
 
 

  

   

  

  

      

  

     

  

  

  

   

  

  

   

  

    

  

  

  

     

   

  

   

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

TITLE: The northern Bering Sea zooplankton community response to variability in sea ice: 

evidence from a series of warm and cold periods 

Author List: David G. Kimmel1*, Lisa B. Eisner2, and Alexei I. Pinchuk3 

Author Affiliations: 

1 National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska 

Fisheries Science Center, Seattle WA 98115, USA 

2 National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska 

Fisheries Science Center, Juneau AK 99801, USA 

3 College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK 99801, 

USA 

*Corresponding author email: david.kimmel@noaa.gov 

Running page head: Zooplankton community dynamics in the northern Bering Sea 

ABSTRACT 

Recent, unprecedented losses of sea ice have resulted in widespread changes in the northern 

Bering Sea ecosystem and this study explores the zooplankton community response. Time-series 

observations were used to identify zooplankton community changes in the northern (> 60°N) 

Bering Sea (NBS) over a 17-year period (2002-2018). The overall objective was to determine if 

the changes in zooplankton populations previously described for the southeastern Bering Sea 
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shelf (< 60 °N) were also observed in the NBS over alternating warm and cold periods. Particular 

attention was paid to more recent (2014-2018) years that showed significant losses of sea ice in 

the NBS (2017/2018) in comparison to a prior warm period (2003-2005) and an intervening cold 

period (2006-2013). A multivariate framework (redundancy analysis) was used to explore 

correlations with environmental conditions and differences in mean abundance across the 

differing warm and cold periods were tested. The NBS zooplankton community had different 

responses across each warm and cold period and the primary driver for the differences in 

response was sea ice. Redundancy analysis demonstrated that the zooplankton community during 

the second warm period experienced greater variability compared to the prior warm period. The 

zooplankton community had higher abundances of small copepods and meroplankton and 

reduced abundances of Calanus spp. and chaetognaths during the most recent warm period. This 

suggested that the NBS zooplankton will not be impacted by reduced sea ice when the ice 

coverage extends south of 60°N, but show community change once a minimum threshold in ice 

extent and timing of retreat is reached. Shifts in the zooplankton community may have had 

cascading effects on higher trophic levels that were evident during the latter warm period. 

Keywords: Bering Sea, zooplankton abundance, zooplankton community composition, climate, 

sea ice 
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1. INTRODUCTION 

In the highly productive eastern Bering Sea ecosystem (Springer et al. 1996) the broad, 

shallow shelf provides a fertile ground for zooplankton production. Zooplankton form a vital link 

between primary producers and higher trophic levels by direct and indirect transfer of energy. 

Zooplankton are consumed by forage fish (Yasumiishi et al. 2020), seabirds (Piatt & Spring 

2003), and marine mammals, including the critically endangered north Pacific right whale 

(Eubalaena japonica) (Baumgartner et al. 2013). Zooplankton also provide nutrition for 

abundant, commercially exploited fish stocks, including walleye pollock (Gadus 

chalcogrammus) and Pacific cod (G. macrocephalus) (Strasburger et al. 2014, Buckley et al. 

2016). In the Bering Sea, much work has been done to understand the population dynamics of 

key zooplankton taxa that appear most frequently in higher trophic level diets. These key taxa 

include the predominant euphausiid species on the middle and outer shelves, Thysanoessa 

raschii and T. inermis, respectively (Ressler et al. 2014, Bi et al. 2015, Hunt et al. 2016) as well 

as the calanoid copepod Calanus marshallae/glacialis (Coyle & Gibson 2017, Kimmel et al. 

2018, Eisner et al. 2020a). Interannual shifts in overall zooplankton community composition, in 

addition to changes in these key taxa, have been linked to the environmental change in the 

Bering Sea (Vidal & Smith 1986, Coyle et al. 2008, Eisner et al. 2014, Eisner et al. 2018). 

Understanding how zooplankton respond to contemporary environmental variability offers a 

glimpse into possible future response to predicted ecosystem change (Richardson 2008) and 

contribute to ecosystem-based management of fisheries. 

In the eastern Bering Sea, zooplankton differ across bathymetric regions, with different 

communities being found in the inner (0-50 m), middle (50-100 m), and outer (100 -180 m) shelf 

regions (Cooney & Coyle 1982) (Fig. 1A). Differences in these communities are related to local 
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oceanography and current patterns along the shelf. In addition to spatial variability, the 

community undergoes shifts in abundance and composition in relation to the environment. 

Distinct zooplankton communities inhabit particular water mass types that are related to 

atmospheric forcing and the cycle of annual ice formation and retreat (Coyle & Pinchuk 2002, 

Eisner et al. 2018, Kimmel et al. 2018). Most often compared are warm years characterized by 

early ice retreat, a later spring phytoplankton bloom, and higher overall temperatures; and cold 

years characterized by late ice retreat, an earlier ice-associated bloom, and lower overall 

temperatures (Hunt et al. 2011) . In the southeastern Bering Sea, Calanus spp. populations have 

reduced abundance and lower lipid content during warm periods in contrast to colder years that 

have increased abundance, persistence on the shelf into fall, and higher lipid content (Heintz et 

al. 2013, Eisner et al. 2018, Kimmel et al. 2018). 

The northern Bering Sea (NBS) shelf is characterized by seasonal sea ice cover and high 

water column production that typically goes ungrazed resulting in tight benthic pelagic coupling 

(Grebmeier 2012). The region also has reduced salinities at the surface, cold bottom 

temperatures, and a stronger pycnocline compared to the southern shelf (Stabeno et al. 2012a). 

Three water mass types predominate in the NBS: Anadyr Water that is cold, saline, and nutrient-

rich and found in the western, outer shelf and north of St. Lawrence Island; Alaska Coastal 

Water that is warmer and fresher found near the Alaskan coast; and Bering Shelf Water that is 

intermediate in salinity and temperature (Coachman et al. 1975). Danielson et al. (2017) has 

noted the role that seasonality plays in influencing these water masses and winds may redirect 

typical flow patterns during particular times of the year with not well-understood biological 

consequences (Danielson et al. 2017, Eisner et al. 2020b). Differences among fauna are related to 

these differences in hydrography (Siddon et al. 2020) and zooplankton show correlations to 
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particular water masses or temperature and salinity characteristics (Eisner et al. 2013, Pinchuk & 

Eisner 2017). These correlations appear to be robust and have been tracked as water moves into 

the Chukchi Sea (Hopcroft et al. 2010, Ershova et al. 2015, Kim et al. 2020). 

The NBS was predicted to remain strongly influenced by persistent seasonal ice cover 

(Hermann et al. 2016), albeit with interannual variability until at least 2050 (Stabeno et al. 

2012a). However, recent years of unprecedented low ice coverage have occurred, resulting in 

shifts in oceanographic conditions across the NBS (Stabeno & Bell 2019, Basyuk & Zuenko 

2020) that have been linked to ecosystem-wide responses (Duffy-Anderson et al. 2019, Siddon et 

al. 2020). The recent low ice event of 2018 was determined to be the lowest ice extent in the last 

5500 years based on peat cellulose oxygen isotopes from St. Matthew Island (Jones et al. 2020). 

Most notable was the significant reduction in cold pool (< 2 °C bottom water) extent (Stabeno & 

Bell 2019) and weakened stratification (Duffy-Anderson et al. 2019). This was related to a 

delayed spring phytoplankton bloom (Kikuchi et al. 2020) and a shift in phytoplankton (Fukai et 

al. 2020) and zooplankton community composition (Kim et al. 2020, Kimura et al. 2020). Other 

ecosystem effects were also noted, including: northward movement of demersal fish populations 

(Stevenson & Lauth 2018, Eisner et al. 2020b), shifts in spatial location of forage fish 

(Yasumiishi et al. 2020), sea-bird die-offs (Romano et al. 2020, Will et al. 2020), poor body 

condition of seals (Boveng et al. 2020), and an Unusual Mortality Event was declared for 

bearded, ringed, and spotted seals (Boveng 2019). 

