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A B S T R A C T   

Near-surface temperatures, such as air, land surface, and soil temperatures, play significant roles in surface ra
diation and energy balance. This study assessed nine gridded near-surface temperature products and analyzed 
the spatial heterogeneity and clear-sky bias of these temperature variables, using extensive measurements 
collected at Heihe River Basin. The MXD21 (MOD21 and MYD21) product had the lowest root mean square error 
(RMSE) (3.35 K) among all skin temperature products but a high percentage of missing values (48.4 %). All- 
weather skin temperature products had comparable accuracy for the interpolated cloudy-sky cases (RMSE 
4.92 K) and observed clear-sky pixels (RMSE 3.42 K). For air temperature, AMSR2 had the lowest RMSE (2.48 K), 
but a high percentage of invalid data (32.5 %); and ERA5 had a worse accuracy (RMSE 3.87 K) but a high spatial 
resolution and gap-free data coverage. Comparing products from the same data source, air and soil temperatures 
had higher accuracies than skin temperature. Among the different variables of temperature, the 0 cm soil 
temperature and skin temperature had higher spatiotemporal heterogeneity than the air temperature and the soil 
temperatures at greater depths. The skin temperature, 0 cm soil temperature, and air temperature had higher 
clear-sky biases compared to soil temperatures.   

1. Introduction 

Near-surface temperatures are vital climate variables that play a 
significant role in physical and biological processes in the atmosphere, 
biosphere, and hydrosphere (Benali et al. 2012; Jia et al. 2023; Muro 
et al. 2018). These variables can be measured at different levels and have 
different physical interpretations and scientific applications. Air tem
perature is a fundamental indicator of surface environmental conditions 
(Jia et al. 2020) and a direct indicator of global warming (Zhang et al. 
2021), and it has a long history of observational data records (Nieto et al. 
2011). Skin temperature, also known as land surface temperature (LST) 
or sea surface temperature (SST) (Sobrino et al. 2020), is directly related 
to the radiative process at the surface that determines the upward 
longwave radiation emitting from the Earth’s surface (Li et al. 2013b; Xu 
et al. 2021). Soil temperature is a key parameter of soil physical con
ditions that affects plant root growth, physiological activity, and the 
hydrothermal regime in permafrost regions (Yang et al. 2020). It also 

indicates anomalies at the land surface and affects heat exchange be
tween the land surface and atmosphere (Hu and Feng 2004). These 
temperature variables are traditionally measured at field stations, and 
the measurements have high accuracy and temporal resolution (Van
cutsem et al. 2010); however, such measurements have limited spatial 
coverage due to sparsely distributed sites. 

Satellite remote sensing is advantageous in providing high-density 
spatial sampling over large areas (Li et al. 2013b). It offers various 
types of near-surface temperature products, including thermal infrared 
(TIR), passive microwave (PMW), re-analysis, and all-weather temper
ature products. Different in-situ data and validation methods are used by 
many authors to validate these temperature products, and they typically 
focus on a single temperature product (Cao et al. 2020; Duan et al. 2019; 
Duan et al. 2018; Gleixner et al. 2020; Jones et al. 2010; Trigo and 
Macedo 2015; Xu and Cheng 2021; Zhang 2017; Zhang et al. 2019). 
However, comparing the validation results of different temperature 
products is challenging due to differences in in-situ data and validation 
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methods used. Therefore, there is a need for a unified and comprehen
sive validation using consistent validation datasets to deliver coherent 
conclusions and comparable metrics for different products and variables 
to support the appropriate selection of data for various applications. 

Representativeness of in-situ data at the satellite pixel scale is a 
significant issue when validating gridded datasets (Li et al. 2013b). 
Previous studies have investigated the issue of spatial heterogeneity in 
near-surface temperature data. For instance, Cao et al. (2021) found that 
air temperature exhibited strong spatial heterogeneity that varies with 
time, while Xu et al. (2019) analyzed the spatial heterogeneity of LST 
and found that it was generally stronger during the daytime than at 
night. However, the specific characteristics of different near-surface 
temperatures in terms of spatial heterogeneity have not been compre
hensively investigated. 

Furthermore, some remote sensing sensors have limited capability to 
obtain data in the presence of clouds. This led to barriers in applications 
that relied on all-weather data due to the significant differences between 
clear-sky data and cloud-covered data. As mentioned by Chakraborty 
et al. (2020), clear-sky LSTs might not have been representative of 
climatological mean states. Thus, it was necessary to investigate the 
differences between clear-sky and cloudy-sky temperatures. Previous 
studies by Østby et al. (2014), Ermida et al. (2019), and Liao et al. 
(2022) analyzed the difference in LST under various cloudy conditions. 
However, the all-weather LST and PMW LST data products they used 
contained uncertainties. Therefore, to better understand the clear-sky 
bias for different near-surface temperature variables, the field mea
surement data could be used as the optimal proxy. 

