

Supplement of

Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation state and hygroscopicity

Evangelia Kostenidou et al.

Correspondence to: Athanasios Nenes (athanasios.nenes@gatech.edu) and Spyros N. Pandis (spyros@chemeng.upatras.gr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

OA Type	Sa	turation (ΔH_{vap} (kJ mol ⁻¹)		
	10^{-1} 1 10 Average C^*		Average C^*	- · · ·	
			a =1		
MO-OOA	0.44	0.14	$\frac{u_m-1}{0.42}$	0.95±0.31	89±10
LO-OOA	0.27	0.19	0.54	1.88±0.32	58±13
Isoprene-OA	0.41	0.16	0.43	1.05 ± 0.30	63±15
BBOA	0.47	0.29	0.24	0.59±0.22	55±11
Total OA	0.54	0.19	0.27	0.55±0.29	86±9
			$a_m = 0.1$		
MO-OOA	0.23	0.17	0.60	2.36±3.33	100
LO-OOA	0.52	0.18	0.30	0.59±3.17	98±6
Isoprene-OA	0.60	0.10	0.30	0.49±3.53	96±8
BBOA	0.64	0.19	0.17	$0.34{\pm}2.48$	86±9
Total OA	0.65	0.09	0.25	0.40±3.53	100

Table S1. Volatility distribution, average volatility and vaporization enthalpy for each
PMF factor and for the total OA.

			$a_m = 0.0$)1	
MO-OOA	0.46	0.11	0.43	0.92 ± 3.74	150
LO-OOA	0.40	0.06	0.54	1.41 ± 3.32	121±25
Isoprene-OA	0.32	0.12	0.56	1.72 ± 2.93	113±22
BBOA	0.32	0.35	0.32	$1.00{\pm}2.47$	100

1.00±3.16

$a_m=1,$	СЕтр=0.9*СЕвр
----------	---------------

0.41

		****	-, = 10 .	• · · · • = b1	
MO-OOA	0.41	0.24	0.35	0.86 ± 2.97	86±9
LO-OOA	0.42	0.29	0.28	0.73 ± 3.69	63±15
Isoprene-OA	0.39	0.25	0.36	0.95 ± 2.70	54±10
BBOA	0.52	0.46	0.02	0.32 ± 1.89	54±10
Total OA	0.19	0.19	0.62	2.64 ± 4.5	58±13

31

Total OA

0.40

0.19

Saturation Concentration C^* (µg m⁻³) OA Type 10-1 10 Average C^* 1 $\Delta H_{vap} = 50 \text{ kJ mol}^{-1}$ MO-OOA 9.00±3.96 0.00 0.95 0.05 LO-OOA 0.25 0.05 0.70 2.80±3.15 Isoprene-OA 0.35 0.05 0.60 1.78±3.15 0.45±3.15 BBOA 0.65 0.05 0.30 7.08±3.15 Total OA 0.05 0.05 0.9 -90 k I mol-1 1 U

32	TableS2:	Volatility	distribution	and	average	volatility	for	specific	vaporization
33	enthalpies for	or each PM	F factor and f	or the	total OA	.•			

		⊿ <i>П vap</i> −о∪ К.	J 11101 -	
MO-OOA	0.35	0.15	0.50	1.41 ± 3.15
LO-OOA	0.64	0.16	0.20	0.26±3.15
Isoprene-OA	0.75	0.05	0.20	0.28±3.15
BBOA	0.87	0.03	0.10	0.17±3.17
Total	0.45	0.25	0.3	0.71±3.15

		ΔH_{vap} =100 k	kJ mol ⁻¹	
MO-OOA	0.60	0.04	0.36	0.58 ± 3.95
LO-OOA	0.90	0.04	0.06	0.14±3.96
Isoprene-OA	0.95	0	0.05	0.13±3.54
BBOA	0.96	0.04	0.00	0.11±3.15
Total OA	0.76	0.04	0.2	0.27±3.16

- 1

....

34

35

36

37

38

39

40

41

42

43

46	Table S3. Saturation v	apor pressure	(P^o)	and saturation	concentration	(C^*)) (:	at 298 K)) for
----	------------------------	---------------	---------	----------------	---------------	---------	------	-----------	-------

47 various acids.