Past studies of the NBS focused on short time frames of zooplankton distributions in 

relation to water mass characteristics (Eisner et al. 2014, Yamaguchi et al. 2021). Here, we seek 

to build on these studies and provide a time-series perspective of how the NBS zooplankton 

community changed over a 17-year period (2002-2018) in response to alternating warm and cold 
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periods (Duffy-Anderson et al. 2017, Duffy-Anderson et al. 2019). The extremely low ice cover 

in the winters of 2017/2018 and 2018/2019 suggests warming may be occurring more rapidly in 

the NBS than has been predicted. The overall objective of this study was to determine if the 

changes observed in zooplankton populations in the southeastern Bering Sea also occurred in the 

NBS over this period of changing climate conditions (warm, cold, warm). We focused on 

comparing the zooplankton response of the more recent years with minimal ice cover (Stabeno & 

Bell 2019) to that of a prior warm period to determine if warm period responses were similar. 

We chose to examine the zooplankton variability in a multivariate framework to discover overall 

community patterns and then chose to focus on individual taxa belonging to specific groups. 

Understanding the zooplankton community response to short-term warming events may provide 

a window into predicting the future community structure and function in a warmer Bering Sea 

and its impact on the broader ecosystem. 

2. MATERIALS & METHODS 

2. 1 Study area 

Based on physics and biology, Stabeno et al. (2012a) placed the dividing line between the 

northern and southern Bering Sea at 60°N. The northern Bering Sea is seasonally covered in ice 

with maximum extent occurring between January and May, but typically peaking in March 

(Clement Kinney et al. 2022), with ice extending south of 60°N (Stabeno et al. 2012a). The 

northern Bering Sea shelf is typically ice free by June and the retreating ice leaves behind a large 

region of bottom water < 2 °C referred to as the cold pool (Clement Kinney et al. 2022) that can 

extend well into the southeastern Bering Sea. As ice melts and the region warms, the 

southeastern Bering Sea middle shelf region stratifies resulting in a two layer system with a 
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mixed layer depth of approximately 25-30 m (Danielson et al. 2011, Stabeno et al. 2012a). This 

stabilization of the water column results in the spring phytoplankton bloom (Danielson et al. 

2011, Sigler et al. 2014). The inner shelf remains vertically mixed or only partially stratified and 

a sharp transition occurs between the inner and middle shelf waters known as the inner front 

which occurs at or near the 50 m isobath (Stabeno et al. 2001). This inner front often prevents the 

movement of low salinity water onto the middle shelf, but may be eroded by winds resulting in 

cross-shelf transport. Danielson et al. (2011) notes that this cross-shelf transport is impacted by 

the relative location of the Aleutian Low either trapping waters near the coast or advecting them 

onto the middle shelf. As previously mentioned, the zooplankton community differs across the 

inner (0-50 m), middle (50-100 m), and outer (100 -180 m) shelf regions (Fig 1A). These cross-

shelf regions are less pronounced north of 60°N; however, the inner-front was reported as 

occurring along the 50 m isobath north of Nunivak Island (Coachman 1986 ). 

We focused on the middle and inner shelves as the outer shelf region had few samples for 

comparison. We used the polygons developed by Ortiz et al. (2012) to define the inner shelf 

using North Inner Shelf region (Ortiz et al. region 11) and the middle shelf as a combination of 

St. Matthews (Ortiz et al. region 9) and North Middle Shelf regions (Ortiz et al. region 10). (Fig. 

1A). Zooplankton and CTD sampling varied within each region (Fig. 1B), but total stations 

occupied were similar between the two regions: middle (370 total stations) and inner (394 total 

stations) shelves. As is common with ecological data, stations often had missing data, thus the 

total sample number reported in the analysis is less than these totals. We also chose to group 

years together to reflect the current temporal occurrence of multiple warm or cold years in a row 

(Duffy-Anderson et al. 2017). We divided the time-series into three distinct periods: Warm 1 

(2002-2005), Cold (2006-2013), and Warm 2 (2014-2018) based on cold pool area (see below). 
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2.2 Environmental data 

Climate and environmental variables are listed in Table 1. The Arctic Oscillation (AO) 

index is obtained by projecting the AO loading pattern to the daily anomaly 1000 mb height field 

over 20°N-90°N latitude (Thompson & Wallace 1998). Here we show the index as a mean of the 

November through March values as this period is the most influential in terms of ice formation. 

We also evaluate the North Pacific Index (NPI), an indicator of the Aleutian Low, since 

atmospheric phenomena over the Arctic (AO index) and Gulf of Alaska (NPI) can impact the 

NBS region (Trenberth & Hurrell 1994). Southeast (SE) and Northwest (NW) winds are the 

proportion of daily NCEP/NCAR Reanalysis wind data at 60°N 170°W blowing from each 

direction. These are used as an index for shifts in Bering Sea advection (Danielson et al. 2012). 

We report wind speed (m s-1) anomalies from two time periods: February-May (spring) which 

covers the early season of zooplankton growth and production and the June-September (summer) 

period preceding and during the sampling period for zooplankton. Finally, we compute a wind 

mixing index for June-September by taking the cube of the time-period mean u wind component 

at 60°N 170°W, since the cube of the friction velocity (u) is proportional to the rate of 

mechanical energy translated to mixing at the ocean surface (Bond & Adams 2002). 

Total ice-covered area (km2) from January through April for the entire Bering Sea (south 

of Bering Strait) was acquired from the National Snow and Ice Data Center. A pixel was 

considered ice-covered if the ice cover exceeded 15%. This cut-off was also used to estimate 

time-period average or annual ice-extent on 15 March. A more localized picture of the ice 

coverage was obtained from the M8 mooring site where a sea-ice profiler allows the percent ice 

cover to be estimated (Stabeno et al. 2019) and we report this percentage for March. Summer 
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cold pool extent measures the area (km2) of cold (< 2°C) bottom water that persists on the Bering 

Sea shelf after ice retreat (Stabeno et al. 2001) and is associated with zooplankton variability 

(Thorson et al. 2020). We report values calculated after the methods of Fedewa et al. (2020) and 

use bottom temperature data collected by the Alaska Fisheries’ Science Center (AFSC) bottom 

trawl survey (Table 1). The 2°C isotherm from these data was also used to estimate time-period 

average or annual cold pool extent. The degree of total ice cover, wind direction and strength, 

and wind mixing impacts advection and timing of the spring phytoplankton bloom, which 

precedes the sampling of zooplankton populations in this study by 2-5 months (Stabeno et al. 

2001, Nielsen et al. 2020). 

Water temperature and salinity data were calculated from conductivity-temperature-

depth (CTD) measurements (Sea-Bird (SBE) 911 or SBE25 CTD) made immediately prior to 

zooplankton sampling. The mean temperature and salinity above and below the surface mixed 

layer depth (MLD) was estimated at each station following Danielson et al. (2011) who defined 

the MLD as the depth where σt is 0.10 kg m-3 greater than the value at 5 m depth. We did not 

compute MLD for the inner shelf as many of the stations were shallow and completely mixed. 

2.3 Phytoplankton data 

Water samples for total and size fractionated chlorophyll a (Chl a) were collected with 

Niskin bottles attached to the CTD. Samples were filtered through Whatman GF/F filters 

(nominal pore size 0.7 µm) to estimate total Chl a, and through polycarbonate filters (pore size 

10 µm) to estimate large-size fraction Chl a. Filters were stored frozen at -80°C and analyzed 

within 6 months with a Turner Designs benchtop fluorometer following standard acidification 

methods (Parsons et al. 1984). 
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2.4 Zooplankton data 

Zooplankton were collected using multiple gear types over the sampling period (Table 2). 

