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Abstract. This investigation implements a least-squares methodology to fit a triaxial ellipsoid to 10 

a set of three-dimensional Cartesian coordinates obtained from present-day geospatial techniques, 11 

materializing the terrestrial frame ITRF2014. To approximate, as much as possible previous 12 

research on this topic, the original spatial values of the station coordinates were “reduced” to the 13 

surface of the EGM2008 geoid model by introducing a simple and straightforward procedure. The 14 

mathematical model adopted in all LS solutions is the standard quadric polynomial equation 15 

parameterizing a triaxial ellipsoid. Functionally related to these polynomial coefficients are nine 16 

geometric parameters: the three ellipsoid semi-axes, its origin location with respect to the current 17 

conventional geocentric terrestrial frame, and the three rotations defining its spatial orientation. 18 

The final results are compatible with the pioneering work started by Burša in 1970 and, lately, by 19 

a recent publication by Panou and colleagues in that incorporates updated geoid models. 20 
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 31 

Introduction  32 

Leaving aside the convenience or not of adopting a triaxial ellipsoid as a replacement to the two-33 

parameter rotational ellipsoid GRS80 presently adopted by the International Association of 34 

Geodesy (Moritz 1992), scientists have calculated, using different initial assumptions, the 35 

parameters of a supposedly best-fitting triaxial earth ellipsoid. Table 1 shows, chronologically, the 36 

most recent set of semi-axis values ( a  , b , c ) that different authors have published to date to 37 

specify the size and shape of a presumed triaxial earth ellipsoid. Krasovsky, also known as 38 

Krassovsky and Krasovski, mainly published all his work in Russian. His results of 1902 and 1972, 39 

were cited in the English geodetic literature by Zhuravlev (1972) and Geodetic Glossary (1986). 40 

The tabulated quantities credited to Eitschberger were recently recounted by Grafarend et al. 41 

(2014). Finally, Panou et al. (2020) report a myriad of solutions; their values in Table 1 correspond 42 

to the solution derived from the EGM2008 (Earth Gravimetric Earth Model of 2008) geoid model 43 

(Pavlis et al. 2012). The final listed triaxial ellipsoid determined by Soler and Han, also based on 44 

EGM2008, is presented herein for the first time.  45 

 46 

Table 1. Semi-axes of some published triaxial earth ellipsoids  47 

 a   (m) b  (m)   c  (m) 

Krasovsky (1902) 6378250. 6378050. 6356730. 

Krasovsky (1972) 6378245. 6378033. 6356863.019 
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Schliephake (1956) 6378245. 6378032.4 6356863.0 

Burša (1970) 6378173. ± 10 6378105. ± 16.21 6356754. ± 10.01 

Eitschberger (1978) 6378173.43 6378103.9 6356754.4 

Panou et al.(2020) 6378171.88 ± 0.06 6378102.03 ± 0.06 6356752.24 ± 0.06  

Soler and Han (Table 3) 6378187.20 ± 3.97 6378092.31 ± 3.92 6356763.60 ± 3.78 

 48 

It should be mentioned here that triaxial ellipsoids are often used in planetology to 49 

represent mathematical models of celestial bodies; e.g., Drummond and Christou (2008), Diaz-50 

Toca et al. (2019) where a few examples identifying the corresponding sources are tabulated. 51 

However, normally only the three semi-axes of the triaxial ellipsoid are provided and rarely do 52 

they include attached standard deviations. Notice that in Table 1 only a few lines include 53 

uncertainties. Incidentally, Burša (1970) provides the semi-major axis ( a ) and two eccentricities 54 

( e  and 1e )  with their corresponding standard deviations. These known values were transformed 55 

before inserting them in Table 1 after making use of the following well-established conventional 56 

formulation:  57 

21b a e= −     and    
2 2 2

2 2 2 2 2 2
2 22 2(1 )

4(1 )e
b b aea ab a e e eσ σ σ σ σ

   ∂ ∂
= + = − +   

∂ ∂ −   
   (1) 58 

that assumes no correlations between the semi-major axis a  and eccentricity e. 59 

Similar equations apply to the semi-minor axis 2
11c a e= − . By the way, these values were 60 

revised on several occasions in Burša (1971), Burša and Pícha (1972), Burša and Šíma (1980) and 61 

Burša and Fialová (1993). These alternative solutions are tabulated in Panou et al. (2020). However, 62 

the differences with respect to his very first determination, considered by most scientists to be the 63 

gold standard for the triaxial earth, are not significant in the context of this investigation. 64 

 65 
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Methodology 66 

The methodology describing in detail the mathematical theory executed to achieve the final results 67 

presented in this document was recently published in Soler et al. (2020). However, to facilitate the 68 

full comprehension of the particulars by the reader, the primary steps contained in the process will 69 

be briefly described below to make the narrative self-inclusive:  70 

1) The original LS mathematical model is the standard quadric polynomial equation 71 

parameterizing the definition of the surface of a triaxial ellipsoid, namely (see e.g. Bektaş 2014, 72 

2015; Soler et al. 2020), 73 

2 2 2( , , ) 2 2 2 2 2 2 1 0F x y z a x b y c z d xy e xz f yz g x h y i z= + + + + + + + + − =    (2) 74 

The coefficients a, b, c, .. i are the parameters to be solved for, while the (x, y, z) coordinates at 75 

each point are the observations to which the triaxial ellipsoid surface is fitted to. 76 

2) Once the polynomial coefficients and their variance-covariance matrix are known they are 77 

transformed into the nine geometric constants defining the size and shape of the triaxial 78 

ellipsoid, mainly, the three semi-axes ( , , )a b c , the coordinates of the origin of the ellipsoid with 79 

respect to the (x, y, z) frame and, finally, the counterclockwise rotations about the three ellipsoid 80 

axes ( , , )E E Ex y z  to make it parallel to the terrestrial frame (x, y, z).  The complete procedure 81 

was unambiguously explained in Soler et al. (2020) following some of the ideas presented in 82 

Bektaş (2014). 83 

3) Finally, the variance-covariance (v-c) matrices for the nine ellipsoidal parameters are computed. 84 