The Heihe River Basin (HRB) is an ideal experimental area for 
studying land surface processes (Liu et al. 2018b). The Heihe Integrated 
Observatory Network collected multiple temperature variables and 
other hydrometeorological variables, providing a unique opportunity to 
validate multiple temperature variables, investigate their relationships, 
and analyze their spatial heterogeneity and clear-sky bias. Moreover, the 
network included multiple sites with short distances and different 
landscapes, making it possible to aggregate in-situ data for investigating 
the spatial heterogeneity of various near-surface temperature variables. 

This study used in-situ data collected at HRB to evaluate various 
near-surface temperature products and analyzed the spatial heteroge
neity and clear-sky bias for different near-surface temperature variables. 
The goal was to provide coherent conclusions and comparable metrics of 
quality assessment. The structure of this paper is as follows: Sections 2 

and 3 introduce the data and validation methods. Section 4 presents the 
results, and finally, Section 5 provides the conclusions. 

2. Gridded datasets and in-situ measurements 

Nine gridded datasets for various variables such as air temperature, 
LST, and soil temperature, were collected for this research and their key 
characteristics are presented in Table 1. All available data from January 
1 to December 31, 2014, were collected. In addition to the gridded data, 
the in-situ measurements, and auxiliary data on land cover (LC) type and 
elevation were collected for validation and analysis. 

2.1. Gridded datasets 

2.1.1. Thermal infrared temperature products 
MODIS official LST products include two separate data suites. The 

MXD11 and MXD21 LST data are generated using the split-window 
technique (Wan 2014; Wan and Dozier 1996), and ASTER tempera
ture/emissivity separation (TES) techniques (Hulley et al. 2014), 
respectively. The quality flag of MXD11 data is determined by cloud 
effects, average emissivity, and LST error; while that of MXD21 data is 
determined by missing data and calibration conditions, cloud condi
tions, atmospheric opacity, LST accuracy, emissivity, min–max differ
ence for thermal bands and algorithm iteration rate (Hulley et al. 2016; 
Tan et al. 2021). 

The Copernicus LST version 2 datasets include LST data from mul
tiple sensors onboard different geostationary (GEO) satellites, including 
the Meteosat Second Generation (MSG), Geostationary Operational 
Environmental Satellite (GOES), and Multifunction Transport Satellite 
(MTSAT). These LST data are estimated from the Top-of-Atmosphere 
(TOA) brightness temperature (BT) from the infrared spectral channels 
of these GEO satellites, together with the albedo, vegetation cover, and 
soil moisture (Freitas et al. 2013). Himawari-7 data, which covers HRB, 
was used in this study. 

The Atmospheric Infrared Sounder (AIRS) is a grating spectrometer 
(R = 1200) onboard Aqua that consists of 2378 infrared channels and 
four visible/near-infrared channels. The AIRS retrieval system is 
designed to obtain highly accurate atmospheric temperature and mois
ture profiles, as well as a variety of additional earth/atmosphere prod
ucts. The fundamental principle of this system is to generate clear 
column radiances for each channel (Susskind et al. 2014). Its products 

Table 1 
Key information for the temperature datasets used in this study.  

Name in this study Short name Product name Variables Product 
type 

Spatial 
resolution 

Temporal 
resolution 

MXD11 MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 
Global 1 km SIN Grid V061 

Skin temperature TIR 1 km Daily 

MYD11A1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 
Global 1 km SIN Grid V061 

Skin temperature TIR 1 km Daily 

MXD21 MOD21A1D MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily 
L3 Global 1 km SIN Grid Day V061 

Skin temperature TIR 1 km Daily 

MYD21A1D MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily 
L3 Global 1 km SIN Grid Day V061 

Skin temperature TIR 1 km Daily 

MOD21A1N MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily 
L3 Global 1 km SIN Grid Night V061 

Skin temperature TIR 1 km Daily 

MYD21A1N MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily 
L3 Global 1 km SIN Grid Night V061 

Skin temperature TIR 1 km Daily 

Himawari-7 MTSAT Copernicus LST version 2 Skin temperature TIR 5 km hourly 
AIRS AIRS3STD AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-only) 1◦ ×

1◦V006 
Air/ Skin 
temperature 

TIR 1◦ Daily 

AMSR2 LPDR Version 3 global land parameter data record Air temperature PMW 25 km Daily 
MIRS MIRSAIMG MIRS Precipitation and Surface Products Skin temperature PMW ~27 km Daily 
ERA5 ERA5 ERA5 hourly data on single levels from 1979 to present Air/ Skin/ Soil 

temperature 
Re- 
analysis 

0.1◦ hourly 

All-weather LST 
(Xu) 

– 1 km seamless land surface temperature dataset of China Skin temperature All- 
weather 

1 km Daily 

All-weather LST 
(Zhang) 

TRIMS LST- 
TP 

Western China Daily 1 km spatial resolution all-weather land 
surface temperature data set V1 

Skin temperature All- 
weather 

1 km Daily  
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have been widely used to improve weather and drought forecasting. The 
AIRS/Aqua L3 Daily Standard Physical Retrieval (AIRS-only) 1◦× 1◦

product (v006) was used in this study (Kahn et al. 2014). 

