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Abstract
In contrast to the temporal evolution of forecast ensemble mean (signal) and spread (noise) in an ensemble of seasonal 
forecasts, the spatial patterns of signal and noise components for sea surface temperature (SST) predictions have not been 
analyzed. In this work, we examine the leading patterns of signal and noise components of SST forecasts by the National 
Centers for Environmental Prediction Climate Forecast System version 2. It is noted that the leading empirical orthogonal 
function pattern of SST is similar between the signal and the noise with maximum loading in the central and eastern tropical 
Pacific associated with El Niño–Southern Oscillation (ENSO) variability. The similarity implies that while some members 
of the forecasts predict a stronger (weaker) ENSO than others, the dominant pattern of SST anomalies from all members still 
resembles the ENSO SST pattern. This reflects the notion that for each forecast ensemble member, the evolution of ENSO 
is governed by the similar air–sea coupled interactions, the strength of which, however, differs due to unpredictable noise. 
On the other hand, the leading mode of the signal and the noise are found temporally independent. Thus, it is concluded that 
although the largest variability in the signal and the noise is spatially collocated, their temporal evolution is independent.
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1  Introduction

Short-term (monthly-interannual) climate predictions are 
now operational at many centers (O’Lenic et  al. 2008; 
National Research Council 2010; Peng et al. 2012; Saha 
et al. 2014; MacLachlan et al. 2015; Johnson et al. 2019). 
This progress is largely attributed to the understanding of the 
El Niño–Southern Oscillation (ENSO) and its global impact 
(Rasmusson and Carpenter 1982; Ropelewski and Halpert 
1987; Glantz 2000; National Research Council 2010; Hu 
et al. 2020), and further, our ability to skillfully predict sea 
surface temperature (SST) variations associated with ENSO 
(National Research Council 2010; Xue et al. 2013). SST 
predictions now rely more-and-more on the use of multi-
ple comprehensive climate models and ensemble prediction 

techniques are utilized to estimate their forecast skill and 
uncertainty (Graham et al. 2011; Tompkins et al. 2017).

A well-known feature of ensemble prediction systems is 
an increase in ensemble spread with lead time (Molteni et al. 
1996; Kumar and Hu 2014; Scaife and Smith 2018; Hu et al. 
2019). In the context of ENSO prediction, quantification of 
associated uncertainty in the prediction is generally done in 
terms of now well-known “ENSO plume diagram” where 
the forecast amplitude of the Niño3.4 index [defined as SST 
anomalies (SSTAs) averaged in 5° S–5° N, 170° W–120° 
W] for individual forecasts in the ensemble is shown. An 
example of ENSO plume for the operational seasonal pre-
diction system at the National Centers for Environmental 
Prediction—the Climate Forecast System version 2 (CFSv2) 
(Saha et al. 2014)—is shown in Fig. 1 as well as Figs. S1, 
S2 of Hu et al. (2019). As mentioned, a general feature of 
ENSO plumes is an increase in ensemble spread as forecast 
lead time increases, implying that some forecast members 
predict SSTAs larger than the ensemble mean while others 
predict SSTAs smaller than the ensemble mean.

The availability of ensemble forecasts allows for quan-
tification of the predictable signal and the unpredictable 
noise. For example, ensemble mean (that highlights the 
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commonality among individual forecast members) is the pre-
dictable signal while differences among individual forecasts 
from an ensemble are different renditions of noise (Kumar 
and Hoerling 2000). The noise varies from one forecast 
member to another. Knowledge of signal and noise compo-
nents quantifies predictability that is measured by the sig-
nal-to-noise ratio (SNR). Small (large) SNR corresponds to 
lower (higher) predictability (Kumar and Hoerling 2000; Jha 
and Kumar 2009; Scaife and Smith 2018; Hu et al. 2019). As 
an example, Fig. 2 displays the lead-time and target month 
(the center month of 3-month average) dependent standard 
deviations of the ensemble mean and spread as well as SNR 
of the Niño3.4 index in the CFSv2 predictions. It shows 
that, for seasonal forecasts as an initial value problem, in 
addition to the dependence on seasons, signal and SNR are 
large and noise is small near the initial time of the forecast. 
With an increase in forecast lead-times, signal decreases, 
and noise increases, resulting in a smaller SNR (Peng et al. 
2011). Consequently, forecast skill is also higher (lower) for 
shorter (longer) leads. This characteristic of SNR is evident 

