in addition to wildfire smoke. However, during extreme smoke events when
wildfire contributions dominate, AQS measurements may converge towards HRRR-Smoke estimates. AQS
measurements are sourced from national, state and local air stations associated with parameter codes 88 502
and 88 101, providing daily average PM2.5 concentrations from all sources (US EPA O 2014). The point
geometries of AQS stations are coupled with gridded HRRR-Smoke estimates based on their intersection.

2.2. Temperature exposure
Extreme heat exposures are calculated from the Gridded Surface Meteorological dataset (GRIDMET) that
includes daily surface measurements of maximum and minimum temperature, humidity and other
meteorological variables across the contiguous United States (Abatzoglou 2013). We resampled the data from
its original 4 km resolution to 3 km to align with HRRR-Smoke output. Humidity and temperature are
combined to estimate apparent temperature or heat index, a stronger correlate of biological heat stress that is
referenced by the federal Occupational Safety and Health Administration in its exposure guidelines
(Jacklitsch et al 2016). We follow the National Weather Service’s Weather Prediction Center’s method, which
adapts the Rothfusz regression model (equation (1)) to account for more extreme conditions and is reported
in Fahrenheit (Rothfusz 1990, National Weather Service 2014):

Daily Maximum Heat Index=−42.379+ 2.04901523T+ 10.14333127R− 0.22475541TR

− 6.83783× 10−3T2 − 5.481717× 10−2R2 + 1.22874× 10−3T2R

+ 8.5282× 10−4TR2 − 1.99× 10−6T2R2 (1)

where:
T = Daily Maximum Temperature (◦F)
R= Daily Minimum Relative Humidity (%).

These heat index measurements are then used to identify ‘exceedances’ for our population exposure
analysis (see section 2.3). Previous validation work found the median correlations between GRIDMET and a
national sample of over 1500 remote automated weather stations to be 0.94–0.95 and 0.87–0.90 for
maximum and minimum temperature, respectively, with median mean absolute error (MAE) between
1.7 ◦C and 2.3 ◦C. Daily maximum and minimum RH featured median correlation values between 0.77 and
0.81 and median MAE between 6% and 12% (Abatzoglou 2013).

2.3. Exceedance thresholds
We define an extreme smoke exposure event as any day with 24 h smoke PM2.5 exceeding 20 µg m−3. Our
threshold of 20 µg m−3 corresponds to the 98th percentile of smoke PM2.5 measured by a global atmospheric
chemistry model across the western United States between 2004–2009 (Liu et al 2017). Finally, we define a
smoke wave, designed to be analogous to a heatwave, as two or more consecutive exceedances. This accounts
for the potential risks of sporadic, yet persistent, exposure to high concentrations of smoke PM2.5 that are
common during long-lasting conflagrations (Liu et al 2017).

For heat, we define an extreme threshold as the greater of two prespecified intensity values. First, we
calculate the 85th percentile historical heat index for the months of July and August, within a grid cell, for
1970–2010 (US EPA O 2021). This location-specific threshold accounts for any local behavioral or physical
adaptations to extreme heat. Second, we apply an absolute minimum heat index cutoff of 80 ◦F for daily
maximum temperatures, which corresponds to the National Institute for Occupational Safety and Health’s
lowest ‘caution’ heat-index for worker safety (Jacklitsch et al 2016). Accordingly, colder areas where the
summertime 85th percentile corresponds to a mild temperature will instead be compared to an absolute
cutoff. Conversely, to avoid ‘false negatives’, we also apply an absolute maximum heat index cutoff of 105 ◦F
for areas with extreme summertime 85th percentile historical heat indices; this threshold corresponds to the
National Weather Service’s excessive heat warning trigger. Finally, in addition to single event exceedances, we
adopt a definition of heat wave as two or more consecutive exceedances in a given location.