This is the most intricate calculation of the three steps. Principally, because it involves the 85 

determination of the v-c matrices of three eigenvalues and six eigenvectors applying the 86 

procedure originally introduced in Soler and van Gelder (1991, 2006) and later expanded and 87 

improved in Han et al. (2007). Considering that the typical reader may not be familiar with the 88 

practical implementation of this process, the mathematical background required to accomplish 89 

this specific goal will be succinctly covered.  90 
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Recall that as a byproduct of the LS solution, the v-c matrix of the nine polynomial coefficients 91 

denoted as ( , , ,..., )[ ] a b c iΣ , is known. With this in mind, the complete solution of the problem is 92 

described in the following two subsections. 93 

 94 

Variance-covariance matrix of the origin of the ellipsoid 95 

The coordinates of the origin of the ellipsoid can be computed using the following matrix equation 96 

(Soler et al. 2020):  97 

1 2
0

2
0 2 2 2

2
0

1
2

x a d e g bc f cd ef df be g
y d b f h cd ef ac e af de h

abc dfe be af cd
z e f c i df be af de ab d i

−  − − + −       
−        = − = − + − − +        + − − −        − − + −        

  (3) 98 

The above equation shows that if the polynomial coefficients g, h, and i are equal to zero 99 

in (2) the ellipsoid is centered at the origin of the (x, y, z) reference frame. Otherwise, by standard 100 

propagation of errors, one has: 101 

0 0 0( , , ) ( , , ... )[ ] [ ][ ] [ ]T
x y z a b c iJ JΣ = Σ              (4) 102 

where the mathematical expression for the Jacobian matrix 0 0 0

3 9

( , , )
[ ]

( , , ... )
x y z

J
a b c i×

∂ 
=  ∂ 

was given explicitly 103 

in  (46) of Soler et al. (2020). 104 

 105 

Variance-covariance matrices of the semi-axes and rotations   106 

A symmetric matrix [S] is constructed having the following value:  107 

[ ]
11 12 13

21 22 23
0 0 0

31 32 33

1
( , , )

s s s a d e
s s s d b f

F x y z
s s s e f c

S
   
   = = −   
      

           (5) 108 
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Notice that 0 0 0( , , )F x y z   is equal to a scalar that results from particularizing (2) to the 109 

coordinates of the origin of the ellipsoid (thus, it is also a function of variables a, b, c, ….i). Thus, 110 

one can immediately arrange the six distinct elements of the symmetric matrix [S] as a column 111 

vector, essentially: 112 

11 1

22 2

33 3

21 40 0 0

31 5

32 6

( , , ,..., )
( , , ,..., )
( , , ,..., )1
( , , ,..., )( , , )
( , , ,..., )
( , , ,..., )

s a b c ia
s a b c ib
s a b c ic
s a b c idF x y z
s a b c ie
s a b c if

    
    
    
         = − =     
     
     
     

        

F
F
F
F
F
F

            (6) 113 

The v-c matrix of these six elements can be obtained by calculating the following matrix equation: 114 

11 22 32( , ,..., ) ( , , ,..., )[ ] [ ] [ ] [ ]T
s s s a b c iΣ = ΣJ ] J         (7) 115 

where the Jacobian 1 2 6

6 9

( , ,..., )
[ ]

( , , ,..., )a b c i×

∂ 
=  ∂ 

J F F F  computed from  (6) was given explicitly by  (52) in 116 

Soler et al. (2020). 117 

By eigen-decomposition theory, the symmetric matrix [ ]S  takes the form: 118 

[ ] [ ] [ ][ ]TS E E= Λ                         (8) 119 

where  120 

1 11 12 13

2 21 22 23

3 31 32 33

[ ]
e e e e

E e e e e
e e e e

   
   = =   
     






            (9) 121 

contains the three eigenvectors (row vectors) and [ ]Λ  is the diagonal matrix 122 

1

2

3

0 0
[ ] 0 0

0 0

λ
λ

λ

 
 Λ =  
  

             (10) 123 
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where 1 2,λ λ  and 3λ are the three eigenvalues of the matrix [ S ]. Then, the three semi-axes of the 124 

triaxial ellipsoid are defined by the equations: 125 

1

1a
λ

= , 
2

1b
λ

= , 
3

1c
λ

=          (11) 126 

Furthermore, the three rotation (counterclockwise positive) angles, respectively around the 127 

semi-major, semi-middle and semi-minor axes, are computed as a function of the eigenvectors 128 

using the expressions: 129 

1 32
1

33

tan
e

e
ε −  −
=  

 
,    ( )1

2 31sin eε −= ,    1 21
3

11

tan e
e

ε −  −
=  

 
      (12) 130 

The v-c matrix of the eigenvalues and eigenvectors of a 3 3×  symmetric matrix such as [S] 131 

will be denoted here as 
1 2 3, ,( , [ ])[ ] vec Eλ λ λΣ  where { }11 21 31 33[ ] , , , , Tvec E e e e e=  or explicitly: 132 

1 2 3
,...,

9 3

1 2 3

11 21 31 33

3 93 3

, ,

9 9

( , , )

( , , )
( , [ ])

[ ] [ ]

[ ]
[ ] [ ]T

e e e e
vec E

λ λ λ

λ λ λ
×

×
×

×

Σ • 
 

Σ =  
• Σ 

  

 133 

1 2 1 3 1 11 1 21 1 31 1 12 1 22 1 32 1 13 1 23 1 33

2 3 2 11 2 21 2 31 2 12 2 22 2 32 2 13 2 23 2 33

3 11 3 21 3 31 3 12 3 22 3 32 3 13 3 23 3 33

11

2

2

2

2

1

2

3

11

e e e e e e e e e

e e e e e e e e e

e e e e e e e e e

e ee

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ

λ

λ

λ

σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

σ σ

=

21 11 31 11 12 11 22 11 32 11 13 11 23 11 33

21 31 21 12 21 22 21 32 21 13 21 23 21 33

31 12 31 22 31 32 31 13 31 23 31 33

12 22 12 32 12 13 12 23 12 33

2

2

2

2

2

21

31

12

22

e e e e e e e e e e e e e e

e e e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e e

e

e

e

e

e

σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ
2 32 22 13 22 23 22 33

32 13 32 23 32 33

13 23 13 33

23 33

2

2

2

2

32

13

23

33
.

e e e e e e e

e e e e e e

e e e e

e e

e

e

e

esym

σ σ σ

σ σ σ σ

σ σ σ

σ σ

σ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 134 

            (13) 135 
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Note that this is a full symmetric matrix that contains the variances of the eigenvalues and 136 

eigenvectors along the diagonal, the covariances of the eigenvalues and eigenvectors (non-137 

diagonal elements on the 3 ×   3 and 9 ×   9 diagonal blocks) and the cross-covariances of the 138 

eigenvalues and eigenvectors (non-diagonal blocks). For the purpose of this investigation, only the 139 

variances of the eigenvalues and eigenvectors are of interest. 140 

The analytical way of how to compute the variance-covariance matrix of the eigenvalues and 141 

eigenvectors of a general 3 ×  3 symmetric matrix, to the authors' knowledge, was first shown in 142 