Organic acid	<i>P</i> ^o (298K)	<i>C</i> *(298K)
	(Pa*10 ⁻⁵)	(µg m ⁻³)
Adipic acid		
Bilde et al. (2003)	0.73 (0.4)	0.43
Riipinen et al. (2007)	0.78 (0.43)	0.46
Saleh et al. (2009)	0.52 (0.3)	0.31
Yaws et al. (2003)	0.78 (0.43)	0.46
Azelaic acid		
Bilde et al. (2003)	0.44 (0.18)	0.34
Yaws et al. (2003)	0.81 (0.3)	0.62
Malonic acid		
Bilde et al. (2003)	8.35 (1.78)	3.5
Hyvärinen et al. (2006)	7.45 (1.58)	3.1
Suberic acid		
Bilde et al. (2003)	0.05 (0.14)	0.036
Pimelic acid		
Saleh et al. (2008)	7.2 (1.7)	4.65
Oxalic acid		
Booth et al. (2010)	2150 (860)	780
Glutaric acid		
Bilde and Pandis (2001)	75 (37)	39.9
Bilde (2003)	88 (44)	46.8
Succinic acid		
Bilde 2003	3.93	1.9
Hyvärinen et al. 2006	4.97	2.4
Saleh 2009	4.31	2.1
Yaws 2003	4.77	2.3
Levoglucosan		
May et al. (2012)		13 (2)
Pinonic acid		
Bilde (2001)	7	5.19
Salo et al. (2010)	0.42 (0.15)	0.312

54	Table S4.	Hygroscopicity	values	(κ)	for	the	same	acids	as	in	Table	S4.	Values	in
----	-----------	----------------	--------	-----	-----	-----	------	-------	----	----	-------	-----	--------	----

55 parenthesis represent standard deviations.

Organic acid	к
Adipic acid	
Cerully et al. (2014)	0.022 (0.002)
Kuwata et al. (2013)	0.002 (0.001)
Rissman et al. (2007)	0.059 (+0.021; -0.014)
Huff Hartz et al. (2006)	0.03 (+0.002; -0.001)
Broekhuizen et al. (2004)	0.096 (n/a)
Raymond and Pandis (2002)	0.02 (+0.018; -0.008)
Prenni et al. (2001)	0.014 (n/a)
Corrigan and Novakov (1999)	0.03 (n/a)
Cruz and Pandis (1997)	0.099 (+0.048; -0.029)
Azelaic acid	
Cerully et al. (2014)	0.061 (0.007)
Kuwata et al. (2013)	0.03 (0.01)
Huff Hartz et al. (2006)	0.022 (+0.018; -0.009)
Malonic acid	
Cerully et al. (2014)	0.281 (0.034)
Kumar et al. (2003)	0.227 (0.028)
Prenni et al. (2001)	0.237 (n/a)
Suberic acid	
Cerully et al. (2014)	0.007 (0.000)
Kuwata et al. (2013)	0.001 (n/a)
Pimelic acid	
Cerully et al. (2014)	0.213 (0.016)
Kuwata et al. (2013)	0.15 (0.01)
Frosch et al. (2010)	0.15 (0.04)
Huff Hartz et al. (2006)	0.14 (+0.109; -0.054)
Oxalic acid	
Sullivan et al. (2009)	0.5 (0.05)
Glutaric acid	
Reymond and Pandis (2002)	0.195 (0.082)
Koehler et al. (2006)	0.2 (0.08)
Succinic acid	
Cerruly 2014	0.285 (0.029)
Hori (2003)	0.231 (0.065)
Prenni (2001)	0.310
Corrigan and Novakov (1999)	0.225
Levoglucosan	
Svenningsson et al. (2006)	0.208 (0.015)
Koehler et al. (2006)	0.165 (0.015)
Pinonic acid	
Raymond and Pandis (2002)	0.106 (0.09)

Figure S1. Diagnostic plots of the PMF analysis: (a) $Q/Q_{expected}$ versus the number of the examined factors, (b) $Q/Q_{expected}$ versus the f_{peak} for the optimum solution (4 factors), (c) mass fraction of PMF factors versus the f_{peak} , (d) correlations of time series and mass spectra among the 4 PMF factors, (e) distribution of scaled residuals for each *m/z* and (f) time series of the measured and the reconstructed organic mass.

Figure S2. Model residuals E= X-GF calculated using the PMF evaluation tool, PET
(Ulbrich et al., 2009).

. <u>.</u>

Figure S4. MFRs of the loss-corrected PMF OA factors and total OA for a lower TD CE. The circles denote the measurements with the one standard deviation of the mean for a

10% lower TD CE, the grey solid lines stand for the optimum solution if CE TD was 10%

lower and the dash lines correspond to the predicted base case.