Smaller zooplankton were collected using a vertically towed Juday net (37 cm diameter, 168 μm 

mesh) (Shevelev 2004) from 2002 to 2011 and paired bongo nets (20 cm frame, 153 μm mesh 

for the smaller net) (Kimmel et al. 2018) from 2012 to 2018. Larger zooplankton were collected 

with an obliquely towed ring net (60 cm diameter, 505 μm mesh) from 2002 to 2011 for a subset 

of the samples and obliquely towed, paired bongo nets (60 cm frame, 505 μm mesh) for the 

majority of the samples. The mesh size (505 µm) and diameter (60 cm) was the same for the ring 

net and the bongo net and they were deployed in the same manner (oblique tow at 0.5-0.75 m s-1) 

and we assumed these gears were comparable. A comparison of zooplankton abundance 

estimated from the different smaller mesh size gear deployed at the same location across two 

surveys conducted in the Chukchi Sea (Figure S1) is presented in the Supplementary Materials. 

This comparison provides context for how these nets compared when deployed at the same 

location. Based on these comparisons, we suggest that the two gear types are comparable for 

most taxa, showing increases and decreases in abundance that covary (Figs. S2-8). Additional 

information on gear comparisons may be found in Gorbatenko and Dolganova (2007). Vertical 

tows were within 5 m off the bottom and oblique tows were within 5-10 m of the bottom 

depending on sea state. Volume filtered was estimated from the distance (depth) towed for the 

Juday net assuming 100% filtering efficiency and using a General Oceanics flowmeter mounted 

inside the mouth of each net for the 60 cm diameter nets. Filtration efficiency may vary 

considerably due to particle concentration, mesh size, diameter, and length of net (Skjoldal et al. 

2019). Samples were preserved in 5% buffered formalin/seawater. 
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Zooplankton were identified to the lowest taxonomic level and stage possible at either the 

University of Alaska Fairbanks, the Plankton Sorting and Identification Center (PSIC) in 

Szczecin, Poland, and onboard ship (Juday net samples) by taxonomists from the Pacific Branch 

of the Russian Federal Research Institute of Fisheries and Oceanography (TINRO). Samples 

identified at the PSIC were verified at the AFSC, Seattle, Washington, USA. Hereafter, we will 

refer to Calanus marshallae/glacialis as Calanus spp. as the ability to distinguish between these 

sibling species morphologically is based on taxonomic characters that require significant 

processing time (Frost 1974). This appears to be a problem across the genus as it has been 

suggested that the ability to distinguish between C. glacialis and C. finmarchicus in Atlantic 

waters can only be accomplished with DNA methods (Choquet et al. 2018). Recent results 

suggest that most Calanus in the Bering Sea may in fact be glacialis (Tarrant et al. 2021); 

however, these data are from one year only, so we will refer to Calanus spp. in this paper. We 

selected the taxa for inclusion in the analysis by ranking each taxa according to its percent 

contribution to the total abundance for each sample and each gear type. We estimated the percent 

contribution for each taxa across the entire data set and chose those taxa that made up at least 5% 

of the total abundance on average (Table 3). We also grouped each individual taxa into a broader 

group for easier interpretation of the results. The four groups were: Copepods > 2 mm as adults, 

Copepods < 2 mm as adults, other holoplankton, and meroplankton (Table 3). It is important to 

note that a constituent of the zooplankton community, euphausiids, do not have abundance 

estimates reported here, as larger euphausiids are able to effectively avoid capture (Sameoto et 

al. 1993) thereby making euphausiid abundance estimates semi-quantitative. Accurate and 

precise measurements of euphausiid abundances in the Bering Sea remain the subject of debate 

(Hunt et al. 2016). 
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2.5 Statistical analysis 

All statistical analyses were performed within the R computing environment, version 

3.5.0 (R Core Team 2019). We compared average conditions across each of the three warm or 

cold time-periods using either one-way ANOVA with the anova function, stats package or 

Kruskal-Wallis test (Kruskal & Wallis 1952) with the kruskal.test function, stats package. Prior 

to performing the comparison, the data were tested for normality using the Shapiro-Wilk test 

(Shapiro & Wilk 1965) with the shapiro.test function, stats package and homogeneity of 

variances using the Levene test (Levene 1965) with the leveneTest function, car package (Fox & 

Weisberg 2019). If neither assumption was violated, we used a one-way ANOVA and tested for 

post-hoc differences using Tukey’s Honest Significant Difference test (Tukey 1949) with the 

TukeyHSD function, stats package. If an assumption was violated, we used Kruskall-Wallis and 

tested for post-hoc differences using Dunn’s test (Dunn 1964) with the dunn.test function, 

dunn.test package (Dinno 2017). 

We conducted a multivariate, redundancy analysis (RDA) (Borcard et al. 2011) using the 

rda function in the vegan package (Oksanen et al. 2019). We combined all taxa abundance 

estimates into the RDA, regardless of net size. Data were standardized prior to analysis using the 

decostand function in the vegan package using the “range” method (Borcard et al. 2011). RDA 

included a stepwise-model selection step (ordistep function in vegan package) to identify 

variables for inclusion into the RDA model at a cutoff value of (p < 0.05). Comparison of total 

model fit was done using an Akaike Information Criterion (AIC) and the model with the lowest 

AIC was considered the best fit. We also performed correlation analyses between environmental 

variables and zooplankton abundances using the cor function in the stats package. 
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3. RESULTS 

3.1 Environment 

The area of the Bering Sea covered by ice was less in both warm periods compared to the 

cold period (Fig. 1C, Fig. 2A, B) and was markedly reduced in 2018 with maximum extent 

occurring north of 60°N (Fig. 1C). Both warm periods differed from the cold period, but not 

from each other in terms of total ice area or ice cover (Fig. 2A, B). Cold pool was also reduced in 

both warm periods (Fig. 2C) and the cold pool extended much further south, on average, during 

the cold period (Fig. 1D). As with ice, the cold pool area differed between warm and cold 

periods, but not when comparing the two warm periods (Fig. 2C). The two climate indices, the 

Arctic Oscillation, North Pacific Index, wind mixing, and seasonal wind speeds showed 

variability over the warm and cold periods (Fig. S9), but did not differ on average (data not 

shown). 

Mixed layer depth (MLD) was reduced during the cold period on the middle shelf (Fig. 

3A) and only the second warm period had deeper MLD than the cold period (Fig. 3A). Surface 

temperatures did not differ between the first warm period and the cold period, but both of these 

periods were statistically different from the higher temperatures that occurred in the second 

warm period (Fig. 3B, C). Bottom temperatures anomalies differed across all three time-periods 

on the middle shelf (Fig. 3D), but only the cold period differed from the warm periods on the 

inner shelf (Fig. 3E). As with bottom temperature, surface salinity differed across all three time 

periods on the middle shelf (Fig. 3F), whereas only the two warm periods differed on the inner 

shelf (Fig. 3G). Bottom salinities did not differ between any time period (Fig. 3H, I). 
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3.2 Phytoplankton 

All three time-periods differed in total Chl a concentration on the middle shelf with time-

period average concentrations declining over time (Fig. 4A). The same decline was observed on 

the inner shelf, but only the first warm period differed in average concentration from the cold 

period (Fig. 4B). Chl a concentration anomalies for cells > 10 µm in size mirrored the variability 

in total Chl a concentration over time and resulted in significant differences across all three time 

periods in both shelf regions (Fig. 4C, D). The proportion of Chl a found in cells > 10 µm in size 

was highest in the first warm period and declined over time on both the middle and inner shelves 

and all three time periods also differed in the average proportion of cells > 10 µm in size (Fig. 