Soler and van Gelder (1991, 2006) and later extended and enhanced in Han et al. (2007). This 143 

sought-after objective is accomplished through the following propagation of the error matrix 144 

equation 145 

1 2 3, , 11 22 32( , [ ]) ( , ,..., )[ ] [ ][ ] [ ]T
vec E s s sK Kλ λ λΣ = Σ           (14) 146 

where 147 





6 63 3 3 3

12 6 3 3 3 3 3 39 9 3 36 9 9 39 93 33 3 9 39 3 9 3 9 99 9

1
[ ] [0]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ][0] [ ] [ ] [ ]
T T

E S

I

K D E E D I I S DI E D

×× ×

Ω
Ω× × × ×× ×× ×××× ×× × ×

×

−
 
 
 
 
  

= − + ⊗− ⊗


  

 

        (15) 148 

The symbol ⊗  denotes the Kronecker Product, defined by [A] ⊗ [B] = [aij [B]] if [A] = [aij]. The 149 

symbol   denotes the Khatri–Rao product defined by [A]   [B] = [A1 ⊗  B1, . . . ,Ap ⊗  Bp] if [Aj] 150 

and [Bj ] ( j = 1, . . . , p) are (column) partitioned matrices of [A] and [B], respectively (see Rao & 151 

Mitra 1971, pp. 12–13 and the illustration in the Appendix). The matrices [ ]ED , [ ]SD  and [ ]DΩ were 152 

explicitly given in Han et al. (2007) as 153 
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6 9 9 9
;  [ ] [ ]

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0

0 0.5 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0 1 0

0 0 0.5 0 0 0 0.5 0 0
0 0 1 0 0 0 0 0 0

0 0 0 0 0 0.5 0 0.5 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

E SD D
× ×

= =

 

                   



9 3
;  [ ]

0 0 0
0 0 1
0 1 0
0 0 1
0 0 0
1 0 0

0 1 0
1 0 0
0 0 0

DΩ
×

=

 
  −  
  
  
  
  
  

−  
  −  
  
  
  

 154 

           ………..(16) 155 

Once the values of the v-c matrix of eigenvalues and eigenvectors 
1 2 3( , , , [ ])vec Eλ λ λ

Σ is known, the 156 

final v-c matrices of the semi-axes and rotations is given by 157 

6 6 12 126 12 12 61 2 3 1 2 3( , , , , , ) ( , , , [ ])
[ ] [ ]T

a b c vec Eε ε ε λ λ λ× ×× ×
= ΣΣ J J       (17) 158 

and 159 

1 2 3 11 21 31 12 22 32 13 23 33

1 2 3 11 21 31 12 22 32 13 23 33

1 2 31 2 3
6 12 1 2 3

( , , , , , )[ ] ( , , , [ ])

a a a a a a a a a a a a
e e e e e e e e e

b b b b b b b b b b b b
e e e e e e e e e

c c c c
a b c

vec E

λ λ λ

λ λ λ

λ λ λε ε ε
λ λ λ×

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

=
∂

=
∂

J 11 21 31 12 22 32 13 23 33

1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 11 21 31 12 22 32 13 23 33

2 2 2 2 2 2 2 2 2 2

1 2 3 11 21 31 12 22 32 13

c c c c c c c c
e e e e e e e e e

e e e e e e e e e

e e e e e e e

ε ε ε ε ε ε ε ε ε ε ε ε
λ λ λ
ε ε ε ε ε ε ε ε ε ε
λ λ λ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2

23 33

3 3 3 3 3 3 3 3 3 3 3 3

1 2 3 11 21 31 12 22 32 13 23 33

e e

e e e e e e e e e

ε ε

ε ε ε ε ε ε ε ε ε ε ε ε
λ λ λ

 
 
 
 
 
 
 
 
 
 
 
 
 ∂ 
 ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 160 
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( ) ( )

( ) ( )

3/2
1

3/2
2

3/2
3

33 32
2 2 2 2
32 33 32 33

2
31

21 11
2 2 2 2
21 11 21 11

1 0 0 0 0 0 0 0 0 0 0 0
2

10 0 0 0 0 0 0 0 0 0 0
2

10 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0 0 0

e e
e e e e

e

e e
e e e e

λ

λ

λ

−

−

−

 − 
 
 − 
 
 −
 
 −=  
 + +
 
 
 

− 
 − 
 + + 

(18) 161 

It should be noted that the nonlinearity of any LS process could always be a concern if a rigorous 162 

estimation is anticipated.  Several authors have treated this topic at length (Teunissen 1989). The 163 

formulation to determine the degree of approximation involved depends on the second partial 164 

derivative of the design matrix. Using the values already published in our previous paper (Soler et 165 

al. 2020) it is immediately seen that  
{ } { } { }0 0

2

2

,
9

[0]
x l

n

F
x ×

∂
=

∂
 . Consequently, the linearized first order 166 

approximation invoked in our LS solution is necessary and sufficient. 167 

Summarizing, equations (3), (11) and (12) solve for the sought after nine triaxial ellipsoid 168 

parameters as a function of the values of the polynomial coefficients a, b, c, …, i which are the 169 

unknowns in the least-squares solution processing. The variance-covariance matrices of the 170 

ellipsoidal parameters are obtained, respectively by (4), and (17) all of them derived directly from 171 

the value of ( , , ,..., )[ ] a b c iΣ  computed originally from the LS procedure and the intermediate equations 172 

(7) and (14).  173 

By the way, equations (14) and (15) provide the solution for obtaining the full variance-174 

covariance matrix of the eigenvalues and eigenvectors of any 3 3×   symmetric matrix which is 175 

given on its general form by (13). 176 

          Here is a final note related to this topic. A recent publication by Panou and Agatza-177 

Balodimou (2020) elaborates on the advantages and disadvantages of the direct versus indirect (the 178 
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one proposed herein) methodologies to estimate the variance-covariance of the parameters 179 

involved in the fitting of a triaxial ellipsoid. As we related in this work and in our previous 180 

publication (Soler et al. 2020), our main intent was to explain in detail to the reader how to compute 181 

the v-c matrix of the eigenvalues and eigenvectors of a 3× 3 symmetric matrix. As far as the authors 182 

are aware of, this operation is impossible to be performed without introducing the Kronecker and 183 

