Supplement of Atmos. Chem. Phys., 18, 17475–17488, 2018 https://doi.org/10.5194/acp-18-17475-2018-supplement © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

The efficacy of aerosol-cloud radiative perturbations from near-surface emissions in deep open-cell stratocumuli

Anna Possner et al.

Correspondence to: Anna Possner (apossner@carnegiescience.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

1 Figures

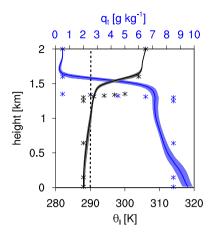
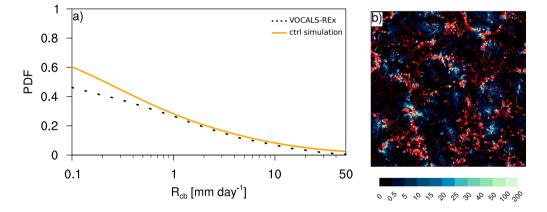



Figure S1. Simulated profiles of liquid potential temperature (θ_t , black) and total moisture content (q_t , blue) for the *ctrl* simulation. Median and interquartile range of profiles are shown for the entire simulated period (45 h). Hence, the spread captures the entire spatio-temporal variability of both entities throughout the simulation. Dashed line indicates 290 K isoline. Markers denote prescribed sounding at initialisation for θ_t (blue) and q_t (black).

Figure S2. a) Probability distribution function (PDF) of cloud-base precipitation rate (R_{cb}) obtained during campaign (*Wood et al.* (2011) denoted in black) and for VOCALS-REx simulations *ctrl* simulation (yellow). b) Cloud-base precipitation field (R_{cb}) in contours with updraft regions (vertical velocity> 0.5 m s^{-1}) overlaid in red.

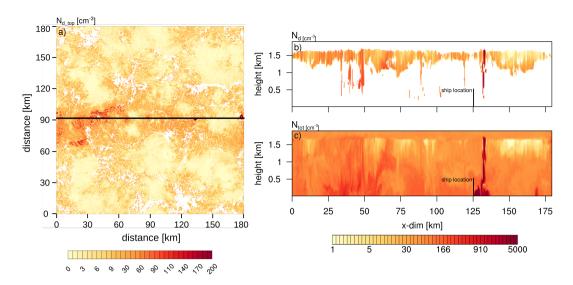
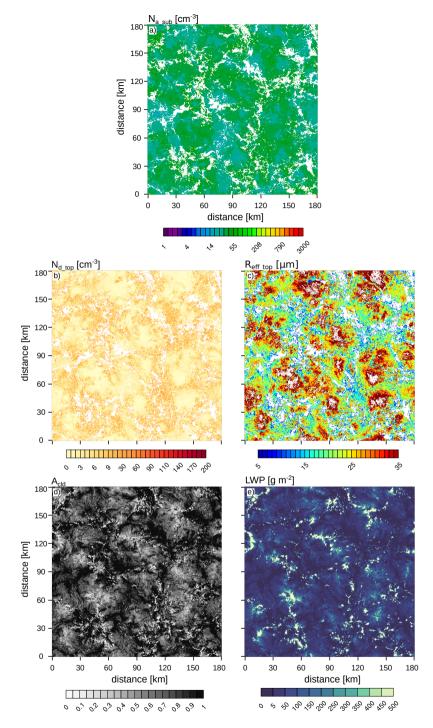
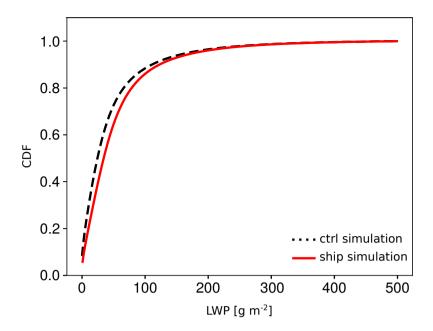




Figure S3. (a) instantaneous vertically integrated cloud droplet number concentration (N_d) for the ship simulation. Black line denotes location of cross-sections shown in b-c). (b) N_d and (c) total number concentration $(N_{tot} = N_a + N_d)$, where N_a denotes the aerosol number concentration). Instantaneous location of ship is marked.

Figure S4. Same as Fig. 4 in manuscript, but for *ctrl* simulation.

Figure S5. Cumulative distribution function (CDF) of liquid water path (LWP) for the ctrl and the ship simulation. CDF is computed over detrained cloud regions only over the last 24 h of both simulations.

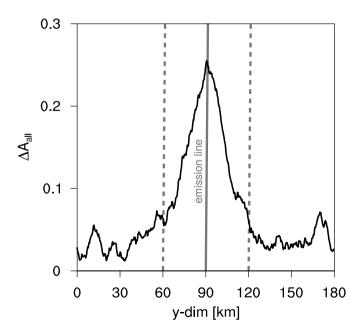


Figure S6. Across-track difference in all-sky albedo (A_{all}) between the *ship* and *ctrl* simulation averaged over the last 24 h of both simulations. Solid grey line denotes the location of the emission line of the ship, while grey dashed lines mark the seeded domain ($\pm 30 \, \mathrm{km}$ from emission line).

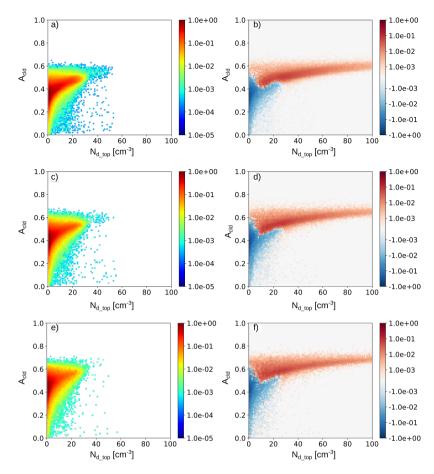


Figure S7. Occurrence rate F [%] for the cloud-top droplet number concentration (N_{d_top}) versus cloud albedo (A_{cld}) phase space. The N_{d_top} - A_{cld} space was sub-filtered for LWP within the ranges of $60-80\,\mathrm{g\,m^{-2}}$ (top row), $80-100\,\mathrm{g\,m^{-2}}$ (middle row), and $100-120\,\mathrm{g\,m^{-2}}$ (bottom row). Results are shown in a,c,e) for the last 24 h of the ctrl simulation and and absolute changes in F for the ship simulation with respect to the ctrl simulation are shown in b,d,f). The bin widths for each of which F is defined are ΔN_{d_top} : 1 cm⁻³, and ΔA_{cld} : 0.01.

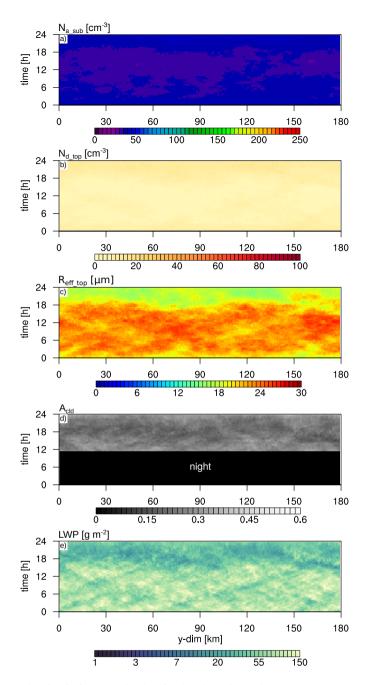


Figure S8. Same fields are shown as in Fig. 6 of manuscript, but for the *clean* simulation.