2.1.2. Passive microwave temperature products 
The Advanced Microwave Scanning Radiometer - Earth Observing 

System (AMSR-E) sensor and Advanced Microwave Scanning Radiom
eter 2 (AMSR2) sensor are onboard the Aqua and Global Change 
Observation Mission 1st-Water (GCOM-W1) satellites, respectively. The 
Version 3 global land parameter data record (LPDR) provides the 
simultaneous estimation of several land parameters by using daily BT 
records as the primary input to an iterative retrieval algorithm (Du et al. 
2014). Daily AMSR-E and AMSR2 surface air temperature minima and 
maxima (~2 m height) estimations are provided. The AMSR2 air tem
perature corresponding to the study period was selected. 

The Microwave Integrated Retrieval System (MIRS) is a 1-D varia
tional and iterative physical inversion system (Boukabara et al. 2011). 
Some sounder products (JPSS_SND) is generated by using Cross-track 
Infrared Sounder (CrIS) and Advanced Technology Microwave 
Sounder (ATMS) sensor data records and intermediate products from the 
Joint Polar Satellite System (JPSS). The MIRS precipitation and surface 
products are JPSS_SND products that provide skin temperature. The data 
have a similar observation time as the MODIS/Aqua data, and its spatial 
resolution is approximately 25–30 km at the nadir, increasing to 
approximately 100 km at the edge of the scan. 

2.1.3. Re-analysis temperature products 
Re-analysis data is a combination of model forecast data and newly 

acquired observations to form the best new estimate using data assim
ilation methods (Hennermann and Berrisford 2017). The ECMWF de
velops several atmospheric and ocean re-analysis products (Dee et al. 
2011). The ERA5 is its latest atmospheric re-analysis data, offering a 
global improvement based on 10 years of model and data assimilation 
development. The ERA5 hourly data on single levels from 1979 to the 
present were used in this research and provide hourly estimates for a 
large number of atmospheric, ocean waves, and land surface quantities 
(Hersbach et al. 2018). In this study, 2 m air temperature, skin tem
perature, and soil temperature levels 1/2/3 (soil depths: 0–7, 7–28, and 
28–100 cm) were used. 

2.1.4. All-weather temperature products 
Xu’s 1 km seamless LST dataset of China is generated by fusing 

MODIS/Aqua LST and AMSR-E/AMSR2 data (Xu and Cheng 2021). 
First, an empirical retrieval algorithm based on a look-up table (LUT) 
and a downscaled algorithm based on geographically weighted regres
sion (GWR) is used to generate the AMSR-E/AMSR2 LST and 1 km 
downscaled AMSR-E/AMSR2 LST. The cumulative distribution function 
(CDF) matching method is then used to adjust the downscaled AMSR-E/ 
AMSR2 LST to improve its accuracy and fill the MODIS LST to generate 
the completely filled MODIS LST. Finally, the multi-scale Kalman filter 
(MKF) approach is used to fuse the AMSR-E/AMSR2 LST, and the 
completely filled MODIS LST to generate a 1 km seamless LST dataset. 

Zhang’s Western China daily 1 km spatial resolution all-weather LST 
dataset V1 is generated using a method based on temporal component 
decomposition (Zhang et al. 2019). In this method, LST is decomposed 
into three temporal components: the annual temperature cycle compo
nent (ATC), diurnal temperature cycle component (ΔDTC), and weather 
temperature component (WTC). Its main input data include MODIS/ 
Aqua LST, AMSR-E/AMSR2 data, and LST from the China Meteorolog
ical Administration Land Data Assimilation System (CLDAS) and Global 
Land Data Assimilation System (GLDAS). In this method, the 1-km ATC 
is derived from discontinuous MODIS/Aqua and AMSR-E/AMSR2 LST, 
and the 1-km ΔDTC is derived from CLDAS and GLDAS LST. Then, the 1- 
km WTC is derived from the continuous daily AMSR-E/AMSR2 LST, and 
the daily 1 km all-weather LST is obtained by summing the ATC, ΔDTC, 
and WTC. 

2.1.5. Auxiliary data 
The MODIS level-3 standard product, MCD12Q1, was used as 

auxiliary data to identify the LC type for each station. This product 
combines observations from the MODIS sensors on the Aqua and Terra 
satellites and provides five LC-type datasets with different classification 
schemes. The study specifically used the LC data generated using the 
widely used International Geosphere-Biosphere Program (IGBP) system. 

The Shuttle Radar Topography Mission (SRTM) dataset was 
employed as auxiliary data to analyze the variation in elevation within 
the footprint of coarse spatial resolution data. The SRTM is a global 
elevation dataset that was collected using radar equipment onboard the 
space shuttle Endeavour in February 2000. We downloaded the data 

Table 2 
Key information for the station observation used in this study. The symbol ’@’ denotes a specific condition. For instance, if an instrument is labeled with ’±0.2℃ 
@20℃’, it means that the stated accuracy of the instrument is ± 0.2 ◦C only when the environmental temperature is 20 ◦C.  