4E, F). 

3.3 Zooplankton 

3.3.1 Redundancy analysis 

Redundancy analysis showed associations between environmental variables and 

zooplankton abundance in both shelf regions. The best fit model identified by stepwise selection 

for the middle shelf had ice area, Total Chl a, Chl a > 10 µm in size, cold pool extent, M8 ice 

cover, and bottom temperature as the variables correlated with zooplankton community 

variations (Table 4). Ice area was the first variable loaded into the model and explained the 

majority of the variance (Table 4). Similarly, the best fit model identified by stepwise selection 

for the inner shelf had M8 ice cover, bottom temperature, ice area, and cold pool extent (Table 

4). M8 ice cover was the first variable loaded into the model and explained the majority of the 

variance (Table 4). 
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3.3.2 Copepods > 2 mm 

The three larger species of copepods showed differing responses to environmental 

variability. Calanus spp. (CA) was negatively associated with bottom temperature and positively 

associated with cold pool area (Fig. 5A, 6A). The correlation heat map showed Calanus spp. was 

positively correlated to ice area, M8 ice, and cold pool area on both shelves and the opposite 

correlation patterns were observed for Epilabidocera and Tortanus (Fig. 7). All three periods had 

different, average Calanus spp. abundances with the first warm period having the lowest 

abundances, followed by the second warm period, and the cold period (Fig. 8A, B). Both 

Epilabidocera longipedata (EP) and Tortanus discaudatus (TO) had positive association with 

bottom and surface temperature and total Chl a concentration in both shelf locations (Fig. 5A, 

6A). Epilabidocera was nearly absent from the plankton during the first warm and cold periods 

(Fig. 8C, D); however, was found in high abundances during the second warm period (Fig. 8C, 

D). Tortanus abundance was low on the middle shelf overall and was highest during the first 

warm period (Fig. 8E) in contrast to the inner shelf where abundances were higher overall and 

highest during the second warm period (Fig. 8F). 

3.3.3 Copepods < 2 mm 

Acartia spp. (AC) was associated with colder conditions, in contrast with Centropages 

abdominalis (CE), Oithona spp. (OI), and Pseudocalanus spp. (PS) which were associated with 

warmer conditions (Fig 5B, 6B). Correlations for these species were strongest on the inner shelf 

and weaker on the middle shelf as indicated by the correlation heat map (Fig. 7). Positive 

correlations were found between ice area, M8 ice cover and cold pool area for Acartia spp. on 

both shelves (Fig. 7). Negative correlations for these same variables were observed on both 
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shelves for Centropages and Oithona spp. (Fig. 7). Pseudocalanus spp. had weak correlations on 

the middle shelf, but strong, negative correlations to ice area and M8 ice on the inner shelf (Fig. 

7). Acartia abundances showed only a slight increase during the second warm period on the 

middle shelf (Fig. 9A) and higher, average abundances after the first warm period on the inner 

shelf (Fig. 9B). Centropages average abundances remained low on the middle shelf, with more 

individuals present during the first warm period (Fig. 9C); however, significant increases in 

mean abundance were observed in both warm periods on the inner shelf (Fig. 9D). Oithona spp. 

mean abundance was only elevated during warm periods on the middle shelf (Fig. 9E), but the 

inner shelf populations did not differ (Fig. (F). Pseudocalanus spp. had the highest, mean 

abundance during the second warm period in both shelf locations (Fig. 9G, H). 

3.3.4 Other Holoplankton 

Other holoplankton taxa showed less variability overall compared to copepods and 

meroplankton (Fig. 5C, 6C). Correlations with environmental variables were near zero for other 

holoplankton on the middle shelf and were stronger on the inner shelf (Fig. 7). Amphipoda (AM) 

showed no consistent relationship with environmental condition based on the RDA analysis (Fig. 

5C, 6C) and on average, abundances remained similar across warm and cold periods (Fig. 10A, 

B). The exception was two abundances peaks (Fig. S14) that caused average abundances to be 

higher on the middle shelf in the second warm period (Fig. 10A) and inner shelf in the cold 

period (Fig. 10B). The peak on the inner shelf occurred during the cold period and thus resulted 

in positive correlations with cold conditions (Fig. 7). Based on the RDA, Appendicularia (AP) 

was associated with warmer conditions (Fig 5C, 6C) and correlations between bottom 

temperatures were positive and correlations between ice area, M8 ice, and cold pool area were 
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negative on both shelves (Fig. 7). Appendicularia mean abundance was highest during the 

second warm period on both shelves (Fig. 10C, D), but was also elevated on the middle shelf 

during the cold period (Fig. 10C). Chaetognatha (CH) was associated with colder conditions 

(Fig. 5C, 6C) and had positive correlations with ice area, M8 ice cover, and cold pool area and 

negative correlations with bottom (Fig. 7). Chaetognatha mean abundances were consistently 

higher during cold periods (Fig. 10E, F). Similar to Amphipoda, Cnidaria (CN) and Limacina 

helicina (LH) had no consistent association with environmental variables in the RDA (Fig. 5C, 

6C). On the middle shelf, Cnidaria was negatively correlated with cold conditions in contrast 

with Limacina helicina (LH), which was positively correlated with cold conditions (Fig. 7). 

These relationships were opposite on the inner shelf for Cnidaria, which was positively 

associated with cold conditions (Fig. 7). Cnidaria abundances were higher during warm periods 

on average (Fig. 10G, H), excepting the second warm period on the outer shelf (Fig.10G) and 

Limacina did not differ across warm and cold periods in either shelf location (Fig. 10I, J). 

3.3.5 Meroplankton 

The three meroplankton groups had weaker associations with environmental variables on 

the middle shelf (Fig. 5D) compared to the inner shelf (Fig. 6D).The strongest relationships were 

found for Bivalvia (BI), which had negative correlations with ice area, M8 ice, and cold pool 

area and positive correlations with bottom temperature (Fig. 7). Cirripedia (CI) and Polychaeta 

(PO) also had positive correlations with bottom temperature (Fig. 7), but the correlations 

between ice and cold pool area were not consistent across shelves for Polychaeta (Fig. 7). 

Average abundances of Bivalvia were lowest on the middle shelf during the cold period (Fig. 

11A) and highest on the inner shelf in the second warm period (Fig. 11B). Cirripedia average 
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abundances were highest during first warm period on the middle shelf (Fig. 11C) and equally as 

high during both warm periods on the inner shelf (Fig. 11D). Average Polychaeta abundance was 

lower on the middle shelf overall, but highest during the two warm periods (Fig. 11E). Higher 

abundances of Polychaeta were observed on the inner shelf and abundances during the cold and 

second warm period were higher than those of the first warm period (Fig 11F). 

4. DISCUSSION 

The northern Bering Sea (NBS) zooplankton community had different responses across 

each warm and cold period. We attribute the difference in response was to sea ice, the primary 

variable identified in the redundancy analysis for both shelf regions (Table 4). Of particular note 

was the dramatic reduction in sea ice observed in the second warm period (Fig. 1C) (Stabeno & 

Bell 2019). Warm periods were characterized by reduced ice area and ice cover (Fig. 2A, B) that 

resulted in a reduction in cold pool area (Fig. 1D; Fig. 2C), positive temperature anomalies (Fig. 

