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Dru Smith, Jacob Heck, Dan Gillins, Kyle Snow 

1 Background 

The estimation of unknown, but fixed, parameters from observations requires 
that an underlying mathematical model exists relating the parameters, the ob-
servations, and the nature of their random errors. When least-squares tech-
niques are applied, the estimation process is called Least-Squares Adjustment. 
In this memorandum, a new observational model called the Variance Compo-

nent Model (VCM) with Stochastic Constraints1 and a LEast-Squares Solution 
(LESS) within that model are introduced. This new model is needed to ad-
dress the specific situation when prior information exists for the parameters, 
but it is presumed that the respective dispersion2(covariance) matrices for the 
prior information and the observations do not share a common variance com-
ponent. This implies that, while the weights among the observations and also 
those among the prior information are known accurately, there still remains an 
unknown scale difference between them. 
The VCM with Stochastic Constraints is based on two other observational 

models, namely, the Variance Component Model (VCM) (Schaffrin and Snow 
(2017b)) and the Gauss-Markov Model (GMM) with Stochastic Constraints 
(Schaffrin and Snow (2017a).) The traditional VCM allows for multiple variance 
components, but it does not include prior information on the parameters. On 
the other hand, the Gauss-Markov Model with Stochastic Constraints allows for 
both observations and prior information on the parameters, but it has only one 
variance component. 

1It is acknowledged that the model has also been presented in Schaffrin et al. (2018) and 
that we have openly shared ideas and numerical results with those authors. 

2The terms dispersion matrix and covariance matrix are used synonymously throughout 
this document. 
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The motivation for developing the new model was driven by the pending re-
lease of the North American-Pacific Geopotential Datum of 2022 (NAPGD2022; 
NGS, 2017). It is expected that this release will give rise to combined GNSS 
and spirit leveling surveys, where surveyors would first utilize GNSS data to de-
termine GNSS-derived orthometric heights. These heights would then be used 
as prior information on the parameters in a least-squares adjustment of geodetic 
leveling data. However, the new model is derived generically, and thus it can be 
applied to any sort of geodetic data where observations and prior information 
are provided and two (or more) variance components should be estimated. 
An alternative approach for estimating height parameters in the scenario 

described above is the Partial MInimum NOrm LEast-Squares Solution (Partial 
MINOLESS), which might be more suitable in cases where variances for the 
prior information are not available. In any case, it could be a useful check 
on the LESS within the new model, as one would not expect that parameters 
estimated from the two different approaches would vary significantly. 
In the following, we review the GMM with Stochastic Constraints in Sec-

tion 2, followed by a review of the traditional VCM in Section 3. In Section 4, 
we introduce the new model and then show the least-squares solution (LESS) 
within this model in Section 6, which follows the presentation of the LESS within 
the traditional VCM in Section 5. The Partial MINOLESS is introduced in Sec-
tion 7. In Section 8, we present numerical results from a leveling network where 
prior information on the parameters was provided via a GNSS survey. Finally, 
in Section 9 we give a summary of our findings and make some recommendations 
for use of the presented models and least-squares adjustments. 

2 The Gauss-Markov Model with Stochastic 
Constraints 

Following Schaffrin and Snow (2017a), the (linearized) Gauss-Markov Model 
(GMM) with Stochastic Constraints can be written as 

y = Aξ + e, (1) 

z0 = Kξ + e0, (2)� � � � � � 
e 0 2 P −1 0∼ ( , σ

 0   −1 ). (3)
e0 0 0 P0 

The assumption that the GMM with Stochastic Constraints might be linearized 
is made to handle cases where the observations are a non-linear function of the 
unknown parameters. In those cases, it would be technically correct to speak of 
incremental observations and incremental parameters; however, for the sake of 
simplicity, the adjective “incremental” will not be used in this document. Each 
of the variables shown in (1)–(3) is described briefly in Table 1. 
Assuming that rk[AT | KT ] = m, the LESS within the GMM with Stochastic 
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Table 1: Variables used in the Gauss-Markov Model with Stochastic Constraints 

Variable Size Description 

y n × 1 Vector of random observations 

A n × m Coefficient matrix relating observations to parame-
ters 

ξ m × 1 Vector of unknown fixed parameters to be estimated 

e n × 1 Vector of unknown random errors in the observa-
tions 

z0 l × 1 Vector of prior information on the parameters 

K l × m Coefficient matrix for the prior information

e0 l × 1 Vector of unknown random errors in the prior infor-
mation 

σ2 Unknown variance component (scalar quantity) 0 

P n × n Invertible observational weight matrix 

P0 l × l Invertible weight matrix for the prior information 

m Number of unknown parameters to be estimated 

n Number of observations 

l Length of prior information vector and number of 
stochastic constraints 

Constraints exists uniquely and is arrived at in a non-iterative fashion.3 The 
variance component σ2 

0 is estimated (yielding σ̂2
0) as a byproduct of the LESS 

for the parameters (see (7)), which can then be used in the estimated dispersion 
ˆ ˆ(covariance) matrix for the estimated parameters D{ξ}, as in (8). 

The unknown variance component σ2 
0 in (3) (sometimes called variance of 

unit weight) implies that the dispersion matrices for the random error vectors 
e and e0 are only known up to a scale factor; i.e., P = σ2 

0 · [D{e}]−1 and
P = σ2 · [D{e }]−1 
0 0 0 . Obviously, the variance component is common to both 
dispersion matrices, as reflected in (3). 
Some of the more useful equations derived from the LESS are listed in (4)– 

(10) (ibid):

The estimated parameters: 

ξ̂ = (AT PA + KT  P −1 T T 
0K) (A P y + K P0z0). (4) 

3That is, no iteration is required to arrive at equations (4)–(10). However, if the Gauss-
arkov Model with Stochastic Constraints was linearized, then equations (4)–(10) pertain to 

ncremental parameters, and the solution may need to be iterated to arrive at estimates of 
he total parameters. 

M
i
t
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The adjusted observations: � � � � 
ỹ A ˆ= ξ. (5) 
z̃0 K 

The predicted random errors (residuals): � � � � � � 
ẽ y ỹ

= − . (6)
ẽ0 z0 z̃0 

The estimated variance component: 

T 
2 ẽ P ẽ + ẽT0 P0 ẽ

σ̂ = 0 
0 . (7)

n − m + l 

Equation (4) provides the estimated parameters, (5) the adjusted observa-
tions, (6) the predicted random errors, or residuals, and (7) provides an estimate 
of the variance component. Note that the denominator in (7), n−m+ l, denotes 
the redundancy of model (1)–(3). The estimated dispersion matrices for the es-
timated parameters, adjusted observations, and residuals are shown in (8)–(10), 
respectively. The dispersion (variance) of σ̂2 

0 can also be estimated, under the 
assumption of  ˆnormality, via D{σ̂2

0} = 2(σ̂2
0)

2[n − m + l]−1 . 