Khatri-Rao products, which, by the way, are an important part of the matrix algebra arsenal. 184 

Furthermore, although the correlations between eigenvalues and eigenvectors is determined, the 185 

authors, nevertheless, concur with Panou and Agatza-Balodimou (2020) that the full set of 186 

correlations between the different parameters of the triaxial ellipsoid cannot be estimated through 187 

our step-by-step indirect procedure. To obtain the correlations between shifts and semi-axes and 188 

rotations one needs to use their direct approach.     189 

Data used in the calculations 190 

The original data are the Cartesian coordinates of the ITRF2014 geodetic stations and their 191 

corresponding standard deviations that were extracted from the Software INdependent EXchange 192 

Format (SINEX) files (IERS Message 103 2006) of the latest solutions disseminated by the IERS 193 

(International Earth Rotation and Reference Systems Service; see Altamimi et al. 2016). This 194 

information was used to obtain the values of the Cartesian coordinates along the ellipsoid height 195 

on the surface of the EGM2008 geoid model (Pavlis et al. 2012) according to the schematic 196 

illustration depicted in Fig. 1.   197 

 198 
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 199 

Fig. 1. Graphic relationship between different geodetic parameters 200 

The triaxial ellipsoid is actually fitted to a cluster of ( , , )Gx y z coordinates, which in the example 201 

shown in Fig. 1 corresponds to the point of intersection between the ellipsoid height h and the 202 

geoid model EGM2008. Notice that the standard assumption h N H≈ +  was introduced. 203 

According to Fig. 1 one can write: 204 
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    (19) 205 
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Note the distinction between 3D coordinates of points referred to the ITRF2014 frame such as 206 

( , , )Gx y z  and coordinates of the stations belonging to the definition of the ITRF2014 frame: 207 

2014( , , )ITRFx y z (Altamimi et al. 2016). 208 

In the above equation the value of h is rigorously known with respect to the GRS80 ellipsoid. 209 

On the other hand, the value of N could also be computed, at a certain level of accuracy, using the 210 

EGM2008 geoid model. In any event, the only errors affecting this “reduction” of the 211 

2014( , , )ITRFx y z  coordinates to the value of ( , , )Gx y z  on the surface of the geoid model are 212 

contained along the geodetic height and are mainly caused by the uncertainty on the value of N. 213 

Smaller errors, not affecting the final results, are introduced by the assumption that h N H≈ +   214 

The 3D coordinates defining the ITRF20014 frame (Altamimi et al. 2016) which was initially 215 

used in this investigation, resulted from an accurate, up-to-date combination of four geospatial 216 

techniques: VLBI (Very Long Baseline Interferometry, Bachmann et al. 1915), GNSS (Global 217 

Navigation Satellite System, Rebischung et al 2016, SLR (Satellite Laser Ranging, Luceri and 218 

Pavlis (2016), and DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite, 219 

Moreaux et al. (2016). Thus, it should be considered the leading edge on the determination of 220 

accurate 3D geocentric Cartesian coordinates at a certain number of geodetic stations around the 221 

globe. From these sets of coordinates the values of ( , , )Gx y z , see Fig. 1, “reduced” (downward 222 

continued) to the geoid were computed and used as available observations to which the sought 223 

triaxial ellipsoid was fitted.    224 

The 2014( , , )ITRFx y z coordinate data set was downloaded from the ITRF Website at the 225 

following URL address: http://itrf.ensg.ign.fr/ ITRF_solutions/2014/ITRF2014_files.php. All 226 

coordinates refer to the 2010.0027 epoch. The undulations of the EGM2008 geoid model, without 227 

accompanied statistics, were interactively accessible at the following Web platform with URL: 228 

https://geographiclib.sourceforge.io/cgi-bin/GeoidEval?input=39.35+-74.41666&option =Submit 229 

 230 

 231 

http://itrf.ensg.ign.fr/%20ITRF_solutions/2014/ITRF2014_files.php
https://geographiclib.sourceforge.io/cgi-bin/GeoidEval?input=39.35+-74.41666&option%20=Submit
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Least Squares (LS) Solutions 232 

Among all LS minimization options described in Soler et al. (2020) the so-called "general LS 233 

solution" was the strategy selected for the reasons outlined in that publication. It must be stressed 234 

that this sort of solution is based on a mathematical model, which is an implicit function of 235 

unknowns and observations schematically written as ( , ) 0F X L = . However, the reader should be 236 

aware that in the specialized literature dedicated to the theory of least-squares, this functional 237 

relationship receives other names as, for example, "mixed adjustment model" in Leick et al. (2015). 238 

The unknowns X  in this particular instance are the nine coefficients of equation (2) defining the 239 

quadric surface of the fitted triaxial ellipsoid, while the observations L  is the set of 3D ( , , )Gx y z  240 

coordinates, which are also referred to the ITRF2014 frame although they are not part of the IERS 241 

ITRF2014 solution. Following the account in the methodology section presented previously, once 242 

the nine coefficients of the polynomial are known one is able to determine, using several sequential 243 

algebraic steps described previously, the corresponding nine parameters that fully define the 244 

triaxial ellipsoid in space, that is: three semi-axes ( , , )a b c , the three shifts of its origin with respect 245 

to the ITRF2014 terrestrial frame 0 0 0( , , )x y z   and, finally, the positive counterclockwise rotations 246 

1 2 3( , , )ε ε ε  about a Cartesian frame initially coinciding with the semi-axes of the ellipsoid that is 247 

rotated to attain parallelism with the geocentric terrestrial frame. Lastly, after implementing a 248 

propagation of errors strategy explained in the section Methodology, their associated statistics for 249 

these nine parameters are also estimated.    250 

 251 

LS solution fundamentals 252 

Figure 2 depicts with dots the location of stations around the globe involved in the definition of 253 

the ITRF2014 frame. In contrast, denoted with small circles are shown the 1163 stations 254 

participating in the LS solution. This selected number of stations was used because the accurate 255 

errors of the geoid heights around the planet are not well-known; therefore, an upper limit for H 256 

was established and only stations with values of H < 500 m were used. This specific cutoff value 257 

was chosen to eliminate possible unknown errors on the modeled undulations of the geoid in 258 
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mountainous regions were, by obvious reasons, it is more difficult to produce rigorous values of 259 

the geoid height. At the same time, the greater the value of H is, the larger the error that may disturb 260 

the approximation h N H≈ + on account of the unpredictability of the curvature of the plumb line. 261 