Station Arou Shenshawo Sandy Desert Dashalong Zhangye 
Wetland 

Bajitan Gobi Huazhaizi 
Desert Steppe 

Daman 

Short Name AR SSW DSL ZY BJT HZZ DM 
Landscape (Liu 

et al. 2018a) 
subalpine meadow sandy desert marsh alpine meadow reed Reaumuria 

desert 
Kalidium 
foliatum 
desert 

maize 

Longitude (◦) 100.46 100.49 98.94 100.45 100.3 100.32 100.37 
Latitude (◦) 38.05 38.79 38.84 38.98 38.92 38.77 38.86 
Elevation (m) 3033 1594 3739 1460 1562 1731 1556 
MODIS LC Type Grasslands Barren Grasslands Crops Barren Grasslands Crops 
Sensor, 

manufacturer 
and accuracy 

Air temperature HMP45C, Vaisala HMP45AC, Vaisala HMP45C, 
Vaisala 

HMP45AC, 
Vaisala 

AV-14TH, 
Avalon    

±0.2℃ @20℃ ±0.1℃      
Surface longwave 
upwelling and 
downward radiation 

CNR4, Kipp & Zonen CNR1, Kipp & Zonen PSP&PIR, 
EPPLEY      

Uncertainty in daily total: 
Pyranometer: <5 % Pyrgeometer: 
< 10 % 

Uncertainty in daily total: 
Pyranometer: ±10 % 
Pyrgeometer: ± 10 % 

±5 %     

Soil temperature 109, CSI 109ss-L, CSI AV-10 T, 
Avalon      

− 40 ℃: ±0.6 ℃ tolerance; 0 ℃: 
±0.38 ℃ tolerance; 25 ℃: ±0.1 ℃ 
tolerance; 50 ℃: ±0.3 ℃ tolerance; 
70 ℃: ±0.4 ℃ tolerance; 

< ±0.2℃ over 0 to 60℃; 
±0.4℃ @-35℃      

S. Xu et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 120 (2023) 103347

4

from https://srtm.csi.cgiar.org/srtmdata/, and it had a spatial resolu
tion of approximately 30 m. 

2.2. In-situ measurements 

2.2.1. Measurement network and site information 
A hydrometeorological observation network dataset is generated by 

the Heihe Watershed Allied Telemetry Experimental Research (HiWA
TER) project (Li et al. 2013a; Liu et al. 2018a). The dataset includes 
multiple hydrometeorological variables, including different variables of 
near-surface temperature, which can help validate multiple temperature 
variables, analyze their spatial heterogeneity and clear-sky bias, and 
explore their relationships. In addition, these measurements are from 
multiple sites with close locations and different LC types, providing an 
opportunity to generate new in-situ data that match the spatial resolu
tion of the satellite data and help explore the spatial heterogeneity issue. 
The stations of DSL and AR belong to the upstream of HRB, and other 
stations belong to the midstream of HRB (Che et al. 2019). The near- 
surface air temperature, near 2 m air temperature, 0 cm soil tempera
ture, near soil temperature level 1/2/3 data, surface longwave upwell
ing, and downward radiation from multiple sites with different LC types 
in close proximity were used in this study. Key information for these 
sites is provided in Table 2. 

2.2.2. Correlation among various temperature variables 
The relationships among different variables of near-surface temper

atures in the vegetated and non-vegetated areas during the daytime and 
nighttime were investigated by using in-situ measurements. 

Adjacent near-surface soil temperatures had a strong relationship (r 
(correlation coefficient) > 0.95). There was a time lag between soil and 
air temperatures due to the relatively large heat capacity of the ground. 
Near soil temperature level 1 was relatively closer to 2 m air 

temperature than the soil temperatures at greater depths, so near soil 
temperature level 1 and 2 m air temperature had a relatively small time 
lag and high correlation (r > 0.91). Soil temperature was usually 
considered to be the result of air temperature in the previous few days 
(Zheng et al. 1993); therefore, although the correlation between near- 
surface soil temperature and the air temperature was relatively high, 
it was still lower than that between neighboring soil temperatures. 

In most cases, the correlations in the non-vegetated areas were 
stronger than those in the vegetated areas, but the correlations between 
near soil temperature levels 1 and 2 and between nighttime 2 m air 
temperature and nighttime LST were stronger in the vegetated area than 
in the non-vegetated area. Nighttime near-surface temperatures had 
stronger correlations than daytime near-surface temperatures. 

Interestingly, the correlation between LST and 0 cm soil temperature 
was also high (r > 0.92), but it differed between non-vegetated and 
vegetated areas. When vegetation was present, LST, calculated from 
upward and downward longwave radiance, was the result for both 
vegetation canopy and soil. Therefore, in the desert, the LST was similar 
to the 0 cm soil temperature, but not so in the meadow, and maize 
landscapes. Their biases over vegetated sites ranged from − 5.22 K to 
− 2.06 K, and the negative bias indicated that the LST and the canopy 
temperature were lower than the 0 cm soil temperature in vegetated 
areas. 

