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22 Abstract   

23 Implementation   of   the   United   Nations   Sustainable   Development   Goals   requires   assessments   of   the   global   

state   of   fish   populations.   While   we   have   reliable   estimates   of   stock   status   for   fish   populations   accounting   for   

approximately   half   of   recent   global   catch,   our   knowledge   of   the   state   of   the   majority   of   the   world’s   ‘unassessed’   

fish   stocks   remains   highly   uncertain.   Numerous   publications   have   produced   estimates   of   the   global   status   

of   these   unassessed   fisheries,   but   limited   quantity   and   quality   of   data   along   with   methodological   differences   

have   produced   counterintuitive   and   conflicting   results.   Here,   we   show   that   despite   numerous   efforts,   our   

understanding   of   the   status   of   global   fish   stocks   remains   incomplete,   even   when   new   sources   of   broadly   

available   data   are   added.   Estimates   of   fish   populations   based   primarily   on   catch   histories   alone   on   average   

performed   29%   better   than   a   random   guess.   But,   on   average   these   methods   assigned   fisheries   to   the   wrong   

FAO   status   category   57%   of   the   time.   Effective   improvement   in   estimates   of   the   state   of   the   world’s   exploited   

fish   populations   depends   more   on   expanded   collection   of   new   information   and   efficient   use   of   existing   data   

than   development   of   new   modeling   methods.   

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 Introduction   

36 The   United   Nations   Sustainable   Development   Goal   14   (SDG   14),   focusing   on   “Life   under   water,”   calls   for   

the   global   community   to   “Conserve   and   sustainably   use   the   oceans,   seas   and   marine   resources   for   sustainable   

development.”   Marine   fisheries   are   one   of   the   largest   anthropogenic   impacts   in   the   oceans   aside   from   the   

effects   of   climate   change.   Fisheries   are   also   a   critical   source   of   economic   prosperity,   cultural   identity,   and   

food   security   around   the   globe.   As   such,   meeting   the   SDG   14   targets   depends   in   part   on   our   ability   to   

effectively   measure   the   status   of   global   marine   fish   populations   and   fisheries.   While   our   understanding   of   

the   state   of   world   fisheries   has   improved   over   the   last   decade,   the   majority   of   the   world’s   fish   populations,   

making   up   roughly   50%   of   marine   landings   (though   only   a   few   percent   of   the   total   number   of   fisheries   in   the   

world),   lack   formal   statistical   assessments   (stock   assessments)   of   their   population   size   relative   to   reference   

points   (FAO   2020;   Hilborn   et   al.   2020).   This   is   a   major   impediment   to   ensuring   the   sustainable   development   

of   the   world’s   oceans.   In   this   paper,   we   consider   why   the   assessment   of   global   fisheries   remains   a   challenge,   

and   chart   a   path   towards   a   better   understanding   of   the   state   of   the   world’s   marine   resources.   

What   do   we   currently   know   about   the   state   of   fished   marine   species   around   the   world?   The   Food   and   

Agriculture   Organization   of   the   United   Nations’   (FAO)   is   the   custodian   agency   of   the   SDG   14   Indicator   

on   fisheries   sustainability,   and   the   FAO’s   State   of   World   Fisheries   and   Aquaculture   (SOFIA)   report   is   the   
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51 most   widely   used   primary   source   for   tracking   the   global   state   of   fisheries.   The   latest   SOFIA   report,   covering   

70%   of   the   landings   of   all   fisheries   in   the   world,   estimates   that   as   of   2017   59.6%   of   marine   fish   stocks   are   

maximally   sustainably   fished   (at   or   near   targets   for   sustainable   food   production),   6.2%   are   underfished,   

and   34.2%   are   overfished   (FAO   2020).   Where   possible,   these   statements   about   the   status   of   individual   fish   

stocks   are   made   on   the   basis   of   formal   stock   assessments   summarized   in   the   RAM   Legacy   Stock   Assessment   

Database   (RLSADB)   (Ricard   et   al.   2012).   The   “assessed”   fisheries   in   RLSADB   represent   roughly   50%   of   

global   capture   as   of   2020   (Hilborn   et   al.   2020),   and   represent   our   best   estimates   of   the   state   of   assessed   fish   

populations   around   the   globe.   

That   leaves   roughly   50%   of   global   landings,   and   the   majority   of   global   fisheries,   as   currently   “unassessed.”   

While   these   unassessed   stocks   are   generally   individually   smaller   and   less   economically   valuable   than   the   

fish   populations   in   the   assessed   category,   collectively   they   are   a   vital   source   of   food,   employment,   cultural   

value,   and   ecosystem   services   around   the   world.   The   SOFIA   report   includes   unassessed   stocks   and   bases   

its   estimates   for   these   fisheries   on   data-limited   methods   or   qualitative   expert   opinion   for   each   region   where   

these   stocks   are   distributed   (FAO   2020).   While   these   methods   combined   with   local   knowledge   can   provide   

good   insight   as   to   the   general   status   of   unassessed   fish   stocks,   the   SOFIA   assessment   was   designed   in   the   

1970s   based   on   the   then   available   data   and   methods.   With   the   surge   in   data   availability,   such   as   global   

assessments   of   management   strength   (Melnychuk   et   al.   2017),   trawl   footprints   (Amoroso   et   al.   2018),   and   

fishing   effort   (Rousseau   et   al.   2019),   the   SOFIA   global   assessment   methods   for   unassessed   fish   populations   

need   to   be   updated   to   meet   the   demand   for   tracking   progress   of   global   fish   populations   towards   the   SDG   

goals.   In   addition,   the   SOFIA   process   assigns   unassessed   fisheries   to   broad   categories   of   stock   status,   while   

many   stakeholders   seek   information   on   more   specific   values   such   as   biomass   relative   to   the   biomass   that   

would   on   average   result   in   maximized   yield   over   the   long-term.   

Numerous   studies   in   recent   years   have   put   forward   versions   of   “data-limited”   models   that   have   attempted   

to   provide   numerical   estimates   of   the   global   status   of   unassessed   fish   stocks   lacking   the   data   or   capacity   

needed   for   formal   stock   assessment   (Pauly   2007;   Thorson   et   al.   2012b;   Costello   et   al.   2012,   2016;   Rosenberg   

et   al.   2018).   Due   to   data   limitations,   all   of   these   global   assessment   efforts   have   used   forms   of   “catch-only”   

data-limited   models   (Free   et   al.   (2020)   and   references   therein).   These   models   seek   to   infer   the   state   of   a   

fished   population,   for   example   biomass   (B)   relative   to   the   biomass   at   maximum   sustainable   yield   (BMSY,   

the   ratio   B/BMSY   being   a   common   measure   of   stock   status),   from   characteristics   of   a   fishery’s   catch   history.   

However,   Free   et   al.   (2020)   demonstrated   that   the   types   of   catch-only   models   used   in   these   global   assessment   

efforts   can   often   produce   both   imprecise   and   biased   estimates   of   current   stock   status   in   terms   of   B/BMSY.   

While   each   of   these   prior   efforts   at   assessing   global   fisheries   using   catch-only   methods   made   important   
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83 advances   in   our   understanding   of   the   global   oceans,   none   have   proven   to   be   a   consistently   reliable   means   of   

estimating   the   state   of   the   individual   unassessed   fisheries   around   the   world.   The   types   of   global   assessment   

efforts   share   a   common   underlying   assumption;   that   globally   available   catch   histories   contain   meaningful   

information   on   the   state   of   the   fished   populations   that   they   came   from,   and   that   this   information   can   be   

revealed   by   the   right   model   structure.   Under   this   assumption,   we   can   obtain   better   estimates   of   the   state   of   

unassessed   fish   populations   simply   by   improving   the   catch-only   models   applied   to   the   catch   histories   from   

these   fisheries.   However,   further   evaluation   of   the   predictions   made   by   these   models   (Pons   et   al.   2020;   Free   

et   al.   2020;   Bouch   et   al.   2021)   as   well   as   works   such   as   Pauly   et   al.   (2013)   and   Branch   et   al.   (2011)   call   

into   question   this   very   idea.   

In   this   paper   we   ask,   how   much   can   estimates   from   catch-only   assessments   be   improved   by   moving   beyond   

catch-only   and   augmenting   catch   histories   with   additional   sources   of   broadly   available   fisheries   data?   We   

answer   this   question   by   aggregating   a   set   of   broadly   distributed   datasets   that   might   be   of   use   to   global   

fishery   assessment.   We   then   used   our   new   assessment   method,   sraplus,   to   evaluate   the   performance   status   

estimates   derived   from   different   combinations   of   these   broadly   available   data.   We   compared   these   results   

with   estimates   from   the   increasingly   utilized   (e.g.   Palomares   et   al.   (2020))   default   settings   of   the   catch-only   

version   of   CMSY   described   in   Froese   et   al.   (2017).   We   show   that   improving   our   understanding   of   the   world’s   

unassessed   fisheries   depends   on   a   redoubled   effort   at   global   data   collection   and   synthesis,   not   on   incremental   

improvements   to   assessment   methods   based   solely   on   catch   histories.   
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101 Methods   

102 The   basis   of   this   analysis   is   a   new   stock   assessment   software   package   we   call   sraplus   (https://github.com/   

DanOvando/sraplus).   sraplus   is   an   extension   of   stochastic   stock   reduction   analysis   (SRA)   (Kimura   et   al.   

1984;   Walters   et   al.   2006),   which   allows   users   to   combine   a   biomass   dynamics   model   with   a   variety   of   

data   sources   (e.g.   priors   on   recent   stock   status,   or   an   index   of   abundance)   in   order   to   produce   estimates   of   

the   state   of   a   fishery   over   time.   The   key   goal   of   sraplus   is   not   substantial   improvements   in   model   fitting   

methods   per   say,   but   providing   the   ability   to   easily   incorporate   multiple   kinds   of   fishery   data   potentially   

used   in   SRA-style   analyses   in   a   statistically   rigorous   manner.   We   paired   various   types   of   data   with   fisheries   

in   RLSADB,   and   then   used   sraplus   to   generate   predictions   of   B/BMSY   in   the   most   recent   year   of   each   fishery   

across   different   combinations   of   data   types.   We   then   compared   the   predictions   generated   by   sraplus   using   

different   types   of   data,   along   with   predictions   for   the   same   fisheries   generated   by   CMSY,   to   the   reported   

values   in   RLSADB.   
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113 All   analysis   were   conducted   in   the   R   programming   language   (R   Core   Team   2019).   Model   fitting   was   con-

ducted   using   Rcpp   (Eddelbuettel   and   François   2011)   and   Stan   (Carpenter   et   al.   2017)   implemented   through   

Template   Model   Builder   (Kristensen   et   al.   2016)   by   the   tmbstan   package   (Monnahan   and   Kristensen   2018).   

The   sraplus   package   is   publicly   available   at   github.com/danovando/sraplus,   and   all   materials   needed   to   

fully   reproduce   this   manuscript   are   available   at   github.com/DanOvando/assessing-global-fisheries.   Here   we   

describe   the   structure   of   the   population   model   underpinning   sraplus,   the   estimation   models   used,   and   the   

construction   of   priors   used   in   this   paper.   
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120 Data   Sources   

121 At   its   most   “data-limited,”   sraplus   can   work   as   a   catch-only   model   in   the   manner   of   Froese   et   al.   (2017).   

These   catch   histories   can   then   be   augmented   with   prior   information   on   stock   status,   derived   from   expert   

opinion,   or   using   built-in   prior   generating   models   based   on   increasingly   available   sources   of   global   fishery   

data:   the   Fisheries   Management   Index   (FMI)   (Melnychuk   et   al.   2017)   and   swept   area   ratio   (SAR)   (Amoroso   

et   al.   2018)   databases.   The   FMI   database   provides   self-reported   scores   reflecting   the   strength   of   fisheries   

management   in   many   fisheries   around   the   world,   which   sraplus   uses   to   construct   informative   priors   on   

stock   status,   e.g.   placing   a   higher   probability   that   fisheries   with   high   FMI   scores   have   better   stock   status   

than   those   with   low   FMI   scores.   SAR   is   a   measure   of   the   intensity   of   trawl   fishing   within   a   particular   

area,   which   sraplus   uses   to   construct   an   informative   prior   on   the   magnitude   of   fishing   mortality.   While   

fishery-independent   surveys   are   becoming   increasingly   available   (Maureaud   et   al.   2020),   they   are   not   yet   

sufficiently   distributed   or   accessible   to   serve   as   a   foundation   for   global   assessments   of   unassessed   fisheries.   