Using Google Earth Engine, a cloud-based geocomputation engine, we intersect both hazard exceedances
to identify HSC at a daily interval at a resampled scale of 3 km (Gorelick et al 2017). Since there are no
standardized definitions for extreme heat or extreme smoke, we further analyze the sensitivity of our results
to different definitions: for temperature we increase the threshold to the 95th percentile and for smoke we
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test an absolute cutoff of 35 µg m−3, which corresponds to the EPA’s 24 h national ambient air quality
standard for all source PM2.5 (US EPA O 2014). Finally, we test the differences between using daily maximum
and minimum heat indices for temperature percentile thresholds as well as the impact of focusing only on
persistent exceedances (smoke waves or heat waves). These alterations are informed by evidence of hotter
evening temperatures and persistent heat exposure increasing morbidity and mortality (Rey et al 2007,
Zhang et al 2012).

2.4. Population characteristics
To quantify total human exposure and the density of affected areas, population data are taken from Gridded
Population of the World Version 4.11, which is an interpolation of decennial census population counts at a
1 km resolution (CIESIN 2018, OEHHA 2021). Additionally, we use California’s Office of Environmental
Health Hazard Assessment CalEnviroScreen 4.0 and the 2019 5 year American Community Survey to
measure existing pollution burdens and socioeconomic characteristics for all census tracts across the State,
respectively (U.S. Census Bureau 2019) (figure S5). We resolve spatial mismatch between the 3 km hazard
layer and variably sized census tracts by computing the aggregated hazard metrics within a 9 km radius
(3× 3 pixel window) of each census tract’s centroid.

We also measure the correlation between each hazard’s magnitude and the prevalence of different
sociodemographic variables. Each variable is first ranked and binned into deciles and then the mean
magnitude exceedance is computed for each hazard in a given census tract’s vicinity for each bin. For analyses
related to population exposure (incidence), where we compute the relative ratio between a group’s share of
the HSC impacted population and their share of the total state population, we sum population counts for
each census tract in proportion to the area of the tract affected at least once by HSC.

3. Results

3.1. HRRR-smokemodel comparison
In comparison with the EPA’s AQS network of ground stations, smoke PM2.5 concentrations simulated by the
HRRR-Smoke model were typically lower than all-source PM2.5 station measurements; the median
HRRR-Smoke grid cell estimate corresponding to each site was 0.4 µg m−3 versus 10.0 µg m−3 for AQS. This
difference is expected since AQS accounts for all sources of PM2.5 most days do not feature any smoke
pollution and a majority of the AQS stations are located in urban areas with heavier anthropogenic
contributions. Indeed, biases between AQS and HRRR-Smoke were highest in less populated areas and
lowest in urban areas where car exhaust and residential gas appliances, for example, dominate PM2.5

emissions (figure S2). The correlation coefficient between both datasets, which was greatest for same day
comparisons without lag, equaled 0.62, indicating sufficient temporal coherence. When comparing all AQS
measurements with the nearest HRRR-Smoke forecast, the normalized MAE (NMAE) equaled 77%; after
filtering for ‘extreme’ HRRR-Smoke forecasts (>20 µg m−3) NMAE drops to 60%. These statistics match
reported metrics for previous comparisons with smoke-enhanced aerosol optical depth measurements
during the Williams Flats Fire in 2019 (Ye et al 2021).

3.2. Spatiotemporal trends
Both hazards co-occurred at least once across 288 505 km2 (∼68%) of California during the 2020 study
period (figure 1). The statewide average of the season’s maximum observed exceedance over the baseline
thresholds was 3.0 ◦F for the daily maximum heat index and 51.1 µg m−3 for smoke PM2.5. The latter is
more than twice the smoke event threshold and almost 150% above the EPA 24 h standard of 35 µg m−3.
Notably, exceedance magnitudes during compounding events were lower for temperature, averaging 2.6 ◦F.
Smoke exceedances were also lower during HSC events, averaging 40.9 µg m−3.