The estimated dispersion matrix for the estimated parameters: 

D̂{ξ̂} = σ̂2
0(A

T PA + KT P −1 
0K) . (8) 

The estimated dispersion matrix for the adjusted observations: � � � � � � � �T 
ỹ A A Aˆ{ }  ˆ{ ˆ ˆD = D  ξ} = D{ξ̂} = 
z̃0 K K K � � (9) 

A(AT PA + KT P0K)
−1AT 

2 A(AT PA + KT P0K)
−1KT 

= σ̂0 T .
K   
(ATPA + K  P0K)

−1AT K(AT PA + KT P0K)
−1KT 

The estimated dispersion matrix for the residuals: � � � � � � � � � � 
ẽ y ỹ P −1

} ˆ=  0 ỹ
D̂{ } D̂{ − D{ } = σ̂2

0 −1 − D̂{ } = 
ẽ z� 0 0 z̃0 0 P0 z̃0 � 

P −1 
2 − A(AT PA + KT P K)−1AT −A(AT PA + KT 

0 P0K)
−1KT 

= σ̂0 −K(AT PA + KT P K)−1AT P −1  K(AT T . 
0 − PA + K  P0K)

−1KT 
0 

(10) 

It is expected that cases will occur in which the observational weight matrix 
P and the prior information weight matrix P0 differ from their true values by 
unique and independent scale factors, thereby invalidating the use of model 
(1)–(3). One model which allows for the estimation of two (or more) variance 
components, and therefore may be informative for such cases, is the Variance 
Component Model (VCM). Note, however, that the traditional VCM does not 
incorporate prior information on the parameters. Nevertheless, we present it in 
the next section as a preliminary step before introducing our new model. 
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3 The Variance Component Model 

The (linearized) Variance Component Model (VCM) can be written as follows:4 

  y0 = A0ξ + e0  , (11) 
 e0 ∼ (0, σ2

1Q1 + σ2
2Q2). (12) 

The terms used in (11) and (12) are described briefly in Table 2. Note that 
the matrices Q1 and Q2 are formally called cofactor matrices. They are known 
matrices, and when they are invertible (or when their non-zero submatrices are) 
the inverses are called weight matrices. The use of two variance components, σ2 

1 
and σ2

2 , implies that the two dispersion matrices are only known up to unique 
and independent scale factors. Here we make a clarifying comment that, for-
mally, it is the variance component times the cofactor matrix that is called 
the dispersion (covariance) matrix. For example, if Σ1 = σ2

1Q1, then Σ1 is a 
dispersion matrix in this context. 

Table 2: Variables used in the Variance Component Model 

Variable Size Description 

0y 0 n × 1 Vector of random observations 

A0 0 n × m Coefficient matrix relating observations to parameters 

ξ m × 1 Vector of unknown fixed parameters to be estimated 
0e 0 n × 1 Vector of unknown random errors in the observations 

σ2 
1 The first unknown variance component 

σ2 
2 The second unknown variance component 

Q1 
0 0n × n The first observational cofactor matrix 

Q2 
0 0n × n The second observational cofactor matrix 

0n Number of observations 

m Number of parameters to be estimated 

Now, it is expected that cases will occur in which the need for two variance 
components exists, but where one is associated with observational random errors 
and the other with random errors in the prior information, rather than both 
applying to the observations as in (11) and (12). It is this case that motivated 
our development of the new model described in the next section. 

4The prime mark used here is non-traditional, but it is helpful to distinguish these variables 
from those in the GMM with Stochastic Constraints. 
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4 The Variance Component Model with 
Stochastic Constraints 

The following linearized5 Variance Component Model (VCM) with Stochas-
tic Constraints looks very similar to the Gauss-Markov Model (GMM) with 
Stochastic Constraints (compare to (1)–(3)): 

y = Aξ + e, (13) 

z0 = Kξ + e0, (14)� � � � � � 
e 0 σ2

1P −1 0∼ ( , 
  2  −1 ). (15) 

e0 0 0 σ2P0 

Note that the only change is the introduction of two unique variance com-
ponents in (15), rather than one in (3). All other terms are identical to those 
in the GMM with Stochastic Constraints in (1)–(3). 
The introduction of two variance components means that the formulas for 

the LESS within the GMM with Stochastic Constraints cannot be used within 
the VCM with Stochastic Constraints to estimate the unknown parameters ξ. 
However, if (13)–(15) could be related to (11) and (12), then the iterative ap-
proach to the LESS within the VCM could be applied. This is the approach we 
take here, rather than derive the LESS from first principles. Specifically, note 
that the stochastic-constraint equations (14) have the same mathematical form 
as the observation equations (13). Thus, (13) and (14) may be combined into a 
single set of equations, which can be written as� � � � � � 

y A e 
= ξ + . (16) 

z0 K e0 

Furthermore, using appropriately sized blocks of zeros, (15) can be expressed 
equivalently as � � � � � � � � 

e 0 P −1 0 0 0∼  ( 2 , σ1 + σ2
2 −1 ). (17) 

e0 0 0 0 0 P 0 

Now, (16) and (17) have the same form as (11) and (12), with the following 
useful equivalences: 

� � � � � � 
P −1 

0 e 0 0 0 
e := , (18) Q1 := , (19) Q

 2 := , (20)
P −1 e0 0 0 0 0 

⎡ ⎤ ⎡ ⎤ 
y A 

0 y := ⎣n×1⎦   ⎣n×m
, (21) A0 := ⎦ . (22) 

z0 n0×m n0×1 K 
 l×ml×1

5See earlier comment about presumption that the mathematical model is already linearized. 
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Lastly, the size of the observation vectors are related by 

n 0 = n + l, (23) 

and, for the uniqueness of the LESS, it is assumed that rk A0 = m. 
The LESS within the VCM with Stochastic Constraints follows that of the 

LESS within the VCM itself, but it is then translated into the original form 
(13)–(15) using equations (18)–(23) as a guide. The LESS within the VCM is 
shown in Section 5, and the LESS within the VCM with Stochastic Constraints 
is shown in Section 6. 