As   an   alternative,   Rousseau   et   al.   (2019)   present   a   global   reconstruction   of   fishing   effort   for   countries   around   

the   world.   We   pair   these   effort   reconstructions   (both   nominal   effort   and   effective   effort   assuming   an   annual   

rate   of   efficiency   increase   of   2.6%)   with   the   FAO’s   catch   histories   to   construct   a   catch-per-unit-effort   (CPUE)   

index,   which   we   pass   to   sraplus   along   with   catch   histories   and   other   available   data   to   provide   an   estimate   

of   stock   status.   In   this   way   sraplus   allows   us   to   move   from   catch-only   models   to   more   conventional   surplus   

production   models   in   the   manner   of   Winker   et   al.   (2018)   (Table.1).   
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138 Population   Model   

139 The   core   of   sraplus   is   a   Pella-Tomlinson   (Pella   and   Tomlinson   1969)   production   model   constructed   in   the   

manner   of   Winker   et   al.   (2018).   While   models   of   these   kinds   abstract   away   many   important   details   of   fish   

biology   and   fleet   behavior,   they   are   the   highest   resolution   model   that   the   data   types   evaluated   here   will   
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142 support.   

The   population   growth   equation   is   

⎧   𝑚−1{{𝐵 =   (𝐵 +   𝐵 𝑟   (1   −   (   𝐵𝑡   𝑡+1   𝑡   𝑡     𝑚−1   𝐾 ) ) −   𝑐𝑡)   𝑝𝑡,   if   𝐵𝑡   >   0.25   ×   𝐾.
𝑓(𝑥)   =   (1)⎨   { 𝑚−1{   𝐵 =   (𝐵 +   𝐵𝑡   𝑟   

0.25×𝐾 (𝐵  𝐵𝑡  𝑡+1   𝑡     𝑡     (1     (    𝑚−1 −  𝐾 ) )  −   𝑐 ))   𝑝𝑡,   otherwise.⎩ 𝑡

Where   𝐵𝑡   is   biomass   at   time   t,   K   is   carrying   capacity   ,r   is   the   intrinsic   growth   rate,   m   is   the   scaling   parameter   

that   allows   for   the   ratio   of   BMSY/K   to   shift.   When   m   =   2,   BMSY   / K   =   0.5.   Lower   values   of   m   shift   the   

production   function   left,   higher   values   right.   The   shape   parameter   m   is   usually   not   reliably   estimable   given   

available   data   for   surplus   production   models,   however,   Thorson   et   al.   (2012b)   provides   estimates   of   the   ratio   

of   BMSY   to   K   for   many   fish   taxa.   For   each   stock   we   fix   the   shape   parameter   based   on   the   distributions   

reported   in   Thorson   et   al.   (2012b)   for   the   genus   of   the   species   in   question.   We   chose   to   fix   the   shape   

parameter   at   the   mean   stock-appropriate   values   from   Thorson   et   al.   (2012b)   rather   than   estimating   the   

shape   parameter   with   an   informative   prior   since   there   is   so   little   information   regarding   the   shape   in   the   data   

considered.   Attempts   to   estimate   the   shape   parameter   with   priors   from   Thorson   et   al.   (2012b)   frequently   

resulted   in   poor   model   performance.   𝑐𝑐𝑐   is   a   vector   of   catches,   and   𝑝𝑝𝑝   is   vector   of   process   errors.   Growth   rates   

can   become   unrealistically   large   when   the   population   reaches   low   sizes   under   the   Pella-Tomlinson   model.   We   

dealt   with   this   problem   by   following   the   methods   described   in   Winker   et   al.   (2018)   to   reduce   the   production   

of   the   population   when   it   falls   below   a   threshold   of   25%   of   carrying   capacity.   

We   allow   for   process   error   𝑝𝑡   (in   the   manner   of   the   stochastic   stock   reduction   analysis   (SRA)   suggested   by   

Walters   et   al.   (2006)).   Process   error   𝑝𝑡   is   assumed   to   be   log-normally   distributed,   such   that   

𝑝 𝑁(−𝜎2
𝑝𝑟𝑜𝑐      

𝑡  /2,𝜎𝑝𝑟𝑜𝑐 ) 
   ∼   𝑒 (2)   

where   N   is   the   normal   distribution.   

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 Estimation   Model   

161 All   of   our   estimates   are   Bayesian   in   nature.   sraplus   can   be   run   in   two   forms:   either   as   a   stock   reduction   

analysis   (SRA,   Walters   et   al.   2006),   or   fit   to   an   index   of   abundance   (fishery   dependent   or   independent)   

using   Hamiltonian   Monte   Carlo   with   the   No-U-Turn   sampler   (Hoffman   and   Gelman   2011).   Unless   there   is   

an   abundance   index   to   fit   to,   the   model   runs   as   an   SRA.   A   stock   reduction   analysis   works   by   specifying   
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165 prior   distributions   on   population   parameters   and,   critically,   the   recent   state   of   the   fishery.   sraplus   allows   

users   to   specify   the   most   recent   status   in   units   of   depletion,   B/BMSY,   F,   or   F/FMSY.   We   then   sample   from   

the   prior   distributions   of   the   population   model   parameters   and   apply   those   to   the   production   model,   along   

with   the   catch   history.   Any   run   that   results   in   the   collapse   of   the   population   (catch   greater   than   biomass   in   

any   time   step)   is   immediately   rejected.   The   remaining   viable   draws   from   the   prior   distributions   are   sampled   

in   proportion   to   the   supplied   prior   on   recent   stock   status.   All   stock   reduction   analysis   runs   in   our   paper   

sampled   2,000   draws   of   the   prior-predictive   distribution   from   a   total   of   1e6   candidate   draws.   For   our   main   

sets   of   results   (everything   excluding   the   value   of   information   analysis),   the   estimated   parameters   are   r   (with   

a   prior   distribution   drawn   from   Fishlife,   Thorson   (2020)),   K,   𝜎𝑝𝑟𝑜𝑐,   and   B0   (initial   depletion,   𝐵/𝐾).   q   is   

also   estimated   when   needed.   𝜎𝑝𝑟𝑜𝑐   (process   error)   is   estimated   indirectly   through   the   parameter   𝛾,   the   ratio   

of   process   (proc)   to   observation   (obs)   error   (𝜎𝑜𝑏𝑠).   See   Table.S1   for   prior   distributions   for   each   of   these   

parameters.   

When   an   index   of   abundance   is   available   the   model   estimates   the   posterior   probability   distributions   of   

the   estimated   and   transformed   parameters   using   Hamiltonian   Monte   Carlo   implemented   in   Stan   (Stan   

Development   Team   2018)   accessed   through   the   tmbstan   interface   (Monnahan   and   Kristensen   2018).   By   

default   the   model   uses   2000   draws   with   a   1000   step   warm-up   and   one   chain.   Any   detailed   fit   for   an   individual   

fishery   would   likely   use   more   draws   and   chains,   but   we   verified   that   this   sampling   routine   produced   an   

acceptable   tradeoff   of   speed   and   convergence   criteria.   The   model   fits   to   a   direct   estimate   of   abundance   

(e.g.   a   fishery   independent   survey   or   a   standardized   catch-per-unit-effort   index),   the   likelihood   is   

𝑙𝑜𝑔(𝑎𝑡)   ∼   𝑁(𝑓𝑝𝑡(𝑟, 𝐾, 𝑚, 𝐵0,𝑝𝑝𝑝,𝑐𝑐𝑐) × 𝑞, 𝜎𝑜𝑏𝑠)   

where   𝑎𝑡   is   the   observed   abundance   index   and   𝑓𝑝𝑡   is   the   Pella-Tomlinson   production   model   (Equation.(1)).   

When   an   effort   index   is   available,   sraplus   constructs   an   index   of   abundance   based   on   the   catch   and   effort   data.   

Rousseau   et   al.   (2019)   measure   an   index   of   abundance   as   catch   divided   by   their   effort   index,   either   nominal   or   

effective   (assuming   the   2.6%   annualized   technology   creep).   Treating   this   raw   effort   data   as   the   denominator   

in   the   CPUE   calculation   assumes   that   every   increase   in   fishing   effort   translates   to   a   commensurate   increase   

in   fishing   mortality.   When   effort   increases   dramatically   above   historic   levels,   this   can   create   a   CPUE   index   

that   decreases   faster   than   the   true   population.   This   is   due   to   the   fact   that   in   reality   the   marginal   fishing   

mortality   produced   by   increasing   units   of   effort   decreases   as   effort   approaches   infinity   (since   the   realized   

fishing   mortality   rate   must   be   between   between   0%   and   100%).   To   accommodate   this,   we   generate   a   catch   

per   effective   harvest   rate   index   of   abundance,   as   

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

7 

https://Table.S1


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑐𝑐𝑝𝑢𝑒𝑡  𝑡   
  =  (1   −   𝑒−𝐹𝑡)   

𝐹𝑡   =   𝑞𝑡𝐸𝑡   

Where   𝑞𝑡   can   has   a   technology   creep   component   𝜏   

𝑞𝑡   =   𝑞𝑡−1   ×   (1   +   𝜏)   

We   then   fit   to   the   index   of   abundance   per   

𝑙𝑜𝑔(𝑐𝑝𝑢𝑒𝑡)   ∼   𝑁(𝑓𝑝𝑡(𝑟, 𝐾, 𝑚, 𝐵0,𝑝𝑝𝑝,𝑐𝑐𝑐), 𝜎𝑜𝑏𝑠)   

194 

195 

196 CMSY   

197 In   addition   to   the   results   from   sraplus,   we   include   a   set   of   results   produced   by   the   default   settings   of   the   

CMSY   method   (Froese   et   al.   2017).   For   computational   efficiency,   we   used   a   ported   version   of   the   CMSY   

model   available   at   https://github.com/DanOvando/portedcmsy.   The   only   modification   made   is   to   convert   

the   underlying   population   model   to   C++   for   faster   computation.   For   each   stock   we   used   all   the   default   

options   and   priors   provided   and   generated   by   CMSY,   in   the   same   manner   as   Palomares   et   al.   (2020),   except   

for   resilience,   which   was   pulled   from   the   vulnerability   scores   from   FishBase   accessed   through   rfishbase   

(Boettiger   et   al.   2012).   Vulnerability   scores   greater   than   66   were   scored   as   low   resilience,   between   33   and   

66   medium   resilience,   and   lower   than   33   high   resilience.   
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205 Priors   

206 Prior   Predictive   Tuning   

In   the   absence   of   any   data   to   fit   to,   sraplus   works   by   assuming   that   we   know   current   stock   status,   and   

then   finds   feasible   parameters   to   satisfy   that   belief   given   a   catch   history,   life   history   priors,   and   model   

structure.   This   creates   a   problem   for   the   Bayesian   nature   of   our   analysis.   Consider   a   production   model   with   

two   parameters,   a   growth   rate   r   and   a   carrying   capacity   K.   Once   we   specify   prior   distributions   on   r   and   

K,   and   then   apply   these   distributions   to   our   model   (the   shape   of   the   production   function   along   with   the   
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212 catch   histories),   we   have   implicitly   provided   a   prior   on   the   status   of   the   stock   in   all   time   periods,   since   each   

unique   combination   of   r   and   K   together   with   the   model   and   the   catch   history   produces   a   deterministic   stock   

status   in   each   time   step.   Doing   so   places   two   priors   on   recent   stock   status:   one   implicit   prior   through   the   

population   parameter   priors,   and   one   explicit   through   the   users   perception   of   recent   stock   status,   creating   

a   problem   termed   Borel’s   Paradox   (See   Poole   and   Raftery   (2000)   and   references   therein   for   a   discussion   of   

Borel’s   Paradox   in   a   fisheries   context).   

This   may   seem   like   an   academic   concern,   and   indeed   in   our   experience   when   the   data   are   sufficiently   infor-

mative   the   Bayesian   version   of   our   model   subject   to   Borel’s   paradox   produces   effectively   identical   results   to   

those   produce   by   the   same   model   fit   by   maximum   likelihood.   However,   Borel’s   Paradox   poses   a   particular   

problem   when   there   are   no   data   to   fit   to(i.e.   when   the   model   is   simply   filtering   through   prior   distributions   

in   the   manner   of   a   traditional   SRA)   due   to   the   fact   that   there   are   more   parameter   combinations   that   allow   

for   a   fishery   to   be   relatively   unexploited   than   for   a   fishery   to   be   close   to   collapse   (but   never   actually   col-

lapsed,   i.e.   predicted   biomass   less   than   observed   catch).   In   this   context   Borel’s   Paradox   causes   the   posterior   

distribution   of   stock   status   to   be   positively   biased   relative   to   the   supplied   prior   (although   combined   with   

other   modeling   choices   can   result   in   a   net   negative   bias   in   stock   status,   Free   et   al.   (2020)).   This   process   can   

also   make   it   easy   for   users   to   accidentally   supply   very   informative   priors   on   stock   status,   without   realizing   

that   choices   relating   to   population   biology   priors   that   may   appear   independent   of   stock   status   are   in   fact   

dictating   the   posterior   distributions   of   stock   status   resulting   from   the   SRA   algorithm.   

We   use   an   approximate   solution   to   this   problem   here,   similar   in   spirit   to   Bayesian   melding   (Poole   and   Raftery   

2000).   Our   solution   amounts   to   a   two-step   sampling-importance-resampling   (SIR)   algorithm.   We   first   run   

the   standard   SRA   algorithm   as   described   in   the   Estimation   Model   section   of   the   methods.   We   then   break   

the   resulting   draws   into   bins   based   on   terminal   stock   status,   and   calculate   the   mean   probability   density   p   

(defined   by   the   prior   distributions   of   estimated   parameters)   of   each   bin.   