HSC occurred a maximum of seventeen times across four different grid cells in California’s Carmel Valley
and for as long as nine consecutive days along the western edge of the Mojave Desert, southeast of Sequoia
National Park. The Monterey Bay area was also one of the most frequently affected areas in the state. Most
co-occurrences coincided spatiotemporally with season’s most severe conflagrations (figure 2) including the
August Complex, North Complex and Creek Fires that affected the Northern California coastline, Upper
Sierras and Central Valley, respectively.

We also identified trends across the four Level 1 North American ecoregions in California which are:
Mediterranean California (Mediterranean), North American Deserts (Desert), Marine West Coast Forests
(Marine) and Northwestern Forested Mountains (Forested). These ecoregions delineate distinct ecologies
and climates that can affect smoke production and temperature (figure S1) (Omernik 1987). California’s
Marine and Forested ecoregions were the two most affected by HSC, with nearly equal frequency-weighted
impacted areas of 1.2%. For extreme heat alone, using the baseline cutoff defined in section 2.3, we find that
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Figure 1. Spatial distribution of individual and co-occurring climate hazards. (a) The HSC map shows the frequency of HSC
events in a given 3 km grid cell. Areas in white did not experience any event throughout the studied period. (b) The smoke
magnitude displays the season’s mean exceedance above 20 µg m−3 for each grid cell. (c) The smoke frequency displays the total
number of days with smoke magnitudes exceeding the ‘extreme’ threshold of 20 µg m−3. (d), (e) The same definitions for
magnitude and frequency apply relative to each grid cell’s 85th percentile historical heat index.

Figure 2. Area of California in extreme heat, smoke, and combined hazard categories for summer 2020. Dashed lines show the
percent of California affected by individual hazard exceedances for the studied period. The solid blue line corresponds to the area
of concurrent heat and smoke. Boxes with arrows indicate name and ignition dates of wildfires (±2 d). The inset line chart on the
top left shows the cross-correlation between the daily area of heat and smoke exceedance at different time lags.

Mediterranean coastal regions as well as Desert areas in the Mojave were most frequently affected (table S1).
These areas, in addition to the Central Valley, a primary agricultural region, also experienced the most
intense heat events. For smoke PM2.5, the season’s average exceedance over the baseline threshold was
greatest in Northwestern Forested Mountains, at 84.1 µg m−3, and these events also lasted longest, for an
average of 4.5 d. The exceedance magnitude in Forested areas was significantly larger than the next-most
impacted Marine ecoregion (µ= 50.2 µg m−3).

Time-series analysis shows peak heat and smoke PM2.5 during the months of August and September. The
Pearson correlation coefficient between daily HSC and smoke areas (ρ= 0.45) was smaller than for HSC and
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heat (ρ= 0.63). There is also a discernible lagged trend between hazards. Time-lagged cross correlation,
which identifies the offset (number of days) at which cross-correlation is maximized between variables, peaks
at 6 d for maximum heat index and smoke (ρ= 0.57). This suggests that an increase in the frequency of heat
waves longer than six days may increase co-occurrences, assuming stationarity in heat-wildfire dynamics.

3.3. Sensitivity
There is a nonlinear decline in the frequency of HSC when we examine persistent smoke waves and/or heat
waves. As table 1 illustrates, applying a persistence threshold of two or more consecutive exceedances for
both smoke and heat diminishes the total HSC-affected area by 27% from∼288 000 km2 to approximately
∼211 000 km2 of the State. This decline in area corresponds to a slightly larger 33% decline in the total
affected population. Our results are also sensitive to the extreme heat and smoke thresholds—an increase
from the 85th to 95th percentile decreases frequency-weighted affected area by nearly 60% and an increase in
the smoke threshold from 20 µg m−3 to 35 µg m−3 results in a drop of 47%. For reference, the average 85th
and 95th percentiles for maximum heat index in California correspond to 92 ◦F and 95 ◦F, respectively.
Finally, persistent events, namely heat waves and smoke waves, are associated with more intense magnitudes,
exceeding non-persistent scenarios by an average 9.5% and 10.4%, respectively.