Nonetheless, notice from Fig. 2 that an adequate coverage of ITRF2014 stations with the restriction 262 

H < 500 is scattered around the earth and dispersed to a great extent among the four quadrants of 263 

the planet. It should be emphasized once more that no values of the undulations of the EGM2008 264 

geoid model were used as observations, although the knowledge of N at each station was required 265 

as an intermediate quantity to determine the 3D coordinates ( , , )Gx y z , the actual observables to 266 

which the triaxial ellipsoid was fitted to. Precisely, this fact certainly makes the procedure 267 

implemented in this article to be markedly different to any other previous investigation that 268 

attempted to unravel the characteristics of the best triaxial ellipsoid parameters of an earth model. 269 

In the experiment elaborated here, the only errors in the position of the 3D points are counted along 270 

the geodetic height mainly due to uncertainties on the undulations, otherwise, the position of the 271 

coordinates of the observables in space are as rigorous as feasible.  272 

 273 

Fig. 2. Geographic distributions of the 1163 geodetic stations (H < 500 m) on the surface of the 274 

geoid used in the LS solution 275 
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Recall that the values of ( , )λ ϕ  shown in Fig. 1 are rigorously known with respect to the 276 

GRS80 reference ellipsoid, and with H they are merely used to determine the values of the 277 

coordinates ( , , )Gx y z in space. Once all ITRF20014 selected station was corrected by the 278 

displacement in Cartesian coordinates caused by the reduction to the geoid (see Fig. 1) and the 279 

coordinates ( , , )Gx y z  were known, the LS procedure described above was implemented.  280 

 281 

Fig. 3. Plot of the residuals , ,( )x y zv v v from the LS solution for the , , G( )x y z coordinates  282 
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 283 
Fig. 4. Plot of the residuals along the local geodetic frame , ,( )E N Uv v v  284 

 The least-squares residual plots pertaining to each one of the used stations are available in 285 

Fig. 3, where it is clearly shown that all the residuals along the x, y, and z components is always 286 

between ± 100 m. Figure 4 shows the representation of the residuals of Fig. 3 transformed into the 287 

local (topocentric) geodetic: frame east, north, up (not shown in Fig. 1). This plot was created to 288 

approximately visualize the magnitude of the residuals along the geodetic height (up) component 289 

by implementing the well-known equation: 290 

sin cos 0
cos sin sin sin cos

cos cos sin cos sin

E

N

U

x
y

z

v v
v v
v v

λ λ
λ ϕ λ ϕ ϕ
λ ϕ λ ϕ ϕ

    
      =    

    
      

−
− −       (20) 291 

As expected, the conversion of residuals from Cartesian to curvilinear coordinates shows 292 
that the geodetic height residual along the local frame Uv obviously presents the maximum scatter 293 

of the three residual components ( , , )E N Uv v v . Having said that, observe that according to Fig. 4, 294 

the resultant standard deviation of about 20 m for Uv definitely exhibits a reasonable triaxial 295 

ellipsoid fitting to the cluster of generated three-dimensional points ( , , )Gx y z .     296 
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 297 

Results from the LS solutions 298 

Table 2 presents the estimates of the nine coefficients of equation (2) resulting from the LS solution 299 

using the set of coordinates ( , , )Gx y z   as observations with their corresponding standard 300 

deviations. The statistics in Table 2 resulted directly from the LS process and the assumption of a 301 

diagonal weight matrix extracted from the ITRF2014 SINEX file.  302 

 303 

Table 2. Estimates of the parameters of the quadric equation of the fitted triaxial ellipsoid  304 

Parameters Estimates [×10-13] 

a 0.24581357 ± 0.00000016 

b 0.24582046 ± 0.00000014 

c 0.24747303 ± 0.00000015 

d 0.00000124 ± 0.00000010 

e -0.00000067 ± 0.00000010 

f -0.00000119 ± 0.00000010 

g -0.50342905 ± 0.34889404 

h 0.74081758 ± 0.34570154 

i -1.86086692 ± 0.32974988 

Root-mean-squared 
distances (m) 20.1977 

 305 



19 
 

Because the coefficients in Table 2 are difficult to interpret geometrically, the following 306 

step was to transform them into the parameters shown in Table 3 after following the algebraic 307 

operations described in the Methodology section. This table presents in column arrangement the 308 

resultant nine spatial parameters defining the geometric characteristics (see Fig. 5) of the triaxial 309 

ellipsoid mainly: the three shifts of the origin 0 0 0( , , )x y z , three semi-axes ( , , )a b c , and the three 310 

rotations  1 2 3( , , )ε ε ε  with accompanying standard deviations. The column on the left contains the 311 

results obtained from this investigation. The middle column tabulates the results published in 312 

Panou et al. (2020), and finally, the column on the right shows the original values reported by 313 

Burša (1970). The standard deviations in Table 3 resulted after a step-by-step procedure following 314 

a conventional propagation of errors strategy.  315 

 316 

Fig. 5. Graphic depiction of the nine geometric parameters defining in space the best fitted 317 

triaxial ellipsoid 318 

 319 

 320 
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Table 3. Ellipsoidal parameters ( ± 1σ ) derived from the coefficients in Table 2 321 

Parameters This study Panou et al. Burša Ellipsoid 

0x (m) -2.05 ± 1.42  0 

0y (m) 3.01 ± 1.41  0 

0z (m) 7.52 ± 1.32  0 

a (m) 6378187.20 ± 3.97 6378171.88 ± 0.06 6378173.00 ± 10.00 

b (m) 6378092.31 ± 3.92 6378102.03 ± 0.06 6378105.15 ± 16.21 

c (m) 6356763.60 ± 3.78 6356752.24 ± 0.06 6356754.36 ± 10.01 

1ε ( 0 ) -0.0447 ± 0.0035  0 

2ε ( 0 ) 0.0157 ± 0.0034  0 

3ε ( 0 ) 9.8894 ± 0.7059 14.9356740±0.0000005W 14.8 ± 5W 

 322 

Several conclusions could be inferred from the tabulated values. In what follows, they are going 323 

to be analyzed in order of their level of importance.  324 

1) Semi-axes of the triaxial ellipsoid ( , , )a b c . Obviously, the three most important parameters of 325 

the fitted triaxial ellipsoid are the semi-axes. Our results show good consistency with the values 326 

previously published by Burša (1970), which are almost identical to the results recently made 327 

available by Panou et al. (2020). In this respect, it should be pointed out that the conceptual 328 