5 Least-Squares Solution within the Variance 
Component Model 

Based on the derivation provided by Schaffrin and Snow (2017b), the following 
algorithm provides the (iterative) LESS within the VCM: 
Let j be the iteration number. Define the vector of estimated variance 

ˆcomponents ϑj at iteration j as � �
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(σ̂2

1)ϑ̂j := j . (24)
(σ̂2

2)j

Furthermore, define ˆthe estimated dispersion (covariance) matrix Σj as 

ˆ  Σj := (σ̂2 σ2
1 )j · Q1 + (ˆ2 )j · Q2. (25) 

Then define the auxiliary matrix 

ˆ  Σ̂−1 − Σ̂−1 A0(A0  ˆW := TΣ−1 A0 −1 ˆA0T Σ−1
j j−1 j−1 j−1 ) j−1. (26)

Finally, the formula for the estimated variance components is given by (see 
Schaffrin and Snow (2017b) for details) � � � �−1 � � 

2 ˆ ˆ ˆ ˆ ˆ ˆ(σ̂1 )j tr(Wj Q1Wj Q1) tr(W 0
jQ

T
 W )  

1 j Q2  y Wj Q W y0
ϑ̂j := 2 = . 1 j 

0T .
(σ̂ 0

2) ˆ ˆ ˆ ˆ ˆ ˆj tr(Wj Q2Wj Q1) tr(Wj Q2Wj Q2) y Wj Q2Wj y
(27) 

Note that, the inverse matrix, under the assumption of normality, may be taken 
1 ˆas D{ϑ̂} after convergence. 2 
So, at iteration j = 0 set � � � � 

(σ̂2 1ˆ 1 )ϑ 0
0 := ≡ , (28)

(σ̂2
2)0 1 

and thus compute 
Σ̂0 = Q1 + Q2. (29) 

Continuing the algorithm for j > 0: 



Set j = 1, and apply equations (26) and (27), using the (j−1)th solution to 
obtain the jth values of Ŵj and ϑ̂j . 

    ˆ − ˆCheck the magnitude of ϑj ϑj−1 at each iteration to see if 

 ˆδ = kϑj − ϑ̂j−1k < � (30) 

holds for some specified �. If equation (30) is not true, then increment j and 
return to (25) for the next iteration. Repeat until (30) is satisfied, signifying 
that the algorithm has converged, thereby providing the estimated variance 
components. 
Once iteration completes, the final estimated variance components are known 

in good approximation. Now dropping the subscript j for convenience, the 
estimated dispersion matrix of y0 is provided by 

ˆ σ2 Σ = ˆ · Q σ2
1 1 + ˆ2 · Q2. (31)

The estimated parameters themselves are computed by 

ˆ   ˆ  ˆ  ξ = (A0TΣ−1A0)−1A0TΣ−1y 0, (32) 

with their estimated dispersion matrix provided by 

ˆ ˆ  0T ˆ−1 0 −1 0     D{ξ} = (A Σ A ) = [A T (σ̂2
1 ·Q1 + σ̂2

2 ·Q −
2)

1A0]−1. (33) 

The adjusted observation and predicted random error (residual) vectors are, 
respectively, 

0 ˜ = ˆy A0ξ, (34) 
0 0 ẽ = y 0 −  ỹ = y 0 − A0ξ̂. (35) 

The estimated dispersion matrix for the adjusted observations is given by 

D̂{ ˆ ˆ ˆ ˆ      ỹ0} = D{A0ξ} = A0D{ξ}A0T = A0[A0T (σ̂2
1 ·Q + −

1 σ̂2 1 0 −1 0T
 2 ·Q2) A ] A . (36)

And, finally, the estimated dispersion matrix for the predicted random errors 
(residuals) is 

ˆ  D{ẽ0} =      (σ̂2·Q + σ̂2·Q ) − A0[A0T (σ̂2 2
1 1 2 2 ·Q −1 0 −1 0T

1 1 + σ̂2 ·Q2) A ] A . (37)

6 Translating back to the Variance Component 
Model with Stochastic Constraints 

Using the LESS outlined in Section 5 (within the Variance Component Model 
(VCM)) and the relationships outlined in Section 4 (between the VCM and the 
VCM with Stochastic Constraints), the LESS within the VCM with Stochastic 
Constraints can be written as follows. 
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First, begin with the final, iterated estimates of the two variance components � � 
σ̂2

ϑ̂ = 1 . (38)
σ̂2 
2 

Then, applying (19) and (20) to (31) yields the estimated dispersion (covariance) 
matrix Σ̂ for the concatenated vector of observations y and prior information 
z0 as follows: � � � � � � 

P −1 0 0 0 σ̂2·P −1 0
Σ̂ = σ̂2

1 + σ̂2 1

0 0 2 −1 = . (39)
0 P 0 σ̂2 ·P −1

0 2 0 

Parenthetically, we note that a block diagonal matrix is invertible if its diagonal 
blocks are invertible, and thus the inverse of the dispersion matrix in (39) is � � 

1 (1 2
− /σ̂1)·P 0ˆ  Σ = . (40)

0 (1/σ̂2
2)·P0

Next, applying (21), (22) and (40) to (32) yields the estimated parameters as 
a function of the observations y, the prior information z0, and the two estimated 
variance components σ̂2 and σ̂2 

 as follows: 1 2��   
 
T −1 T 

A A A y ̂ ˆξ = −1 ˆΣ Σ−1 = 
K K K z0� �  

 2 T  
�

 
�

= (1/σ̂ )· PA  
−1

A + /σ̂2  
1 (1 2)·KTP K (1/σ̂2)·ATP y + (1/σ̂2)·KT

0 1 2 P0z0 . 
(41) 

And, applying (22) and (40) to (33) yields the estimated dispersion matrix �� � � �T �−1 � �
ˆ ˆ ˆ  D{ξ} = AT KT Σ−1 AT KT = σ̂−2 ·1  T  −1

A PA + σ̂−2 · KT
2 P0K

(42) 
for the estimated parameters. Next, applying (21) and (22) to (34) yields � � � � 

ỹ A ˆ= ξ (43)
z̃0 K 

� � �� � � � �

for the adjusted observation vector ỹ and the adjusted prior information vector
z̃0. Then, applying (21) and (22) to equation (35) yields the concatenated 
residual vector, comprised of ẽ and ẽ0, 

           

� � � � � � � � � � 
ẽ y ỹ y A ˆ= − = − ξ. (44)
ẽ0 z0 z̃0 z0 K 

Next, we apply the law of error propagation (Koch, 1997, pp. 99, 100) to de-
termine the estimated dispersion matrices for the adjusted observations and 
adjusted prior information. � � � � � �� � � �

10 

  −1 T 
ỹ A A 1 1 Aˆ ˆ ˆD{ } =   D{ ξ} = ATPA + KT

 P0K = 
z̃0 K K σ̂2 σ̂2 K" � −2  � 1 2 #

−1 � �−1 
A σ̂ ·1 AT   PA+σ̂−2 AT σ̂−2   

 ·KT P0K A ·
= 2 ATPA+σ̂−2·KTP K KT

 � −2 −2 � � 1 2 0
−1  −1 

K σ̂ ·AT PA+σ̂ ·KTP K AT K σ̂−2 2
�

0 ·AT PA+σ̂− ·KT P0K KT
1 2 1 2 

(45) 



Finally, the equation to compute the estimated dispersion matrix for the pre-
dicted random errors (residuals) is 