𝑁1 𝑖   

𝑝(𝑏𝑖𝑛𝑖)   =   ∑   𝑝(𝑏 )𝑁 𝑛,𝑖
𝑖   𝑛=1   

We   then   divide   the   mean   probability   density   of   bin   i   evenly   among   each   of   the   draws   within   that   bin   n   

𝑝(𝑏𝑖𝑛 )𝑝(𝑛𝑖)   =   𝑖
𝑁𝑖   

And   we   then   perform   a   second   SIR   algorithm   but   now   sampling   each   observation   𝑛𝑖   in   proportion   to   𝑝(𝑛𝑖).   

The   net   result   of   this   is   that   it   allows   users   to   place   an   explicit   prior   on   stock   status,   and   then   adjust   their   
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238 priors   on   life   history   parameters   to   reflect   this   prior.   While   the   range   of   possible   life   history   values   supplied   

still   influences   stock   status   under   this   approach,   this   prior   predictive   tuning   process   makes   the   resulting   

priors   more   consistent   with   explicit   priors   on   recent   stock   status   supplied   by   the   user.   Users   can   turn   

this   functionality   off   and   instead   base   priors   on   stock   status   primarily   on   life   history.   See   Supplementary   

Information   for   a   detailed   explanation   of   this   problem   and   our   solution.   

Priors   Informed   by   Outside   Data   

Along   with   allowing   users   to   supply   their   own   priors,   the   sraplus   package   contains   three   built-in   methods   

for   converting   information   on   stock   status   from   additional   outside   data   into   a   form   usable   as   a   stock   status   

prior   by   sraplus.   We   paired   data   on   catch   histories,   swept   area   ratio,   and   Fisheries   Management   Index   with   

estimates   of   stock   status   from   the   RLSADB.   We   then   trained   a   regression   of   the   general   form   𝑙𝑜𝑔(𝑠𝑡𝑎𝑡𝑢𝑠)   ∼   

𝑁(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒,   𝜎)   for   each   of   these   three   data   types.   Given   values   of   these   variables   for   a   new   fishery,   sraplus   

uses   the   fitted   model   to   generate   posterior   predictive   distributions   of   stock   status   based   on   these   data,   which   

can   then   be   used   as   priors   on   stock   status   by   sraplus   for   new   fisheries.   For   example,   given   data   on   SAR   

or   FMI   scores,   together   with   a   catch   history,   sraplus   uses   these   regressions   to   convert   those   SAR   and   FMI   

values   into   priors   on   B/BMSY   or   F/FMSY   in   the   most   recent   year   of   the   fishery   usable   by   sraplus   (See   

Supplementary   Information).   All   prior   regression   models   were   tested   by   out-of-sample   predictive   power,   and   

where   competing   models   were   considered   the   final   model   was   chosen   by   leave-on-out   validation   (Vehtari   et   

al.   2017).   The   final   models   are   intended   as   a   reasonably   robust   means   of   translating   available   data   (catch   

histories,   FMI,   and   SAR   values)   into   a   form   usable   by   sraplus.   For   all   results   presented   in   this   paper   we   

used   these   data   to   provide   priors   on   F/FMSY,   as   we   found   clearer   predictive   relationships   and   subsequent   

model   performance   between   catch,   FMI,   and   SAR   values   and   F/FMSY   than   we   did   for   B/BMSY.   

Assessing   Performance   

Simulation   testing   can   be   preferable   in   many   ways   to   comparison   against   model   outputs.   However   it   is   not   

possible   to   simulation   test   the   value   of   information   derived   from   empirical   relationships   between   variables   

such   as   fisheries   management   strength   and   fishery   outcomes,   which   our   study   depends   on.   As   such   we   assess   

model   performance   through   comparison   to   best   available   estimates   of   stock   status   available   in   RLSADB.   

We   based   this   test   on   393   stocks   from   RLSADB,   covering   19   broad   taxonomic   groups,   with   estimates   

of   B/BMSY   and   greater   than   25   years   of   continuous   catch   history.   B/BMSY   values   from   RLSADB   are   

themselves   estimates,   not   data,   but   they   are   the   best   available   information   on   global   stock   status.   We   then   
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267 paired   the   catch   histories   for   these   RLSADB   stocks   with   regional-level   SAR,   FMI,   and   effort   data.   Our   

methods   approximated   a   regional-level   assessment   exercise,   where   data   beyond   catch   histories   are   available   

at   regional   levels,   but   not   for   specific   fisheries.   We   also   estimated   B/BMSY   values   of   our   candidate   RLSADB   

stocks   by   using   sraplus   to   fit   to   an   abundance   index   drawn   directly   from   RLSADB   itself   “RLSADB   Index,”   

as   a   measure   of   the   ability   of   models   like   sraplus   if   given   perfect   information   

We   then   fit   a   range   of   models   utilizing   different   combinations   FMI,   SAR,   and   effort   data,   along   with   CMSY,   

and   a   set   of   runs   fit   to   the   RLSADB   Index   (Table.2).   We   assessed   model   performance   using   three   metrics:   

median   percent   error   (MPE,   a   measure   of   bias),   median   absolute   percent   error   (MAPE,   a   measure   of   accu-

racy),   and   classification   accuracy.   Classification   accuracy   was   calculated   as   the   proportion   of   times   that   use   

of   a   given   combination   of   data   resulted   in   a   stock   being   classified   into   the   correct   FAO   status   classification   

(one   of   underfished,   maximally   sustainably   fished,   and   overfished).   This   experiment   structure   allows   us   to   

assess   the   ability   of   catch-only   models   to   estimate   the   B/BMSY   values   reported   in   RLSADB,   and   evaluate   

how   much   these   estimates   can   be   improved   by   augmenting   the   catch   histories   with   additional   sources   of   

information.   Our   benchmark   model   is   a   simple   “Guess.”   Guess   assigns   each   stock   a   random   B/BMSY   of   

1.6,   1,   or   0.4,   corresponding   to   the   middle   value   of   the   FAO   status   bins   of   underfished   (𝐵/𝐵   𝑀𝑆𝑌   ≥   1.2),   

maximally   sustainably   fished   (0.8   ≥   𝐵/𝐵   𝑀𝑆𝑌   <   1.2),   overfished   (0   ≥   𝐵/𝐵   𝑀𝑆𝑌   <   0.8).   We   performed   

a   matching   analysis   measuring   performance   in   estimating   F/FMSY   as   well,   with   results   presented   in   the   SI.   

Value   of   Information   Calculations   

We   performed   a   value   of   information   assessment   to   determine   what   types   of   data   may   be   most   beneficial   to   

acquire   at   a   global   scale   if   we   are   to   improve   our   knowledge   of   the   state   of   global   fisheries.   The   value   of   

information   analysis   was   performed   by   using   sraplus   to   generate   estimates   of   B/BMSY   for   stocks   in   RLSADB,   

and   comparing   the   estimated   values   to   the   values   reported   in   RLSADB.   There   are   too   many   combinations   

for   us   to   run   the   full   expansion   of   possible   parameter   states.   To   resolve   this   we   generated   fits   for   3000   

combinations   of   a   RLSADB   stock   and   available   data.   For   any   one   draw,   we   randomly   sampled   a   RLSADB   

stock   and   a   list   of   available   data   and   data   quality.   For   example,   we   might   sample   stock   A   with   information   

on   recent   fishing   mortality   rates   for   the   first   iteration,   and   stock   A   again   for   the   second   iteration   but   now   

with   information   on   recent   fishing   mortality   rates   and   a   recent   index   of   abundance.   The   result   is   a   set   of   

model   performance   estimates   where   the   characteristics   of   the   stock   and   the   data   made   available   to   the   model   

are   randomized.   We   then   measured   the   value   of   information   as   the   average   reduction   in   root   mean   squared   

error   (RMSE)   in   B/BMSY   over   the   most   recent   five   years   of   the   fishery   (in   order   to   evaluate   the   ability   of   the   

model   to   capture   recent   trends   as   well   as   the   most   recent   value),   resulting   from   use   of   different   kinds   of   data.   
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298 We   considered   the   value   of   information   of   having   data   on:   the   most   recent   B/BMSY,   treating   initial   state   of   

the   population   as   one   of   unfished   (𝐵0   = 1),   known   (𝐵0   taken   from   stock   assessment),   or   estimated   based   on   

initial   shape   of   the   catch   history,   F/FMSY   values   in   the   most   recent   year,   over   the   last   five   years,   and   over   

the   complete   time   series,   and   an   abundance   index   spanning   the   complete,   most   recent   half,   or   most   recent   

quarter   of   the   time   series.   We   considered   the   value   of   information   of   a   longer   time   series   of   F/FMSY   than   

B/BMSY   to   consider   the   potential   of   augmenting   catch-only   models   with   additional   data   that   can   inform   

F/FMSY,   such   as   length-composition   data,   that   might   be   available   over   the   history   of   the   fishery.   

Case   Study   

We   also   ran   a   case   study   demonstrating   how   different   kinds   of   data   led   to   different   conclusions   about   stock   

status.   We   selected   26   stocks   for   which   we   have   stock   specific   FMI   and   SAR   scores.   We   then   paired   effort   

data   at   the   resolution   of   year,   country,   and   FAO   statistical   area   from   Rousseau   et   al.   (2019)   to   each   stock.   

As   a   benchmark,   we   first   estimated   stock   status   for   these   case   study   fisheries   using   the   default   settings   

of   the   CMSY   (Froese   et   al.   2017)   method,   as   this   has   become   one   of   the   most   widely   used   catch-only   

models   currently   available.   We   then   used   sraplus   to   generate   estimate   of   stock   status   based   solely   on   catch   

heuristics,   taking   into   account   the   prior-predictive   tuning   implemented   by   default   in   sraplus.   We   also   used   

stock-specific   data   on   SAR   and   FMI   to   generate   priors   on   F/FMSY   for   each   of   the   stocks,   which   were   then   

passed   to   sraplus.   Lastly,   we   used   the   reconstructed   effort   data   (Rousseau   et   al.   2019)   to   create   an   index   

of   abundance   for   each   stock,   and   estimated   stock   status   by   fitting   to   this   index   while   using   priors   on   fishing   

mortality   rates   informed   by   each   stock’s   FMI   and   SAR   values.   This   case   study   represents   a   more   “localized”   

assessment,   where   external   data   sources   (FMI   and   SAR)   are   available   at   the   stock   level,   rather   than   at   the   

regional   level.   We   summarized   the   performance   of   each   model   fit   in   the   case   study   based   on   root   mean   

squared   error   (RMSE).   
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320 Results   

321 Case   Study   

Nearly   all   of   the   fisheries   used   in   this   case   study   have   F/FMSY   values   less   than   one,   and   most   have   B/BMSY   

values   greater   than   one.   Both   the   catch   heuristic   implemented   in   sraplus   and   CMSY,   using   no   stock-specific   

information   but   the   catch   history   (which   defines   the   prior   on   K   and   stock   depletion,   and   hence   the   estimate   

of   B/BMSY)   and   the   estimated   resilience   of   the   target   species   used   to   provide   a   prior   on   r   (based   on   Fishlife,   
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326 Thorson   (2020)),   badly   miss   this   trend,   predicting   instead   that   nearly   all   the   fisheries   in   this   group   are   

currently   overfished   and   experiencing   overfishing   (Fig.1).   Overall,   models   informed   by   the   SAR   and   FMI   

values   performed   the   best   in   terms   of   B/BMSY   (RMSE   =   0.89).   The   ranking   of   performance   by   data   sources   

used   was   the   same   for   F/FMSY,   though   the   range   of   values   was   much   higher,   with   the   SAR   and   FMI   based   

result   producing   an   RMSE   of   0.39   while   the   catch-only   case   studies   produced   F/FMSY   RMSE   values   greater   

than   1   (Fig.1).   However,   this   improved   performance   of   the   SAR   and   FMI   data   is   to   be   expected   as   the   prior-

generating   models   were   trained   on   data   from   RLSADB,   and   therefore   this   is   likely   an   optimistic   assessment   

of   the   performance   of   these   prior-generating   models   when   applied   to   new   fisheries.   Fitting   to   an   index   of   

abundance   created   by   regional   effort   data   in   fact   produces   a   slightly   poorer   fit   in   B/BMSY   and   F/FMSY.   

This   is   likely   because   a   number   of   stocks   in   this   case   study   set   have   very   low   catches   (relative   to   historic   

highs)   but   high   biomass   values,   creating   a   mismatch   between   the   CPUE   trends   based   on   the   effort   and   catch   

data   and   actual   biomass.   However   none   of   the   models   fit   to   the   four   case-study   data   combinations   were   

able   to   explain   much   of   the   variation   in   B/BMSY,   though   the   models   performed   better   in   some   cases   for   

predicting   F/FMSY.   