3B-E), and a shift to smaller phytoplankton cells (Fig. 4), though this occurred only in the second 

warm period (Eisner et al. 2019, Siddon et al. 2020). Redundancy analysis demonstrated that the 

zooplankton community during the second warm period experienced greater variability 

compared to the prior warm period as given by the wider spread of points in the RDA analyses 

(red squares, Figs. 5 and 6). This suggests that the when the ice coverage extends south of 60°N, 

as was observed in 2002-2005 (Fig. 1C), the NBS zooplankton community will less impacted. 

Once a minimum threshold in ice extent and timing of retreat is reached, as happened during the 

second warm period (Fig. 1C), the community will show a response. In general, Copepods < 2 

mm (except Acartia spp.), Meroplankton, and Copepods > 2 mm (except Calanus spp.) 
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abundance were all negatively correlated with colder conditions and positively correlated with 

warm conditions, in particular bottom temperature (Fig. 7). These local responses may be 

significantly altered by advection, though we found no relationships with wind in this study as 

our proxy for advection. Cold years with ice-cover in the NBS may have experienced less 

advection of zooplankton populations into these waters resulting in less overall variability in the 

zooplankton community, whereas warm years saw zooplankton populations advected into this 

region. This is supported by the observation that heat flux advection increased dramatically 

during 2014-2018 in the northern Bering and Chukchi Seas (Danielson et al. 2020). The shifts in 

the zooplankton community that we observed (e.g., an increase in smaller-sized copepods, neritic 

species, and meroplankton) may have contributed to the ecosystem response seen in higher 

trophic level organisms, such as seabird die-offs, as described in Siddon et al. (2020). 

Both warm periods differed from the cold period in average ice area and cover as well as 

cold pool extent, but the two warm periods did not differ statistically (Fig. 2). The lack of 

statistical difference was directly related to the impacts of the 2017/2018 winter on both ice and 

cold pool extent, increasing the magnitude of the standard deviation for these metrics for the 

second warm period. The NBS near M8 has experienced considerable variability in the timing of 

sea ice arrival/retreat over time, but it was largely ice covered for approximately five months of 

the year (Stabeno & Bell 2019, Stabeno et al. 2019). This changed in 2017/2018 with a late 

arrival and early retreat of the ice that was driven by shifts in wind (in particular, strong winds 

from the south during February) (Stabeno & Bell 2019, Thoman et al. 2020). We found no 

differences in spring or summer wind speed or mixing across time periods likely because we 

averaged wind speeds and mixing over discrete time-periods, rather than examine daily wind 

variability within a given year. The cold pool area was larger, on average, in the second warm 
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period (Fig. 2), but again this masked the smallest ever recorded cold pool extent in 2018 

(Stabeno & Bell 2019) and the 2°C isotherm was not detected in the bottom trawl survey during 

2018 (Fig. 1 D). We could have separated the years 2017 and 2018 into a third warm period to 

explore these differences however, the resulting sample size would have been too small for 

meaningful statistical comparison. We also suspect that a finer spatially resolved ice coverage 

index, rather than a Bering Sea-wide annual index, would show greater differences for the NBS 

in the second warm period and we aim to explore this in a future study. We conclude that the 

warm periods present in this data set were similar in terms of average annual indices overall, but 

note that the winter of 2017/2018 distorted the averages reported here as defining a “warm” 

period. The winter of 2017/2018 represented a significant anomalous event resulting in large 

shifts in oceanographic conditions as has been widely reported (Stabeno & Bell 2019, Siddon et 

al. 2020). 

The two warm periods had different water column characteristics relative to the cold 

period, and these also differed between the two shelf regions. The early ice retreat on the middle 

shelf resulted in increased mixing of more saline bottom waters with fresher water left after ice 

retreat, resulting in a greater MLD and higher salinities at the surface (Danielson et al. 2011). 

Temperatures increased in both surface and bottom waters during both warm periods, with the 

notable exception of the middle shelf during the first warm period, which had lower average 

surface temperature relative to the subsequent cold period (Fig. 3B). Bottom temperatures were 

much warmer on the middle shelf in the first warm period relative to the other time periods (Fig. 

3). This difference in surface and bottom warming over contrasting warm and cold periods has 

been noted (Stabeno et al. 2012b) as stratification differences do not always impact bottom 

temperatures in a consistent manner (Ladd & Stabeno 2012). This highlights the difficulties in 
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ascribing “warm” and “cold” to particular time periods based solely on temperature in these 

layers. The salinity response also differed between the middle and inner shelves at the surface, 

with salinities increasing during warm periods on the middle shelf (Fig. 3F) and decreasing on 

the inner shelf, though only in the second warm period (Fig. 3G). In contrast, the inner shelf was 

influenced by increased freshwater input as a result of warmer conditions, thus lower salinity 

waters left by retreating ice remained reduced in salinity (Ueno et al. 2020). This led to an 

inverse correlation between surface salinities on the middle and inner shelves (Danielson et al. 

2011). 

Total chlorophyll a and chlorophyll a > 10 µm concentrations, as well as the proportion 

of cells > 10 µm, were all highest in the first warm period (Fig. 4). We expected both warm years 

to be characterized by smaller cell sizes due to the tendency for phytoplankton cell size to 

decrease in the Bering Sea as temperature increases (Fujiwara et al. 2011). Studies also report a 

decrease in phytoplankton cell size occurs during warming, though may be mediated or driven 

by other effects such as grazing or nutrient availability (Daufresne et al. 2009, Peter & Sommer 

2013). The increased proportion of larger cells during the initial warm period may have been 

related to the similar MLD and surface temperatures observed as occurred in the cold period 

(Fig. 3A-C). However, other factors may be responsible for influencing phytoplankton 

community structure, including nutrient availability, grazing, or shifts in seasonal phenology. 

The reduction in cell size in the second warm period likely indicated a reduction in large size 

diatoms that dominate the NBS phytoplankton community on average (Zhuang et al. 2014). The 

NBS community was characterized by smaller cells in 2018 particularly on the middle shelf 

(Fukai et al. 2020), and it also had very low proportions (~ 0.1) of large phytoplankton on the 

middle shelf in 2014, likely due to a bloom of coccolithophores (Ladd et al. 2018). While we did 
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not measure primary production in our study, the lack of ice cover in Arctic waters has been 

suggested to lead to increased pelagic primary production (Arrigo & van Dijken 2015), increased 

influence of zooplankton grazing, and a reduction in material flux to the benthos thereby 

reducing overall benthic production (Lovvorn et al. 2005). A reduction in diatoms (both pelagic 

and sympagic) would result in reduced flux of carbon to the benthos, a situation that appears to 

be underway in the NBS (Grebmeier 2012). 

Redundancy analysis showed a distinction between the zooplankton community during 

warm and cold periods. Communities from stations sampled during the cold period clustered 

closely together, particularly on the middle shelf (Fig. 5), whereas warmer water communities 

had a wider spread of data points (Figs. 5, 6). The copepod Calanus spp. and Chaetognatha 

increased in abundance during the cold periods and were positively correlated with increased ice 

area and negatively correlated with higher bottom temperatures (Fig. 7). Both taxa have been 

shown to associate with Bering Shelf Water (Eisner et al. 2013, Eisner et al. 2014) and Eisner et 

al. (2014) noted that the inner front bordered inshore by Alaska Coastal Water may be weaker 

during cold years allowing these middle shelf species to enter onto the inner shelf. In contrast, 

warm periods were correlated with increased abundances of two neritic Copepods > 2 mm taxa 

(Epilabidocera and Tortanus) (Pinchuk & Eisner 2017), Copepods < 2 mm (with the exception 

of Acartia spp.), and meroplankton (Fig. 7). We hypothesize that Alaska Coastal Water 

(Danielson et al. 2017) expanded across both shelves during the warm periods bringing the 

neritic zooplankton community with it. Eisner et al. (2020b) reported that distributions of 

walleye pollock followed a similar pattern, with a more narrow longitudinal distribution during 

2010 (cold year) and wide longitudinal distribution during warm years (2017-2019). The 

increase in copepod numbers overall was likely a function of increased temperatures driving 
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increases in growth rate, egg production, and reduced development times (Hirst & Bunker 2003), 

allowing abundances to accumulate. Pseudocalanus spp. has been found to be more responsive 

to temperature than food in relation to these rates (Liu & Hopcroft 2008) and the latter warm 

period showed much higher Pseudocalanus spp. abundances (Fig. 9G, H) as well as increases in 

Epilabidocera (Fig8C, D), Tortanus (Fig. 8F), and Centropages (Fig. 9D). 