in the example of ENSO plume (Fig. 1). It is also noted that 
the seasonality of SNR follows the well-known predictabil-
ity feature of ENSO, that is, the lowest SNR values appear 
during the boreal spring, a reflection of the spring barrier in 
ENSO predictability. In contrast, the largest values for SNR 
occur in boreal fall and winter when the amplitude of ENSO 
SSTAs, on average, is also the largest.

To understand ENSO predictability, it is of interest to 
understand how the signal and the noise evolve with lead 
time, and further, what are their dominant spatial patterns? 
Some questions of importance in the context of understand-
ing ENSO predictability are: are there similarities between 
the dominant modes of variability for signal and noise? 
How do signal and noise spatial patterns vary with forecast 
lead times? Are the dominant modes of signal and noise 
temporally independent? Understanding these questions 
is of importance for quantifying ENSO predictability, for 
its realization by prediction systems, and further, and for 
understanding the prediction differences across ensemble 
members.

Fig. 1   Niño3.4 index predicted by the CFSv2 model with 20 different initial conditions in April 2012. The solid black line is the observation, 
dashed red line is the ensemble mean, and thin green lines are individual forecast members
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To understand the atmospheric predictability over North 
America, Peng et al. (2014) analyzed dominant modes of 
variability in the atmospheric signal and the noise by using 
an ensemble of forecasts. They noted that the dominant 
modes of the signal were like the dominant modes of noise 
variability. The analysis implied that the predictable (i.e., 
the signal) and unpredictable (i.e., the noise) components 
of atmospheric variability had similar spatial patterns. Their 

analysis also pointed to the validity of the argument that 
external forcing, by altering the characteristics of modes of 
noise (for example, the residence time in a particular phase), 
leads to predictable spatial patterns that also resemble the 
dominant spatial patterns of noise.

It has also been documented that the amplitude of forecast 
spread among individual forecast members in an ensemble 
is quasi-independent from event to event, and further, is 

Fig. 2   Standard deviations of a ensemble mean (signal), b ensemble 
spread (noise), and c signal-to-noise ratio (SNR) of the Niño3.4 index 
in CFSv2 forecasts in 1982–2018 varied with target month in the 

center of 3-month average (x-axis) and lead time (y-axis). 20 ensem-
ble members and a 3-month mean are used in the calculations
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independent of the amplitude of the ensemble mean anom-
alies for both SST and atmospheric variables, such as geo-
potential height at 200 hPa (e.g., Kumar and Hoerling 1998; 
Kumar et al. 2000; Peng and Kumar 2005; Jha and Kumar 
2009; Kumar and Hu 2014; Jha et al. 2019). In other words, 
due to the small variation of the noise amplitude, the interan-
nual variations in SNRs are primarily determined by varia-
tion in the signal strength (ensemble mean anomaly ampli-
tude) (Tang et al. 2005, 2008). Recently, Hu et al. (2019) 
noted that the prediction skill of an ENSO cycle varies with 
its phase that is linked to the variations of SNR, and primar-
ily with the amplitude of the signal. In contrast, the noise, 
both in the Niño3.4 region and the entire Pacific Ocean, does 
not depend much on the Niño3.4 amplitude (Hu et al. 2019).