Performance   of   Regional   Fishery   Assessments   

We   first   considered   the   performance   of   sraplus   when   the   model   was   given   a   perfect   index   of   abundance   from   

RLSADB   (RLSADB   Index)   for   each   stock   in   RLSADB   it   was   tasked   with   assessing.   Assessment   models   in   

RLSADB   are   typically   much   more   structurally   complex   than   the   simple   biomass   dynamics   used   in   sraplus,   

and   so   this   “perfect   information”   test   tells   us   how   much   of   a   penalty   in   model   performance   we   are   likely   to   pay   

due   to   model   misspecification   alone.   The   sraplus   estimates   of   B/BMSY   resulting   from   fitting   directly   to   the   

abundance   indices   from   RLSADB   were   relatively   accurate   and   unbiased   at   a   macro   level   (MPE   14%,MAPE   

29%,   accuracy   =   69%,   Table.3,   Fig.2-4).   This   exercise   tells   us   that   given   sufficiently   high   quality   index   of   

abundance,   a   surplus   production   model   such   as   sraplus   is   reasonably   capable   of   reproducing   the   global   state   

of   fisheries   as   understood   from   formally   assessed   fisheries.   

We   next   assessed   the   ability   of   FMI,   SAR,   and   effort   data   to   improve   estimates   of   global   stock   status   beyond   

those   derived   from   catch-only   methods.   Many   of   the   datasets   used   produced   similar   levels   of   bias   as   the   

RLSADB   data   (e.g.   FMI,   SAR,   Nominal   CPUE   fits),   though   notable   the   “Guess”   method   actually   performed   

near   the   top   in   terms   of   bias.   However,   this   is   somewhat   an   artifact   of   the   data.   The   status   of   most   stocks   

in   RLSADB   is   relatively   good,   with   recent   B/BMSY   values   generally   near   one.   As   the   mean   value   of   the   

“Guess”   method   is   one,   on   average   the   “Guess”   model   is   an   unbiased   but   imprecise   measure   of   stock   status   

in   RLSADB   (Table.3).   
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Figure 1: RLSADB values of B/BMSY and F/FMSY (x-axes) for case study fisheries plotted against estimated 
values (y-axes) using CMSY (Froese et al. 2017), catch heuristics, priors informed by stock-specific Fisheries 
Management Index (FMI) and swept area ratio (SAR) scores, and an abundance index based on reconstructed 
effort (Effort) trends assuming a rate of technological increase of 2.6%. Each point is a stock in the RLSADB. 
Black dashed line shows the 1:1 relationship. 
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357 Focusing   on   MAPE   (our   measure   of   error   rather   than   bias)   and   classification   accuracy,   the   error   of   the   models   

jumps   dramatically   as   soon   as   data   other   than   the   RLSADB   abundance   indices   are   used,   to   a   minimum   

value   of   47%   and   a   maximum   of   68%.   The   mean   accuracy   of   the   sraplus   models   across   all   non-RLSADB   

data   fits   was   43%.   Note   that   there   are   only   three   bins   in   the   FAO   stock   status   classifications,   and   as   such   

our   “Guess”   model   has   a   mean   accuracy   of   34%.   This   means   that   the   accuracy   of   our   models   designed   as   a   

proxy   for   a   global   assessment   process   were   across   all   non-RLSADB   index   data   fits   25%   more   accurate   than   

a   random   guess,   certainly   an   improvement,   but   on   average   assigned   fisheries   to   the   wrong   FAO   status   bin   

57%   of   the   time.   

Looking   geographically   we   found   a   similar   pattern   of   a   rapid   decrease   in   performance   for   models   besides   

those   fit   to   the   RLSADB   Index.   Across   the   models,   performance   was   not   consistent   in   space:   use   of   different   

data   performed   best   or   worst   for   different   FAO   regions.   Models   fit   to   nominal   CPUE   data   substantially   

overestimate   stock   status   in   the   Mediterranean,   while   models   based   on   data   using   effective   CPUE   perform   

better   in   that   region   (but   worse   in   others)   (Fig.3).   We   find   similarly   inconsistent   performance   for   both   bias   

(Fig.2)   and   accuracy   (Fig.4).   Overall,   while   some   data   sources   performed   slightly   better   than   others   by   some   

metrics   in   some   places,   no   models   using   any   non-RLSADB   index   data   were   able   to   capture   the   overall   state   

or   geographic   distribution   of   stock   status   represented   in   RLSADB   in   a   consistent   manner.   Performance   in   

estimating   F/FMSY   was   similarly   variable   and   poor,   with   the   exception   that   the   default   settings   of   CMSY   

performed   much   more   consistently   poorly   in   terms   of   F/FMSY   than   B/BMSY   (due   to   systemic   overestimating   

of   F/FMSY,   see   SI).   
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Figure 2: Median percent error (MPE, predicted relative to observed) in most recent B/BMSY by FAO 
statistical area from different data sources. Data source panels are ordered in ascending (starting from top 
left) mean MPE at the FAO region level. RLSADB Index refers to catch and abundance index drawn from 
RLSADB. Effective CPUE refers to an index of abundance based on reconstructed effort data. Effective 
CPUE+ uses CPUE along with Fisheries Management Index (FMI) and/or swept area ratio (SAR) data. 
For both CPUE series ‘nominal’ assumes a 0% technology creep, for ‘effective’ a 2.6% technology creep is 
assumed. FMI uses FMI scores to develop a prior on recent fishing mortality rates, SAR does the same but 
based on swept area ratio. CMSY uses the methods from Froese et al. 2017 (Froese et al. 2017). Guess 
assigns a random recent B/BMSY of 0.4,1, or 1.6. 
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Figure 3: Median absolute percent error (MAPE) in most recent B/BMSY by FAO statistical area from 
different data sources. Data source panels are ordered in descending (starting from top left) mean MAPE at 
the FAO region level. RLSADB Index refers to catch and abundance index drawn from RLSADB. Effective 
CPUE refers to an index of abundance based on reconstructed effort data. Effective CPUE+ uses CPUE 
along with Fisheries Management Index (FMI) and/or swept area ratio (SAR) data. For both CPUE series 
‘nominal’ assumes a 0% technology creep, for ‘effective’ a 2.6% technology creep is assumed. FMI uses FMI 
scores to develop a prior on recent fishing mortality rates, SAR does the same but based on swept area 
ratio. CMSY uses the methods from Froese et al. 2017 (Froese et al. 2017). Guess assigns a random recent 
B/BMSY of 0.4,1, or 1.6. 
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Figure 4: Mean classification accuracy (assignment to FAO stock status category) by FAO statistical area 
arising from different data sources. Data source panels are ordered in descending (starting from top left) 
mean accuracy at the FAO region level RLSADB Index refers to catch and abundance index drawn from 
RLSADB. Effective CPUE refers to an index of abundance based on reconstructed effort data. Effective 
CPUE+ uses CPUE along with Fisheries Management Index (FMI) and/or swept area ratio (SAR) data. 
For both CPUE series ‘nominal’ assumes a 0% technology creep, for ‘effective’ a 2.6% technology creep is 
assumed. FMI uses FMI scores to develop a prior on recent fishing mortality rates, SAR does the same but 
based on swept area ratio. CMSY uses the methods from Froese et al. 2017 (Froese et al. 2017). Guess 
assigns a random recent B/BMSY of 0.4,1, or 1.6. 
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376 Value   of   Information   

377 Having   access   to   estimates   of   F/FMSY   reduced   model   error   in   proportion   to   the   number   of   years   for   which   

F/FMSY   values   are   available.   Interestingly   though,   having   access   to   only   an   accurate   estimate   of   F/FMSY   in   

the   most   recent   year   was   extremely   informative,   reducing   error   on   average   by   15%,   on   par   with   an   estimate   

of   recent   B/BMSY   itself   (Fig.5).   While   having   access   to   complete   index   of   abundance,   such   as   a   fishery   

independent   survey,   was   on   average   able   to   reduce   error   relative   to   a   baseline   catch-only   heuristic,   using   

only   the   most   recent   quarter   of   the   available   abundance   index   actually   increased   error   on   average,   due   to   

the   lack   of   historical   context   for   recent   trends   in   abundance.   
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Figure   5:   Posterior   probability   distributions   of   estimated   effect   of   different   data   types   on   root   mean   squared   
error   (RMSE)   of   B/BMSY   in   the   most   recent   5   years   of   data   available   for   each   model   fit.   Distribution   is   full   
posterior   probability   distribution.   Point   is   median,   thicker   black   section   inner   66th   quantile   of   the   posterior,   
the   thinner   black   line   the   95th.   Change   is   relative   to   the   mean   performance   of   a   catch-only   heuristic   model.   
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384 Discussion   

385 Global-level   assessments   of   fish   populations   are   critical   for   guiding   management   agendas   for   the   world’s   

oceans,   and   tracking   indicators   such   as   the   United   Nations   Sustainable   Development   Goals.   The   hope   of   

efforts   using   catch-only   models   to   estimate   the   status   of   global   unassessed   fisheries   is   fundamentally   that   

we   can   learn   something   meaningful   about   the   state   of   a   fished   population   simply   by   knowing   something   

about   its   catch   history   and   life   history.   While   in   some   cases   the   addition   of   globally   available   data   such   a   

FMI   scores,   SAR   values,   or   effort   reconstructions,   provided   value   above   and   beyond   catch   histories   alone   

(Fig.1),   at   the   global   level   models   fit   using   each   of   the   available   datasets,   besides   the   RLSADB-derived   

indices,   generally   produced   biased   and   imprecise   estimates   of   fish   stock   status   (Table.3).   The   simplicity   and   

low   data   requirements   of   catch-only   models   are   understandably   appealing   to   many   users,   but   our   results   

highlight   that   without   high-quality   local   data   these   methods   can   provide   highly   imprecise   and   biased   results.   

Broad   and   uncritical   application   of   these   methods   that   frequently   result   in   incorrect   classification   of   stock   

status   can   be   detrimental   to   both   ecosystems   and   livelihoods.   

Our   claim   is   that   achieving   substantial   progress   in   assessing   the   state   of   global   fisheries   will   require   improved   

data   and   capacity   building.   This   claim   cannot   be   definitively   proven;   it   is   possible   that   some   yet-to-be   

discovered   model   will   provide   a   reliable   means   of   dramatically   improving   the   accuracy   of   estimates   produced   

by   catch-based   models   using   current   broadly-available   datasets.   Basic   logic   tells   us   though   that   such   a   model   

would   have   to   depend   on   strong   assumptions,   new   data,   or   empirical   estimation.   Catch   is   a   function   of   

catchability,   effort,   and   biomass,   so   given   just   catch   we   have   one   equation   and   three   unknowns.   Structurally   

separating   out   biomass   (and   subsequently   estimating   reference   points   etc.)   requires   then   either   data   or   strong   

assumptions   on   these   other   variables   across   a   sufficiently   representative   timespan.   Alternatively,   empirical   

relationships   could   be   developed   linking   attributes   of   catch   histories   to   observed   estimates   of   stock   status   

(e.g.   Costello   et   al.   2012).   However,   these   methods   require   that   these   empirical   relationships   both   exist   and   

are   reliably   preserved   in   fisheries   that   lack   formal   assessments.   Numerous   groups   made   up   of   highly   skilled   

scientists   have   attempted   to   resolve   these   fundamental   challenges   in   various   ways,   but   external   efforts   to   

validate   the   performance   of   these   methods   have   consistently   found   them   to   perform   generally   poorly   when   

applied   in   bulk   (Pons   et   al.   2020;   Free   et   al.   2020;   Bouch   et   al.   2021).   This   is   not   intended   as   an   indictment   

of   those   past   efforts,   but,   we   believe,   a   reflection   on   the   limited   amount   of   broadly   applicable   predictive   

power   that   exists   within   catch   histories   alone.   Methods   tested   in   those   papers   have   been   demonstrated   to   

perform   relatively   well   when   given   specific   data   or   priors   informative   to   specific   fisheries.   We   revisited   this   

task   in   this   paper,   and   found   that   even   when   augmented   with   other   broadly   available   datasets,   we   were   

unable   to   produce   consistently   accurate   estimates   of   stock   status   around   the   globe.   For   these   reasons   we   
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416 believe   that   improvements   to   our   understanding   of   the   state   of   global   unassessed   fisheries   will   come   from   

targeted   use   of   existing   but   underutilized   data,   and   expanding   the   collection   of   high-priority   data   around   

the   globe,   rather   than   the   development   of   new   modeling   methods   alone.   