methodology used by Burša and Panou et al. is very similar except that the latter incorporated 329 

into their calculations contemporary geoid models. Keeping this in mind is not surprising that 330 

they reached similar results. However, the procedure implemented here departs from the other 331 

two because instead of using geoid undulations as observations Cartesian coordinates directly 332 

derived from the latest IERS solution: ITRF2014 were employed. Nevertheless, as the reader 333 
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can attest, the answers are sufficiently close to considering them physically plausible. Perhaps 334 

it could be speculated that the detected reasonable discrepancies are mainly caused by the 335 

variants in methodology introduced in this research for determining the best fitting triaxial 336 

ellipsoid. Among all geoid models used by Panou et al. (2020), the comparisons should 337 

concentrate on their solution “D2.1, G-T6 I” that best fit the triaxial ellipsoid to the EGM2008 338 

geoid model undulations which is the model used in our investigation. If one contrasts the last 339 

two results in Table 1, both reinforced by cutting-edge geospatial data-bases and modern 340 

advances in digital and computational software, one finds the following differences (Soler and 341 

Han minus Panou et al.): aδ =  15.32 m; bδ = − 9.72 m; and cδ =  11.36 m. In the authors’ 342 

opinion, these differences should not be considered significant amid the complexity of the 343 

problem at hand and merely convey the distinct methodologies between the two procedures. 344 

The results of this investigation produces a triaxial ellipsoid which shape has slightly less 345 

rotational symmetry and polar flattening that the one from Panou et al. (2020). Perhaps with 346 

more optimum symmetric global coverage of ITRF2014 stations, our results could be improved 347 

further and better approximation, or not, to those of Panou et al. (2020) and Burša could be 348 

validated. However, at present, this is merely a postulated hypothesis difficult to be confirmed 349 

until more station coordinates data becomes available.  350 

Finally, it is important to emphasize at this juncture that Burša's values were not used as 351 

initial approximations at any stage of the least-squares process. The original approximations of 352 

the parameters of the coefficients in equation (2) were set to zero during the first iteration.    353 

2) Rotation angles 1 2 3( , , )ε ε ε . The second main resultant product to the fitting of a cluster of 3D 354 

points ( , , )Gx y z  to a quadric surface, in particular a triaxial ellipsoid, is the spatial orientation 355 

of the ellipsoid such as the general example depicted in Fig. 5. The ellipsoid in question is 356 

randomly located in space, having its center (CE), generally speaking, not coinciding with the 357 

origin of the ( , , )x y z terrestrial frame and with its coordinate axes ( , , )E E Ex y z  initially aligned 358 

with the three semi-axes also arbitrarily oriented in space (see Fig. 5). The precise spatial 359 

position of the ellipsoid is facilitated by the knowledge of the values of three rotations (positive 360 

counterclockwise) denoted 1 2 3( , , )ε ε ε  respectively performed around the three Cartesian axes of 361 
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the frame ( , , )E E Ex y z . Notice that these rotations are passive rotations (Soler 2018) meaning that 362 

the axes rotate and the ellipsoid remains fixed in space. The rotations by amounts 1 2 3( , , )ε ε ε  363 

about the axes ( , , )E E Ex y z  are performed until they achieve a position of parallelism with 364 

respect to the geocentric ( , , )x y z  terrestrial frame. These three rotations will physically 365 

determine the orientation of the semi-axes in space. The values of these rotations are calculated 366 

as a function of the unequivocal components of the eigenvectors using equations. (12). For 367 

example, the rotation about the third axis is 3ε =  9.88940 ± 0.70590. Because this is a 368 

counterclockwise rotation around the  Ez   axis after achieving parallelism with the ( , , )x y z  369 

geocentric frame, it means that the a axis (which, as mentioned before, is fixed with the 370 

ellipsoid in space) is located approximately at an angle of 9.88940 in a direction opposite to the 371 

rotation, that is, west of the // Ex  axis. The same logic could be applied to understand the 372 

physical meaning of the other two rotations 2ε   and 3ε .  373 

3) Coordinates of the center of the ellipsoid 0 0 0( , , )x y z . As Fig. 5 shows, in general, the center of 374 

the ellipsoid (CE) should not necessarily coincide, in a LS sense, with the origin of the frame 375 

defined by the cluster of ( , , )Gx y z  points. It must be stressed here that in Burša (1970) was 376 

implicitly assumed that his triaxial ellipsoid was geocentric. Our research also solved for the 377 

shifts of the origin of the ellipsoid on the frame defined by the corresponding collection of 378 

( , , )Gx y z  observations that should be considered a realization of the ITRF2014 frame. As 379 

previously explained, these shifts are a byproduct of the solution of the general quadric equation 380 

and were determined afterwards through the implementation of equation (3). It is axiomatic to 381 

think that the three shifts should be primarily affected by the global symmetry of the 382 

observational data. That is, if the set of points ( , , )Gx y z  was completely symmetric with 383 

respect to the origin of the ( , , )x y z  frame, the origin of the fitted ellipsoid will likely be centered 384 

at the origin of the frame. This is perfectly seen in the exercise presented in Soler et al. (2020) 385 

where the coordinates of the given points are biased by certain amounts and this is directly 386 

reflected on the solution of the shifts. With the set of coordinates at our disposal in the present 387 

case, from Table 3 one gets the following ellipsoid center displacements: 0x = −2.05 m ± 1.42 388 
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m; 0y =3.01 m ± 1.41 m;  0z =  7.52 m ± 1.32 m. This appears to indicate that the distribution of 389 

points between the northern and southern hemispheres is distinctively more asymmetric than 390 

any other distribution. For example, to clarify this concept, a geoid which figure is slightly pear-391 

shaped in the north-south direction will conceivably support a non-geocentricity shift along the 392 

z component. It is not simply that the norther hemisphere may have more stations than the 393 

southern hemisphere as Fig. 1 appears to indicate but that, overall, the geoid heights on the 394 

northern hemisphere are slightly larger than the ones in the southern hemisphere.  395 

 396 

LS with ellipsoid shifts constrained to zero  397 

Considering that the values of the shifts could be easily constrained to zero, an alternative LS 398 

solution was implemented, forcing the values of 0 0 0( , , )x y z to zero. This is readily done by assuring 399 

that in equation (2) g = h = i = 0. The results of this constrained adjustment are presented in Tables 400 