11 

� � " � �  
ẽ σ̂2

1P  −− 1−1−A σ̂ 2· T −2 · T 
1 A PA+σ̂2 K P0K AT 

D̂{ } = � −− 1 . . . 
ẽ −K σ̂ 2 �

·AT PA+σ̂−2 ·KT 0 1 P T 
2 0K A� � #

−− 1 −A σ̂ 2 ·AT  
1 PA+σ̂−2·KT P0K KT 

. . . 2 . (46)
σ̂2P 

−−1
� � 1 

2 −K σ̂−2 
1 ·AT  

0 PA+σ̂−2
 · T P0K KT 

2 K

7 Alternative solution: Partial-MINOLESS 

In some cases it may be required to estimate the unknown parameters such 
that they turn out to be as close as possible to certain specified (a priori) 
values, while still guaranteeing that the weighted sum of squared observation 
residuals is minimum; i.e., the specified parameter values should not affect the 
adjustment of the observations. This could be the case for all the parameters 
or only a subset of them. For example, suppose the heights of certain network 
stations were determined by GNSS and that subsequent leveling observations 
between all the network stations needed to be adjusted. Furthermore, suppose 
that the GNSS-derived heights should have no affect on the adjusted leveling 
observations and that the corresponding estimated heights should be as close to 
the GNSS-obtained heights as possible for those certain stations. This example 
could be applied to the test network described in Section 8 below. 

Network datum deficiency 
The preceding example represents a case of a network datum deficiency, 

which occurs when the observations do not contain enough information to 
uniquely estimate the parameters of the model; i.e., rk[AT | KT ] = m > rk AT = 
rk A. The concept of datum deficiency is easy to understand by use of exam-
ples. In a geodetic or surveying network where 3D coordinates of monuments 
are the unknown parameters to be estimated, the coordinates represent a re-
alization of an underlying network datum having seven parameters: scale (1), 
orientation (3), and origin (3). However, the coordinates themselves are rarely 
observed; but, rather, it is more common to observe azimuths, directions, zenith 
angles, and slant distances between the monuments. The angular measurements 
carry information about the orientation of the network, while the slant distances 
provide scale information. However, none of these observations provides infor-
mation about the origin of the datum. Thus, the datum deficiency is three 
(one for each unknown origin parameter). Obviously, a 2D analog occurs in 
the case where only 2D coordinates are to be estimated (e.g., in the horizontal 
plane). Our leveling example is the 1D analog, since the parameters of interest 
are heights of monuments, but the leveling observations only carry information 
about height differences between the monuments. 
From a least-squares adjustment perspective, the datum deficiency corre-

sponds to a rank deficiency, of size d, in the least-squares normal equations, 



implying that the equations cannot be solved without imposing certain con-
straints on the parameters. At the level of the observation equations, only 
m − d of the m columns of the coefficient matrix A are linearly independent. 
Note that, in our example, the rank deficiency is d = 1 regardless of how many 
heights must be estimated. 
Surveyors often encounter such datum deficiencies in their work and may 

handle them by holding the coordinates of one station “fixed” in a network 
adjustment. This results in a minimally constrained adjustment, so called be-
cause only a minimum number of constraints are imposed upon the parameters 
to allow the system of equations to be solved. Such an adjustment yields unique 
and unbiased observation residuals, but not unbiased parameter estimates. In 
fact, it can be shown mathematically that the choice of datum constraint will 
always bias the estimated parameters of a network adjustment (whether 3D, 
2D, or 1D). Thus, the adjustment that will result in a minimum bias among all 
adjustments of type minimally constrained is of particular interest. 
It turns out that there is a minimally constrained adjustment that satis-

fies the minimum bias condition uniformly while also minimizing the changes 
between a priori and estimated parameters. It is called MInimum NOrm LEast-
Squares Solution (MINOLESS ), reflecting in its name the property of minimum 
parameter changes. The minimum bias property is proved from a statistical 
derivation of the equivalent Best Linear Uniformly Minimum Biased Estimate 
(BLUMBE ), which also guarantees the desirable property of minimum trace of 
dispersion (covariance) matrix for the estimated parameters (see Schaffrin and 
Snow (2017b)). 
We may summarize the properties of MINOLESS (and equivalent BLUMBE) 

by stating that it yields: 

1. A unique and unbiased residual vector. 

2. A minimum (weighted) sum of squared residuals. 

3. A minimum change between a priori and estimated parameters in terms 
of L2-norm. 

4. A minimum trace of dispersion matrix for the estimated parameters. 

5. A minimum bias of estimated parameters in the class of minimally con-
strained least-squares adjustments. 

The Partial-MINOLESS is used for the case where changes in parameters 
should be minimized for only some of the unknown parameters. It is actually the 
more general case, since it employs a selection matrix S used to specify which 
parameters should be targeted for minimization of change, and, by setting S to 
the identity matrix, MINOLESS itself is obtained. 
According to Schaffrin et al. (2018), Partial-MINOLESS can be obtained by 

minimizing the S-weighted parameter vector ξ subject to the condition Nξ = c, 
stated mathematically by the objective 

 (  0  z − 0
0  ξ)T S(z0 − ξ) = min such   that N(ξ − z00) = c − Nz 00. (47)

ξ 
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� � � P �
  0

S := KT P0K = 0 , K := Il 0 , (50)
0 0 l×m 

Here we have introduced [N, c] := AT P [A, y], with A and y as originally defined 
in Section 2. We stress that the n × m matrix A is rank deficient and define its 
rank as 

q := rk A < m < n. (48) 

The m × 1 vector z00 is defined by � � 

z0 
z

0 := 0 , (49)
0 

where the vector of prior information z0 was defined in Section 2. In theory, 
the m × m matrix S can be any symmetric positive-semidefinite matrix. In 
its standard form, it is a diagonal matrix with ones corresponding to selected 
parameters and zero elsewhere. In harmony with the preceding sections, it may 
also be defined by 

as it was in Schaffrin et al. (2018), where the l×m matrix K is rectangular (when 
l < m) with ones on its main diagonal and zeros elsewhere. Note that matrix K 
can always be constructed as such, though a reordering of the parameters so 
that the “selected” ones appear first in the vector ξ might be required. 
Because of the rank deficiency, matrix N is not invertible, but as long as the 

matrix sum S + N is invertible the Partial-MINOLESS can be represented by 

ξ̂ = z0 0 + (S + N)−1N [N(S +  N)−1N ]−(c − Nz00), (51) 

with the estimated dispersion matrix 

D̂{ξ̂} = σ̂2
0(S + N)−1N [N(S + N)−1N ]−N [N(S + N)−1N ]−N(S + N)−1+ � � 

− ˆ
1 Σ  0 

+{Im − (S + N) N [N(S + N)−1N ]−N} · 0 · (52)
0 0 

·{Im − (S +  N)−1N [N(S + N)−1N ]−N}T . 