In the context of ENSO prediction and associated SSTs, 
although variations in the amplitude of signal and noise have 
been analyzed (Kumar et al. 2017; Kumar and Hu 2014), 
the characteristics of the spatial feature of SST prediction 
associated with the signal and the noise have not yet been 
assessed. In this work, to complement the analysis of Hu 
et al. (2019), we further examine the leading patterns of 
the signal and the noise in forecasts of global SSTs with the 
focus on the tropical Pacific from a seasonal forecast sys-
tem. The variances explained by atmosphere–ocean coupling 
associated with the leading patterns of both the signal and 
the noise in the forecasts are further compared. The paper 
is organized as the following: the data used in this work are 
introduced in Sect. 2, the results are shown in Sect. 3, and 
the summary and discussion are given in Sect. 4.

2 � Data and methods

The forecasts (both hindcasts and real-time forecasts) of 
SSTs and wind stress examined in this work are from CFSv2 
(Xue et al. 2013; Saha et al. 2014). The analyzed forecasts in 
this work extend for 9 months with initial conditions (ICs) 
at 00Z, 06Z, 12Z, and 18Z of every 5 days starting January 
1st. The hindcasts cover the period from January 1982 to 
December 2010, and real-time forecasts from January 2011 
to 2018. Here, the 0-month lead forecast is referred to as 
forecasts initialized from the previous month. For example, 
the 0-month lead prediction of December refers to 20 pre-
dictions of the monthly means from ICs on November 7, 
November 12, November 17, November 22, and November 
27 at 00Z, 06Z, 12Z, and 18Z. The ICs of both the ocean 
and atmosphere are from the NCEP Climate Forecast System 
Reanalysis (CFSR, Saha et al. 2010; Xue et al. 2011).

To eliminate the discontinuity caused by the biases 
in CFSR around 1998–99 (Xue et al. 2011; Kumar et al. 
2012), two climatologies are used to compute the anoma-
lies for the CFSv2 forecasts. The first one is the average 
between January 1982–December 1998, and the second 

one is the average between January 1999–December 2018. 
Also, all the monthly mean SST data are converted into 
3-month seasonal means. Similar processing has also been 
used in previous studies (Xue et al. 2013; Hu et al. 2013, 
2014, 2019; Kumar and Hu 2014).

The forecasts from 20 ICs in each month are used to 
construct the ensemble mean, which is referred to as “sig-
nal”. The departure of individual forecasts in the ensemble 
from the ensemble mean (or the signal) is the “noise”. The 
dominant mode of the signal is identified based on the 
empirical orthogonal function (EOF) of ensemble mean 
predictions of SSTAs. Similarly, the dominant mode of 
noise is identified by applying EOF to SSTAs departures 
in individual forecasts from the ensemble mean. In the 
EOF analyses, covariance matrices of forecast SSTAs over 
the global ocean for a specific lead time are calculated. 
To have identical data length between the signal and the 
noise, a randomly selected ensemble member from each 
year is used for the calculation of the departure from the 
ensemble mean to represent the noise component.

To verify the results based on the CFSv2 hindcasts, 
we also conducted EOF analyses for the SSTA forecasts 
with five other models (GEM_NEMO, NASA GEOS5v2, 
CanCM4i, GFDL_FLOR; and NCAR_CCSM4) from the 
North American Multi-Model Ensemble (NMME; Kirt-
man et al. 2014). The EOF analyses are applied separately 
for the ensemble mean (signal) and the departure of one 
randomly picked member from the ensemble mean (noise) 
of each model. The analyzed forecasts are the 3-month 
lead with initial conditions during January 1982–Decem-
ber 2016. The ensemble member size used in this work is 
4 for NCAR_CCSM4, 24 for GFDL_FLOR, and 10 for 
the other models.

Observed SST and surface wind stress data are from 
the reanalyses from the National Center for Environmental 
Prediction Global Ocean Data Assimilation System from 
January 1979 to the present (GODAS; Behringer 2007). In 
GODAS, both oceanic temperature and synthetic salinity 
profiles are assimilated in a 3DVAR scheme. There are 40 
vertical levels in the model together with a 1° × 1° resolu-
tion (enhanced to 1/3 by 1/3° within 10° of the equator). 
In GODAS, the third version of Modular Ocean Model 
(MOM3) is forced by the momentum flux, heat flux, and 
freshwater flux from the NCEP/the U. S. Department of 
Energy Reanalysis (NCEP/DOE; Kanamitsu et al. 2002).