4 and 5.  The asterisks in both tables indicate that the corresponding parameters were constrained 401 

to zero.  402 

 403 

Table 4. Parameter estimates using the ITRF2014 stations for the case of constraining  404 

g = h = i = 0 405 

Parameters Estimates [×10-13] 

a 0.24581350 ± 0.00000016 

b 0.24582049 ± 0.00000014 

c 0.24747249 ± 0.00000011 

d 0.00000115 ± 0.00000010 

e -0.00000062 ± 0.00000008 
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f -0.00000125 ± 0.00000008 

g 0* 

h 0* 

i 0* 

Root-mean-squared 
distances (m) 20.2915 

 406 

Table 5. Ellipsoidal parameters ( ± 1σ ) derived from the constrained solutions in Table 3 407 

Parameters This study Burša Ellipsoid 

0x (m) 0.0000 ± 0.0000* 0 

0y (m) 0.0000 ± 0.0000* 0 

0z (m) 0.0000 ± 0.0000* 0 

a (m) 6378187.7495 ± 3.9840 6378173.0000 ± 10.0000 

b (m) 6378092.2282 ± 3.7801 6378105.1518 ± 16.2088 

c (m) 6356770.5975 ± 2.8694 6356754.3618 ± 10.0125 

1ε ( 0 ) -0.0461 ± 0.0028 0 

2ε ( 0 ) 0.0143 ± 0.0027 0 

3ε ( 0 ) 9.1338 ± 0.7083 14.8 0 ± 5 0  W 

 408 
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The resulting values forcing the shifts of the origin of the ellipsoid to zero are presented in 409 

columns form in Tables 5 and 6 using the same format that the unconstrained case. Furthermore, 410 

the results of this constrained LS adjustment solution unequivocally show a slight increase on the 411 

root-mean-squared distance from the observation points to the surface of the fitted ellipsoid. This 412 

may indicate that the observations do not fit the model as well when the ellipsoid is forced to be 413 

geocentric. Thus, it can be inferred that the best triaxial earth ellipsoid fitted to the observed 414 

geospatial data at locations on the geoid is not necessarily geocentric. Indeed, although the shifts 415 

are not significantly large, the change in position of the ellipsoid also generates small changes in 416 

its orientation. The semi-axes remain practically unchanged, they are actually (constrained minus 417 

unconstrained): aδ =  0.45 m; bδ = − 0.10 m; and cδ =  7.00 m. Except for the semi-minor axis c418 

which absorbs a change of about 7m away from the Burša value to compensate for constraining 419 

the ellipsoid to be geocentric thus eliminating a shift of about 7m along the third axis. This 420 

corroborates that the values of the coordinates used are very accurate whereas imposing the 421 

geocentricity of the ellipsoid will not fit equally well the observations and gives the worst value 422 

for the third semi-minor axis. In conclusion, the results obtained by the general LS adjustment 423 

hints to an earth's best fitting triaxial ellipsoid that is not perfectly geocentric.   424 

Additionally, after imposing the triaxial ellipsoid to be geocentric, and implementing the LS 425 

constrained solution, the rotation angle about the third axis does not change by much. This 426 

confirms, somewhat, that the semi-major axis of the best fitting triaxial ellipsoid to the irregular 427 

undulating surface of the geoid is located, approximately, parallel to the x-y plane, shifted by about 428 

7m  from the origin of the terrestrial frame at an angle of about 10 degrees of longitude west from 429 

the zero-meridian. 430 

 431 

Rotations attributes 432 

Under the assumption that the general unconstrained LS solution, as listed in Table 3, is more 433 

realistic than the one fixing to zero the coordinates of the origin of the ellipsoid, a few words will 434 

be said about the rotation results. Burša (1970) is credited with calculating, for the first time, as a 435 

function of the earth's spherical harmonics derived from early satellite observations the orientation 436 
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of the equatorial semi-major axis of a triaxial best-fitting ellipsoid. From this dynamical solution, 437 

he obtained a value for the longitude of the semi-major axis of 14.8 5 14.8 5W− ± ≡ ±    . Later, 438 

Burša (1977), reintroduced the following equations borrowed from Darwing (1877) giving the 439 

rotations about the three axes according to the equations:   440 

1 2 3; ;D E F
C B A C B A

δα δα δα= = =
− − −

        (22) 441 

where A, B, and C, are the earth's moments of inertia and D, E, and F are its products of inertia. 442 

Expressing these values as a function of the best spherical harmonics determined from satellite 443 

observations at that time (GEM 5 and GEM 6) Burša arrived at a value of 3δα = –14.8o. Therefore, 444 

he proved that the angle he had previously published roughly coincided with the orientation of the 445 

principal semi-major axis of the Earth inertia ellipsoid. Subsequently, other authors corroborated 446 

this figure. For example, Soler and Mueller (1978) rigorously solving for the eigenvalues and 447 

eigenvectors of the earth's second-rank inertia tensor also determined from satellite observations, 448 

the orientation of the earth first principal inertia axis as 3 '14 55δα = −  . More recently, following 449 

slightly different analytical methods, Groten (2007), Vîlcu (2009), and Chen and Shen (2010) 450 

reached practically the same conclusions. 451 

The point we are trying to convey here is that all of these longitudinal angular values are 452 

referred to the orientation of the earth's first principal inertia axes, and that this is not exactly 453 

equivalent to determine the best fitting triaxial ellipsoid to the earth, or more specifically, the best 454 

fitting ellipsoid to the EGM2008 geoid model.  The principal moments of inertia are affected by 455 

the total mass distribution of the earth. The irregular surface of the geoid is also affected by mass 456 

distributions; however, there is not any known theory to rigidly tie the physical shape of the geoid 457 

(materialized by its undulations) with the earth’s major principal axes of inertia. This is an area 458 

that should be investigated further. Nevertheless, it appears that the semi-major axis of the earth’s 459 

best fitting terrestrial triaxial ellipsoid is approximately oriented in the same regional area that the 460 

earth’s major principal axis of inertia, at least the historical research proves that.  461 

