Corrigendum to Atmos. Chem. Phys., 16, 1161–1186, 2016 www.atmos-chem-phys.net/16/1161/2016/doi:10.5194/acp-16-1161-2016-corrigendum © Author(s) 2016. CC Attribution 3.0 License. ## Corrigendum to ## "Iodine's impact on tropospheric oxidants: a global model study in GEOS-Chem" published in Atmos. Chem. Phys., 16, 1161–1186, 2016 T. Sherwen¹, M. J. Evans^{1,2}, L. J. Carpenter¹, S. J. Andrews¹, R. T. Lidster¹, B. Dix³, T. K. Koenig^{3,4}, R. Sinreich³, I. Ortega^{3,4}, R. Volkamer^{3,4}, A. Saiz-Lopez⁵, C. Prados-Roman⁵, A. S. Mahajan⁶, and C. Ordóñez⁷ CO 80309-0215, USA Correspondence to: T. Sherwen (ts551@york.ac.uk) Published: 16 February 2016 We have been made aware of a typographic error and a point where a clarification on the representation of information could be improved. First, in Table 4 an additional term $(\frac{Ea}{RT})$ was erroneously present in the second sentence of the caption. The fourth column and final sentence of the caption are therefore no longer required. The updated caption and table are shown below. Second, in Sect. 2.4. ("Photolysis rates") the cross-section/quantum yield used for I_2O_X (X=2,3,4) was not clear. Therefore, the sentence has been updated (New) for clarity as seen below. Old: "For I_2O_X (X = 2, 3, 4) we assume the same absorption cross section as INO₃, an approach used previously (Bloss et al., 2010). For most species (I_2 , HOI, IO, OIO, INO, INO₂, I_2O_2 , CH₃I, CH₂I₂, CH₂IBr and CH₂ICl) we assume a quantum yield of 1, but for INO₃ we use a quantum yield of 0.21 (Sander et al., 2011)." New: "For I_2O_X (X=2,3,4) we assume the same absorption cross-section as INO₃, an approach used previously (Bloss et al., 2010). For most species (I_2 , HOI, IO, OIO, INO, INO₂, CH₃I, CH₂I₂, CH₂IBr and CH₂ICl) we assume a quantum yield of 1, but for INO₃ we use a quantum yield of 0.21 (Sander et al., 2011). We assume I_2O_X (X=2,3,4) to have the same quantum yield as INO₃." ¹Wolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, York, YO10 5DD, UK ²National Centre for Atmospheric Science (NCAS), University of York, York, YO10 5DD, UK ³Department of Chemistry and Biochemistry, University of Colorado, Boulder, ⁴Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-021, USA ⁵Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, 28006, Spain ⁶Indian Institute of Tropical Meteorology, Maharashtra, 411008, India ⁷Met Office, FitzRoy Road, Exeter, EX1 3PB, UK **Table 4.** Termolecular iodine reactions. The lower pressure limit rate (k_0) is given by $A_0 \cdot (\frac{300}{T})^x$. The high pressure limit is given by k_∞ . Fc characterises the fall-off curve of the reaction as described by Atkinson et al. (2007). | Rxn ID | Reaction | A_0 cm ⁶ molecules ⁻² s ⁻¹ | х | k_{∞} cm ³ molecules ⁻¹ s ⁻¹ | $F_{\rm c}$ | Citation | |--------|---------------------------------------|---|---|--|-------------|------------------------| | T1 | $I + NO + M \rightarrow INO + M$ | 1.80×10^{-32} | 1 | 1.70×10^{-11} | 0.60 | Atkinson et al. (2007) | | T2 | $I + NO_2 + M \rightarrow INO_2 + M$ | 3.00×10^{-31} | 1 | 6.60×10^{-11} | 0.63 | Atkinson et al. (2007) | | Т3 | $IO + NO_2 + M \rightarrow INO_3 + M$ | 7.70×10^{-31} | 5 | 1.60×10^{-11} | 0.40 | Atkinson et al. (2007) |