Observed precipitation data are from the monthly Climate 
Prediction Center (CPC) Merged Analysis of Precipitation 
(CMAP; Xie and Arkin 1997). The CMAP precipitation is 
obtained based on satellite estimates and gauge data and 
blended with the NCEP/the National Center for Atmospheric 
Research (NCEP/NCAR) precipitation values (Kalnay et al. 
1996). The CMAP precipitation data are at a 2.5° × 2.5° 
global resolution and span January 1979 to the present.
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3 � Results

Figure 3a and b show the dominant EOF pattern (EOF1) 
for the variability of the signal and the noise for the 
3-month lead forecasts, which explains 30% of the total 
signal variance and 7% of the total noise variance, respec-
tively. Here, the signal (noise) variance is defined as the 
variance of ensemble mean (departure from the ensemble 
mean) variability. The major loadings in Fig. 3b, c are 
confined to the central and eastern tropical Pacific, and the 
loadings are small in the other ocean basins, suggesting 

that the dominant modes (EOF1) of both the signal and 
the noise may be associated with ENSO variability. This is 
confirmed by their spatial patterns of correlation between 
the Niño3.4 index and total (signal + noise) SSTAs 
(Fig. 4a), and the corresponding correlation spatial pat-
terns between PC1 of the signal and total SSTA (Fig. 4b), 
between PC1 of the noise and total SSTA (Fig. 4c), and 
between PC1 of the noise and the noise portion of SSTA 
(Fig. 4d) in the forecasts. For the temporal variations, the 
first principal component (PC1) of the signal variability 
is highly correlated with the observed Niño3.4 index with 
a correlation coefficient of 0.84. On the other hand, the 

Fig. 3   EOF analysis of SSTAs forecast at the 3-month lead. PC1 of 
the signal (ensemble mean; shading) and the noise (ensemble spread; 
curve) (a); EOF1 of the signal (b); EOF1 of the noise (c); ratio (%) 
of signal variance explained by EOF1 of signal (d); ratio of noise 

variance explained by EOF1 of noise (e); ratios of total variance (sig-
nal + noise) explained by EOF1 of signal (f) and by EOF1 of noise 
(g). The correlation between PC1 of the signal and the noise is 0.09
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correlation of PC1 of the noise with the observed Niño3.4 
index is 0.09, confirming the lack of temporal coherence 
between PC1 of the noise and the Niño3.4 index. We note 
that repeated calculations of the noise with a different 
selection of individual ensemble members (not shown) 
gave almost identical results, suggesting the robustness of 
the leading mode of the noise.

Next, we compute the fraction of SSTA variability that 
is explained by EOF1 of the signal and the noise. The vari-
ability associated with signal and noise PC1 is computed by 
multiplying the corresponding EOF1 pattern with respec-
tive PC1 and then computing the variance over the years. 
Regionally, EOF1 of the signal explains more than 60% of 
the variance of the overall signal variability in the central 
and eastern tropical Pacific as well as in the tropical Indian 
Ocean, while the explained fraction in the tropical Atlantic is 

smaller and reaches only about 40% in a few areas (Fig. 3d). 
This is consistent with the correlations shown in Fig. 4a and 
also the fact that co-variability in the Indian Ocean associ-
ated with ENSO is stronger than that in the Atlantic Ocean 
associated with ENSO (e.g., Frauen and Dommenget 2012). 
The fractions of the variance of total SSTAs explained by 
EOF1 of the signal are smaller with maximum values of 
40–60% in the central and eastern tropical Pacific (Fig. 3f).