Figure S5. Predicted volatility distributions of the OA PMF factors and total OA for a
lower TD CE. The error bars are estimated using the approach of Karnezi et al. (2014).
The grey solid bars represent the results for a 10% lower TD CE. The green, blue, orange,
red and purple bars stand for the base case solutions of MO-OOA, LO-OOA, IsopreneOA, BBOA and total OA.

124 125

Figure S6. (a) and (b) Comparison between volatility compositions of OA for various studies: MILAGRO (Mexico City), MEGAPOLI (Paris winter and summer), Athens winter and FAME-08 (Finokalia, Crete). (c) and (d) Comparison between volatility distributions of Isoprene-OA and total OA estimated by other groups in Centreville during SOAS.

Figure S7. MFRs of the loss-corrected Isoprene-OA factor. The circles correspond to the measurements with the one standard deviation of the mean. The blue line is the predicted solution using as input the volatility distribution of IEPOX SOA of Lopez-Hilfiker et al. (2016).

153 **Figure S8.** O:C ratios versus the average volatility as $\log_{10}C^*$. The black isolines 154 correspond to the theoretically intrinsic κ suggested by Nakao et al. (2017). The circles 155 stand for the volatility and hygroscopicity measurements of known compounds based on 156 Tables S3 and S4.

166 **References**:

- Bilde, M., and Pandis, S. N.: Evaporation rates and vapor pressures of individual aerosol
 species formed in the atmospheric oxidation of α- and β-pinene, Environ. Sci.
 Technol., 35, 3344-3349, 2001.
- Bilde, M., Svenningsson, B., Mønster, J., and Rosenørn, T.: Even-odd alternation of
 evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols,
 Environ. Sci. Tech., 37, 1371, 2003.
- Booth, A. M., Barley, M. H., Topping, D. O., McFiggans, G., Garforth, A., and Percival,
 C. J.: Solid state and sub-cooled liquid vapour pressures of substituted
 dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS) and
 Differential Scanning Calorimetry, Atmos. Chem. Phys., 10, 4879-4892, 2010.
- Broekhuizen, K., Kumar, P. P., and Abbatt, J. P. D.: Partially soluble organics as cloud
 condensation nuclei: Role of trace soluble and surface active species, Geophys.
 Res. Lett., 31, L01107, doi: 10.1029/2003GL018203, 2004.
- Cerully, K. M., Hite, J., McLaughlin, M., and Nenes, A.: Towards the determination of
 joint volatility-hygroscopicity distributions: instrument development and response
 characterization for single-component aerosol, Aerosol. Sci. Tech., 48, 296–312,
 2014.
- 184 Corrigan, C. E., and Novakov, T.: Cloud condensation nucleus activity of organic
 185 compounds: a laboratory study, Atmos. Environ., 33, 2661-2668, 1999.
- 186 Cruz, C. N., and Pandis, S. N.: A study of the ability of pure secondary organic aerosol to
 187 act as cloud condensation nuclei, Atmos. Environ., 31, 2205-2214, 1997.
- Frosch, M., Zardini, A. A., Platt, S. M., Müller, L., Reinnig, M.-C., Hoffmann, T., and
 Bilde, M.: Thermodynamic properties and cloud droplet activation of a series of
 oxo-acids, Atmos. Chem. Phys., 10, 5873-5890, 2010.
- Hori, M., Ohta, S., Murao, N., and Yamagata, S.: Activation capability of water soluble
 organic substances as CCN, J. Aerosol. Sci., 34, 419–448, 2003.
- Huff Hartz, K. E. H., Tischuk, J. E., Chan, M. N., Chan, C. K., Donahue, N. M., and
 Pandis, S. N.: Cloud condensation nuclei activation of limited solubility organic
 aerosol. Atmos. Environ., 40, 605–617, 2006.