The other members of the holoplankton community, aside from Chaetognatha, were less 

correlated to environmental conditions on the middle shelf, but colder conditions were associated 

with Amphipoda and Cnidarian on the inner shelf (Fig. 7). The amphipod Themisto libellula has 

been observed to increase in abundance during cold periods (Pinchuk et al. 2013); however, we 

did not observe an increase in this species. The two large peaks of amphipods were Themisto 

pacifica (2016, middle shelf) and Corophium spp. (2013, inner shelf). Since large increases in 

these taxa were not associated with an environmental variables, we may have simply sampled an 

anomalous patch of these organisms during the surveys. Cnidarian abundances are consistently 

problematic to interpret due to the destructive nature of net sampling, therefore we do not draw 

major conclusions from these abundance estimates. More interesting was the increase in 

meroplankton observed during the warm periods. Meroplankton may dominate the plankton at 

times and release has been associated with the spring phytoplankton bloom in the northern 

Bering Sea and shallower Chukchi Sea (Matsuno et al. 2011, Questel et al. 2013, Kimura et al. 

2020). Kimura et al. (2020) found all three meroplankton groups we identified had peaked on the 

NBS shelf inshore of 170°W during August of 2017, suggesting seasonal release of 

meroplankton may be later in the year in the NBS and tied to ice retreat timing. For example, 

earlier ice retreat and warmer bottom temperatures appeared to stimulate the release of Cirripedia 

in the Chukchi Sea (Matsuno et al. 2011). 
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Shifts in the zooplankton community have impacts on higher trophic level predators often 

through the impact on key forage taxa such as Calanus spp. We found Calanus spp. variability in 

response to warm and cold periods to be similar to that observed over a shorter time period 

(2003-2009) in the NBS (Eisner et al. 2014) and over the southeastern shelf (Baier & Napp 2003, 

Coyle et al. 2008, Eisner et al. 2018, Kimmel et al. 2018) with this taxon positively correlating 

with increased ice cover, cold pool area, and low bottom water temperatures (Fig. 7) (Eisner et 

al. 2013, Eisner et al. 2014). Much remains to learn about Calanus spp. biology in this region, 

including which specific species of Calanus may be present (Nelson et al. 2009) and whether 

Calanus spp. diapause dynamics are changing in response to warming. We are seeing 

preliminary evidence that a second generation of Calanus spp. may be present on the Bering Sea 

shelf (Pinchuk et al. 2014) as has been shown at lower latitudes and has been predicted with life-

history modeling (Banas et al. 2016). Our results suggest that continued warming of the NBS 

will result in a decline in Calanus spp. abundance in this region. This decline in Calanus spp. 

may impact adult fish that were seen to move northwards during the low ice events of 2017/2018 

and 2018/2019 (Stevenson & Lauth 2018, Eisner et al. 2020b) as well as juvenile fish that rely 

on Calanus spp. as prey for lipid acquisition prior to overwintering (Heintz et al. 2013). We also 

observed a large increase in abundance of the copepod E. longipedata, a little studied copepod 

that may be a significant portion of juvenile pink salmon (Oncorhynchus gorbuscha) diets at 

times (Armstrong et al. 2005). It remains to be seen whether this species will become more 

prevalent in Bering Sea waters in the future. 

The increase in smaller-sized zooplankton during the latter warm period may offer a 

glimpse into the future Bering Sea, which is projected to continue to warm (Hermann et al. 

2019). Size decrease is thought to be a global response in ectotherms to increasing temperature 
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(Gardner et al. 2011). A reduction in zooplankton size has been observed in mesocosms (Garzke 

et al. 2015) and in long-term time-series of zooplankton (Rice et al. 2015) in response to warmer 

temperatures. Both the body size of individuals (Miller et al. 1992) and overall, mean body size 

of the zooplankton community (Chiba et al. 2015) have been shown to decline during warm 

periods. A community of smaller-sized zooplankton grazing on smaller sized phytoplankton 

would decrease trophic transfer efficiency (greater number of links in food web) and reduce the 

delivery of ungrazed phytoplankton to the benthos (Lovvorn et al. 2016). The result would be 

more carbon cycling in the pelagic, favoring the accumulation of small copepods. Smaller-

bodied zooplankton are lower in energy density and are often lipid-poor relative to larger 

zooplankton (Siddon et al. 2013, Gorokhova 2019). The increase in smaller-sized zooplankton 

taxa may also accompany a decline in the lipid-rich Calanus spp., though it has been suggested 

that the increasing number of smaller zooplankton (with some lipid storage) may compensate for 

the loss of lipid-rich species of Calanus (Renaud et al. 2018). However, we must caution against 

over interpretation of our results as the reduced ice cover in 2017-2018 may be a single, 

infrequent event. Nevertheless, if the reduction of ice cover across the Arctic continues as 

predicted by some models (Peng et al. 2020), it will result in widespread ecosystem change. 

5. CONCLUSIONS 

We compared the northern Bering Sea zooplankton community across one cold and two 

warm periods. Similar to prior studies, we found that the cold and warm periods differed in 

zooplankton community response; however, the community response was particularly striking 

during the 2017/2018 low ice event. The NBS zooplankton community had a weaker response to 

the first warm period, suggesting that the persistence of ice cover in this region, even during 
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warm periods, appears to provide some buffer to broad-scale zooplankton community change. 

However, the low ice extent experienced in 2017/2018 resulted in positive abundance anomalies 

for small copepods, particularly on the middle shelf, which coincided with a decline in Calanus 

spp. abundance. This response is similar to what has been observed in the SEBS and suggests 

that the NBS zooplankton community will respond similarly if a particular minimum ice cover 

extent and retreat threshold is reached. It also suggests an increased role of smaller-bodied 

zooplankton in cycling of energy in the NBS if the open- water period increases substantially as 

ice retreats. The result would be a transition from tight benthic-pelagic coupling to a decoupled 

pelagic ecosystem. 
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932 TABLES  

 

Table 1. Climate and environmental variables  used to calculate standardized anomalies and conduct the redundancy analysis  for the  

survey period 2002-2018, including  abbreviation, source, reference, and hyperlink.  