Compared to the signal, EOF1 of the noise explains a 
smaller fraction of the total noise variance (Fig. 3e, g). For 
example, approximately 40% of noise variance is explained 
by EOF1 of noise in the central and eastern tropical Pacific, 
with less than 30% variance explained in the tropical Indian 
Ocean and less than 10% in the Atlantic Ocean (Fig. 3e). 
For the total variance, the explained fraction by EOF1 of 
the noise is even smaller (mostly less than 30%), with a 

Fig. 4   3-month lead forecasts: correlations between Niño3.4 index and SSTAs (a), between PC1 of signal and SSTAs (b), between PC1 of noise 
and SSTAs (c), and between PC1 of noise and SSTA of noise (d). The hatches indicate significant correlations at 1% level based on a t test
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maximum located in the central and eastern tropical Pacific 
(Fig. 3g). Such differences between the EOF1 of the signal 
and noise suggest that the signal is more spatially and tem-
porally coherent than the noise.

Contrary to EOF1, EOF2 of the signal and the noise 
explain a much smaller fraction (12% of the signal variance 
and 4% of the noise variance for the 3-month lead forecasts, 
respectively) (Fig. 5). Compared with that of the signal 
EOF, the percentages of the total noise variance explained 
by individual EOFs decline slower with increasing EOF 
number. The maximum fractions of the explained variance 
by EOF2 for both the signal and the noise are mainly in the 
off-equatorial regions. Therefore, the analysis here focuses 
on EOF1 only.

To address the question of how the dominant modes of 
variability in the signal and the noise change with lead times, 
we repeated the EOF analysis for SST forecasts for 6-month 
and 0-month (not shown) leads. The results of the forecasts 
at the 6-month and 0-month leads are similar to that of the 
forecasts of the 3-month lead shown in Figs. 3 and 4. Such 

similarity reflects a basic feature that leading variability pat-
terns of the signal and the noise are similar for different lead 
times, which is also similar to the dominant mode of the 
observed SST variability in the central and eastern tropical 
Pacific associated with ENSO. The similarity of the leading 
modes of the signal and the noise suggests that while some 
forecast members predict a stronger/weaker ENSO than oth-
ers, the intra-ensemble difference may still be a reflection of 
coupled interactions similar to that are responsible for ENSO 
variability. Also, although the amplitudes of EOF1 of the 
noise increase with lead times, there are little changes in the 
spatial pattern between different lead times.

Contrary to the similarity of the spatial patterns of the 
leading modes of the signal and the noise, their temporal 
evolution is largely independent. The correlation between 
PC1 of the signal and the noise is 0.07 for the 6-month lead 
(not shown), 0.09 for the 3-month lead (Fig. 3a), and − 0.06 
for the 0-month lead (not shown). That is consistent with 
previous work (e.g., Kumar and Hoerling 1998; Kumar 
et al. 2000; Tang et al. 2005, 2008; Jha and Kumar 2009; 

Fig. 5   Percentages of total signal (noise) variance explained by the first 10 EOF modes of the signal (noise) of the CFSv2 predicted SSTA at the 
3-month lead. The red (green) bars are for the signal (noise)
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Kumar and Hu 2014; Jha et al. 2019; Hu et al. 2019) that the 
amplitude of the noise has no systematic dependence on the 
predicable signal. Since PC1 for the signal (shading; Fig. 3a) 
represents the interannual variability of ENSO (see Fig. 18 
of Xue et al. 2011), it is concluded that the large variabil-
ity in both the signal and the noise are collocated spatially 

and associated with ENSO, but their temporal evolution is 
independent.