What   quality   of   assessment   is   needed   and   what   constitutes   a   meaningful   improvement   in   assessment   quality   

depends   on   the   needs   of   those   using   the   assessment   outputs.   It   may   be   that   for   particular   regions,   species,   

or   uses   the   results   presented   here   or   in   other   past   global   analyses   are   sufficiently   accurate.   Catch-only   based   

estimates   of   measures   such   as   MSY   are   likely   to   be   much   more   robust   than   reference   points   such   as   B/BMSY   

(Martell   and   Froese   2013).   Where   catch-only   methods   are   used   for   estimates   of   B/BMSY   or   F/FMSY,   it   is   

critical   that   users   are   aware   of   the   broadly   demonstrated   poor   performance   of   these   methods   in   the   absence   

of   highly   reliable   fishery-specific   information.   In   some   instances   using   the   data   presented   here   did   provide   

some   improvement   over   use   of   catch-only   style   assessment   methods;   the   difficulty   comes   in   attempting   to   

apply   data   types   uniformly   across   the   globe.   While   it   is   unreasonable   to   expect   models   based   solely   on   

global-scale   data   to   be   able   to   perform   as   well   as   detailed   stock   assessments   reported   in   RLSADB,   or   that   

data-limited   methods   would   perform   well   for   every   individual   stock,   our   hope   would   be   that   a   data-limited   

approach   based   on   globally   available   data   sources   would   be   able   to   correctly   capture   general   patterns   in   stock   

status   in   time   and   space.   The   overall   poor   performance   of   the   models   tested   here,   in   terms   of   estimating   both   

B/BMSY   and   F/FMSY,   shows   that   improvements   in   estimates   of   global   stock   status   depend   on   improvements   

in   the   quality   and   use   of   data   themselves.   

Our   fits   to   the   RLSADB   data   provide   a   useful   diagnostic   of   the   degree   to   which   model   mispecification   

might   explain   the   poor   performance   of   catch-only   models.   Catch-only   models   generally   employ   some   form   of   

biomass   dynamics   model,   such   as   the   Schaefer   surplus   production   model   (Schaefer   1954).   These   models   are   

generally   much   simpler   than   the   typically   age-structured   population   models   underpinning   the   assessments   

in   the   RLSADB.   While   we   found   that   fitting   the   Pella-Tomlinson   model   employed   in   sraplus   to   an   index   of   

abundance   drawn   directly   from   the   RLSADB   provided   much   improved   and   reasonably   accurate   estimates   

of   stock   status   relative   to   catch-only   approaches   (Table.3),   even   with   the   index   of   abundance   sraplus   still   

had   an   average   MAPE   of   29%.   This   discrepancy   may   provide   a   measure   of   relatively   insurmountable   error   

resulting   from   model   misspecification   that   inclusion   of   additional   data   may   not   be   able   to   overcome.   For   

example,   many   assessments   in   the   RLSADB   calculate   B/BMSY   based   on   spawning   stock   biomass.   However,   

surplus   production   models   condition   the   size   and   state   of   the   population   on   the   catch,   which   is   by   definition   

a   measure   of   the   vulnerable   biomass.   Vulnerable   biomass   may   not   reliably   track   spawning   biomass   in   highly   

selective   fisheries,   potentially   resulting   in   model   biases   as   the   surplus   production   model   is   not   capable   of   

separately   tracking   spawning   and   vulnerable   biomass.   
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448 We   chose   to   test   the   performance   of   methods   against   estimated   values   reported   in   RLSADB.   A   reasonable   

critique   of   this   choice   is   that   unassessed   stocks,   on   which   these   methods   would   actually   be   used,   are   likely   to   

have   vastly   different   dynamics   than   the   heavily   managed   fish   populations   represented   in   RLSADB,   in   addi-

tion   to   the   errors   in   the   RLSADB   estimates   themselves.   For   this   reality   to   change   our   results   though   would   

require   that   the   methods   tested   here   have   massively   lower   bias   and   higher   accuracy   for   unassessed   fisheries   

than   RLSADB   stocks.   Free   et   al.   (2020)’s   simulation   based   results   of   these   same   types   of   models   suggests   

that   this   is   unlikely   to   be   true.   However,   while   many   assessed   fisheries   have   mechanisms   to   actively   manage   

catches,   catch   histories   in   unassessed   and   unmanaged   fisheries   may   be   more   likely   to   reflect   underlying   stock   

status   than   those   in   relatively   well   managed   fisheries,   though   any   predictive   relationship   will   still   depend   on   

a   host   of   factors   such   as   changes   in   effort.   This   could   be   empirically   tested   by   considering   the   performance   

of   catch-only   models   on   data   from   earlier   in   the   history   of   fisheries   in   the   RLSADB,   though   we   did   not   do   

so   here   as   we   do   not   have   historic   estimates   of   FMI   or   SAR   values.   

Our   results   do   not   imply   that   the   kinds   of   broadly   available   data   presented   here   are   not   valuable   under   the   

right   conditions.   The   FMI   and   SAR   based   priors   are   an   improvement   over   catch-only   models   in   applicable   

situations   (i.e.   those   that   sufficiently   resemble   the   data   on   which   the   regressions   were   trained,   Fig.1).   Effort   

data   such   as   those   reconstructed   by   Rousseau   et   al.   (2019)   can   help   distinguish   between   regions   with   similar   

catch   histories   but   different   large-scale   effort   trajectories,   and   may   be   quite   useful   as   indices   of   abundance   

for   areas   with   good   knowledge   of   rates   of   evolution   of   fishing   technology   and   a   broadly   selective   fishing   

fleet.   Despite   not   adding   a   great   deal   in   terms   of   performance   at   the   global   scale,   swept-area-ratio   was   the   

strongest   predictor   of   F/FMSY   of   any   of   the   datasets   we   explore   on   an   individual   stock   basis,   with   a   Bayesian   

R2   value   of   0.43   (see   SI).   But,   we   must   simultaneously   consider   data   quality   and   resolution:   applying   one   

SAR   value   to   all   stocks   in   a   region,   even   if   that   SAR   value   can   provide   valuable   information   for   a   subset   

of   fisheries,   causes   inaccurate   estimates   of   stock   status   when   applied   too   broadly.   Our   analysis   does   not   

show   that   the   data   considered   here   are   without   value,   but   that   attempting   to   indiscriminately   apply   these   

data   to   all   areas   of   the   globe   results   in   meaningfully   incorrect   estimates   of   stock   status   for   regions   whose   

nature   does   not   match   the   assumptions   needed   to   apply   these   data   sources.   We   found   that   performance   of   

different   data   sources   varied   widely   both   within   and   among   regions   (Fig.1,   Fig.2-4).   Some   of   this   variation   

is   likely   simply   due   to   low   sample   sizes   of   assessed   stocks   reported   in   the   RLSADB   in   some   regions.   But,   

other   explanations   for   differences   in   performance   among   stocks   and   regions   may   be   an   interesting   area   for   

future   research.   For   example,   it   may   be   that   stocks   in   some   regions   are   more   suitable   to   being   represented   

by   surplus   production   models   than   others.   

Our   value   of   information   analysis   also   shows   the   high   utility   of   having   access   to   even   a   recent   snapshot   of   
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480 F/FMSY   (Fig.5).   Swept   area   ratios,   Fisheries   Management   Index   scores,   or   other   similar   metrics   can   be   

used   to   construct   fishery-specific   priors   on   fishing   mortality   rates,   though   care   must   be   taken   in   applying   

them   at   the   appropriate   spatial   resolution.   Another   avenue   would   be   to   prioritize   the   development   of   a   

global   repository   for   length   and   age   composition   data.   Given   appropriate   conditions,   these   length   measure-

ments   can   be   used   to   estimate   local   fishing   mortality   rates   (Hordyk   et   al.   2016;   Rudd   and   Thorson   2017;   

Prince   and   Hordyk   2019).   While   length-based   assessments   come   with   a   host   of   assumptions   and   potential   

pitfalls,   properly   implemented   in   some   fisheries   with   appropriate   life   histories   these   methods   may   provide   

an   overlooked   source   of   information   on   fisheries   at   a   global   scale,   at   least   as   an   improvement   over   relying   

on   catch-only   or   regional   proxies   alone.   Such   a   database   could   be   used   to   construct   stock   or   stock   complex   

specific   priors   on   fishing   mortality   for   particular   regions   around   the   globe,   which   could   meaningfully   improve   

our   understanding   of   global   fisheries,   particularly   when   paired   with   catch   data   and   where   possible   indices   

of   abundance   (Thorson   and   Cope   2015;   Rudd   and   Thorson   2017).   

We   must   also   prioritize   collection   and   curation   of   fish   population   survey   data   worldwide.   Repositories   of   

fishery-independent   survey   data   would   be   immensely   beneficial,   such   as   those   maintained   by   FishStat   (   

www.FishStats.org).   Recent   research   confirms   that   there   are   bottom   trawl   data   to   support   analysis   of   

biomass-trends   since   2001   and   potentially   earlier   in   many   regions   (Maureaud   et   al.   2020),   and   survey   data   

are   available   for   more   stocks   than   have   stock   assessments.   Effort   reconstructions   such   as   those   utilized   

here   may   help   create   fishery-dependent   abundance   indices   in   some   instances,   and   going   forward   datasets   

such   as   those   compiled   by   Global   Fishing   Watch   (https://globalfishingwatch.org/)   in   combination   with   the   

reconstruction   approaches   of   Rousseau   et   al.   (2019)   might   allow   us   to   construct   and   use   timeseries   of   fishing   

effort   specific   to   particular   areas,   fleets,   and   species   complexes.   However,   our   value   of   information   exercise   

indicates   that   we   may   have   to   wait   many   years   for   new   surveys   to   provide   substantial   improvements   in   status   

estimates   (Fig.5).   

Expanded   training   of   fisheries   scientists   around   the   globe   is   another   critical   need.   Even   were   we   to   dramat-

ically   expand   the   amount   and   types   of   data   available   for   global   assessment,   individual   fisheries   and   regions   

will   need   to   make   informed   decisions   about   which   sources   of   data   may   be   applicable   and   which   not,   and   to   

critically   evaluate   the   results   of   any   model   based   on   local   expertise.   This   is   why   stock   assessments   even   in   

data-rich   fisheries   are   not   an   automated   process;   the   real   challenge   is   often   not   in   fitting   a   model   to   data   but   

in   understanding   how   best   to   use   the   data   and   the   quality   and   limitations   of   the   model   used.   Empowering   

a   global   network   of   fisheries   scientists   through   training   and   peer-support   would   help   local   experts   make   

the   most   of   available   data,   ensure   the   reliability   of   newly   collected   data,   and   improve   the   interpretation   

of   assessment   results.   We   may   also   need   to   acknowledge   that   in   some   fisheries   reliable   estimates   of   stock   
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512 status   relative   to   MSY   based   reference   points   are   simply   not   possible   (or   perhaps   desirable),   and   instead   

rely   on   more   precautionary   or   empirical   management   management   measures   such   as   spatial   closures,   size   

restrictions,   and   indicator   based   harvest   strategies   (ideally   tested   through   management   strategy   evaluation)   

(Dowling   et   al.   2015;   Fulton   et   al.   2016;   Prince   and   Hordyk   2019).   

The   coming   decades   are   a   critical   time   for   the   future   of   fisheries   and   ocean   health.   Achieving   the   United   

Nations   Sustainable   Development   Goal   14   for   the   conservation   and   sustainable   use   of   the   world’s   oceans   

depends   on   our   ability   to   effectively   assess   the   status   of   fish   stocks   around   the   world.   The   RAM   Legacy   

Stock   Assessment   Database   combined   with   the   FAO’s   expert   elicitation   of   status   for   select   stocks   have   

dramatically   improved   our   understanding   of   global   fisheries   in   recent   years.   However,   this   process   still   

leaves   a   substantial   number   of   fisheries   and   proportion   of   global   catch   unassessed.   Numerous   catch-based   

data-limited   approaches   have   attempted   to   fill   that   gap,   and   while   these   efforts   have   advanced   our   knowledge   

and   interest   in   unassessed   fisheries,   none   have   yet   been   able   to   provide   a   solution   to   this   problem   which   has   

proven   to   be   unbiased   and   sufficiently   precise   at   a   global   or   regional   level.   

The   lack   of   strong   information   on   stock   status   within   catch   histories   alone   means   that   differences   in   models   

and   assumptions   between   catch-based   assessment   efforts   can   produce   starkly   contrasting   conclusions   on   

global   stock   status,   leading   to   debates   that   are   inconclusive   as   they   are   inherently   driven   by   assumptions.   

The   FAO   is   leading   efforts   to   increase   technical   capacity   and   monitoring   and   evaluation   infrastructure   to   

improve   fisheries   management   in   places   with   limited   data.   Such   projects   stand   to   provide   a   better   picture   

of   fishery   status   at   global   and   local   scales,   furthering   our   ability   to   meet   the   UN   SDG   targets.   Our   results   

emphasize   the   urgency   and   rationale   for   building   the   infrastructure   and   capacity   that   can   lead   to   better   

marine   resource   management   globally   (Costello   et   al.   2020)   Achieving   meaningful   improvements   in   the   

assessment   and   management   of   global   unassessed   fisheries   will   depend   on   expanded   collection   of   targeted   

data   types,   active   management,   and   local   capacity   building.   

