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Abstract 

Environmental recruitment indices may improve the precision of stock assessments, 

allow hindcasting, and aid in near-term forecasting. We used Bayesian dynamic factor 

analysis (DFA) to find common trends in sea level from 16 tide gauges spanning the US 

West Coast.  We then used these DFs as predictors of sablefish Anoplopoma fimbria 

recruitment deviations from the 2021 assessment. We evaluated the ability of the resulting 

northern sea-level index (north of Cape Mendocino, ~40° N) to inform recruitment 

estimates and its impacts on assessment model predictions by running two hindcast stock 

assessment models: 1) a catch-only model, which assumed average recruitment from the 

stock-recruit relationship, and 2) a catch plus sea-level model. In both cases, survey data 

were removed from 2011 forward. The model including sea-level index captured the 

observed increase in stock biomass from 2016 onwards, while the catch only model did 

not, predicting a continued biomass decline. This work provides evidence of the potential 

to improve forward-looking stock projections by better capturing stock trends, providing 

an advance over average recruitment assumptions. 

Key words: Bayesian dynamic factor analysis, sea-surface height, environmental 

variability, 
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Introduction 

Fisheries managers face the combined problem that recruitment is seldom average 

due to variation in environmental drivers, and that cohort strength is often poorly  

estimated until the cohort is several years old and well sampled by the fishery or fishery 

independent surveys. As a result, multiple years of data are often required to produce 

precise estimates of recruitment. Thus, it is difficult to provide accurate, short-term 

forecasts of cohort strength and stock biomass, and scientists and managers must often 

wait several years for sufficient data to support good estimates of cohort strength. 

Likewise, hindcasting to periods of low data availability or poor data quality often must 

rely on an assumption of average recruitment from the spawner-recruit relationship, which 

is unlikely to be accurate—the environment influences recruitment and productivity of 

populations of many marine fishes. For species with weak stock-recruitment relationships, 

the inclusion of environmental recruitment indices in stock assessments may provide a 

route towards improving model precision, allowing hindcasting during periods of low data 

availability, and aiding in near-term forecasting (Stige et al. 2013; du Pontavice et al. 2022). 

Sablefish Anoplopoma	 fimbria inhabit waters along the west coast of North America 

from Baja California through Alaska and extend west (and south) to Japan (Hart 1973; 

Allen and Smith 1988; Johnson et al. 2016). While managed as three separate stocks in the 

eastern Pacific (Alaskan, British Columbian, and US West Coast), sablefish genetic analyses 

have not found strong population structure, which suggests a single panmictic genetic 

population in the northeastern Pacific from California to Alaska (Jasonowicz et al. 2017). 

Additionally, regional trends in recruitment and spawning stock biomass estimates from -

stock assessment models (Alaska, British Columbia, and the West Coast) demonstrate some 
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62 synchrony across the three management regions (Fig. S1), although this synchrony  has 

broken down in recent years (Fenske et al. 2019). However, the sablefish do show evidence 

of spatial structure in growth (Kapur et al. 2020) and maturity (Head et al. 2014), likely due 

to environmental differences across its range.  

Sablefish is one of the most valuable stocks in the region. For example, in 2018, West 

Coast fisheries landed 5275 metric tons of sablefish with an ex-vessel value of $24.7 million 

USD (Haltuch et al. 2019b). However, the West Coast stock was estimated to have been in 

decline since the mid 1970’s, due to fishing pressure compounded by a period of lower 

than expected recruitments, only recently experiencing an increasing trend due to a few 

large recruitment events (Johnson et al. 2016; Haltuch et al. 2019b; Kapur et al. 2021). To 

better understand the persistent stock decline and recent increase, there has been a 

substantial focus on examining environmental predictors of recruitment for the West Coast 

stock, with the goal of improving the weak stock-recruitment analytical relationship (Fig. 

1) (Schirripa and Colbert 2006; Tolimieri et al. 2018).  

Tolimieri et al. (2018) used output from the Regional Ocean Modeling System 

(ROMS) physical oceanographic model for the California Current Ecosystem (Neveu et al. 

2016) to test life-history based, mechanistic hypotheses for potential environmental 

recruitment drivers (1980-2010, 40-48° N). Residuals from the stock-recruitment curve 

(indicating deviations from modeled median recruitment) were positively correlated with 

colder conditions during the spawner preconditioning period, warmer water temperatures 

during the egg stage, stronger cross-shelf transport to near-shore nursery habitats during 

the egg stage, stronger long-shore transport to the north during the yolk-sac stage, and cold 

surface water temperatures during the larval stage. While informative and often times 
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more available than some observational data streams (du Pontavice et al. 2022), using 

ROMS predictors has several drawbacks including the need to update the ROMS annually, 

limited historical time frames for available outputs (e.g., 1980-2010), and potential 

discontinuities as models are updated and data inputs change (Tolimieri et al. 2018; 

Haltuch et al. 2019a). These challenges make it difficult to conduct analyses, such as 

hindcasting, to better understand historical biomass prior to the commencement of heavy 

exploitation, or now- or near-term forecasting for catch-only stock assessment projections 

or management strategy evaluations. 