Here, the raised minus sign stands for a generalized inverse, e.g., G− stands 
for a generalized inverse of matrix G. Note that any generalized inverse of the 
matrix product N(S + N)−1N in (51) and (52) will suffice. 
A perhaps somewhat simpler expression for Partial-MINOLESS can be de-

rived from a set of minimum constraints 

(ES)(z00 − ξ) = 0, where  NET = 0, (53) 

with the same matrix S and vector z00 as before, and E being a suitable d × m 
matrix with full row rank. It is unique if and only if 

rk(ES) = rk E = m − q = d, (54) 
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where, as noted above, q is the rank of matrix A, and d is the network datum 
deficiency. The solution may then be represented by 

ˆ  0   T −1   0 ξ = z0 + (N + SE ES) (c−Nz0), (55) 

with the estimated dispersion matrix 

D̂{ξ̂}   = σ̂2
 (N + S T

0 E ES)−1N(N + SETES)−1+ � � 
ˆ (56)

T Σ 0      +[Im − (N + SE ES)−1N ] · 0 · [Im − (N + SETES)−1N ]T . 
0 0 

See Snow and Schaffrin (2007) for a full derivation. It is noted that, while the 
coefficient matrix A does not have full column rank due to the datum deficiency, 
the combined matrix [AT , ET ] has full row rank and thus spans Rm . The form of 
matrix E is well known for a variety of datum deficient problems in geodesy. For 
the example we treat in the next section, it is simply a 1 × m matrix containing 
only ones. 
Note that matrix triple products appearing after the first lines in equations 

(52) and (56) are due to the uncertainty in the prior information vector z0 0 
appearing in (51) and (55), respectively, as expressed in the weight matrix 
= σ2 

0 ·Σ−1 P0 0 . In the case that the prior information is given without uncertainly 
(i.e., the weight matrix P0 is not provided), then z0 0 is treated as a constant in 
variance propagation, and equations (52) and (56) are reduced to their respective 
first lines. Obviously, in that case, P0 would be replaced by Il in (50). 
Regardless of whether (51) or (55) is used to compute the estimated param-

eters, the (unique) residual vector is computed in the usual way by 

ˆẽ = y − Aξ, (57) 

and the estimated variance component is provided by 

ẽT P ẽ
σ̂2 
0 = . (58)

n − q 

Finally, we note that in some of the papers referenced in this section, Partial-
MINOLESS (also called S-weighted MINOLESS) appears without the term z0 0. 
That is because in those works it had been assumed that  ˆthe solution ξ repre-
sented an incremental change to a vector of initial values, whatever they may 
be. Here, we include the term z0 0 explicitly for easy comparison to the estima-
tors shown  ˆin the preceding sections and note that ξ is updated iteratively in 
numerical algorithms, while the vector z0 0 remains unchanged at each iteration. 
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8 Testing the Variance Component Model with 
Stochastic Constraints with GPS and spirit 
leveling data from a small network in Corbin, 
Virginia  

A small network was established at NGS’s Training Center in Corbin, Virginia, 
consisting of seven control points (Figure 1). All seven points were observed 
using Trimble GNSS receivers with Trimble Zephyr Geodetic antennas 
(TRM41249.00) for three 24-hour sessions on days of year 218–220 of 2016. 
However, for the purposes of this example, only GPS1 data from the outermost 
three points (1–3) were used for this test. Additionally, first-order class I spirit 
leveling connected the seven points in 12 double-run sections using a Leica 
DNA03 digital automatic level. The lengths of each run are shown in Figure 1.  

2 

135  m 124  m 

4 5 192  m 

111  m 

7 
164  m 157  m 130  m 

3 

160  m 

1 
246  m 

6  

Figure 1: Test network at Corbin, Virginia. Points 1, 2, and 3 appear as stations 
MTCH, QAD2, and P150, respectively in Figure 2b.  

In order to test the Variance Component Model with Stochastic Constraints 
using GPS data spanning collection times more typical of surveying practices,  
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1 From here on we switch from the use of GNSS (Global Navigation Satellite System) to GPS (Global  

Positioning System), since only GPS data were processed for this investigation.  



three 5-hour GPS sessions were extracted from the total GPS data collected at 
points 1–3. The first session was from 0:00 to 05:00 (GPS time) on the first day 
of the survey, the second session was from 02:00 to 07:00 on the second day, and 
the third session was from 04:00 to 09:00 on the third day. 
The data were post-processed using OPUS-Projects, version 2.7.2. In addi-

tion to the GPS data from points 1–3 (Figure 2b), 24-hour GPS data files at six 
Continuously Operating Reference Stations (CORS) (stations BREW, LOY8, 
LOYB, LOYJ, LOYM, LOYO) were added to each session (Figure 2a). 
The nearest CORS, LOY8, is within 12 km of the Corbin test network and 

was designated as the hub station7 for all three sessions. One of the CORS, 
BREW, was more than 1,000 km from the hub and was only included for mini-
mizing tropospheric modeling errors in the GPS baseline processing. 
During session baseline processing, the coordinates for all of the CORS, with 

the exception of the hub, were constrained with normal8 constraint weights. 
The outputs of all three processing sessions were used as observations in a GPS 
network adjustment, where the coordinates of all of the CORS, except for station 
BREW, were constrained with normal constraint weights. 
The final estimates of the ellipsoid heights, as well as the estimated disper-

sion (covariance) matrix, were extracted from the output ascii file in Solution 
INdepedent EXchange Format (SINEX). Next, the NGS xGEOID16B9 gravi-
metric geoid undulation model was applied to the estimated ellipsoid heights 
to yield estimated orthometric heights. As the purpose of this exercise was 
mostly to test the feasibility of the Variance Component Model with Stochas-
tic Constraints, the geoid model random errors were not incorporated into this 
test. As such, the estimated dispersion matrix of the estimated ellipsoid heights 
was considered identical to the estimated dispersion matrix of the estimated 
orthometric heights. However, to be more rigorous, geoid model random errors 
should be propagated into the dispersion matrix of the orthometric heights. 
The estimated orthometric heights and the estimated dispersion matrix of the 
estimated orthometric heights became the 3 × 1 vector z0 and the (full) 3 × 3 
cofactor submatrix P −1

0 , respectively, in the data model (cf. (14) and (15)). 
Each of the spirit leveling runs was processed using NGS leveling programs 

TRANSLEV, REDUC6, and ASTA. TRANSLEV was used to convert the raw 
leveling data into a data format that is suitable for entry in REDUC6 (i.e., Blue-
booking format). REDUC6 was then used to apply rod scale, rod temperature, 
refraction, and astronomic corrections to each run to reduce systematic errors. 
Magnetic corrections were not necessary, and level corrections had already been 
applied in the field prior to processing. Surface gravity values at each point were 

7NGS recommends using a hub network design when performing session baseline processing 
in OPUS-Projects (Armstrong et al. 2015; Gillins and Eddy 2017). In this design, a station 
that is preferably a CORS within approximately 100 km of all other observed stations in a 
session is designated as the hub. Then, baselines are processed such that every other observed 
station in the session is directly connected to the hub. 