513 

514 

515 

516 

517 

518 

519 

520 

521 

522 

523 

524 

525 

526 

527 

528 

529 

530 

531 

532 

533 

534 

535 Data   Availability   Statement   

536 All   data   and   materials   needed   to   reproduce   our   results   are   publicly   available   or   queried   by   code   available   at   

https://github.com/DanOvando/assessing-global-fisheries.   537 

24 

https://github.com/DanOvando/assessing-global-fisheries


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

538 Acknowledgements   

539 Funding   for   this   work   was   provided   by   the   Food   and   Agriculture   Organization   of   the   United   Nations   (FAO).   

We   thank   participants   of   the   FAO   “Methods   for   Global   Assessment”   workshop   held   in   Rome,   Italy   February   

2019   for   helpful   feedback   on   this   project.   The   scientific   results   and   conclusions,   as   well   as   any   views   or   

opinions   expressed   herein,   are   those   of   the   author(s)   and   do   not   necessarily   reflect   those   of   the   FAO,   NOAA   

or   the   Department   of   Commerce.   

540 

541 

542 

543 

544 References   

545 Amoroso,   R.O.,   Pitcher,   C.R.,   Rijnsdorp,   A.D.,   et   al.   (2018)   Bottom   trawl   fishing   footprints   on   the   world’s   

continental   shelves.   Proceedings   of   the   National   Academy   of   Sciences,   201802379.   

Boettiger,   C.,   Temple   Lang,   D.   and   Wainwright,   P.   (2012)   Rfishbase:   Exploring,   manipulating   and   visualiz-

ing   FishBase   data   from   r.   Journal   of   Fish   Biology.   

Bouch,   P.,   Minto,   C.   and   Reid,   D.G.   (2021)   Comparative   performance   of   data-poor   CMSY   and   data-

moderate   SPiCT   stock   assessment   methods   when   applied   to   data-rich,   real-world   stocks.   ICES   Journal   

of   Marine   Science   78,   264–276.   

Branch,   T.A.,   Jensen,   O.P.,   Ricard,   D.,   Ye,   Y.   and   Hilborn,   R.   (2011)   Contrasting   Global   Trends   in   Marine   

Fishery   Status   Obtained   from   Catches   and   from   Stock   Assessments.   Conservation   Biology   25,   777–786.   

Carpenter,   B.,   Gelman,   A.,   Hoffman,   M.D.,   et   al.   (2017)   Stan   :   A   Probabilistic   Programming   Language.   

Journal   of   Statistical   Software   76.   

Cope,   J.M.,   Thorson,   J.T.,   Wetzel,   C.R.   and   DeVore,   J.   (2015)   Evaluating   a   prior   on   relative   stock   status   

using   simplified   age-structured   models.   Fisheries   Research   171,   101–109.   

Costello,   C.,   Cao,   L.,   Gelcich,   S.,   et   al.   (2020)   The   future   of   food   from   the   sea.   Nature,   1–6.   

Costello,   C.,   Ovando,   D.,   Clavelle,   T.,   et   al.   (2016)   Global   fishery   prospects   under   contrasting   management   

regimes.   Proceedings   of   the   National   Academy   of   Sciences   113,   5125–5129.   

Costello,   C.,   Ovando,   D.,   Hilborn,   R.,   Gaines,   S.D.,   Deschenes,   O.   and   Lester,   S.E.   (2012)   Status   and   

Solutions   for   the   World’s   Unassessed   Fisheries.   Science   338,   517–520.   

Dowling,   N.A.,   Dichmont,   C.M.,   Haddon,   M.,   Smith,   D.C.,   Smith,   A.D.M.   and   Sainsbury,   K.   (2015)   Guide-

lines   for   developing   formal   harvest   strategies   for   data-poor   species   and   fisheries.   Fisheries   Research   171,   

546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

556 

557 

558 

559 

560 

561 

562 

563 

564 

25 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

565 130–140.   

Eddelbuettel,   D.   and   François,   R.   (2011)   Rcpp:   Seamless   R   and   C++   integration.   Journal   of   Statistical   

Software   40,   1–18.   

FAO   (2020)   State   Of   World   Fisheries   And   Aquaculture   2020:   Sustainability   in   action.   FOOD   &   AGRICUL-

TURE   ORG,   S.l.   

Free,   C.M.,   Jensen,   O.P.,   Anderson,   S.C.,   et   al.   (2020)   Blood   from   a   stone:   Performance   of   catch-only   

methods   in   estimating   stock   biomass   status.   Fisheries   Research   223,   105452.   

Froese,   R.,   Demirel,   N.,   Coro,   G.,   Kleisner,   K.M.   and   Winker,   H.   (2017)   Estimating   fisheries   reference   points   

from   catch   and   resilience.   Fish   and   Fisheries   18,   506–526.   

Fulton,   E.A.,   Punt,   A.E.,   Dichmont,   C.M.,   et   al.   (2016)   Developing   risk   equivalent   data-rich   and   data-limited   

harvest   strategies.   Fisheries   Research   183,   574–587.   

Hilborn,   R.,   Amoroso,   R.O.,   Anderson,   C.M.,   et   al.   (2020)   Effective   fisheries   management   instrumental   in   

improving   fish   stock   status.   Proceedings   of   the   National   Academy   of   Sciences.   

Hoffman,   M.D.   and   Gelman,   A.   (2011)   The   No-U-Turn   Sampler:   Adaptively   Setting   Path   Lengths   in   Hamil-

tonian   Monte   Carlo.   arXiv:1111.4246   [cs,   stat].   

Hordyk,   A.,   Ono,   K.,   Prince,   J.D.   and   Walters,   C.J.   (2016)   A   simple   length-structured   model   based   on   life   

history   ratios   and   incorporating   size-dependent   selectivity:   Application   to   spawning   potential   ratios   for   

data-poor   stocks.   Canadian   Journal   of   Fisheries   and   Aquatic   Sciences.   

Kimura,   D.K.,   Balsiger,   J.W.   and   Ito,   D.H.   (1984)   Generalized   stock   reduction   analysis.   Canadian   Journal   

of   Fisheries   and   Aquatic   Sciences   41,   1325–1333.   

Kristensen,   K.,   Nielsen,   A.,   Berg,   C.W.,   Skaug,   H.   and   Bell,   B.M.   (2016)   TMB   :   Automatic   Differentiation   

and   Laplace   Approximation.   Journal   of   Statistical   Software   70.   

Martell,   S.   and   Froese,   R.   (2013)   A   simple   method   for   estimating   MSY   from   catch   and   resilience.   Fish   and   

Fisheries   14,   504–514.   

Maureaud,   A.,   Frelat,   R.,   P’ecuchet,   L.,   et   al.   (2020)   Are   we   ready   to   track   climate-driven   shifts   in   marine   

species   across   international   boundaries?   - A   global   survey   of   scientific   bottom   trawl   data.   Ecology.   

Melnychuk,   M.C.,   Peterson,   E.,   Elliott,   M.   and   Hilborn,   R.   (2017)   Fisheries   management   impacts   on   target   

species   status.   Proceedings   of   the   National   Academy   of   Sciences   114,   178–183.   

566 

567 

568 

569 

570 

571 

572 

573 

574 

575 

576 

577 

578 

579 

580 

581 

582 

583 

584 

585 

586 

587 

588 

589 

590 

591 

592 

26 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

593 Monnahan,   C.   and   Kristensen,   K.   (2018)   No-u-turn   sampling   for   fast   bayesian   inference   in   ADMB   and   TMB:   

Introducing   the   adnuts   and   tmbstan   r   packages.   PloS   one   13.   

Osio,   G.C.,   Orio,   A.   and   Millar,   C.P.   (2015)   Assessing   the   vulnerability   of   Mediterranean   demersal   stocks   

and   predicting   exploitation   status   of   un-assessed   stocks.   Fisheries   Research   171,   110–121.   

Palomares,   M.L.D.,   Froese,   R.,   Derrick,   B.,   et   al.   (2020)   Fishery   biomass   trends   of   exploited   fish   populations   

in   marine   ecoregions,   climatic   zones   and   ocean   basins.   Estuarine,   Coastal   and   Shelf   Science,   106896.   

Pauly,   D.   (2007)   The   Sea   Around   Us   Project:   Documenting   and   Communicating   Global   Fisheries   Impacts   

on   Marine   Ecosystems.   AMBIO:   A   Journal   of   the   Human   Environment   36,   290–295.   

Pauly,   D.,   Hilborn,   R.   and   Branch,   T.A.   (2013)   Fisheries:   Does   catch   reflect   abundance?   Nature   494,   

303–306.   

Pella,   J.J.   and   Tomlinson,   P.K.   (1969)   A   generalized   stock   production   model.   Inter-American   Tropical   Tuna   

Commission   Bulletin   13,   416–497.   

Pons,   M.,   Cope,   J.M.   and   Kell,   L.T.   (2020)   Comparing   performance   of   catch-based   and   length-based   stock   

assessment   methods   in   data-limited   fisheries.   Canadian   Journal   of   Fisheries   and   Aquatic   Sciences.   

Poole,   D.   and   Raftery,   A.E.   (2000)   Inference   for   Deterministic   Simulation   Models:   The   Bayesian   Melding   

Approach.   Journal   of   the   American   Statistical   Association   95,   1244–1255.   

Prince,   J.   and   Hordyk,   A.   (2019)   What   to   do   when   you   have   almost   nothing:   A   simple   quantitative   pre-

scription   for   managing   extremely   data-poor   fisheries.   Fish   and   Fisheries   20,   224–238.   

R   Core   Team   (2019)   R:   A   Language   and   Environment   for   Statistical   Computing.   

Ricard,   D.,   Minto,   C.,   Jensen,   O.P.   and   Baum,   J.K.   (2012)   Examining   the   knowledge   base   and   status   of   

commercially   exploited   marine   species   with   the   RAM   Legacy   Stock   Assessment   Database.   Fish   and   

Fisheries   13,   380–398.   

Rosenberg,   A.A.,   Kleisner,   K.M.,   Afflerbach,   J.,   et   al.   (2018)   Applying   a   New   Ensemble   Approach   to   

Estimating   Stock   Status   of   Marine   Fisheries   around   the   World.   Conservation   Letters   11,   e12363.   

Rousseau,   Y.,   Watson,   R.A.,   Blanchard,   J.L.   and   Fulton,   E.A.   (2019)   Evolution   of   global   marine   fishing   

fleets   and   the   response   of   fished   resources.   Proceedings   of   the   National   Academy   of   Sciences,   201820344.   

Rudd,   M.B.   and   Thorson,   J.T.   (2017)   Accounting   for   variable   recruitment   and   fishing   mortality   in   length-

based   stock   assessments   for   data-limited   fisheries.   Canadian   Journal   of   Fisheries   and   Aquatic   Sciences,   

1–17.   

594 

595 

596 

597 

598 

599 

600 

601 

602 

603 

604 

605 

606 

607 

608 

609 

610 

611 

612 

613 

614 

615 

616 

617 

618 

619 

620 

621 

27 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

622 Schaefer,   M.B.   (1954)   Some   aspects   of   the   dynamics   of   populations   important   to   the   management   of   the   

commercial   marine   fisheries.   Inter-American   Tropical   Tuna   Commission   Bulletin   1,   23–56.   

Stan   Development   Team   (2018)   {{RStan{}:   The   {}R{}   interface   to   {}Stan{}{}.   

Thorson,   J.T.   (2020)   Predicting   recruitment   density   dependence   and   intrinsic   growth   rate   for   all   fishes   

worldwide   using   a   data-integrated   life-history   model.   Fish   and   Fisheries   21,   237–251.   

Thorson,   J.T.,   Branch,   T.A.   and   Jensen,   O.P.   (2012a)   Using   model-based   inference   to   evaluate   global   fisheries   

status   from   landings,   location,   and   life   history   data.   Canadian   Journal   of   Fisheries   and   Aquatic   Sciences   

69,   645–655.   

Thorson,   J.T.   and   Cope,   J.M.   (2015)   Catch   curve   stock-reduction   analysis:   An   alternative   solution   to   the   

catch   equations.   Fisheries   Research   171,   33–41.   

Thorson,   J.T.,   Cope,   J.M.,   Branch,   T.A.   and   Jensen,   O.P.   (2012b)   Spawning   biomass   reference   points   

for   exploited   marine   fishes,   incorporating   taxonomic   and   body   size   information.   Canadian   Journal   of   

Fisheries   and   Aquatic   Sciences   69,   1556–1568.   

Vehtari,   A.,   Gelman,   A.   and   Gabry,   J.   (2017)   Practical   Bayesian   model   evaluation   using   leave-one-out   cross-

validation   and   WAIC.   Statistics   and   Computing   27,   1413–1432.   

Walters,   C.J.,   Martell,   S.J.D.   and   Korman,   J.   (2006)   A   stochastic   approach   to   stock   reduction   analysis.   

Canadian   Journal   of   Fisheries   and   Aquatic   Sciences   63,   212–223.   

Winker,   H.,   Carvalho,   F.   and   Kapur,   M.   (2018)   JABBA:   Just   Another   Bayesian   Biomass   Assessment.   Fish-

eries   Research   204,   275–288.   