196	Hyvärinen, AP., Lihavainen, H., Gaman, A., Vairila, L., Ojala, H., Kulmala, M., and
197	Viisanen, Y.: Surface tensions and densities of oxalic, malonic, succinic, maleic,
198	malic, and cis-pinonic acids. J. Chem. Eng. Data, 51, 255, doi:10.1021/je050366x,
199	2006.
200	Karnezi, E., Riipinen, I., and Pandis, S. N.: Measuring the atmospheric organic aerosol
201	volatility distribution: a theoretical analysis, Atmos. Meas. Tech., 7, 2953-2965,
202	2014.
203	Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Prenni, A. J., Carrico, C. M., Ervens,
204	B., and Feingold, G.: Water activity and activation diameters from hygroscopicity
205	data - Part II: Application to organic species, Atmos. Chem. Phys., 6, 795-809,
206	2006.
207	Kumar, P. P., Broekhuizen, K., and Abbatt, J. P. D.: Organic acids as cloud condensation
208	nuclei: Laboratory studies of highly soluble and insoluble species. Atmos. Chem.
209	Phys., 3, 509–520, 2003.
210	Kuwata, M., Shao, W., Lebouteiller, R., and Martin, S. T.: Classifying organic materials
211	by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud
212	Condensation Nuclei (CCN), Atmos. Chem. Phys., 13, 5309-5324, 2013.
213	Lopez-Hilfiker, F. D., Mohr, C., D'Ambro, E. L., Lutz, A., Riedel, T. P., Gaston, C. J.,
214	Iyer, S., Zhang, X., Gold, A., Surratt, J. D., Lee, B. H., Kurten, T., Hu, W. W.,
215	Jimenez, J., Hallquist, M., and Thornton, J. A.: Molecular composition and
216	volatility of organic aerosol in the Southeastern U.S.: Implications for IEPOX
217	Derived SOA. Environ. Sci. Technol., 50, (5), 2200-2209, 2016.
218	May, A. A., Saleh, R., Hennigan, C. J., Donahue, N. M., and Allen L. Robinson, A. L.:
219	Volatility of organic molecular markers used for source apportionment analysis:
220	Measurements and implications for atmospheric lifetime, Environ. Sci. Technol.,
221	46, 12435–12444, 2012.
222	Nakao, S.: Why would apparent κ linearly change with O/C? Assessing the Role of
223	Volatility, Solubility, and Surface Activity of Organic Aerosols, Aerosol Sci.
224	Tech., under revision, 2017.

- Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., and Sherman, D. E.: The effects of low
 molecular weight dicarboxylic acids on cloud formation. J. Phys. Chem. A., 105,
 11240–11248, 2001.
- Raymond, T. and Pandis, S. N.: Cloud activation of single-component organic aerosol
 particles, J. Geophys. Res., 107, 4787, doi: 10.1029/2002JD002159, 2002.
- Riipinen, I., Koponen, I. K., Frank, G. P., Hyvarinen, A.-P., Vanhanen, J., Lihavainen, H.,
 Lehtinen, K. E. J., Bilde, M., and Kulmala, M.:: Adipic and malonic acid aqueous
 solutions: surface tensions and saturation vapor pressures. J. Phys. Chem., 111,
 12995–13002, 2007.
- Rissman, T.A., Varutbangkul, V., Surratt, J.D., Topping, D.O., McFiggans, G., Flagan,
 R.C., and Seinfeld, J.H.: Cloud condensation nucleus (CCN) behavior of organic
 aerosol particles generated by atomization of water and methanol solutions,
 Atmos. Chem. Phys., 7, 2949-2971, 2007.
- Saleh, R., Walkerb, J., and Khlystov, A.: Determination of saturation pressure and
 enthalpy of vaporization of semi-volatile aerosols: The integrated volume method,
 Aerosol Science, 39, 876–887, 2008.
- Saleh, R., Shihadeh A., and Khlystov, A.: Determination of evaporation coefficients of
 semi-volatile organic aerosols using an integrated volume—tandem differential
 mobility analysis (IV-TDMA) method. J. Aerosol Sci., 40, 1019-1029, 2009.
- Salo, K., Jonsson, A. M., Andersson, P. U., and Hallquist, M.: Aerosol volatility and
 enthalpy of sublimation of carboxylic acids. J. Phys. Chem. A., 114, 4586–4594,
 2010.
- Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and
 Prather, K. A.: Effect of chemical mixing state on the hygroscopicity and cloud
 nucleation properties of calcium mineral dust particles, Atmos. Chem. Phys., 9,
 3303-3316, 2009.
- Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C.,
 Decesari, S., Fuzzi, S., Zhou, J., Mønster, J., and Rosenørn, T.: Hygroscopic
 growth and critical supersaturations for mixed aerosol particles of inorganic and
 organic compounds of atmospheric relevance, Atmos. Chem. Phys., 6, 1937-1952,
 2006.

- Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.:
 Interpretation of organic components from Positive Matrix Factorization of
 aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, 2009.
- Yaws, C. L.: Yaws' Handbook of thermodynamic and physical properties of chemicalcompounds, 2003.
- Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K, M., Hite, J. R.,
 Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A.,
 Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S-H., Nenes, A.,
 Weber, R. J., and Ng, N. L.: Effects of anthropogenic emissions on aerosol
 formation from isoprene and monoterpenes in the Southeastern United States, P.
 Natl. Acad. Sci., 112, 37–42, 2015.