8In OPUS-Projects, users can apply tight, normal, or loose constraint weights which are 
meant to restrict the solution to within 0.1 mm, 1 cm, and 1 m of the coordinates of the control, 
respectively. Normal constraint weights are recommended, as they allow shifts on the same 
order as the typical accuracy of the published coordinates of the CORS. 
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GPS Solution in OPUS−Projects

LOYJ

LOYB

LOYM

LOYO

LOY8

BREW

−78˚30' −78˚00' −77˚30' −77˚00' −76˚30'

38˚00'

38˚30'

25 km

(a) GPS CORS with red box enclosing Corbin test network. All baselines emanate 
from hub station LOY8. GPS Solution in OPUS−Projects

QAD2

P150

MTCH

100 m

(b) GPS stations in the Corbin test network with baselines connected to hub station 
LOY8. Stations MTCH, QAD2, and P150 correspond to points 1, 2, and 3, respec-
tively, of Figure 1, and their orthometric heights are the first three elements in the 
parameter vector ξ of (13). 

Figure 2: GPS baselines processed in OPUS-Projects 

assigned from the NAVD 88 Surface Gravity model. Then, the file in REDUC6 
format was loaded in ASTA. ASTA was then used to output both the average 
geopotential number difference and the average orthometric height difference 
for the two runs of each double-run leveling section. The average orthometric 
height difference values for each of the 12 sections in the leveling network be-

17 



came the 12 × 1 observation vector y in the model (cf. (13)). The individual, 
single runs for each section could also have been used, but this was deemed 
unnecessary for the purposes of this study. 
The Federal Geodetic Control Subcommittee (FGCS, previously Federal 

Geodetic Control Committee, FGCC) first-order class I section mis-closure stan-
dards (FGCC, 1984) state 

Section misclosure not to exceed (mm) = p
[3 mm] × shortest one-way length of section in km. 

It is noted that section misclosure standards are maximum allowable misclo-
sures and thus deemed worst-case scenarios. Obviously, the typical misclosures 
for each section must be smaller than these. Moreover, there are other methods 
for assigning variances to leveling observations, including those that are based 
on instrument specifications, and such methods could have been applied in this 
experiment. However, our primary purpose is to evaluate the feasibility of the 
VCM with Stochastic Constraints, one advantage of which is that it provides an 
opportunity to estimate variance components that are expected to accurately 
account for mis-scaled cofactor matrices. As such, the following (conservative) 
formula was used for specifying the diagonal elements of the 12 × 12 cofactor 
submatrix P −1: � p �2 

σ2 
i = [3 mm] × shortest one-way length of section i in km .

In summary, Tables 3 and 4 list the inputs to the Variance Component Model 
with Stochastic Constraints. 

Table 3: GPS-derived orthometric heights and associated dispersion (covari-
ance) matrix used in model (13)–(15) 

−1  2]z0 [m] P [10−6m0 

68.8569 2.84068 0.53399 0.53574 
66.9471 0.53399 2.14133 0.53153 
68.1559 0.53574 0.53153 2.19380 

Various independent computer routines were built in MATLAB, C++, and 
FORTRAN to estimate the unknown quantities of the VCM with Stochastic 
Constraints. More specifically, they were designed to estimate orthometric 
heights as parameters and to estimate independent variance components for 
the leveling observations and stochastic constraints. The estimates from all the 

9The “x” in the geoid model name stands for experimental. In preparation for 
NAPGD2022, NGS has annually released experimental gravimetric geoid models since 2014. 
The models are based on the gravity data from the latest satellite gravity models as well 
as from terrestrial, airborne and shipborne gravity surveys. The experimental geoid mod-
els are excellent estimates of the final gravimetric geoid model that will be developed for 
NAPGD2022, named GEOID2022. 
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Table 4: Leveling observations and their variances, with intra-station distances 

From To y Diagonal elements Distance 
point point [m] of P −1 [10−6 m2] [m] 

6 1 0.333557 2.214 246 
3 6 0.365859 1.440 160 
4 1 2.850824 1.476 164 
2 4 −0.948661 1.215 135 
5 2 −1.040570 1.116 124 
6 7 −0.824317 0.720 80 
5 4 −1.989007 1.728 192 
6 5 −0.528043 1.170 130 
4 6 2.517497 1.413 157 
7 4 −1.692892 0.864 96 
5 7 −0.296337 0.765 85 
3 5 −0.162582 0.999 111 

routines converged to identical values at approximately the same rate (i.e., four 
to five iterations, where � = 10−6 was set for the convergence criterion in (30)). 
The estimated variance components are listed in Table 5. The variance com-

ponent for the leveling observations is significantly less than 1 (σ̂2 
1 = 0.017381), 

confirming our speculation that FGCS section misclosure standards are sig-
nificantly larger than the actual random errors in leveling observations. The 
variance component for the GNSS-derived orthometric heights is significantly 
greater than 1 (σ̂2 

2 = 8.709800), indicative of a well-known result that dispersion 
matrices from GNSS baseline processors are often too optimistic. The estima-
tion of these two variance components helped with the pessimism and optimism 
of the a priori cofactor matrices for the leveling observations and GNSS-derived 
orthometric heights, respectively. 
Incidentally, we note that for a numerical check on the accuracy of the coded 

algorithms, one could substitute into the GMM with Stochastic Constraints 
(equations (1)–(3)) the original cofactor submatrices P −1 and P −1 

0 scaled by the 
estimated variance components σ̂2 

1 and σ̂2
2 , respectively, and then solve equations 

(4)–(7). In this case, the estimated variance component associated with that 
model should turn out to be 1 (giving due consideration to the convergence 
criterion used and numerical computing precision). 

Table 5: Estimated variance components 

Quantity Estimate 

σ̂2 (0.131838)2 = 0.0173811 

σ̂2 (2.951237)2 = 8.7098012 

The estimated parameters (orthometric heights at the seven stations) and 
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their estimated dispersion matrix are shown in Table 6. They are shown in 
further detail in Table 8. Finally, the adjusted leveling observations ỹ (recall, 

Table 6: Estimated orthometric heights ξ̂ and their estimated dispersion matrix 

ˆ ˆ  ξ [m] D{ξ̂} [10−6m2] 