3. Methods 

3.1. Direct comparison 

The selected in-situ measurements are those close to the pixel’s 
observation time, with a maximum time difference of 5 min. Fig. 1 
provides an overview of the direct comparison method. The air and soil 
temperatures are directly obtained from field measurements. To obtain 

Fig. 1. The flow chart of validating gridded near surface temperature products.  
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LST, the surface longwave upwelling and downward radiation are input 
to the Stefan-Boltzmann (Equation 1): 

Ts =

[
F↑ − (1 − εb)F↓

σεb

]1/4

(1)  

where Ts is the LST, F↑ and F↓are the surface longwave upwelling and 
downward radiation, εb is the surface broadband emissivity (BBE), and σ 
is the Stefan-Boltzmann constant (5.67× 10− 8 Wm− 2K− 4). In this study, 
εb is estimated from the ASTER GED product (Hulley and Hook 2009) 
using the following linear equation, according to Cheng et al. (2013): 

εb = 0.197+ 0.025ε10 + 0.057ε11 + 0.237ε12 + 0.333ε13 + 0.146ε14 (2)  

where ε10-ε14 are the surface narrowband emissivities of ASTER bands 
10–14, respectively. 

3.2. Aggregated-site measurement validation for coarse-spatial resolution 
data 

An aggregated-site validation method is proposed to handle the 
spatial scaling issue in validating the coarse-spatial grid products 
(spatial resolution >= 1◦), which included AMSR2, MIRS, and AIRS with 
spatial resolutions of 25 km, 27 km, and 1◦, respectively. For grids that 
included multiple in-situ measurement sites, the in-situ measurements 
contained in the same grid are aggregated before validating their near- 
surface temperature products (Fig. 1). 

4. Results 

4.1. Data quality assessment 

4.1.1. Data availability 
Table 3 displays the available pixel percentages for the datasets used 

in this study. The TIR temperature data had numerous missing values 
caused by clouds, resulting in a lower available pixel percentage for 
MODIS, Himawari-7, and AIRS data at 52.0 %, 50.4 %, and 77.6 %, 
respectively. The AIRS dataset had a higher valid pixel percentage 
compared to others due to containing cloud-free data and data for thin 
cloud conditions (Evan Manning et al. 2020). The high-quality per
centages for MODIS and Himawari-7 data were 36.6 % and 45.7 %, 
respectively, for various reasons mentioned in Section 2.1. MXD11 had 
higher available and high-quality pixel percentages than MXD21 data; 
the available pixel percentages for MXD11 and MXD21 data were 55.5 
%, and 48.4 %, respectively, and the high-quality pixel percentages were 
40.5 %, and 32.8 %, respectively. 

PMW data theoretically had fewer missing values because of its 
capability of penetrating clouds. The available pixel percentage for 
MIRS data was 94.8 %. However, the percentage of available pixels for 
AMSR2 was only 32.5 % due to orbit gaps and algorithm restrictions. 
The orbit gaps were filled with fill values, with a percentage of 32.0 % 
(32.8 %) during the daytime (nighttime). The retrieval algorithm skip
ped pixels with the frozen ground (Freeze-thaw Earth System Data Re
cord (Kim et al. 2017)), strong precipitation, snow cover, active rainfall, 
and identified radio frequency interference (RFI). In this study, frozen 
ground and strong precipitation occurred at 45.8 % (44.7 %) and 0.04 % 
(0.0 %) during daytime (nighttime). 

4.1.2. Overall data accuracy 
The overall RMSE is also summarized in Table 3. AIRS and ERA5 

products provided both air and skin temperature. The daytime/night
time RMSEs for AIRS and ERA5 air temperature were 3.53 K/4.04 K and 
3.19 K/4.55 K, respectively and the daytime/nighttime RMSEs for AIRS 
and ERA5 skin temperature were 6.35 K/4.58 K and 8.79 K/6.04 K, 
respectively, indicating that their air temperatures were more accurate 
than their skin temperature. For PMW data, the daytime/nighttime 
RMSEs for AMSR2 air temperature and MIRS skin temperature were 
2.55 K/1.67 K and 5.51 K/7.44 K, respectively, indicating that the 

Table 3 
The percentages of valid pixels and overall root mean square errors (RMSEs) for the datasets assessed in this study. The available pixel percentages: the hourly 
Himawari-7 and ERA5 data that corresponded to the MODIS/Aqua overpass time was assessed; for MODIS and Himawari-7 data, the numbers outside and inside the 
brackets represented the available and high-quality pixel percentages, respectively. The overall RMSEs: for MODIS and Himawari-7 data, the numbers outside of 
brackets represented the overall RMSEs, while the numbers before/ after the slash in the brackets represented the RMSEs of high-quality data/ low-quality data; for 
coarse-spatial resolution data (AIRS, MIRS, AMSR2), the numbers outside/ inside of brackets represented validation results using aggregated-site in-situ measure
ments/ by direct comparison; for all-weather, passive microwave (PMW) and re-analysis data, the numbers outside the brackets represented the overall RMSEs, while 
the numbers before/ after the slash in the brackets represented the RMSEs of clear-sky data/ cloudy-sky data.  