In addition to the ROMS-recruitment research, there is an established relationship 

between sea level and sablefish recruitment; recruitment is negatively correlated with sea 

level north of Cape Mendocino (Schirripa and Colbert 2005; Schirripa and Colbert 2006; 

Schirripa 2007; Stewart et al. 2011; Johnson et al. 2016), a known biogeographic barrier 

(Tolimieri 2006; Tolimieri and Levin 2006). Changes in sea level serve as a proxy for large-

scale climate forcing that drives regional changes in alongshore and cross-shelf ocean 

transport (Reid and Mantyla 1976; Chelton and Davis 1982). Lower sea level in the north 

correlates with stronger upwelling and alongshore surface flow to the south (Reid and Mantyla 

1976; Chelton et al. 1982; Chelton and Davis 1982; Chelton 1984). Low sea level in the northern 

California Current Ecosystem is also related to a stronger alongshore sea-level gradient (higher 

in the south, lower in the north). This alongshore sea-level/pressure gradient drives a stronger 

poleward deep current that tends to be strongest between about 100 and 500m, although 

poleward flows extend deeper (Connolly et al. 2014). Southerly transport of surface waters 

brings fatty acid-rich northern copepods into the California Current (Chelton et al. 1982; Keister 

et al. 2011), which are an important food resource for sablefish and many other consumers 
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(Grover and Olla 1987; Mcfarlane and Beamish 1992; King et al. 2000). Low sea level is also 

associated with northern source waters that are more “minty”, cooler water with higher dissolved 

oxygen (Schroeder et al. 2019), resulting in higher productivity from upwelling. Mechanistic 

modeling using ROMS predictors (Tolimieri et al. 2018) suggests that northerly transport at 

depths around 1000 m (which mirrors deep transport under low sea-level conditions in the north) 

leads to stronger year-class strength by bringing yolk-sac larvae to the north where they can 

encounter these northern copepods once the sablefish larvae rise to surface waters and begin 

feeding. Variability in sea level has also been linked to the abundance of pelagic young-of-

the-year stages of rockfish (Sebastes	 spp.) in the California Current, where low sea level is 

associated with equatorward flow and the predominance of cooler, oxygen-rich Pacific 

Subarctic Upper Water (Ralston et al. 2013; Schroeder et al. 2019) compared to more 

southern waters (Schroeder et al. 2019). 

 While the relationship between sablefish recruitment and sea level has been 

weaker than the relationship with the five ROMS variables, the sea-level data are valuable 

because they cover a longer, continuous time span than ROMS outputs, are updated reliably 

in quasi-real time for multiple sites along the US West Coast, and the relationship has 

withstood repeated testing during the stock assessment process (Schirripa and Colbert 

2005; Schirripa and Colbert 2006; Schirripa 2007; Stewart et al. 2011; Johnson et al. 2016). 

Thus, the temporal availability of these data  make them viable as an index of recruitment 

for both fore- and hindcasting.  

 Stock assessments for the West Coast groundfish fishery use the Stock Synthesis 

model (Methot and Wetzel 2013) to integrate data from multiple sources including fishery  

independent data such as abundance indices, size, and age data derived from the West 
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Coast Groundfish Bottom Trawl Survey (Bradburn et al. 2011), and fisheries catch and 

bycatch data from commercial and recreational fisheries. Previous sea-level analyses have 

selected individual tide-gauge locations (Schirripa and Colbert 2006) based on the strength 

of the resulting relationship with recruitment or averaged variation from measurements at 

several sites on the northern West Coast of the US (Schirripa et al. 2009; Stewart et al. 

2011). This sea-level index is not spatially integrative, and therefore may not be 

representative of the full coast. We first used a sea-level index derived from dynamic factor 

analysis (DFA) in the 2019 sablefish assessment (Haltuch et al. 2019b), which, as a 

benchmark assessment, went through rigorous review and acceptance of both the data and 

model to be used for fishery management. The 2021 update of the 2019 assessment (Kapur 

et al. 2021) permits limited model changes with updated data and is currently the basis for 

managing U.S. West Coast sablefish fisheries.  

 With the aim of improving model precision, allowing hindcasting during periods of 

low data availability, and aiding in near-term forecasting, we (1) use Bayesian dynamic 

factor analysis (DFA, Ward et al. 2021) to look for common trends in the sea-level time 

series from 16 locations covering the full extent of the US West Coast from San Diego, CA 

north to Neah Bay, WA. Next, (2) we use the resulting dynamic factors to predict 

recruitment deviations for 1975-2020, derived from the 2021 sablefish stock assessment 

(Kapur et al. 2021). Finally, (3) we use a retrospective or hindcast analysis based on the 

2021 sablefish assessment to assess whether the sea-level index provides enough 

information to improve prediction of modeled recruitment estimates within the stock-

assessment model when only commercial catch data are available to the assessment.   
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Materials 	and	 methods	 
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Life‐history	 

Sablefish are bathy-demersal, inhabiting deep waters (175 – 2740 m) along the west 

coast of North America from Baja California through Alaska and extending west and south 

to Japan (Hart 1973; Allen and Smith 1988; Johnson et al. 2016). Along the US West Coast, 

spawning occurs from December to March (peak February) at the edge of the continental 

shelf at depths greater than 300 m (Mason et al. 1983; Boehlert and Yoklavich 1985; 

Kendall and Matarese 1987; Hunter et al. 1989; Moser et al. 1994). Eggs are buoyant and 

rise to 200-300 m in the water column (but can be found as deep as 480 m). After 

approximately 12-17 days, the eggs hatch (Mason et al. 1983; Kendall and Matarese 1987; 

Mcfarlane and Beamish 1992; Moser et al. 1994), and yolk-sac larvae sink to 1000-1200 m 

where they are found between February and May. Larvae move to surface waters by 40 

days post-hatch and are encountered from the 500-m isobath out to 150 nautical miles 

(277 km) during the same February to May, as spawning is prolonged (Brock 1940; 

Mcfarlane and Beamish 1992; Moser et al. 1994). Pelagic juveniles also stay in these surface 

waters and are present from April through November (Mitchell and Hunter 1970; Kendall 

and Matarese 1987). Age-0 recruits settle to the benthos between August and November 

with most fish settling to habitats 250 m or shallower.  