 

933 

934 

935 

936 

Variable Abbreviation Source Reference Link 

Arctic Oscillation Nov- AO NWS CPC1 Thompson and Wallace https://www.cpc.ncep.noaa.gov/products/pre 

Mar Mean Index (1998) cip/CWlink/daily_ao_index/ao_index.html 

North Pacific Index Nov- NPI NCAR2 Trenberth and Hurrell https://climatedataguide.ucar.edu/sites/defaul 

Mar Mean Index (1994) t/files/npindex_anom_ndjfm.txt 

Ice area anomaly (Jan-Apr) IA NASA NSIDC3 Stroeve and Meier (2018) https://nsidc.org/ 

(km2) 

Ice percentage around M8 M8I NASA NSIDC3 Stroeve and Meier (2018) https://nsidc.org/ 

mooring in March 

Summer cold pool extent CP NMFS bottom Fedewa et al. (2020) https://www.fisheries.noaa.gov/alaska/comm 

(km2) trawl survey4 ercial-fishing/alaska-groundfish-bottom-

trawl-survey-data 

Wind mixing Jun-Sep WM NCEP/NCAR Danielson et al. (2012) http://apdrc.soest.hawaii.edu/erddap/griddap 

(Summer) (m s-1) Reanalysis5 
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SE wind Feb-May (Spring) SpSE NCEP/NCAR Danielson et al. (2012) http://apdrc.soest.hawaii.edu/erddap/griddap 

(m s-1) Reanalysis5 

SE wind Jun-Sep SuSE NCEP/NCAR Danielson et al. (2012) http://apdrc.soest.hawaii.edu/erddap/griddap 

(Summer) (m s-1) Reanalysis5 

NW wind Feb-May SpNW NCEP/NCAR Danielson et al. (2012) http://apdrc.soest.hawaii.edu/erddap/griddap 

(Spring) (m s-1) Reanalysis5 

NW wind Jun-Sep SuNW NCEP/NCAR Danielson et al. (2012) http://apdrc.soest.hawaii.edu/erddap/griddap 

(Summer) (m s-1) Reanalysis5 

Mixed layer depth (m) MLD CTD 

Surface temperature (°C) ST CTD 

Bottom temperature (°C) BT CTD 

Surface salinity SS CTD 

Bottom salinity BS CTD 

Total Chl a (µg L-1) TC Bottle samples 

Chl a > 10 µm (µg L-1) CG10 Bottle samples 

937 1National Weather Service, Climate Prediction Center, 2National Center for Atmospheric Research,  3National Aeronautics and Space 

Administration,  National  Snow and  Ice Data Center,  4National Marine Fisheries Service,  5National Center for Environmental  

Prediction/National Center for  Atmospheric Research  
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Year   Juday (N)   20 cm (N)   60 cm (N)  Dates  

 Inner   Middle Inner   Middle Inner   Middle  

 2002 

 2003 

 2004 

 2005 

 2006 

 2007 

 2008 

 2009 

 2010 

 2011 

 2012 

 2013 

 2014 

 2015 

 2016 

 2017 

 2018 

 

 7 

 7 

 7 

 6 

 7 

 

 13 

 16 

 18 

 

 

 

 

 

 

 

 

 4 

 11 

 9 

 8 

 8 

 

 13 

 8 

 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 

 

 

 13 

 

 16 

 15 

 16 

 17 

 16 

 

 

 

 2 

 11 

 17 

 

 18 

 

 1 

 1 

 

 27 

 17 

 10 

 17 

 8 

 14 

 16 

 16 

 16 

 15 

 13 

 

 13 

 9 

 16 

 13 

 11 

 16 

 15 

 16 

 17 

 17 

 10 

 8 

 19 

 16 

 14 

 12 

 

 12 

 3 

 7 

 

 3 

 26 

 17 

 10 

 17 

 8 

 17-24 Sep 

 28 Sep – 2 

Oct  

 14-28 Sep 

   17 Sep - 4 Oct  

 4 Sep – 10 

Oct  

 17 Sep – 11 

Oct  

 

 1 Sep – 11 

Oct  

 14-25 Sep 

  24 Aug – 25 

 Sep 

  29 Aug - 28 

 Sep 

 17-24 Sep 

 14-24 Sep 

 1 Sep – 6 Oct  

  28 Aug – 18 

 Sep 

  28 Aug – 9 

 Sep 

 1-10 Sep 

941 Table 2. Zooplankton data collection: year of survey, total number of net tows for each gear type: 
942 37 cm diameter, 168 µm mesh net (Juday); 20 cm diameter, 153 µm mesh bongo net (20 cm); 60 
943 cm diameter, 505 µm mesh ring or bongo net (60 cm) within the middle and inner shelf regions, 
944 and dates when the surveys were conducted. 
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 Taxa Abbreviation  Gear   Stage/Size Group  

  Calanus spp. 

Epilabidocera 

 longipedata 

 Tortanus 

 discaudatus 

 CA 

EP  

 TO 

 20 cm/60 cm 

 20 cm/60 cm 

 20 cm/60 cm 

 C3-C6 

 C1-C6 

 C1-C6 

 Copepods > 2 mm 

 Copepods > 2 mm 

 Copepods > 2 mm 

 Acartia spp. 

 Centropages 

 abdominalis 

 AC 

 CE 

 Juday/20 cm 

 20 cm/60 cm 

 C1-C6 

 C1-C6 

 Copepods < 2 mm 

 Copepods < 2 mm 

  Oithona spp. 

  Pseudocalanus spp. 

 OI 

 PS 

 Juday/20 cm 

 Juday/20 cm 

 C1-C6 

 C1-C6 

 Copepods < 2 mm 

 Copepods < 2 mm 

 Amphipoda 

Appendicularia  

Chaetognatha  

 Cnidaria 

  Limacina helicina 

 AM 

AP  

 CH 

 CN 

LH  

 60 cm 

 60 cm 

 60 cm 

 60 cm 

 60 cm  

 < 20 mm 

 < 20 mm 

 < 20 mm 

Medusa  

 < 20 mm 

 Other Holoplankton  

Other Holoplankton  

 Other Holoplankton  

Other Holoplankton  

Other Holoplankton  

 Bivalvia 

 Cirripedia 

Polychaeta  

 BI 

 CI 

 PO 

 Juday/20 cm  

 60 cm  

 Juday/20 cm  

Larvae  

Nauplius/Cypris  

Larvae  

Meroplankton  

Meroplankton  

Meroplankton  

  

   

945 Table 3. Taxa considered in the multivariate analysis, abbreviation, gear type: 37 cm diameter, 

946 168 µm mesh net (Juday); 20 cm diameter, 153 µm mesh bongo net (20 cm); 60 cm diameter, 

947 505 µm mesh ring or bongo net (60 cm), zooplankton stage or size limit, and group. For 

948 copepods, C refers to copepodite and the number to stage, with 6 being the adult stage. 

949 

950 

951 
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   958 

952 Table 4. Step-wise model selection results for the middle and inner shelf zooplankton community 

953 redundancy analyses: Columns show variables included in each iteration of the model selection, 

954 as well as the corresponding Akaike Information Criterion (AIC) values, F values, and p-values. 

955 The r2 value represents the result for the full model. Variable abbreviations can be found in 

956 Table 1. 

957 

Variable Middle Shelf (r2 = 0.34) 

AIC F p 

IA + TC + CG10 + CP + M8I + BT -50.79 2.28 0.01 

IA + TC + CG10 + CP + M8I -50.25 2.12 0.03 

IA + TC + CG10 + CP -49.93 2.65 0.01 

IA + TC + CG10 -49.09 2.83 0.005 

IA + TC -48.13 3.49 0.005 

IA -46.86 4.57 0.005 

Inner shelf (r2 = 0.26) 

M8I + BT + IA + CP -67.79 2.65 0.005 

M8I + BT + IA -67.001 3.34 0.005 

M8I + BT -65.55 5.03 0.005 

M8I -62.49 5.41 0.005 
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959 FIGURES 

960 

961 Figure 1. Map of the study  area showing the  North  Middle  Shelf (Middle; combined areas of  
Ortiz et al. 2012 regions 9 and 10) and the  North Inner  Shelf (Inner; Ortiz et al. 2012 region 11)  
regions  (A). Location of  the M8 mooring site is indicated and the  closed  circle represents the 
location used for wind data (60°N, 170°W)  (A). Light  gray line  represents the 50 m isobath, dark 
gray line represents the 100 m isobath, and solid black line to the west represents the 200 m  
isobath and these isobaths are used as separators for the inner, middle, and outer shelf  
respectively (A). Sample count  (N)  for the entire study period ( B). Average  ice-extent as of 15 
March  (C)  and average location of the 2°C bottom  temperature isotherm, indicator of the cold 
pool extent (D)  for warm period 1 (Warm 1 2003-2005; red), cold period (Cold 2006-2013; 
blue), and warm period 2 (Warm 2 2014-2018; green). Also shown i s ice extent in 2018, a  year  
of record low ice  cover in the  Bering (C, black). The cold pool was not detected within the  
survey boundary in 2018.  
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974 