3.4. Population exposure
Out of approximately 40 million residents, we estimate that 35.3, 30.2 and 16.5 million residents were
affected by at least one occurrence of extreme heat, smoke and HSC, respectively (figure S3). Relative to the
statewide average population density of 98.9 persons/km2, heat-affected areas were denser (µ= 102.43) and
smoke-affected areas less dense (µ= 86.5). Gridded areas with at least one HSC event had, on average, lower
population densities (µ= 67.5, σ = 392.8, n= 40 425) than unaffected areas (µ= 171.3, σ = 771.7,
n= 17 735).

Proportionality tests show that certain populations are overrepresented in areas with HSC compared to
their total statewide representation (figure 3). Based on census demographic data from 2019, ‘White Alone’
respondents were 1.05 times as likely to be exposed to HSC than would be expected based on their overall
share of the population. Conversely, ‘Black or African American Alone’ individuals, who represent 5.7% of
the total population in California, represented 5.2% of the population exposed to HSC. Hispanic and Latino
populations were even less likely to reside in HSC affected areas—comprising 39.2% of the State’s population
but only 34.0% of the affected population (table S3).

Last, we compare smoke and heat exceedance magnitudes with a series of sociodemographic and risk
variables at the census tract level (table S2), namely the shares of the population that are White, Hispanic,
African American and Native American; the percent of the population that suffers from cardiovascular
illness; the level of poverty and linguistic isolation; summertime average 8 h maximums of ozone
concentrations from 2017–2019; and the OEHAA’s CalEnviroScreen score, a holistic score that combines an
area’s pollution burden with its population vulnerability. Among variables that show non-zero linear trends
(p < 0.01), the largest observed magnitude was a decrease in the exceedance magnitude of temperature
−0.1 ◦F for each decile increase in the summertime maximum ozone and−0.06 ◦F for each decile increase
in the percent of the population that is White-identifying. Nearly all other variables’ associations with smoke
were less than± 0.02 µg m−3 per decile increase or statistically insignificant.

4. Discussion

Our study shows that 68% of California’s land area and 42% of the population simultaneously experienced
hazardous smoke PM2.5 and extreme temperatures at least once in 2020. While these results may represent an
‘upper bound’ considering 2020’s wildfire season was the largest in California’s modern history, four million
burned acres was in fact typical for the state prior to European settlements and concomitant fire suppression
(Safford et al 2022). These compound events peaked in August and lasted through October. The Forested
ecoregion in northern California and neighboring Marine ecoregion, where large wildfires were observed in
2020, were most affected by HSC. These spatiotemporal patterns match findings from another smoke PM2.5

exposure assessment in earlier years which, using a coarser smoke-specific model, found peak concentrations
in August concentrated in northern California (Koman et al 2019). These patterns may be attributable to
available fuel loads in these ecoregions, as well as differences in plant sensitivity to dryness that influence
wildfire risk (McKinnon et al 2021, Rao et al 2022).

Overall, persistent HSC events (at least 2 d) were found to be more intense than single day hazard
extremes. Hazard magnitudes were also found to be lower during HSC events than for individual hazards.
This is likely attributable to the relatively temperate climates in which smoke events were concentrated.
Notwithstanding, previous studies have found that milder climates with less adaptive capacity are similarly
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Figure 3. Proportionality. Bar plots show the ratio above or below one at which different ethnicities and races in California were
affected by individual hazard exceedances and HSC, relative to their share of the general population. Abbreviations: Black &
AA—Black and African American; AI & AN—American Indian and Alaska Native; NH & OPI—Native Hawaiian & Other Pacific
Islander; Latino—Latino or Hispanic.

vulnerable to heightened morbidity and mortality from persistent heat exposure (Knowlton et al 2009).
Finally, the average extreme smoke PM2.5 concentration during HSC events was more than double the EPA’s
24 h standard (35 µg m−3) and presents a significant health risk to affected communities.