Recapitulating, nobody has yet attempted an investigation along the premises presented in 462 

this article where the earth’s triaxial ellipsoid is fitted to a collection of Cartesian points accurately 463 
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located on the ITRF2014 frame. From the values in Table 3 containing the unconstrained solution, 464 

it can be deduced that the third axis of the physically fitted ellipsoid will approximately be located 465 

at a spherical curvilinear distance of only 4.68 km from the north pole of the ITRF2014 frame 466 

along the meridian of longitude 240.6963o . Recall that this axis has only geometric meaning and 467 

is not directly related to the instantaneous rotation axis of the earth or its third principal inertia 468 

axis. 469 

Actually, because the rotations around the first and second axes are close to zero, the rotation 470 

around the third axis comprises an angle of about 10o (in our solution) that can be translated into 471 

the plane of the equator of the triaxial ellipsoid. However, the rigorous computation of this angle 472 

will require the solution of a spherical triangle (see Appendix II). In Fig. A1, the three positive 473 

counterclockwise rotations about their corresponding axis are shown. The figure depicts the last 474 

sequence of a rotation 2ε about the second axis followed by the final rotation 3ε  about the third 475 

axis. Notice that, at this point, the axes Ey  and Ez  have changed the location pictured in the figure. 476 

Of our interest is the spherical triangle α  drawn in the figure. This is the angle in space between 477 

the axis parallel to the geocentric x-axis and the location of the semi-mayor axis a  of the triaxial 478 

ellipsoid. Using standard spherical trigonometry and following the steps outlined in Appendix II 479 

(Fig. A2) one reaches the answer α  = 9.8994o
≈ 10 o. Consequently, the true angle that one is after 480 

is 9.8994o versus the value of the rotation about the third axis 3ε = 9.8894o directly determined in 481 

the least-squares solution of Table 3. The difference between both is so small because the values 482 

of the other two rotations 1ε  and 2ε  are very close to zero. Although the result is practically 483 

identical, the intention of the authors was to emphasize the rigorous mathematical discrepancy 484 

between the two angular solutions considering that this distinction is never treated in all 485 

discussions related to the fitting of earth’s triaxial ellipsoids. One thing is to resolve the orientation 486 

of the triaxial ellipsoid in space through the determination of three rotation angles and the other to 487 

publish the angle between the semi-major axis with respect to the geocentric (terrestrial) x-axis. 488 

Therefore, to mention simply that the semi-major axis is 14o W =−  14o is not 100% correct. This 489 

assertion is only rigorous if the other two rotation angles are zero, meaning that the semi-minor 490 

axis of the triaxial ellipsoid is parallel (or coincides) with the third axis of the geocentric frame, a 491 

very singular and improbable circumstance. 492 
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 493 

Conclusions  494 

In this investigation, a set of 3D Cartesian coordinates given in the ITRF2014 frame at geodetic 495 

stations located on the surface of the EGM2008 geoid model were used to fit a triaxial ellipsoid 496 

after implementing a LS procedure. A trivial scheme was devised to “reduce from terrain to geoid” 497 

the coordinates that were primarily based on the computation of orthometric heights (H) from the 498 

rigorous knowledge of the geodetic height h and the value of the undulation of the geoid N 499 

( )H h N≈ − . Results comparable to previous investigations dating back about 50 years were 500 

reached. However, the procedure developed for the preparation of this work is different from the 501 

preceding aforementioned research. While other authors have used the undulations of modeled 502 

geoids as observations, our research uses 3D rigorous, up-to-date geospatial-determined Cartesian 503 

coordinates as observables. Nevertheless, it should be pointed out that, as in previous 504 

investigations, possible errors in the undulations of the geoid models (EGM2008 in our case) may 505 

affect the results. Consequently, in this research, an upper bound of H < 500 m was enforced to 506 

reduce, as much as feasible, unknown uncertainties on the values of the undulations. Concentrating 507 

now on the findings obtained for the best fitting triaxial ellipsoid, the reader is addressed to Table 508 

3. The general LS solution gives the following results involving 1163 ITRF2014 stations 509 

disseminated around the world: for the three semi-axes: a = 6378187.20m ± 3.97m, b = 510 

6378092.3m ± 3.92m, c = 6356763.60m ± 3.78m; for the three shifts 0x = −2.05 ± 1.42m, 0y = 511 

3.01m ± 1.41m, 0z = 7.52m ± 1.32m; and for the three rotations 1ε = − 0.0447o ± 0.0035o, 2ε = 512 

0.0157 o ± 0.0034o,  3ε = 9.8894o ± 0.7059o. 513 

Because the results might be slightly dependent on the distribution of points on the earth 514 

surface, in the future, when some of the geographic regions in Fig. 2 that currently lack ITRF2014 515 

points, e.g. northern Siberia, central Africa, and Antarctica, are filled, the outcomes presented 516 

herein could be improved.  This enhancement should advance further the scientific knowledge of 517 

the best closed mathematical expression of our planet.   518 

It has been found that the entire methodology is founded, at least, on two demanding premises, 519 

a general LS solution and a rigorous eigentheory determination of the variance-covariance matrix 520 
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of the semi-axes and rotations of the fitted triaxial ellipsoid. As far as the authors’ are concerned, 521 

no approach scientifically equivalent to the one introduced here has been published or attempted 522 

to date. On the contrary, the standard procedure to determine the best earth’s triaxial ellipsoid 523 

through the years follows the path of the innovative ideas advanced by Burša originally in 1970. 524 

Our proposal appears to be a viable alternative but lacks the availability of a denser network of 525 

geodetic stations around the world. It is plausible to speculate that in the course of time, this 526 

existent weakness will be strengthened and, without any doubt, it can be predicted that much better, 527 

improved and accurate results could be attained. 528 
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3 3 3 3
[ ] [ ]T TE E
× ×

            (A.1) 628 

where [ ]E  is the following matrix of eigenvectors: 629 
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Then, by definition: 631 
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 633 

Appendix II. Direct angle between the semi-major axis of the fitted triaxial ellipsoid and 634 

the //x axis   635 

When solving for the orientation of the semi-major axis of the triaxial ellipsoid, the angle that 636 

should be reported is not 3ε but α depicted in the right angle spherical triangle of Fig. A1. 637 
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  638 

Fig. A1. Relationship between rotation angles and the angle α  between the semi-major axis a  639 

and the x  axis 640 

 641 

According to the well-known Napier’s rules (Fig. A2): 642 

  643 

Fig. A2. Practical solution of right angle spherical triangles 644 
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( ) ( ) ( )sin middle part cos opposit part cos opposit part= ×       (A.4) 645 

Consequently, 646 

2 3 2 3sin cos cos cos cos cos
2
π α ε ε α ε ε − = × ⇒ = × 
 

     (A.5) 647 

( )1
2 3cos cos cosα ε ε−= ×          (A.6) 648 

And after substituting  0
2 0.0157ε =  and 0

3 9.8894ε = in equation (A.6) one finally gets the angle 649 

between the semi-major axis and the axis  //x equal to: 0 09.8994 10α = ≈ . 650 
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