Sea‐level	 data		 

We used time series of monthly mean sea level from 16 tide gauges spanning the US 

West Coast (NOAA Tides and Currents https://tidesandcurrents.noaa.gov/sltrends/, Fig. 

2). Specifically, we used the data for inter-annual variation, which have the average 

https://tidesandcurrents.noaa.gov/sltrends
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seasonal cycle and linear trend removed, allowing us to index the inter-annual variation in 

environmental and oceanographic drivers that may drive inter-annual variation in 

recruitment. We then calculated the mean spring sea level (April to June, Fig. S2), when 

multiple life-stages are in the water column  (Tolimieri et al. 2018). This period is 

consistent with the timing of previous analyses of sea level height and sablefish 

recruitment (Schirripa 2007; Schirripa et al. 2009; Stewart et al. 2011).  

Dynamic factor analysis (DFA) 

We used Bayesian dynamic factor analysis (Ward et al. 2021) to identify common 

trends in sea level among the 16 locations and to develop potential environmental indices 

of sablefish recruitment. DFA is a time-series analog for principal components analysis that 

estimates common trends in multiple time series while accounting for autocorrelation and 

allowing different observational error structures (Holmes et al. 2021). Importantly, DFA 

can handle missing data and time series of different lengths (Zuur et al. 2003b; Zuur et al. 

2003a). We included the mean spring sea level  for the 16 tide gauge stations for the years 

1925-2020 in the DFA analysis.  

Haltuch et al. (2019b) used a non-Bayesian DFA framework to evaluate model 

structure and evaluated models allow 1-5 dynamic factors and different error structures 

(diagonal and equal, diagonal and unequal). Based on that analysis, we ran a single 

Bayesian DFA  ('bayesdfa' package in R, R Core Team 2021; Ward et al. 2021) to estimate 

95% credible intervals for the resulting dynamic factors in order to provide uncertainty 

estimates for inclusion in the stock assessment portion of the analysis. Including this 

uncertainty is important for use as an index in stock analysis because it allows one to 

evaluate how uncertainty in the index impacts output from the assessment model.  We 
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used the same model parameters as the best-fit model from the non-Bayesian with five 

dynamic factors, and a diagonal and unequal variance covariance matrix. We used three 

chains and 3000 iterations following a 1500 burn-in period. We standardized the sea-level 

data by subtracting the mean and dividing by the standard deviation prior to analysis, 

which is a standard approach for DFA (Holmes et al. 2021).  Note the order of the DFs is not 

indicative of explained variance as in principal components analysis.  

Modeled	 recruitment 	deviations 	

Estimates of the loge recruitment deviations from the 2021 sablefish stock 

assessment (Kapur et al. 2021) were used in the following analyses. Loge recruitment 

deviations estimated from the stock assessment provide model-based, annual estimates of 

the difference between each year’s recruitment and the fitted stock-recruit relationship 

that provides estimates of the median, deterministic recruitment expected in a given year.  

The sablefish stock assessment assumes a Beverton-Holt stock-recruitment function with 

loge recruitment deviations that vary annually, due to processes not modeled in the stock 

assessment, and undergo bias correction (Methot and Taylor 2011; Kapur et al. 2021).   

Sea	 level	 –	 recruitment 	model	 fitting 	

To determine whether sea level functioned as a predictor of sablefish recruitment, 

we used the loge bias-corrected recruitment deviations around the Beverton-Holt stock-

recruitment curve from the 2021 sablefish stock assessment (Kapur et al. 2021) as the 

response variable in general linear models using five DFs as predictor variables (hereafter 

“recruitment model(s)”). We limited the time period to 1975 - 2020 because of a paucity of 

size and age data prior to 1975 and because assessment-based recruitment deviations and 
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220 sea-level data were both available through 2020 (Kapur et al. 2021). This time period is 

broader than the 1980-2010 analysis of the ROMS variables and sablefish recruitment 

(Tolimieri et al. 2018), and once developed, the index could, in theory, be used to hindcast 

farther back in time than 1975 to inform recruitment in earlier time periods. We included 

both linear and quadratic terms in the model fitting but required that any model including 

a quadratic term (e.g., DF12) also include its linear counterpart (DF1). We then ran all 

possible combinations of the five DFS and used ΔAICc to compare candidate models 

(Burnham and Anderson 1998). We examined all candidate models (ΔAICc < 2.0) and 

identified the one with the fewest parameters as the best-fit recruitment model. While it 

would be worthwhile to occasionally re-evaluate the relationship, the expectation would be 

to calculate and use the resulting index in the assessment – not re-run all of the model 

selection each assessment. 