We do not find many associations between the amount of threshold exceedance for location-specific
‘extremes’ for heat and smoke and the selected sociodemographic covariates at the census-tract level. That is
to say that no population group or social pattern was associated with a disproportionate increase or decrease
in the intensity of extreme events. The lack of meaningful trends, especially in the smoke context, are likely
because wildfire ignition and the subsequent meteorological conditions that influence smoke transport are
stochastic and affect broad regions. Yet, in line with previous work that finds minority groups to be less
exposed to wildfire (Burke et al 2021, Masri et al 2021), we similarly find evidence that white individuals are
more likely to be exposed to concurrent heat and smoke. These predispositions are likely a result of certain
groups’ propensity to live in rural areas nearer smoke emitting fires.

There are several limitations to this analysis. Because there are no empirical datasets of surface-level
smoke PM2.5 across the State, we relied on short-term forecasts that inherently feature some imprecision.
However, unlike observed measurements from AQS that cover a small fraction of the state in mostly urban
areas, HRRR-Smoke is spatially continuous and isolates the fire contribution to pollution. Although our case
study of California in 2020 is instructive due to the State’s ecological diversity and size, our results cannot be
directly translated to other geographies and years. Nonetheless, climate driven fire risk in California will only
worsen through the middle of the century; seasons of similar intensity for both heat and smoke are therefore
plausible, if not likely, to reoccur. Additionally, our heat index measurements, while based on observed
temperatures, do not account for microclimate impacts or wind which are both known to shape heat stress
during outdoor activities (Thorsson et al 2014). Finally, because we lack a definitive understanding of
people’s physiological and adaptive responses to varying intensities of heat and smoke, our analysis makes
population-level assumptions about the magnitudes that may be considered hazardous.

5. Conclusion

We report population-level exposure for individual and co-occurring climate-related hazards and find that a
majority of California’s land area, especially ecoregions in northern California with dense fuel loads, were
affected by HSC. The location of these events are unassociated with social indicators of vulnerability,
however, they tend to cluster in rural areas near observed fire perimeters (figure S1). To our knowledge, this
is the first study to describe the spatiotemporal dynamics of HSC throughout California and to examine their
disproportionate impacts on certain communities in the State. We advance previous work by examining
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exposures at a relatively high spatial resolution (3 km) with smoke-specific PM2.5 estimates to isolate wildfire
contributions from other sources of air pollution.

This study suggests several promising areas for future research. First, researchers can leverage this analysis
to estimate the excess morbidity and mortality resulting from the interactions between heat and smoke PM2.5

while accounting for mediating sociodemographic factors that may otherwise be obfuscated at coarser spatial
resolutions. Second, longer-term studies can examine the meteorological and geophysical drivers of heat and
smoke to identify multi-year HSC exposures as well as the causal mechanisms behind HSC, and in turn,
enable better prediction. This would require an expanded time series of smoke PM2.5 concentrations that is
not currently available from the HRRR-Smoke model that became operational in 2020; therefore, other
observational or modeling datasets are needed to backfill historical smoke patterns. Third, future climate
change scenarios may alter HSC frequency and duration (Kalashnikov et al 2022), but future projection was
beyond the scope of this analysis. Finally, we can further investigate the social drivers of differential exposure
between racial and ethnic groups including housing stock, urban tree canopy cover and occupation.

With the intensity and duration of extreme heat events and wildfires projected to increase over the
coming decades (Westerling 2016, 2018), HSC is likely to become increasingly frequent. Accordingly, public
health officials must account for hazard interactions in their planning efforts and their potential to incur
harms on human health that exceed the sum of their parts.
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