The spatial distribution of the leading modes of both 
the signal and noise in the tropical Pacific (Fig. 3b, c) is 
similar to that of the corresponding total variance. As an 
example, Fig. 6 shows the variance of signal, and noise, as 

Fig. 6   Variances of a ensemble mean and b spread of SSTAs forecast at the 3-month lead of the CFSv2 forecasts in January 1982–December 
2018, and c ratio of a to b. a and b are referred to as signal and noise, respectively, and c is the signal-to-noise ratio. The unit is (°C)2 in a, b 
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well as signal-to-noise ratio (SNR) for the 3-month lead 
predictions. Large variance centers of the noise appear 
in the central and eastern tropical Pacific, as well as the 
middle and high latitudes. The pronounced noise variance 
in the middle and high latitudes may reflect challenges to 
forecast variations related to the jet stream and/or storm 
track that modulate the underlying SST variability. In con-
trast, the largest variance of the signal is confined in the 
central and eastern tropical Pacific, which corresponds to 
the maximum signal-to-noise ratio (SNR; Fig. 6c), reflect-
ing the large predictability, and potentially high prediction 
skills (e.g., Kumar and Hoerling 2000; Scaife and Smith 
2018).

The large SNR in the central and eastern tropical Pacific 
is collocated with atmospheric and oceanic coupling which 
is quantified here by co-variances of SSTA with precipita-
tion anomalies in the observation and the CFSv2 forecast of 
the 20-member ensemble mean (signal) and in the departure 
of one randomly chosen member from the ensemble mean 
(noise) at 3-month lead (Fig. 7a, b). Consistent with previous 
work (such as Fig. 3a of Wu et al. 2006), the positive covari-
ance is seen in the central and eastern tropical Pacific associ-
ated with ENSO in both the observation and ensemble mean 
of the CFSv2 forecast (Fig. 7). Such large positive covari-
ance in the central and eastern tropical Pacific implies that 
the SSTA in the region is largely driven by ocean dynamic 
processes. Interestingly, for the noise (Fig. 7b), the spatial 
distribution pattern of the co-variance is similar to that of 
the observation (Fig. 7c) and the ensemble mean (Fig. 7a) 
with the maximum in the central and eastern tropical Pacific, 
although the amplitude is reduced.

The atmospheric and oceanic positive feedback associ-
ated with ENSO can be estimated by the so-called atmos-
pheric Bjerknes feedback, which can be quantified by the 
linear regression of zonal wind stress anomaly onto the 
Niño3.4 index (Fig. 8) (Lloyd et al. 2009; Bellenger et al. 
2014; Li et al. 2019). We can see from Fig. 8 that the regres-
sion pattern in the tropical Pacific is similar between the 
observations (GODAS) and one randomly chosen member 
of the CFSv2 predictions at different lead-times (shading 
in Fig. 8). However, there are profound differences in the 
strength of the positive feedback between the observations 
and the CFSv2 predictions (contours in Fig. 8b–d). Thus, 
the spatial similarity of the leading modes between the noise 
and ensemble mean (and/or observation) may imply that to 
some extent, both the signal and noise in the central and 
eastern tropical Pacific are driven by similar atmosphere and 
ocean coupling processes. In other words, due to stochastic 
variability and model biases, some members of the forecasts 
overestimate the coupling strength while some others under-
estimate it (Larson and Kirtman 2015, 2017). Both lead to 
the spread of the forecasts among the individual members 
and result in the departure from the ensemble mean, and as 

a result, the spatial pattern of the leading mode of both the 
signal and noise are found to be similar.

4 � Summary and discussion

Previous results have documented that forecast spread 
among individual ensemble members is quasi-independent 
to the amplitude of the ensemble mean anomalies (e.g., 
Kumar and Hu 2014; Hu et al. 2019). This independence of 
the temporal evolution of the signal and the noise amplitude 
in climate forecast implies that year-to-year variations in 
predictability are mainly determined by the signal (ensemble 
mean) rather than variations in the amplitude of the noise 
(model spread) (Kumar et al. 2000; Kumar and Hoerling 
2000; Tang et al. 2005, 2008). However, compared to the 
well documented temporal evolutions, the possible rela-
tionship of the spatial variations between the signal and the 
noise has not been well examined.