Variables Type Data Available Pixel Percentage- 
Day (%) 

Available Pixel Percentage- 
Night (%) 

RMSE-Day RMSE-Night 

Skin 
temperature 

TIR MOD11A1 57.4 (42.9) 54.8 (37.9) 4.15 K (3.57 K/5.57 K) 4.03 K (2.78 K/ 5.95 K) 
TIR MOD21A1 54.3 (38.8) 43.1 (26.5) 4.61 K (4.12 K/5.67 K) 2.51 K (1.55 K/3.55 K) 
TIR MYD11A1 51.4 (38.1) 58.3 (43.0) 4.68 K (4.09 K/ 6.10 K) 3.24 K (2.48 K/4.77 K) 
TIR MYD21A1 50.8 (35.7) 45.5 (30.1) 4.36 K (3.86 K/ 5.39 K) 1.90 K (1.43 K/ 2.60 K) 
TIR Himawari-7 44.4 (38.1) 56.3 (53.2) 6.64 K (6.59 K/ 7.06 K) 3.54 K (3.48 K/ 4.98 K) 
TIR AIRS 74.2 81.0 6.35 K (10.25 K) 4.58 K (6.78 K) 
PMW MIRS 94.9 94.7 5.51 K (7.85 K) (5.49 K/ 

5.52 K) 
7.44 K (7.67 K) (8.34 K/ 
6.89 K) 

Re- 
analysis 

ERA5 100 100 8.79 K (9.88 K/ 7.51 K) 6.04 K (5.9 K) 

All- 
weather 

All-weather LST 
(Xu) 

100 100 4.72 K (4.28 K/ 5.16 K) 3.68 K (2.45 K/ 4.60 K) 

All- 
weather 

All-weather LST 
(Zhang) 

100 100 4.81 K (4.29 K/5.33 K) 3.76 K (2.68 K/ 4.60 K) 

Air 
temperature 

TIR AIRS 84.1 83.1 3.53 K (6.90 K) 4.04 K (6.61 K) 
PMW AMSR2 32.1 32.8 2.55 K (2.57 K) (2.59 K/ 

2.47 K) 
1.67 K (2.39 K) (1.62 K/ 
1.72 K) 

Re- 
analysis 

ERA5 100 100 3.19 K (3.00 K/ 3.38 K) 4.55 K (4.06 K/ 4.94 K) 

Soil 
temperature 

Re- 
analysis 

ERA5 (0–7 cm) 100 100 5.73 K (6.44 K/ 4.90 K) 5.02 K (5.23 K/ 4.84 K) 

Re- 
analysis 

ERA5 (7–28 cm) 100 100 3.37 K (3.31 K/ 3.43 K) 3.92 K (4.10 K/ 3.76 K) 

Re- 
analysis 

ERA5 (28–100 cm) 100 100 3.62 K (3.73 K/ 3.51 K) 3.56 K (3.68 K/ 3.46 K)  
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Fig. 2. Temporal variations in the spatial variability of multiple variables: the diurnal series of spatial variability (Daytime is from 7:00 to 16:00 local time, and other 
times are nighttime). 

Fig. 3. The RMSEs of the original and upscaled LST compared with in-situ measurements. For (a), the products corresponding to 0.10◦, 0.27◦, and 1.00◦ spatial 
resolution are clear-sky ERA5, MIRS, and AIRS LST, respectively. 
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accuracy of air temperature (AMSR2) was higher than that of skin 
temperature (MIRS). 

The high-quality data had lower RMSEs than the low-quality data, 
with RMSE differences ranging from 1.16 K to 3.17 K for MODIS data 
and 0.47 K to 1.51 K for Himawari-7 data. And, it should be noted that 
the percentages of high-quality data in the MXD11, MXD21, and 
Himawari-7 products were lower than the percentage of all available 
data, 15.0 %, 15.7 %, and 4.7 %, respectively. 

All-weather, PMW, and re-analysis products could provide clear-sky 
and cloudy-sky data, and their accuracies were discussed separately. The 
clear-sky data from the all-weather LST products exhibited lower RMSEs 
than the corresponding cloudy-sky data. In particular, Xu’s and Zhang’s 
all-weather LST products had lower daytime/nighttime RMSEs by 0.89 
K/2.15 K and 1.04 K/1.92 K, respectively. Conversely, for PMW prod
ucts, the differences in RMSE between clear-sky and cloudy-sky data 
were relatively small, at only 0.12 K/-0.10 K and − 0.03 K/ 1.45 K for 
daytime/nighttime AMSR2 surface air temperature and MIRS skin 
temperature, respectively. On the other hand, the RMSE of clear-sky 
data obtained from re-analysis products was sometimes larger than 
that of cloudy-sky data. The differences in RMSE between the two were 
2.36 K /-1.49 K, − 0.38 K /-0.89 K, 1.54 K /0.40 K, − 0.12 K /0.34 K, and 
0.22 K /0.22 K for daytime/nighttime ERA5 skin temperature, 2 m air 
temperature, and soil temperature levels 1, 2 and 3 products, 
respectively. 