68.8534 9.91288 9.89661 9.89624 9.90177 9.89915 9.90113 9.90065 
66.9512 9.89661 9.90742 9.89675 9.90124 9.90100 9.89970 9.90060 
68.1542 9.89624 9.89675 9.90805 9.89943 9.90156 9.90148 9.90089 
66.0026 9.90177 9.90100 9.90156 9.90293 9.90652 9.90351 9.90436 
67.9917 9.89915 9.90100 9.90156 9.90293 9.90652 9.90351 9.90436 
68.5199 9.90113 9.89970 9.90148 9.90348 9.90351 9.90764 9.90499 
67.6955 9.90065 9.90060 9.90089 9.90445 9.90436 9.90499 9.90913 

they are differential orthometric heights) and their estimated dispersion matrix 
D̂{ỹ} are listed in Table 7. They are shown in further detail in Table 8. 
Table 8 below shows a summary of the estimated orthometric heights, ad-

justed leveling observations, and the empirical standard deviations of each (be-
ing the square roots of the diagonal elements of the respective matrices in Ta-
bles 6 and 7). We note that the empirical standard deviations are relatively 
small. This could be explained in part by the rigor of the field work and in 
part by the relatively high redundancy in the observations (owing to the strong 
connectivity between stations 5–7). The small geographical size of the network 
most likely helped to limit the accumulation of any unaccounted-for biases, too. 
In any case, it is always recommended to pay attention to empirical standard 
deviations (and residuals), asking whether they seem reasonable, as part of a 
post-adjustment review. 
Table 9 shows the residuals of the GPS-derived orthometric heights and 

the leveling observations. The residuals were divided by their corresponding 
empirical standard deviations (i.e., square roots of the diagonals of the estimated 
dispersion matrix from (31)) to produce studentized residuals. 
Aside from the fact that the Variance Component Model with Stochastic 

Constraints proved to be suitable and that the least-squares solution within 
the model converged quickly, what is especially interesting about the numerical 
results is that the estimated heights are influenced by the random error of the 
GPS data at the 2–4-mm level, but the differential heights are changed only 
at the sub-mm level; apparently their residuals are governed almost entirely 
by the leveling data. In summary, given the relative precision of the observa-
tions (GPS and spirit leveling), we conclude that the GPS-derived orthometric 
heights primarily provided height datum information, while the leveling data 
determined the relative accuracy of the estimated heights. This is more-or-less 
as we expected. 

Numerical results for Partial-MINOLESS 
The Partial-MINOLESS was computed in accordance with the formulas pre-

sented in Section 7. Somewhat surprisingly, the estimated parameters (ortho-
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Table 7: Adjusted leveling observation and their dispersion matrix 

 ỹ = Aξ̂ [m] Columns 1–6 of estimated dispersion matrix D̂{ỹ} [10−6m2] 

0.333523 0.0183 -0.0013 0.0135 0.0014 0.0013 0.0022 
0.365687 -0.0013 0.0127 0.0008 0.0011 0.0010 -0.0021 
2.850851 0.0135 0.0008 0.0167 -0.0009 -0.0008 -0.0014 
-0.948630 0.0014 0.0011 -0.0009 0.0123 -0.0081 0.0001 
-1.040546 0.0013 0.0010 -0.0008 -0.0081 0.0119 0.0001 
-0.824411 0.0022 -0.0021 -0.0014 0.0001 0.0001 0.0068 
-1.989176 0.0027 0.0021 -0.0018 0.0042 0.0038 0.0001 
-0.528152 0.0021 -0.0042 -0.0014 -0.0019 -0.0017 0.0035 
2.517328 -0.0048 0.0021 0.0032 -0.0023 -0.0021 -0.0036 
-1.692917 0.0026 -0.0000 -0.0018 0.0022 0.0021 -0.0032 
-0.296259 0.0000 0.0022 -0.0000 0.0019 0.0018 0.0033 
-0.162464 0.0009 0.0085 -0.0006 -0.0008 -0.0007 0.0014 

 Columns 7–12 of estimated dispersion matrix D̂{ỹ} [10−6m2] 

0.0027 0.0021 -0.0048 0.0026 0.0000 0.0009 
0.0021 -0.0042 0.0021 -0.0000 0.0022 0.0085 
-0.0018 -0.0014 0.0032 -0.0018 -0.0000 -0.0006 
0.0042 -0.0019 -0.0023 0.0022 0.0019 -0.0008 
0.0038 -0.0017 -0.0021 0.0021 0.0018 -0.0007 
0.0001 0.0035 -0.0036 -0.0032 0.0033 0.0014 
0.0080 -0.0036 -0.0044 0.0043 0.0037 -0.0015 
-0.0036 0.0071 -0.0036 0.0001 -0.0036 0.0029 
-0.0044 -0.0036 0.0080 -0.0044 -0.0000 -0.0015 
0.0043 0.0001 -0.0044 0.0076 -0.0032 0.0000 
0.0037 -0.0036 -0.0000 -0.0032 0.0069 -0.0015 
-0.0015 0.0029 -0.0015 0.0000 -0.0015 0.0114 

metric heights) and the adjusted observations turned out to be identical to the 
values shown in Table 8. Thus, we may consider the respective adjustments 
equivalent for this example. 
However, as expected, the estimated dispersion matrices between the two 

approaches were quite different, with that for Partial-MINOLESS computed by 
(52) and that within the VCM with Stochastic Constraints by (42). To give 
an idea of their difference in magnitudes, we give the square roots of the trace 
of their respective estimated dispersion matrices divided by their dimension m, 

 is ˆ ˆthat [tr( D{ξ})/m]1/2 . For the Partial-MINOLESS we obtained ±0.17 mm, 
and for the LESS within the VCM with Stochastic Constraints we obtained 
±4.2 mm, the latter perhaps seeming more realistic and the former appearing 
somewhat overly optimistic. 
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Table 8: Estimated parameters and adjusted observations in the Corbin test 
network. Empirical standard deviations are the square roots of the diagonal 
elements of the respective matrices in Tables 6 and 7. 

Quantity Estimate Empirical Quantity Estimate Empirical 
[m] s.d. [m] [m] s.d. [m] 

ˆH1 (ξ1) 68.8534 ±0.0031 H1 − H6 (ỹ1) 0.33352 ±0.00014 
ˆH2 (ξ2) 66.9512 ±0.0031 H6 − H3 (ỹ2) 0.36569 ±0.00011 
ˆH3 (ξ3) 68.1542 ±0.0031 H1 − H4 (ỹ3) 2.85085 ±0.00013 
ˆH4 (ξ4) 66.0026 ±0.0031 H4 − H2 (ỹ4) −0.94863 ±0.00011 
ˆH5 (ξ5) 67.9917 ±0.0031 H2 − H5 (ỹ5) −1.04054 ±0.00011 
ˆH6 (ξ6) 68.5199 ±0.0031 H7 − H6 (ỹ6) −0.82441 ±0.00008 
ˆH7 (ξ7) 67.6955 ±0.0031 H4 − H5 (ỹ7) −1.98918 ±0.00009 

H5 − H6 (ỹ8) −0.52815 ±0.00008 
H6 − H4 (ỹ9) 2.51733 ±0.00009 
H4 − H7 (ỹ10) −1.69292 ±0.00009 
H7 − H5 (ỹ11) −0.29626 ±0.00008 
H5 − H3 (ỹ12) −0.16246 ±0.00011 

Table 9: Residuals and studentized residuals of GPS-derived orthometric heights 
and leveling observations 