We ran an array of additional tests to validate the recruitment model results and fit 

(see Supplementary Material) following Tolimieri et al. (2018) and Haltuch et al. (2019b). 

Here, we highlight several of these tests. First, we refit the best-fit model to the recruitment 

deviations for 1975-2015 (but using the sea-level index derived from the 1975-2020 DFA) 

and then used that model to predict recruitment for 2016-2020 to determine how 

consistently the model forecast performed relative to the full 1975-2020 best-fit model. 

Note because the refit model excludes the recruitment data for 2016-2020, the coefficients, 

and therefore predictions, may differ between the best-fit model using all the data and the 

subsetted model. Second, we refit the best-fit model to 1975-2015 and then predicted 

recruitment deviation for the next year 2016. We then iteratively added a year to the 

refitting and predicted the next year’s recruitment deviation. These two approaches 
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address the ability of the sea-level index to inform future recruitment over different 

periods (5 years or one year at a time) based on the relationship estimated over an earlier 

period. We also conducted a jackknife analysis dropping one year at a time and refitting 

the model to determine whether individual years had strong effects on the model 

predictions and to estimate bias. Finally, to determine whether the terms included in the 

best-fit model might differ over a shorter time period, we reran the entire model selection 

process using recruitment data for 1975-2015 only (but using the DFA results for 1975-

2020 but including only 1975-2015). See Supplementary Material for additional model 

validation.  

Stock 	assessment 	hindcast 	

We used the 2021 sablefish assessment (Kapur et al. 2021) to conduct the hindcast 

analyses. The 2021 stock assessment used the sea-level index as an index of recruitment 

deviations in the same manner in which a survey index of abundance would be used in a 

stock assessment model (Methot and Wetzel 2013, Methot et al. 2022).  The 95% credible 

intervals from the DFA analysis were used in the stock assessment model to characterize 

the annual variability in the sea-level index. The relationship of the sea-level index with the 

recruitment deviations was assumed to be proportional and was estimated by a single time 

invariant parameter (Methot and Wetzel 2013, Methot et al. 2022). The stock assessment 

model also estimated an additional standard error parameter that was an additive constant 

added to the input standard deviation of the survey variability (Methot and Wetzel 2013, 

Methot et al. 2022).  First, we evaluated the impact of the sea-level index on the model 

results (time series of spawning biomass, recruitment deviations, fraction of the unfished 

spawning biomass) by comparing the results of the 2021 assessment model (base model 
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plus sea level) to the same model without the sea-level index (base model). Differences 

between the two sets of model results were minimal (see Results), indicating that 

recruitment deviations were largely informed by survey age data (an expected outcome) 

and provide context for the use of this model for hindcast comparisons.  

Next, we ran two hindcast models to determine whether sea level could predict 

deviations in recruitment without fishery dependent and independent data informing the 

population dynamics. Both hindcast models removed all fishery dependent and survey data 

from 2011 forward, except for commercial catch data, and fixed all selectivity parameters. 

The catch-only hindcast model also removes the sea-level index, while the catch plus sea-

level hindcast model retains the sea-level index. These two hindcast models treat the years 

2011 to 2020 as a projection period, and span a similar period as model forecasts provided 

for management. We then compare these two hindcast models to the full stock assessment, 

which represents the ‘true’ state.   

We evaluated the value of including sea-level recruitment index in three ways. First, 

we evaluated the ability of the each hindcast (catch plus sea-level versus the catch-only) to 

capture trends in stock size observed in the full 2021 assessment, specifically for the 2011-

2020 period. Second, we compared the number of years that each hindcast model captured 

the direction of change in the recruitment deviations. Third, we calculated the percent 

absolute difference (ARD) (see Haltuch and Punt 2011, equation 17) for each hindcast 

model (catch-only and catch plus sea level) and year from 2011 to 2019, resulting in a time 

series of nine different percent-ARDs for each time series of recruitment deviations, 

recruitment, spawning biomass, and fraction of the unfished spawning biomass. Then, for 

each hindcast model, the median of the nine annual percent ARDs for recruitment 
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deviations and the mean of the nine annual percent ARDs for each time series of 

recruitment, spawning biomass, and fraction of unfished spawning biomass are reported as 

single summary statistics where higher values indicate poorer performance and values 

close to zero indicate better performance.  All years included in the median and mean 

calculations are equally weighted. Note, the 2020 estimates are excluded here because 

there are no survey data for 2020, and the sea-level index is the primary source of data 

informing estimation of recruitment deviations for both models in 2020.  

Results 

Dynamic factor analysis: sea‐level trends 

The five dynamic factors (Fig. 3) had a generally good fit to the data (Fig. S3), and 

factor loadings (Fig. 4) identified three broad latitudinal trends. DF1 (hereafter, northern 

sea-level index) characterized variation in sea level from North Spit (approximately Cape 

Mendocino) to the north (positive loadings, Fig. 4). DF3 indexed variation in sea level 

among mid-latitude locations from approximately Crescent City to Monterey or Port San 

Luis, while DF4 included more southerly locations from Santa Monica to San Diego. The 

other two DFs did not show strong spatial trends. 

Model selection: predicting recruitment deviations 

Model selection evaluating the number of sea-level DFs to include for predicating 

recruitment deviations identified two recruitment models had ΔAICc values less than 2.0. 