623 

624 

625 

626 

627 

628 

629 

630 

631 

632 

633 

634 

635 

636 

637 

638 

639 

640 

28 



 

  Data   Source   Short   Data   Use   Caveats 

  Name 

  Catch   data   (FAO   catches   Priors   on   stock   status,   Heuristics   or   regressions   used   to   translate 

  2020)   scaling   of   population   size,   shape   of   catch   history   into   priors   on   stock 

  exploitation   history   status 

  Fisheries   FMI   Priors   on   most   recent   Priors   produced   by   regression   trained   on 

  Management F/FMSY   values      data   from   RAM   Legacy   Stock   Assessment 

  Index   Database 

  (Melnychuk   et   al. 

  2017) 

  Swept   Area   Ratio   SAR   Priors   on   most   recent   Priors   produced   by   regression   trained   on 

  (Amoroso   et   al. F/FMSY   values      data   from   RAM   Legacy   Stock   Assessment 

  2018)   Database 

  Reconstructed   effort   |   Combined   with   catch   data   to   Total   reconstructed   effort   across   all   sectors. 

  effort   data   create   an   index   of   abundance   Assumed   rate   of   technology   creep   reported 

  (Rousseau   et   al.   |   in   individual   sections 

  2019)   | 

  Data   Name   Description 

  RLSADB   Fit   to   abundance   index   from   RLSADB 

  Index 

  SAR   Prior   on   terminal   F/Fmsy   set   by   regional   swept   area   ratio 

  FMI   Prior   on   terminal   F/Fmsy   set   by   regional   fisheries   management   index   scores 

  Efective   Fit   to   CPUE   index   created   from   RLSADB   catch   and   regional   effort   index.   2.6%   technology 

  CPUE   creep 
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Table   1:   Data   sources   included   across   model   fits.   

Table   2:   Data   sources   used   for   terminal   stock   status   estimate   
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Data Name Description 

Effective Fit to CPUE index created from RLSADB catch and regional effort index with priors 

CPUE+ informed by SAR and FMI. 2.6% tech. creep 

Nominal Fit to CPUE index created from RLSADB catch and regional effort index. 0% tech. creep 

CPUE 

Nominal Fit to CPUE index created from RLSADB catch and regional effort index with priors 

CPUE+ informed by SAR and FMI. 0% tech. creep 

Guess Priors on terminal B/Bmsy randomly sampled from 0.4,1.0,1.6 

Table 3: Global performance statistics in the most recent year avail-

able of models using different sources of data. MPE = median 

percent error (bias), MAPE = median absolute percent error (er-

ror), Accuracy = percent of times that stocks were classified to the 

correct FAO status bin (underfished, maximally sustainably fished, 

overfished). Performance is judged relative to B/BMSY reported 

values in RAM Legacy Stock Assessment Database. 

Data Used MPE MAPE Accuracy 

RLSADB Index 0.14 0.29 0.69 

FMI -0.09 0.47 0.42 

SAR -0.04 0.50 0.38 

Effective CPUE+ -0.30 0.52 0.43 

Nominal CPUE+ -0.01 0.52 0.46 

Guess -0.08 0.54 0.34 

CMSY -0.54 0.60 0.41 

Nominal CPUE 0.05 0.63 0.48 

Effective CPUE -0.36 0.68 0.41 
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   Figure   Legends   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

642

643 Figure   1:   RLSADB   values   of   B/BMSY   and   F/FMSY   (x-axes)   for   case   study   fisheries   plotted   against   estimated   

values   (y-axes)   using   CMSY   (Froese   et   al.   2017),   priors   informed   by   stock-specific   Fisheries   Management   

Index   (FMI)   and   swept   area   ratio   (SAR)   scores,   and   an   abundance   index   based   on   reconstructed   effort   

trends   assuming   a   rate   of   technological   increase   of   2.6%.   Each   point   is   a   stock.   Black   dashed   line   shows   the   

1:1   relationship.   

Figure   2:   Median   percent   error   (MPE,   predicted   relative   to   observed)   in   most   recent   B/BMSY   by   FAO   

statistical   area   from   different   data   sources.   RLSADB   Index   refers   to   catch   and   abundance   index   drawn   from   

RLSADB.   Effective   CPUE   refers   to   an   index   of   abundance   based   on   reconstructed   effort   data.   Effective   

CPUE+   uses   CPUE   along   with   Fisheries   Management   Index   (FMI)   and/or   swept   area   ratio   (SAR)   data.   

For   both   CPUE   series   ‘nominal’   assumes   a   0%   technology   creep,   for   ‘effective’   a   2.6%   technology   creep   is   

assumed.   FMI   uses   FMI   scores   to   develop   a   prior   on   recent   fishing   mortality   rates,   SAR   does   the   same   but   

based   on   swept   area   ratio.   CMSY   uses   the   methods   from   Froese   et   al.   2017   (Froese   et   al.   2017).   Guess   

assigns   a   random   recent   B/BMSY   of   0.4,1,   or   1.6.   Panels   ordered   in   ascending   (starting   from   top   left)   mean   

MPE   at   the   FAO   region   level.   

Figure   3:   Median   absolute   percent   error   (MAPE)   in   most   recent   B/BMSY   by   FAO   statistical   area   from   

different   data   sources.   RLSADB   Index   refers   to   catch   and   abundance   index   drawn   from   RLSADB.   Effective   

CPUE   refers   to   an   index   of   abundance   based   on   reconstructed   effort   data.   Effective   CPUE+   uses   CPUE   

along   with   Fisheries   Management   Index   (FMI)   and/or   swept   area   ratio   (SAR)   data.   For   both   CPUE   series   

‘nominal’   assumes   a   0%   technology   creep,   for   ‘effective’   a   2.6%   technology   creep   is   assumed.   FMI   uses   FMI   

scores   to   develop   a   prior   on   recent   fishing   mortality   rates,   SAR   does   the   same   but   based   on   swept   area   

ratio.   CMSY   uses   the   methods   from   Froese   et   al.   2017   (Froese   et   al.   2017).   Guess   assigns   a   random   recent   

B/BMSY   of   0.4,1,   or   1.6.   Panels   ordered   in   descending   (starting   from   top   left)   mean   MAPE   at   the   FAO   

region   level   

Figure   4:   Mean   classification   accuracy   (assignment   to   FAO   stock   status   category)   by   FAO   statistical   area   

arising   from   different   data   sources.   RLSADB   Index   refers   to   catch   and   abundance   index   drawn   from   RL-

SADB.   Effective   CPUE   refers   to   an   index   of   abundance   based   on   reconstructed   effort   data.   Effective   CPUE+   

uses   CPUE   along   with   Fisheries   Management   Index   (FMI)   and/or   swept   area   ratio   (SAR)   data.   For   both   

CPUE   series   ‘nominal’   assumes   a   0%   technology   creep,   for   ‘effective’   a   2.6%   technology   creep   is   assumed.   

FMI   uses   FMI   scores   to   develop   a   prior   on   recent   fishing   mortality   rates,   SAR   does   the   same   but   based   on   

swept   area   ratio.   CMSY   uses   the   methods   from   Froese   et   al.   2017   (Froese   et   al.   2017).   Guess   assigns   a   
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673 random   recent   B/BMSY   of   0.4,1,   or   1.6.   Panels   ordered   in   descending   (starting   from   top   left)   mean   accuracy   

at   the   FAO   region   level.   

Figure   5:   Posterior   probability   distributions   of   estimated   effect   of   different   data   types   on   root   mean   squared   

error   (RMSE)   of   B/BMSY   in   the   most   recent   5   years   of   data   available   for   each   model   fit.   Distribution   is   full   

posterior   probability   distribution.   Point   is   median,   thicker   black   section   inner   66th   quantile   of   the   posterior,   

the   thinner   black   line   the   95th.   Change   is   relative   to   the   mean   performance   of   a   catch-only   heuristic   model.   
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679 Supporting   Information   

680 Population Model 

681 The core of our model is a Pella-Tomlinson (Pella and Tomlinson 1969) production model in the manner of 

682 (Winker et al. 2018). While models of these kinds abstract away many important details of fish biology and 

683 fleet behavior, they are the highest resolution model that the potential data evaluated here will support. 

Table S1: Name, abbreviations, and priors distribution for parame-

ters potentially estimated by sraplus in this manuscript. LN refers 

to log normal, where the mean is reported on the unit scale. 

Parameter Abbreviation Default Prior 

Carrying Capacity 𝐾 Prior predictive tuning 

Growth rate 𝑟 Thorson, 2020 (Thorson 2020) updated by prior 

predictive tuning 

Shape parameter 𝑚 Drawn from Thorson et al. 2012 (Thorson et al. 

(2012b)) 

Catchability 𝑞 𝐿𝑁 (1𝑒−3, 1) 

Observation Error 𝜎𝑜𝑏𝑠 𝐿𝑁 (.05, 1) 

Ratio of process to observation 𝛾 𝐿𝑁 (.5, 0.25) 

error 

Initial State 𝐵0 Posterior probability dist. of catch-based regressions 

33 



Table   S2:   SSBMSY   to   SSB   ratios   from   Thorson   et   al.   (2012)   used   

in   the   paper.   Taxa   not   within   the   groups   assigned   at   the   genus   

level   by   Thorson   et   al.   (2012)   are   assigned   the   ratio   reported   for   

‘Other’   

  Taxanomic   Group   SSBMSY/SSB0   SSBMSY/SSB0   SD 

  Pleuronectiformes   0.395   0.119 

  Gadiformes   0.439   0.122 

  Perciformes   0.353   0.114 

  Clupeiformes   0.261   0.097 

  Scorpaeniformes   0.463   0.122 

  Other   0.405   0.120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

684 Prior   Predictive   Tuning   

Our   prior   predictive   tuning   regime   is   similar   in   spirit   to   Bayesian   melding   (Poole   and   Raftery   2000).   Our   

solution   amounts   to   a   two-step   sample-importance-resampling   (SIR)   algorithm.   We   first   run   the   standard   

SIR   algorithm   as   described   above.   We   then   break   the   resulting   draws   into   bins   based   on   terminal   stock   

status,   and   calculate   the   mean   sampling   probability   of   each   bin.   The   net   result   of   this   is   that   it   allows   users   

to   place   explicit   prior   on   stock   status,   and   then   adjust   their   priors   on   life   history   parameters   to   reflect   this   

prior,   rather   than   creating   a   complicated   and   biased   prior   on   stock   status   based   on   a   mixture   of   explicit   and   

implicit   priors.   

The   SRA   algorithm   works   in   two   steps.   First,   the   algorithm   rejects   any   draws   that   resulted   in   the   collapse   

of   the   population   (biomass   less   than   catch   in   a   given   timestep).   From   there   a   standard   SRA   would   sample   

from   the   priors   in   proportion   to   the   stated   prior   on   recent   stock   status.   If   the   bulk   of   the   prior   on   terminal   

stock   status   was   concentrated   at   50%   of   K,   combinations   of   r   and   K   that   produce   terminal   stock   status   near   

50%   of   K   are   sampled   proportionally   more   frequently.   However,   lower   values   of   terminal   stock   status   have   

fewer   candidate   values   of   r   and   K,   since   it   becomes   harder   and   harder   to   find   viable   pairs   that   come   close   

to   but   do   not   crash   the   population   at   any   time   step.   Conversely,   in   the   absence   of   constraints   higher   values   

of   stock   status   have   infinite   combinations   of   plausible   r   and   K   combinations:   since   under   this   model   the   

population   cannot   be   greater   than   carrying   capacity,   as   for   example   K   approaches   infinity   terminal   stock   

status   asymptotes   at   close   to   100%   of   K.   The   net   result   of   this   is   that   even   though   individual   combinations   
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702   of   r   and   K   that   produce   higher   stock   status   than   the   mean   of   the   prior   on   recent   stock   status   individually   

have   lower   probability   of   being   sampled,   there   are   many   more   opportunities   for   the   lower-probability   events   

that   produce   higher   stock   status   to   be   sampled.   As   a   result,   the   post-model-pre-data   prior   on   terminal   

depletion   will   always   be   higher   under   this   method   than   the   supplied   prior   on   stock   status.   