In addition, the results of the direct comparison were generally 
consistent with previous studies on individual temperature variables. 
For air temperature, the average RMSEs for the AIRS, AMSR2, and ERA5 
products were 6.76 K, 2.48 K, and 3.87 K, similar to 6.18 K (RMSE) 
(Zhang 2017), 3.50 K (RMSE) (Jones et al. 2010), and 0.88–3.07 K 
(MAE) (Cao et al. 2020) in previous studies. For LST, the average RMSEs 
for the high-quality MXD11, high-quality MXD21, high-quality Hima
wari-7, ERA5, and Xu’s all-weather LST were 3.23 K, 2.74 K, 5.04 K, 
7.42 K, 4.20 K, similar to 0.75–5.58 K (RMSE) (Duan et al. 2019), 
0.33–2.20 K (RMSE) (Duan et al. 2018), 5.00 K (RMSD) (Trigo and 
Macedo 2015), − 5.50–4.50 K (Bias) (Gleixner et al. 2020), 2.85–3.72 K 
(RMSE) (Xu and Cheng 2021) in previous studies; The RMSEs for 
Zhang’s all-weather LST were 3.76–4.81 K in this study and 1.29–2.71 K 
(Zhang et al. 2019) in the previous study, and the differences might be 
due to the different validation sites used and the high spatial hetero
geneity around the Heihe sites used in this study. The average RMSEs for 
ERA5 soil temperature levels 1/2/3 were 5.38 K, 3.65 K, and 3.59 K, and 
their accuracies in previous studies were 1.81–4.85 K (MAE), 1.74–4.42 
K (MAE), 1.65–3.73 K (MAE) (Cao et al. 2020). 

4.2. Spatial heterogeneity of near surface temperatures 

The section includes three separate analyses, with Section 4.2.1 
based on in situ data and Sections 4.2.2 and 4.2.3 based on gridded 
products. 

4.2.1. Temporal variations of spatial variability 
To investigate spatial variability, the standard deviation (STD) was 

calculated using the in-situ temperatures across all sites at the same 
moment as an indicator. The STD for the diurnal series was obtained by 
averaging the STD values for all days at the same moment and is pre
sented in Fig. 2. The LST had the highest spatial variability, while the air 

and soil temperatures had the lowest spatial variability. Moreover, the 
daytime data showed higher spatial variability than the nighttime data. 
The 0 cm soil temperatures and LST had the most significant diurnal 
variation in spatial variability. Their spatial variability increased from 
6:00 to 13:00 local time, decreased from 14:00 to 20:00 local time, and 
tended to be constant at other times of the day. The spatial variability of 
near 2 m air temperature and near soil temperature level 1 varied only 
slightly throughout the day. Their spatial variability slightly increased 
from 9:00 to 18:00 local time, slightly decreased from 18:00 to 23:00 
local time and tended to be constant at other times of the day. The 
spatial variability near soil temperature levels 2 and 3 was approxi
mately constant during the day. 

4.2.2. Impact of spatial resolution on validating LST products 
To investigate the impact of spatial heterogeneity on the validation 

results, MODIS LST data were upscaled to 0.10◦, 0.27◦, and 1.00◦ spatial 
resolutions, corresponding to ERA5, MIRS, and AIRS LST products, and 
then compared with field measurements. Fig. 3a shows the accuracy at 
various aggregated resolutions. RMSE of the actual product of the same 
resolution is also displayed for reference. All the values correspond to 
clear-sky conditions when MODIS LST products are available. 

As the spatial resolution increased, the RMSE generally increased, 
indicating that the data validation results were subject to scale effects. 
For each product, the nighttime data had higher accuracy than the 
daytime data. For both the daytime and nighttime data, at each spatial 
resolution, the actual products had higher RMSEs than the upscaled 
MODIS data, indicating that the coarse-spatial resolution data were in 
fact less accurate than the aggregated MODIS data. 

4.2.3. Accuracy of various LST products when aggregated to the same 
resolution 

To exclude the effects of resolution differences in validation, the 
MYD11, MYD21, ERA5, Himawari-7, and MIRS products were upscaled 
to the coarsest resolution (AIRS) and compared with in-situ measure
ments (Fig. 3b). 

The RMSEs of the original LST data were also provided. The majority 
of original LSTs had lower RMSEs than the upscaled data, suggesting 
that the validation results were impacted by scale effects. However, the 
RMSEs did not exhibit a monotonic increase with the spatial resolution, 
as this could be influenced by variations in data sources and retrieval 
algorithms. 

4.2.4. The difference in elevation within the footprint of coarse spatial 
resolution data 

The spatial resolution of satellite products, such as AMSR2, AIRS, 
and ERA5 data, is coarser than station data, and their elevation repre
sentation can differ from that of stations. 