Both recruitment models included the northern sea-level index (DF1) indicating that 

oceanographic processes in the northern portion of the West Coast were important for 
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332 

determining recruitment. Model 1 included only the northern sea-level index, while Model 

2 also included the southern sea-level index, DF4. Model 1 had the lowest AICc and fewest 

parameters, so we selected it as the best-fit model. 

The best-fit recruitment model (Model 1: recruitment deviations ~ DF1) explained 

15% of the variation in the recruitment deviations from 1975-2020 (Fig. 5). Recruitment 

deviations were negatively correlated with the northern sea-level index (Table 1, Fig. 6) 

and, therefore, negatively correlated with sea level north of approximately Cape  

Mendocino. The low predictive power (r2 = 0.15) appears to be due to the model failing to 

predict lower than expected recruitments (Fig. 5), especially in 2006, 2007, and 2009, and 

to changes in recruitment estimates between the 2019 benchmark stock assessment 

(Haltuch et al. 2019b), and the 2021 update stock assessment (Kapur et al. 2021). It is 

common for recruitment estimates to vary between models, particularly during periods 

with recruitment estimation poorly, or not, informed by data. Such periods often include 

early model periods with little to no age-composition data, and the last few years of 

assessments where there are few data on recruitments entering the population from 

surveys due to size-based catchability (Bradburn et al. 2011; Tolimieri et al. 2020). The 

sablefish assessments can estimate large changes in recruitment estimates during the 

1960s and 1970s due to a lack of informative age data for this period, resulting in smaller 

shifts to subsequent recruitment estimates. In other cases, the model under-predicted 

strong recruitments or over-predicted weak recruitments even though it did predict peaks 

or lows in those years. However, the data quality of the recruitment time series generally 

increases with time as more information enters the stock assessment model and 

recruitment deviations are better estimated. The amount of variation in recruitment 
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explained by the northern sea-level index (DF1) was low when considering just the early 

portion of the time series from 1975-2002 (r2 = 0.07, p = 0.15) where survey data were  

limited. However, from 2003 to 2020, when the assessment was informed by an annual 

fishery-independent trawl survey (Keller et al. 2017), the fit was much better (r2 = 0.28, p = 

0.02). 

Model testing and validation showed the best-fit recruitment model to be consistent 

and stable (Fig. 5, see also Supplementary Material, Table S1, Fig. S4-S6). Refitting the 

recruitment deviations for 1975-2015 and then predicting 2016-2020 differed little from 

the 1975-2020 model results. Likewise, fitting 1975-2015 and then stepping forward one 

year at a time was also consistent with the 1975-2020 model. Finally, removing individual  

years and refitting the best-fit model (jackknife resampling) had little effect on the model 

fit (median r2 = 0.15, 95% C.I. = 0.12– 0.19, Fig. S4). Recruitment deviations were consistent 

with the best-fit model, with only a minor difference when excluding 1993. Limiting the 

analysis to the 1975-2015 period and re-running the entire model selection process 

produced the same best-fit model, which included only DF1, which indexed sea level north 

of Cape Mendocino. 

Stock assessment hindcast 

Removing the sea-level index from the 2021 assessment while retaining all other 

data had only a minor impact on the model outputs (see Supplementary Material). The 

recruitment estimates from approximately 1950 to approximately 1975 were smoother, 

and a major recruitment peak shifted earlier in the time series, resulting in slightly earlier 

increases in sablefish biomass in the late 1960s than when the sea-level index was included 

(Fig. S7). However, removing the sea-level index from the 2021 stock assessment did not 
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have strong effects on the assessment results from 1975 onwards when the assessment is 

increasingly well informed by age data, and because the age data and sea-level index 

provide similar information on recruitment. This result supports using the 2021 stock 

assessment model as the basis for the hindcast model runs. 

In the 2021 stock assessment, sablefish spawning biomass increased from 2016 to 

2021 after a long period of decline (Fig. S7). The catch plus sea-level hindcast for 2011 

onward was able to capture this increasing trend in stock size, but the catch-only hindcast 

showed persistent stock decline due to the inability to capture above-average recruitments  

in 2013, 2015, and 2016 (Tables S2 & S3, Fig. 7). Over the years 2011 to 2019, the catch 

plus sea-level hindcast captured the direction of change in the recruitment deviations, in 

comparison to the best estimates from the 2021 stock assessment, in six out of nine years 

(2012, 2013, 2015, 2016, 2018, 2019) (Tables S2 & S3, Fig. 7). Four years underestimated 

the magnitude of change (2012, 2015, 2016, 2018), two years were small overestimates of 

positive deviations (2013, 2019). The catch plus sea-level hindcast was also able to capture 

recruitment deviations away from the long-term average recruitment deviations, although 

the larger recruitment deviations were generally underestimates compared to the 2021 

stock assessment. In 2017, the catch plus sea-level hindcast did not capture the direction of 

change in recruitment deviations, underestimating a recruitment deviation above the long-

term average. Percent median absolute relative differences for recruitment deviations from  

the catch-only and catch plus sea-level hindcasts were 103%, and 43%, respectively, with 

the lower value indicating greater agreement with the 2021 stock assessment. Thus, the 

catch plus sea-level hindcasts were better able to capture the recruitment deviations 

estimated in the 2021 stock assessment. 
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In years without high recruitment estimates between 2011 and 2017, the catch plus 

sea-level hindcast had smaller standard deviations around the loge bias-corrected 

recruitment deviations than the catch-only hindcast. However, in years with high 

recruitment estimates between 2011 and 2017, and for 2018 and 2019, the standard 

deviations around the loge bias-corrected recruitment deviations were larger than those 

from the catch-only hindcast. The uncertainty in recruitment deviations from the 2021 

models, and therefore in recruitment estimates, was larger in 2019 and 2020 due to the 

lack of fishery-independent survey data in 2020 and reduced survey effort in 2019 (Table  