The   net   result   of   our   correction   is   a   post-model-pre-data   distribution   of   life   history   parameters   that   produce   

a   distribution   of   recent   stock   status   that   roughly   matches   the   supplied   prior   on   recent   stock   status.   In   effect,   

this   process   answers   the   question   “given   the   model,   what   combinations   of   parameters   produce   my   prior   on   

recent   stock   status.”   This   is   only   an   approximate   solution,   but   it   helps   ensure   that   the   post-model-pre-data   

distribution   of   stock   status   much   more   closely   matches   the   stated   prior   on   recent   stock   status,   and   reduced   

the   positive   bias   resulting   from   use   of   the   raw   SRA   algorithm   (Fig.S1,   Fig.S2).   
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Figure   S1:   Post-model-pre-data   distribution   of   depletion   (biomass   relative   to   carrying   capacity)   from   raw   
SRA   algorithm   (untuned,   top   row),   from   SRA   algorithm   with   approximate   tuning   applied   (tuned,   middle   
row),   compared   to   the   supplised   prior   on   depletion   (bottom   row).   Black   vertical   line   indicates   median   value.   
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Figure   S2:   Prior   posterior   plots   of   fits   for   case   study   fishery   
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712 Prior   Generating   Regressions   

Catch-Only   Priors   

Many   of   the   current   methods   for   estimating   global   stock   status   of   unassessed   stocks   are   based   on   predicting   

stock   status   from   characteristics   of   the   catch   history   (Pauly   2007;   Costello   et   al.   2012,   2016;   Rosenberg   et   

al.   2018).   While   these   catch-only   methods   have   been   shown   to   have   serious   shortcomings   (Free   et   al.   2020),   

we   include   them   as   a   point   of   reference   given   their   ubiquity   in   the   global   assessment   literature.   

We   used   data   from   the   RAM   Legacy   Stock   Assessment   Database   to   estimate   a   regression   of   stock   status   as   a   

function   of   catch   history   characteristics.   To   facilitate   the   process,   we   first   fit   a   spectral   clustering   algorithm   

to   the   scaled   catch   histories   of   fisheries   in   RAM,   in   order   identify   four   possible   clusters   of   catch   history   types   

within   the   the   data.   Emergent   clusters   show   for   example   one   built   around   a   downward   “one   way   trip”   style   

catch   histories,   others   with   a   boom   and   bust   pattern,   others   with   stable   but   fluctuating   catches.   

We   then   trained   a   classification   algorithm   to   predict   which   catch   cluster   a   given   fishery   would   fall   into   based   

on   the   shape   of   its   catch   history.   This   algorithm   was   then   used   to   assign   fisheries   to   one   of   the   four   identified   

catch   history   types,   and   the   catch   history   type   was   then   used   as   a   hierarchical   term   within   our   catch-based   

regressions   (where   s   refers   to   a   smoothing   term).   For   the   first   regression,   we   restrict   the   data   to   the   first   

year   of   data   available   for   each   fishery   i,   in   order   to   estimate   initial   stock   status   

𝑓𝑖𝑟𝑠𝑡(𝑐𝑎𝑡𝑐ℎ)𝑙𝑜𝑔(𝑣𝑎𝑙𝑢𝑒𝑖)   ∼   𝑛𝑜𝑟𝑚𝑎𝑙(𝑠(   |𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖)   +   𝑠(𝑙𝑜𝑔(𝑙𝑒𝑛𝑔𝑡ℎ𝑖)|𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑚𝑎𝑥(𝑐𝑎𝑡𝑐ℎ)   𝑖)   +   1,   𝜎)   

For   the   second   regression,   we   included   data   for   all   available   years   y   for   fishery   i.   The   model   is   then   used   to   

construct   a   prior   on   fishery   status   in   the   terminal   year   of   the   data   

𝑐𝑎𝑡𝑐ℎ𝑙𝑜𝑔(𝑣𝑎𝑙𝑢𝑒     |𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖,𝑦  
𝑖,𝑦) ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑠(𝑓𝑦𝑒𝑎𝑟  

𝑖) + 𝑠(   |𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ) + 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , 𝜎)   𝑚𝑎𝑥(𝑐𝑎𝑡𝑐ℎ 𝑖
𝑖) 𝑖

where   fyear   is   the   year   of   the   fishery,   starting   from   0.   

Fits   for   the   catch-only   prior-generating   regression   are   visible   in   Fig.S3.   

Fisheries   Management   Index   Priors   

The   Fisheries   Management   Index   (FMI),   as   presented   in   (Melnychuk   et   al.   2017),   utilizes   surveys   filled   out   

by   regional   experts   to   score   a   fishery   against   a   set   of   46   specific   questions   for   individual   species   about   what   
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Figure   S3:   Observed   (x-axis)   vs   posterior   predictive   (y-axis)   B/BMSY   for   regression   of   catch   on   B/BMSY   
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735 elements   of   fisheries   management   were   in   place.   These   questions   are   then   aggregated   into   broader   categories   

of   science,   enforcement,   management,   and   socioeconomic.   The   higher   the   score,   the   better   the   expert   judges   

that   a   given   metric   is   met   in   that   fishery.   Importantly,   FMI   surveys   can   be   filled   out   in   the   absence   of   stock   

assessments.   This   allows   us   to   explore   how   FMI   values   map   onto   stock   status,   and   explore   the   ability   then   

to   use   FMI   scores   to   produce   priors   on   stock   status   for   unassessed   fisheries   (in   a   manner   similar   to   (Osio   et   

al.   2015)   and   (Cope   et   al.   2015)).   

The   final   selected   model   relating   FMI   variable   to   stock   status   metrics   was   a   generalized   additive   model   

(GAM)   of   the   form   

𝑐𝑎𝑡𝑐ℎ𝑙𝑜𝑔(𝑣𝑎𝑙𝑢𝑒𝑖)   ∼   𝑁(𝑠(𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑖)+𝑠(𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑖)+𝑠(𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝑖)+𝑠(𝑠𝑜𝑐𝑖𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑠𝑖)+   𝑖 +1,   𝜎 )   𝑚𝑎𝑥(𝑐𝑎𝑡𝑐ℎ) 𝑆𝐴𝑅
𝑖)

Fits   for   the   FMI   prior-generating   regression   are   visible   in   Fig.S4.   

Swept   Area   Ratio   Priors   

(Amoroso   et   al.   2018)   provides   an   extensive   database   of   trawling   footprints   throughout   the   world,   including   

both   regions   heavily   covered   by   stock   assessments   and   largely   unassessed   areas.   This   makes   the   trawl   

footprint   data   an   ideal   candidate   for   supporting   global   stock   assessment   efforts.   As   illustrated   in   (Amoroso   

et   al.   2018),   there   is   an   evident   positive   relationship   between   the   swept   area   ratio   (SAR,the   total   annual   

area   trawled   divided   by   the   total   area   of   the   region)   and   U/UMSY.   Note   that   SAR   can   be   greater   than   1   

since   the   same   area   can   be   trawled   multiple   times   in   a   year,   e.g.   if   all   trawl-able   areas   are   trawled   twice   a   

year   then   the   SAR   will   be   2.   Also   note   the   skewed   distribution   of   SAR   values   with   most   concentrated   well   

below   1   and   only   a   handful   above   1.   

The   final   selected   model   relating   SAR   to   to   stock   status   metrics   was   

𝑐𝑎𝑡𝑐ℎ𝑙𝑜𝑔(𝑣𝑎𝑙𝑢𝑒𝑖)   ∼   𝑛𝑜𝑟𝑚𝑎𝑙(𝑠(𝑆𝐴𝑅𝑖) + 𝑠(   𝑖   ) + 1, 𝜎   𝑚𝑎𝑥(𝑐𝑎𝑡𝑐ℎ)𝑖) 𝑆𝐴𝑅) 

Fits   for   the   SAR   prior-generating   regression   are   visible   in   Fig.S5.   
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Figure   S4:   Observed   (x-axis)   vs   posterior   predictive   (y-axis)   F/FMSY   for   regression   of   fisheries   management   
index   (FMI)   on   F/FMSY   
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Figure   S5:   Observed   (x-axis)   vs   posterior   predictive   (y-axis)   F/FMSY   for   regression   of   swept   area   ratio   (SAR)   
on   F/FMSY   
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   Value   of   Information   Calculation   

We   performed   a   value-of-information   (VOI)   exercise   we   assessed   performance   as   the   root-mean-squared-error   

of   B/BMSY   over   the   most   recent   5   years   of   the   fishery,   in   order   to   evaluate   the   ability   of   the   model   to   capture   

the   recent   trends   in   stock   status   and   not   just   the   most   recent   year.   We   evaluate   the   contributing   of   each   

data   type   to   RMSE   using   a   Gamma   GLM   with   a   log   link   of   the   form   

𝑟𝑚𝑠𝑒   ∼   𝐺𝑎𝑚𝑚𝑎(𝛽𝛽𝛽𝑋𝑋𝑋   +   (1|𝑠𝑡𝑜𝑐𝑘),   𝑠ℎ𝑎𝑝𝑒,   𝑠𝑐𝑎𝑙𝑒)   

Where   𝛽𝛽𝛽   is   the   vector   of   coefficients   associated   with   the   matrix   of   dummy   variables   marking   the   use   of   

different   data   types   in   the   vector   𝑋𝑋𝑋   

F/FMSY   Performance   

Our   results   focused   on   the   performance   of   candidate   models   in   estimating   B/BMSY,   as   this   reflects   the   broad   

mission   of   the   FAO’s   SOFIA   reports   to   assess   the   current   biomass   status   of   global   fisheries.   However,   fishing   

mortality   rates,   specifically   F/FMSY   are   also   of   importance   to   managers   and   commonly   considered   as   an   

output   of   catch-only   models.   

As   such,   we   repeated   our   performance   calculations   summarized   in   Figures   @ref(fig:   mpe-map)-4   but   now   

focused   on   F/FMSY.   Performance   was   comparably   poor   to   the   B/BMSY   based   results,   with   the   exception   

that   the   default   settings   of   CMSY   produced   a   consistent   positive   bias   in   F/FMSY.   

Table   S3:   Global   performance   statistics   in   the   most   recent   year   

available   of   models   using   different   sources   of   data.   MPE   =   median   

percent   error   (bias),   MAPE   =   median   absolute   percent   error   (er-

ror),   Accuracy   =   percent   of   times   that   stocks   were   classified   to   the   

correct   FAO   status   bin   (underfished,   maximally   sustainably   fished,   

overfished).   Performance   is   judged   relative   to   F/FMSY   values   re-

ported   values   in   RAM   Legacy   Stock   Assessment   Database.   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

  Data   Used   MPE   MAPE   Accuracy 

  Effective   CPUE+   0.05   0.58   0.51 

  Nominal   CPUE+   -0.28   0.59   0.56 

  

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

42 



     

     

    

    

    

     

     

    

 

     

     

    

    

    

     

     

    

 

Data Used MPE MAPE Accuracy 

RLSADB Index -0.44 0.60 0.62 

SAR 0.09 0.67 0.52 

Guess 0.43 0.67 0.35 

FMI 0.18 0.69 0.47 

Effective CPUE -0.41 0.86 0.49 

Nominal CPUE -0.76 0.86 0.57 

CMSY 1.48 1.48 0.26 
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Figure S6: Median percent error (MPE, predicted relative to observed) in most recent F/FMSY by FAO 
statistical area from different data sources. RLSADB Index refers to catch and abundance index drawn from 
RLSADB. Effective CPUE refers to an index of abundance based on reconstructed effort data. Effective 
CPUE+ uses CPUE along with Fisheries Management Index (FMI) and/or swept area ratio (SAR) data. 
For both CPUE series ‘nominal’ assumes a 0% technology creep, for ‘effective’ a 2.6% technology creep is 
assumed. FMI uses FMI scores to develop a prior on recent fishing mortality rates, SAR does the same but 
based on swept area ratio. CMSY uses the methods from Froese et al. 2017 (Froese et al. 2017). Guess 
assigns a random recent F/FMSY of 0.4,1, or 1.6. Panels ordered in ascending (starting from top left) mean 
MPE at the FAO region level. 
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Figure S7: Median absolute percent error (MAPE) in most recent F/FMSY by FAO statistical area from 
different data sources. RLSADB Index refers to catch and abundance index drawn from RLSADB. Effective 
CPUE refers to an index of abundance based on reconstructed effort data. Effective CPUE+ uses CPUE 
along with Fisheries Management Index (FMI) and/or swept area ratio (SAR) data. For both CPUE series 
‘nominal’ assumes a 0% technology creep, for ‘effective’ a 2.6% technology creep is assumed. FMI uses FMI 
scores to develop a prior on recent fishing mortality rates, SAR does the same but based on swept area 
ratio. CMSY uses the methods from Froese et al. 2017 (Froese et al. 2017). Guess assigns a random recent 
F/FMSY of 0.4,1, or 1.6. Panels ordered in descending (starting from top left) mean MAPE at the FAO 
region level 
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Figure S8: Mean classification accuracy (assignment to general bin of overfishing, fishing near FMSY, and 
underfishing) by FAO statistical area arising from different data sources. RLSADB Index refers to catch 
and abundance index drawn from RLSADB. Effective CPUE refers to an index of abundance based on 
reconstructed effort data. Effective CPUE+ uses CPUE along with Fisheries Management Index (FMI) 
and/or swept area ratio (SAR) data. For both CPUE series ‘nominal’ assumes a 0% technology creep, for 
‘effective’ a 2.6% technology creep is assumed. FMI uses FMI scores to develop a prior on recent fishing 
mortality rates, SAR does the same but based on swept area ratio. CMSY uses the methods from Froese 
et al. 2017 (Froese et al. 2017). Guess assigns a random recent F/FMSY of 0.4,1, or 1.6. Panels ordered in 
descending (starting from top left) mean accuracy at the FAO region level 
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