To investigate this issue, we analyzed the elevation difference be
tween grid and station elevation. Using the nighttime ERA5 air tem
perature data as example, we extracted the SRTM elevation data within 
the ERA5 pixels located by stations and provided statistics of maximum 
elevation, minimum elevation, the averaged elevation within the ERA5 
pixels. The elevation of the station, and the elevation difference between 
the averaged elevation and the elevation for each station were sum
marized in Table 4. The absolute value of elevation difference between 
the averaged elevation within the ERA5 pixels and the elevation of the 

Table 4 
The statistic of elevation within the ERA5 footprint for each ground station.  

Site Name AR BGT DSL DM HZZ SSW ZY 

Maximum elevation (m) 3798 1634 3989 1619 2031 1636 1516 
Minimum elevation (m) 2947 1501 3693 1508 1569 1513 1439 
Averaged elevation (m) 3221.5 1562.8 3796.7 1557.3 1736.2 1562.0 1465.4 
Station elevation (m) 3033 1562 3739 1556 1731 1594 1460 
Elevation difference (m) 188.5 0.8 57.7 1.3 5.2 − 32.0 5.4  
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Fig. 4. Diurnal series of clear-sky temperature, cloudy-sky temperature, and clear-sky bias.  
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station has a range from 0.8 m to 188.5 m. According to Wang et al. 
(2018), the change in air temperature due to elevation difference varies 
from 2.4 ◦C/km to 8.7 ◦C/km in the vertical direction. Therefore, the 
elevation difference may cause an air temperature difference from 0.0 ◦C 
to 1.6 ◦C at these stations. 

4.3. Clear-sky bias 

Clear-sky bias was defined as the difference between the average 
clear-sky and all-weather LSTs, using the in-situ data in this study. This 
section presents the diurnal variation in clear-sky bias for near-surface 
temperature variables. 

Fig. 4 shows the diurnal series of clear-sky temperature, cloudy-sky 
temperature, and clear-sky bias. In general, the variation in LST, 0 cm 
soil, and the air temperature was larger than the variation in soil tem
peratures at greater depths. Among all near-surface temperature vari
ables, the variation in cloudy-sky data was smaller than that in clear-sky 
data. During the daytime, the clear-sky temperature was higher than the 
cloudy-sky temperatures, while the opposite was true at night. This 
phenomenon could be attributed to the cooling/warming effects of 
clouds on the land surface during daytime/nighttime, as reported by Tan 
et al. (2021). As a result, a positive clear-sky bias was observed during 
the daytime, while a negative clear-sky bias was observed at night. 
Moreover, the clear-sky bias for LST, 0 cm soil temperature, and air 
temperature exhibited the most substantial temporal variations. 

5. Conclusions 

This study presented a comprehensive evaluation of nine gridded 
datasets of various near-surface temperature variables, including air, 
land surface, and soil temperatures, using in-situ measurements 
collected at HRB. With the extensive measurements of various temper
ature variables at HRB, the study also investigated the spatial hetero
geneity and clear-sky bias of different temperature variables. 

The results indicated that the MXD21 products had high accuracy for 
skin temperatures but low data availability, while the gap-free all- 
weather LST products with comparable accuracy can be promising al
ternatives. Products of near-surface air temperatures generally had high 
accuracy. For the EAR5 soil temperature data, the data accuracy 
increased with the reference depth. For various temperature variables 
from the same products (AIRS, ERA5), the air and soil temperatures had 
higher accuracy than the skin temperature. 

The spatial heterogeneity of air temperature and soil temperature at 
deep layers was low. In contrast, skin temperature and 0 cm soil tem
perature had stronger spatial variations. The spatial heterogeneity also 
varied with the time of day, with daytime temperatures usually having 
higher spatial variations than nighttime data. The issue of spatial het
erogeneity is further complicated by the difference in elevation within 
the footprint of coarse spatial resolution temperature data. The lapse 
rate in mountainous arear was reported to display great variability 
depending on season and synoptic weather types (Blandford et al. 2008). 
Incorrect representation of the elevation signature within the data grid 
can lead to substantial uncertainties in gridded temperature data, 
sometime even results in artifact trends (Wang et al. 2018). Similarly, 
the difference between the station elevation and the elevation of coarse 
resolution product represents a significant source of error that should 
not be ignored. The issue is worthy further investigation in the future. 

For clear-sky biases in these temperature variables, deep soil tem
peratures were less affected than the air temperature and skin temper
ature. The magnitude and sign of clear-sky bias showed strong diurnal 
variations, with the daytime clear-sky bias being positive and the 
nighttime clear-sky bias being negative. 

It should be noted that conclusions obtained in this study were based 
on data measured at a limited number of sites in HRB, and further 
analysis using additional data acquired over other regions and from 
extra years was needed to provide an extensive quality assessment of 

various temperature variables. The use of spatially weighted aggrega
tion of measurements from multiple sites within the footprint of a sat
ellite sensor was a promising approach to explicitly account for spatial 
heterogeneity and reliably evaluate the quality of coarse-resolution 
temperature data products. However, such analysis was limited to 
only a few locations in this study due to the number of stations in HRB 
and their spatial distribution. A measurement network with dense sta
tions and strategically designed spatial distribution was desired to fully 
investigate the spatial heterogeneity issue of temperature variables. 
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