S3, Fig. 7). Percent mean absolute relative differences from the catch plus sea-level 

hindcasts for recruitment, spawning stock biomass, and fraction of the unfished spawning 

biomass were, 33.1%, 43.3%, and 39.6%, respectively. Percent mean absolute relative 

differences from the catch-only hindcast for recruitment, spawning stock biomass, and 

fraction of the unfished spawning biomass were larger than those from the catch plus sea-

level hindcast at 51.2%, 48.4%, and 40.2%, respectively. The lower percent mean absolute 

relative differences from the catch plus sea-level hindcasts indicate improved performance 

with respect to the 2021 stock assessment, in which these model derived estimates use all 

available data.  

Discussion 

A crux of fishery management is that while recruitment is seldom average, cohort 

strength is not well estimated until several years of data are available from surveys and 

fisheries. Thus, scientists and managers are always looking in the rear view mirror. The 

catch plus sea-level hindcast information presented here suggests that there is potential to 
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improve forward-looking stock projections by better capturing stock trends, providing an 

improvement over the common practice of using the expected recruitment from a fitted 

stock-recruitment curve (average deterministic recruitment) when no other data are 

available to inform recruitment assumptions in stock projections.  

Analyses of the relationships between sablefish and environmental drivers have  

generally focused on the northern portion of their West Coast range (Schirripa and Colbert 

2006; Tolimieri et al. 2018; Haltuch et al. 2019b), either for a	 priori 	reasons (focusing on 

dynamics in the north because much of the age and length data come from the north) or 

because model fitting selected northern drivers. However, species distribution modeling of 

age-0 sablefish abundance using trawl survey data hints that dynamics south of Cape 

Mendocino are different and may also be important (Tolimieri et al. 2020). For 2003-2018,  

high coast-wide age-0 abundance was generally associated with high abundance north of 

Cape Mendocino. However, the northern-only models tend to over-predict recruitment in 

years of low abundance (e.g., 2005-2007) (Tolimieri et al. 2018; Haltuch et al. 2019b). 

These over-prediction years also had recruitment failures in the south suggesting that 

dynamics in the south may also be important but not adequately observed in the current 

data or captured in current modeling approaches. Our second-best candidate model did 

include DF4, or southern sea level. Recruitment failure in the south may be infrequent 

enough (Tolimieri et al. 2020) to limit the selection of southern drivers in model selection. 

Future modeling may look to evaluate processes in the south and integrate northern and 

southern predictors.  

In other cases, the model under-predicted strong recruitments or over-predicted 

weak recruitments even though it did predict peaks or lows in those years. In addition to 
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sea level and its consequences for larval dynamics, other biological mechanisms could 

provide additional predictive power for sablefish recruitment and stock size. For example, 

abundance of sablefish predators was generally low in 2006 and 2007, suggesting that we 

might expect good recruitment in these years (Haltuch et al. 2019b). However, the 

condition of age-7+ females was also low in these years (see Supplementary Material, 

Tables S4-S6, Figs. S8-S10 and Haltuch et al. 2019b). Note that adding same-year female 

condition as a predictor increased the model fit for 2003-2019 (r2 = 0.44, see 

Supplementary Material) and resulted in better predictions for 2006 and 2007. It is not 

clear why female condition in late summer of the age-0 year would predict recruitment 

earlier in the year, but one hypothesis is that females were in poor enough condition earlier 

that they could not recover over the summer and that this poor condition resulted in lower 

egg production and potentially skip spawning (Rodgveller et al. 2016). It is also possible 

that the size- and age-structure of the spawning stock may play a role in recruitment 

dynamics, particularly if older or larger fish are more important to subsequent recruitment 

(Barneche et al. 2018; Ottersen and Holt 2022).  Work in Alaska suggests that 

overwintering success for age-0 fishes (to age-1) is an important factor determining year-

class strength (Callahan et al. 2021), which may also be a factor here. However, the 

abundance of age-0 fishes is correlated with the assessment-based recruitment estimates 

(there is some circularity), suggesting that overwintering success may be less important in 

the California Current (Haltuch et al. 2019b; Tolimieri et al. 2020). Nevertheless, many 

models assume consistent egg or larval production from spawners, while in reality both 

will likely be variable. 
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The population dynamics of sablefish on the US West Coast may also be linked to  

those of sablefish populations in Canada and Alaska, suggesting that additional factors 

beyond the northern sea-level index could improve on the analyses conducted here 

(Fenske et al. 2019). Sablefish recruitment on  the West Coast, and in British Columbia, and 

Alaska exhibit some synchrony (Fenske et al. 2019; Goethel et al. 2020). For example, all 

three regions showed recruitment pulses in 2000 and 2008, but there are also lags in 

timing. Assessment models estimated strong year classes on the West Coast in 2013 and 

2016, in British Columbia in 2013 and 2015, and in Alaska in 2014, 2016 and 2017 (Fig. 