In this work, to complement Hu et al. (2019), we fur-
ther examine the leading spatial patterns of ensemble mean 
(signal) and spread (noise) variability in the forecasts of 
NCEP CFSv2. It is shown that a similar leading EOF pat-
tern is present in the signal and the noise EOF analyses. 
The major loading is confined in the central and eastern 
tropical Pacific which is associated with the ENSO vari-
ability. The results are similar for different lead times. The 
similarity of the leading modes of the signal and the noise 
implies that some individual members of the forecasts pre-
dict a stronger or weaker ENSO than others, and the coupled 
atmosphere–ocean processes in the central and eastern tropi-
cal Pacific that lead to the intra-ensemble variations may be 
similar to the ENSO dynamics. The result also highlights 
the limits in ENSO predictability and prediction skill in an 
atmosphere–ocean coupled forecast system. In an ensem-
ble forecast system, small perturbations that mimic various 
uncertainties in initial conditions, via coupled air–sea inter-
actions similar to ENSO, can lead to different outcomes for 
ENSO prediction in individual forecasts, as encapsulated in 
the ENSO plume diagrams (Fig. 1).

Although the leading patterns of the signal and the noise 
are similar, their temporal evolutions are independent, mean-
ing that despite coherent spatial variations in the central and 
eastern tropical Pacific are present in both the signal and 
the noise, their temporal variabilities are independent. This 
suggests that departures in individual members from the 
ensemble mean are distributed randomly around the ensem-
ble mean and are not biased towards a particular phase of 
ENSO in the ensemble mean. Moreover, the leading pattern 
of the signal explains much larger fractions of total SST vari-
ability than that of the noises. Such differences may imply 
that variations of the signal are more coherent spatially and 
temporally than the variations of the noise.
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The spatial distribution similarity and temporal evo-
lution independence of the leading modes of signal and 
noise of SSTAs based on forecasts from CFSv2 are further 
verified by the corresponding EOF analyses of five models 

from NMME (Fig. 9). Although there are some differ-
ences in details among the models, the main loading of 
the EOF1 of both the signal and noise are in the tropical 

Fig. 7   Pointwise and simultaneous covariance of SSTA with precipitation of a ensemble mean of 20 members, b one member in the CFSv2 fore-
casts, and c observations during January 1982–December 2018. The unit is °C mm/day
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Pacific associated with ENSO, and their corresponding 
PC1 of the signal and noise have no significant correlation.

The similarity of the leading EOF patterns between the 
signal and noise was derived based on global SST with the 
focus on the tropical Pacific. Nevertheless, the conclusions 
about the leading pattern of signal and noise in the extrat-
ropics may be different. This might be associated with the 
different characteristics of the climate in the tropics and 
extratropics, as well as the ability of climate model in pre-
dicting them. For example, Eade et al. (2014) argued that 
for the climate variability in the North Atlantic, the pre-
dictable component in models is sometimes lower than in 
observations with each ensemble member containing too 
much noise.

Fig. 8   The atmospheric Bjerknes feedback: Linear regression 
of zonal wind stress anomaly onto the Niño3.4 index in January 
1982-December 2018. Shading: a GODAS, 0-month (b), 3-month 
(c), and 6-month (d) lead predictions of CFSv2 (one member). The 

contours in b–d are the differences between the corresponding CFSv2 
and GODAS. The unit is N/(103 m2 °C) for the shading and the con-
tour interval is 2 N/(103 m2 °C)
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Fig. 9   EOF1 and PC1 of predicted global SSTAs at the 3-month 
lead for the ensemble mean (signal) and departure of one member 
from their ensemble mean (noise) with initial conditions in January 
1982–December 2016. a–c GEM_NEMO; d–f NASA GEOS5v2; g–i 

CanCM4i; j–l GFDL_FLOR; and m–o NCAR_CCSM4. The values 
of R represent the correlations of the PC1 between the signal and 
noise. The percentages of the variance explained by EOF1 are shown 
in the subtitles
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