975 Figure  2. C omparisons of total  ice area (A), March percent ice cover around M8 mooring (B),  
and cold pool area (C)  across  Warm  1 (2002-2005, red), W arm 2 (2014-2018,  red) and cold 
(2006-2013, blue)  periods.  Points represent time-period mean and  error bars  ±  1 SE of the mean  
(Warm 1  N  = 4, Cold N  = 8, Warm 2 N  = 5). Periods that have different lower case letters had  
means that differed based on one-way ANOVA (p < 0.05) and Tukey Honest Significant  
Differences  post-hoc  tests (p  < 0.05)  and periods  with the same lower  case letter did not.  
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982 

983 Figure  3. Comparisons of  mixed layer depth  (MLD) (A ),  surface temperature  (B, C), bottom  
temperature (D, E), surface salinity  (F, G), and bottom salinity (H, I) across  Warm  1 (2002-2005, 
red), W arm 2 (2014-2018, red) and Cold (2006-2013, blue)  periods  for the middle  (left panels)  
and inner shelf  (right panels).  Points represent time-period mean  and error bars  ±  1 SE of the  
mean (Middle: Warm 1  N  = 67, Cold N  = 108, Warm 2 N  = 140;  Inner: Warm 1 N  = 63, Cold N  
= 110, Warm 2 N  = 81).  Periods that have different lower case letters had  means that differed  
based on Kruskal-Wallis (p < 0.05) and Dunn’s  post-hoc  tests (p  < 0.05)  and periods with the  
same lower  case letter did not.  
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993
994
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996
997
998
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991 

992 Figure  4. Comparisons of  total chlorophyll a  concentration (Total Chl a) (A, B), chlorophyll >  
10 µm cell diameter  concentration  (Chl  a  > 10 µm) (C, D), and proportion of chlorophyll  a  > 10 
µm (E, F) across  Warm  1 (2002-2005, red), W arm 2 (2014-2018, red) and Cold (2006-2013, 
blue)  for the middle  (left panels)  and inner shelf  (right panels).  Points represent time-period 
mean and error bars  ±  1 SE of the mean (Middle:  Warm 1 N  = 67, Cold N  = 108, Warm 2 N  = 
140;  Inner: Warm 1 N  =  63, Cold N  = 110, Warm 2 N  = 81). Periods that have different lower  
case letters had means that differed based on  Kruskal-Wallis (p < 0.05) and Dunn’s  post-hoc  
tests (p  < 0.05)  and periods with the same lower case letter did not.   
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1002
1003
1004
1005
1006

1000 

1001 Figure  5. Redundancy analysis bi-plots  for the middle shelf. Zooplankton taxa (black, solid line)  
were divided into four  groups: Copepods > 2 mm (A), Copepods < 2 mm (B), Holoplankton (C), 
and Meroplankton (D). Taxa abbreviations and group membership are  found in Table 3. 
Environmental variables  (light  gray, dashed line)  abbreviations are found in Table 1. Each data 
point represents one sampling station;  Warm  1 (2002-2005, red  triangles),  Warm 2 (2014-2018, 
red  squares) and cold (2006-2013, blue  circles).  

44 



 
 

  

 
 
 
 
 
 

   

1007 

1008 Figure  6. Redundancy analysis bi-plots for the inner shelf. Zooplankton taxa (black, solid line)  
were divided into four  groups: Copepods > 2 mm (A), Copepods < 2 mm (B), Holoplankton (C), 
and Meroplankton (D). Taxa abbreviations and group membership are  found in Table 3. 
Environmental variables  (light  gray, dashed line)  abbreviations are found in Table 1. Each data  
point represents one sampling station;  Warm  1 (2002-2005, red triangles),  Warm 2 (2014-2018, 
red squares) and cold (2006-2013, blue circles).  
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1015

1016
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1018
1019

Figure 7. Correlation (Spearman’s ρ) heat map for zooplankton identified by taxa and group and 
environmental variables identified by step-wise model selection during redundancy analysis 
(Table 4). Positive correlations are shown by the increasing intensity of red and negative 
correlations by the increasing intensity of purple. 
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1021
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1024
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1027
1028

Figure 8: Copepods > 2 mm: Differences in abundance (number m-3) of Calanus spp. (A, B), 
Epilabidocera longipedata (C, D), and Tortanus discaudatus (E, F) across Warm 1 (2002-2005, 
red), Warm 2 (2014-2018, red) and Cold (2006-2013, blue) for the middle (left panels) and inner 
shelf (right panels). Points represent time-period mean and error bars ± 1 SE of the mean 
(Middle: Warm 1 N = 58, Cold N = 103, Warm 2 N = 83; Inner: Warm 1 N = 62, Cold N = 101, 
Warm 2 N = 81). Periods that have different lower case letters had means that differed based on 
Kruskal-Wallis (p < 0.05) and Dunn’s post-hoc tests (p < 0.05) and periods with the same lower 
case letter did not. 
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1037

Figure 9. Copepods < 2 mm: Differences in abundance (number m-3) of Acartia spp. (A, B), 
Centropages abdominalis (C, D), Oithona spp. (E, F), and Pseudocalanus spp. (G, H) across 
Warm 1 (2002-2005, red), Warm 2 (2014-2018, red) and Cold (2006-2013, blue) for the middle 
(left panels) and inner shelf (right panels). Points represent time-period mean and error bars ± 1 
SE of the mean (Middle: Warm 1 N = 58, Cold N = 103, Warm 2 N = 83; Inner: Warm 1 N = 62, 
Cold N = 101, Warm 2 N = 81). Periods that have different lower case letters had means that 
differed based on Kruskal-Wallis (p < 0.05) and Dunn’s post-hoc tests (p < 0.05) and periods 
with the same lower case letter did not. 
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Figure 10: Other holoplankton: Differences in abundance (number m-3) of Amphipoda (A, B), 
Appendicularia (C, D), Chaetognatha. (E, F), Cnidaria (G, H), and Limacina helicina (I, J) across 
Warm 1 (2002-2005, red), Warm 2 (2014-2018, red) and Cold (2006-2013, blue) for the middle 
and inner shelf. Points represent time-period mean and error bars ± 1 SE of the mean (Middle: 
Warm 1 N = 58, Cold N = 103, Warm 2 N = 83; Inner: Warm 1 N = 62, Cold N = 101, Warm 2 N 
= 81). Periods that have different lower case letters had means that differed based on Kruskal-
Wallis (p < 0.05) and Dunn’s post-hoc tests (p < 0.05) and periods with the same lower case 
letter did not. 
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1055

Figure 11: Meroplankton: Differences in abundance (number m-3) of Bivalvia (A, B), Cirripedia 
(C, D), and Polychaeta (E, F) across Warm 1 (2002-2005, red), Warm 2 (2014-2018, red) and 
Cold (2006-2013, blue) for the middle and inner shelf. Points represent time-period mean and 
error bars ± 1 SE of the mean (Middle: Warm 1 N = 58, Cold N = 103, Warm 2 N = 83; Inner: 
Warm 1 N = 62, Cold N = 101, Warm 2 N = 81). Periods that have different lower case letters 
had means that differed based on Kruskal-Wallis (p < 0.05) and Dunn’s post-hoc tests (p < 0.05) 
and periods with the same lower case letter did not. 
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