S1). This variation in the timing of recent recruitment peaks may represent differences 

among regions in the timing of environmental conditions favorable to recruitment, but may 

also be artefacts of varying stock assessment modeling parameterizations across regions 

(Goethel et al. 2020). The oceanography related to strong sablefish recruitment does vary 

among regions (Shotwell et al. 2014; Coffin and Mueter 2015; Tolimieri et al. 2018), so an 

uncoupling of recruitment dynamics in the two regions is possible. Nevertheless, the 

general similarity in recruitment trends seen in Alaska, British Columbia, and the West 

Coast (Goethel et al. 2020) suggests that we need to be better understand connections in 

sablefish productivity across regions. 

The inclusion of environmental drivers in stock assessment models has the potential 

to enhance the performance of these tools, which normally rely on a stock-recruitment 

relationship that does not vary with environmental variability (du Pontavice et al. 2022). 

Additionally, efforts to include environmental effects in stock assessments could benefit by 

including the environmental data analyses directly into the stock assessment. Another 

successful example that includes climate effects on recruitment is the improvement in 
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predictions of recruitment and stock biomass for yellowtail flounder Limanda ferruginea in 

waters off of the northeastern USA due to incorporation of Cold Pool relationships  (du 

Pontavice et al. 2022). In our work here, the catch plus sea-level hindcast was able to 

capture the increase in stock biomass from 2016 onward seen in the full 2021 sablefish 

assessment, while the catch-only hindcast predicted continued decline over the same 

period. The latter finding might erroneously imply the need for more conservative 

management of sablefish harvest. Including sea level also resulted in lower uncertainty for 

some assessment model parameters. These retrospective investigations provide a step 

towards understanding how climate data can inform stock projections for fishery 

management, and for general acceptance in moving from research to application. 

Furthermore, the Pacific Fisheries Management Council routinely uses catch-only 

projections to provide updated management advice between stock assessments; these 

catch-only updates rely on average recruitment assumptions. This work shows that 

environment-based indices of recruitment have the potential to provide fishery managers 

with improved leading information regarding incoming year class strength for informing 

decision making between stock assessments, thus bringing the management system closer 

to fishing targets. This work provides an example of how transitioning research products 

from research to operations can improve stock assessments and advice for fishery 

managers. The co-development of the science products and the management and decision-

making frameworks that will use these scientific products and advice illustrate the benefits 

of frequent communication between fisheries scientists and fishery management bodies as 

we move towards climate-ready fisheries. 
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685 Tables 	

686 Table	 1. 	Coefficients 	for	 the 	best‐fit	 model 	including 	bias	 estimates.	 
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Predictor Coefficient  Bias SE
Intercept  0.240  ‐0.004  0.163

DF1  ‐0.642  ‐0.027  0.191 



 

	 	

 

 

 

 

 

 

 

Figure Captions 

Fig. 1. Time series of sablefish a) spawning biomass, b) age-0 abundance, and c) 

recruitment deviations, and d) the relationship between spawning biomass and age-0 

abundance. Data are from Table 18 in 2021 sablefish stock assessment (Kapur et al. 2021). 

Fig. 2. Location of tide gauges used in the sea-level analyses. Map was prepared using R 

software (R Core Team 2021) and the ‘maps’ package using WGS84 datum and a 

rectangular projection with longitude and latitude scales are equivalent at the center of the 

picture. 

Fig. 3. Dynamic factors for the best-fit DFA model reducing 16 sea-level time series to five 

common trends. Because the data were normalized prior to analyses, the displayed data 

are dimensionless, scaled trends. 

Fig. 4. Loadings for the five dynamic factors for the best-fit DFA model reducing 16 sea-

level time series to five common trends. 

Fig. 5. Performance of best-fit model (r2 = 0.15). Solid black line is the predicted 

recruitment deviations from the best-fit model with 95% confidence limits. 

Fig. 6. Relationship between the first dynamic factor summarizing variation in sea level in 

the north and sablefish recruitment deviations (r2 = 0.15). 
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Fig. 7. Panel (a) shows the time series of the fraction of unfished biomass estimated from 

four model runs based off the 2021 stock assessment, (b) shows log recruitment deviations 

estimated from the same models. Note, the black and grey lines/points overlap 

substantially in both panels. 
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Supplementary Material 

Synchrony among regions 

Fig. 	S1. 	Normalized 	recruitment 	indices	 from 	the	 Alaskan, 	British 	Columbia, 	and 	West 	

Coast 	stock	 assessments. 		Data	 from 	Goethel	 et 	al. 	(2020)	 & 		Kapur	 et 	al.	 (2021).	 
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Sea level time series 

Fig. 	S2. 	Mean	 monthly 	sea	 level	 in	 the	 second	 quarter 	(April‐June) 	at 	16 	stations 	along 	
the	 US	 west 	coast	 from	 1900 	to	 2019. 	Average 	seasonal	 cycle	 and	 linear	 trend	 have	 been	 removed.	 
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Model fit to the data 

Fig. 	S3. 	Fit of the DFA model (black line) to the observed data (red points) for 16 tide 
gauge  locations along  the West Coast of the  U.S.A.  
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Model testing and validation 

We ran an array of additional tests to validate the best-fit model (Model 1). Some 

model validation actions are described in the main text. Here, we describe three additional 

validation tests: 

The recruitment deviations used in the main analysis were assessment-based 

estimates and have error. Therefore, we determined whether the precision of recruitment 

deviations from the assessment model affected the recruitment-environment relationship. 