Quantity Residual Student. Quantity Residual Student. 
[mm] residual [mm] residual 

ẽ01 = z01 − z̃01 3.5 0.703 
ẽ02 = z02 − z̃02 −4.1 −0.945 
ẽ03 = z03 − z̃03 1.7 0.391 

ẽ1 = y6 − ỹ1 0.034 0.174 
ẽ2 = y3 − ỹ2 0.172 1.087 
ẽ3 = y4 − ỹ3 −0.027 −0.170 
ẽ4 = y2 − ỹ4 −0.032 −0.217 
ẽ5 = y5 − ỹ5 −0.023 −0.168 
ẽ6 = y6 − ỹ6 0.094 0.839 
ẽ7 = y5 − ỹ7 0.169 0.976 
ẽ8 = y6 − ỹ8 0.109 0.763 
ẽ9 = y4 − ỹ9 0.169 1.077 
ẽ10 = y7 − ỹ10 0.025 0.205 
ẽ11 = y5 − ỹ11 −0.077 −0.672 
ẽ12 = y3 − ỹ12 −0.117 −0.890 
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9 Summary and recommendations 

1. We have presented a new model for incorporating stochastic constraints on
prior information and multiple unknown variance components, which we
have called the Variance Component Model with Stochastic Constraints.

2. The least-squares solution within the VCM with Stochastic Constraints
appears to converge relatively quickly and provide reasonable estimates of
unknown variance components based on an example leveling network we
presented and on a couple others we have investigated, too.

3. In addition, the Partial-MINOLESS was presented as an alternative least-
squares solution for estimating heights from leveling data and GPS-derived
heights.

4. The precise agreement of the estimated heights and the adjusted leveling
observations between the two different least-squares solutions in the test
network came as a bit of a surprise to us, and we have interpreted it to
mean that the GPS-derived heights primarily provided datum information
for the VCM with Stochastic Constraints.

5. However, the agreement between the two solutions should not be taken
as conclusive evidence that the GPS-derived heights will not necessarily
affect the adjusted leveling observations within the new model, as the least-
squares adjustment within that model is not, in theory, of type minimal
constraint.

6. In case the two different adjustments produce different solutions in a par-
ticular case, the question might be asked which one should be adopted.
In such a case, the objectives of the adjustment should be given due con-
sideration. If the variance component estimates look reasonable and the
objective is to adjust all the data simultaneously, then one may prefer the
adjustment within the VCM with stochastic constraints. On the other
hand, if the GPS-derived heights are considered inferior to the leveling
observations, or if no weights are available for the GPS-derived heights,
then one may prefer the Partial-MINOLESS. Another case where Partial-
MINOLESS may be favored is that of deformation monitoring, where the
GPS-derived heights may have been provided initially to define the height
datum and precise leveling is repeated periodically to monitor small mo-
tions of the deforming body.

7. In any case, we do not recommend the least-squares solution within the
Gauss-Markov Model with Stochastic Constraints described in Section 2
since it involves two weight matrices with a common variance component,
which implies that the weight matrices must be accurately known with
respect to one another. As discussed in the introductory section, this
condition might be hard to satisfy or confirm.
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8. The small test network in Corbin, Virginia was suitable for this work, since 
our primary objective in using it was to show how the new model and 
associated least-squares adjustment algorithm could be used. Important 
work is still required for much larger, functioning networks. We have 
already begun this work and intend to publish the results of it soon in a 
geodetic journal. 
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10 Appendix A 

The final page shows a comparative list of equations derived within the Gauss-
Markov Model with Stochastic Constraints and the Variance Component Model 
with Stochastic Constraints. 
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Table 10: Comparative list of equations derived within the Gauss-Markov Model with Stochastic Constraints and the Variance
Component Model with Stochastic Constraints

Based on the Variance Component Model with Stochastic Con-
Quantity Based on the Gauss-Markov Model with Stochastic Constraint 

straints 

Method of
Non-iterative Iterative 

LESS

Estimated
T T

2 ẽ P ẽ+ ẽ0 P0 ẽ0 variance 2 2σ̂0 = σ̂1 , σ̂2 (computed iteratively) 
n − m + l component(s) 

Estimated
ˆ T T −1 T T � � −2 T −2 T −1 � � 
ξ = (A PA + K P0 K) (A P y + K P0 z0 ) ˆ −2 T −2 T

parameters ξ = σ̂1 ·A PA + σ̂ 2 ·K P0 K σ̂1 ·A P y + σ̂ 2 ·K P0 z0 

� � � � � � � � 
Adjusted ỹ A ỹ Aˆ ˆ= ξ = ξ 

observations z̃0 K z̃0 K 

� � � � � � � � � � � � 
ẽ y A ẽ y AResiduals ˆ ˆ= − ξ = − ξ ẽ0 z0 K ẽ0 z0 K 

Estimated
dispersion � � 

2 T T −1 −1
D̂{ξ̂} ˆ −2 T −2 T = σ̂0 (A PA + K P0 K) }̂D{ξ  = σ̂1 ·A PA + σ̂2 ·K P0 Kmatrix for

parameters

" 
Estimated � � � � � � � −2 T −2 T −1 T 

T T −1 T ỹ A σ + ˆ2 P0Kỹ A(A PA + K K) A ˆ ˆ1 · A PA σ · K     A 
dispersion ˆ 2 P0 D{ } = � � . . . D{ } = σ̂0 T T −1 T . . . z̃0 −2 T −2 T −1 T z̃0   K(A PA + K P0 K) A K σ ˆ1 · A PA σ  + ˆ2 · K  P0 K A matrix for � # 

T T −1 T � � adjusted A(A PA + K P0K) K −2 T −2 T −1 T  A σ P0K. . . ˆ1 · A PA σ  + ˆ2 · K    K 
T T −1 T . . . � � observations K(A PA + K P0K) K −2 T −2 T −1  T K σ ˆ1 · A PA σ · K K K  + ˆ2 P0 

" � � � � � � � 2 −1 −2 T −2 T −1 T Estimated −1  T −1 T · A PA + σ̂ · K P0 K A ẽˆ 2 P − A(AT ẽ σ̂1P − A σPA + K P0 K) A ˆ ˆ1 2D{ } = � � . . . D{ } = σ̂0 T T −1 T . . . ẽ0 −2 T −2 T −1 T dispersion ẽ0   −K(A PA + K P0 K) A −K σ ˆ1 · A PA σ  + ˆ2 · K  P0 K A 
matrix for � # 

T T −1 T � � −2 T −2 T −1 −A(A PA + K P0K) T   K residuals −A σ̂ · A PA + σ̂ · K K K . . . −1 1 2 P0 
T T −1 T . . . � � P −K(A PA + K P0 K) K 2P−1  ˆ−2 T −2 T −1 T 0 σ̂2  − K σ · A PA + σ̂ · K 0 1 2 P0 K K 
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