We resampled recruitment deviations from a normal distribution for each year using the 

recruitment deviation and its standard error from the 2019 assessment. We then refit the 

model 1000 times and compared the r2 values. Median r2 was r2 = 0.16 (CI95% = 0.6 – 0.28). 

To determine whether individual years had a strong influence on which terms (DFs) 

were included in the best-fit model, we jackknifed years and re-ran the entire model 

selection exercise 1000 times for each of the 45 years. We then compared what terms were 

included in the model from each iteration that had the lowest AICc. The first dynamic factor 

(DF1) was included in all 45 models. DF2 and DF4 each occurred in one model each.  

Finally, we combined the two preceding analyses. We re-ran the entire model fitting 

exercise 1000 times using the re-sampled sablefish recruitment deviations. We then 

compared the best-fit (in this case lowest AICc) models from each run and determined the 

number of times each DF appeared in the model with the lowest AICc. DF1 was included in 

over 95% of all best-fit models, while other terms appear more sporadically. Note these 

results are for the model from each iteration with the lowest AICc not the lowest AICc and 

fewest parameters. When the best-fit model was chosen based on delta AICc < 2.0 and the 

fewest parameters, over 90% of models contained only DF1 (Table S1).  
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Table S1. Results of jackknife‐refit analysis showing the number of times the predictor was 
included in the best‐fit model (lowest AICc) out of 1000 iterations. 
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 Predictor Number of models 

lowest AICc 

Number of models lowest 

AICc & 

 fewest parameters 

DF1 957 906 

DF12 30 2 

DF2 217 39 

DF22 5 0 

DF3 23 5 

Df32 12 2 

DF4 243 54 

DF42 115 16 

DF5 191 50 

DF5 51 16 



 

 

 

	 	

Fig. 	S4. 	Results of jackknife refitting of  the best-fit model for 1975-2020.  
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Standard model diagnostics for the sea level recruitment model 

Fig. 	S5. 	Plots	 of 	model 	diagnostics	 for 	the 	best‐fit 	model: 	recruitment 	deviations 	=	 DF1. 	
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Fig. 	S6. 	Autocorrelations 	factors 	for	 the 	best‐fit 	model. 	

Stock assessment output 

Removing the sea-level index from the 2021 assessment had little impact on model 

estimates of natural mortality and growth parameters, but did suggest slightly lower 

recruitments during 2011-2019 (Table S2). In 2020, when there were no survey data, the 

model with the sea-level index showed slightly lower recruitment than the model without 

(Table S3). As the time series of fishery-independent and -dependent data available to the 

model decreased, model estimates of natural mortality increased, while estimates for the 

Von Bertalanffy k parameters increased (Table 2), resulting in decreases in estimated 

unfished spawning biomass and stock status (Table S3). The standard deviations for 

natural mortality and growth parameters generally increased as the time series of available 

data declined (Table S2).  
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Fig. 	S7. 	Comparisons	 of	 the 	time 	series	 of 	spawning	 biomass	 (top	 row),	 age‐0	 recruits	 
(middle	 row),	 and	 stock	 depletion	 (bottom	 row) 	between	 the	 2021	 stock	 assessment	 model 	used	 
for	 management 	advice 	that 	includes 	sea 	level 	(blue	 lines)	 and	 a 	model 	sensitivity	 run 	with 	the	 
sea‐level 	 index 	removed	 (red	 lines)	 (Kapur 	et 	al. 	2021). 	Dotted 	black 	line 	 in 	(b) 	 indicates 	first 	
year 	of 	recruitment 	deviations 	used 	in 	the	 analyses.	 
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 2011  2011 
20  2021 Catch and 201 20  2021 Catch and 201 

 21 Assessment, No  DF1 sea level 1 Catch only  21 Assessment, No  DF1 sea level 1 Catch only 
  Assessment  DF1 sea level   hindcast  hindcast Assessment  DF1 sea level   hindcast  hindcast 

  Estimates   Standard Deviations 
0. 0.09 0.0 0. 0.01 0.0 

Female Natural Morality 073 0.072 8  95 008 0.008 0  10 
 Female growth at 25 24. 0. 0.51 0.5 

minimum age  .7 25.7 24.9 9 456 0.455 5  15 
 Female growth at 62 63. 0. 0.62 0.6 

 maximum age .5 62.5 63.2 2 633 0.633 5  25 
0. 0.38 0.3 0. 0.01 0.0 

Female VonBertlanffy k 343 0.343 0  80 015 0.015 6  16 
0. 0.08 0.0 0. 0.00 0.0 

Male Natural Morality 060 0.060 2  79 006 0.006 8  08 
 Male growth at 26 26. 0. 0.70 0.7 

minimum age  .9 26.9 26.0 0 514 0.515 4  03 
 Male growth at 56 56. 0. 0.32 0.3 

maximum age  .6 56.6 56.9 9 322 0.323 5  25 
0. 0.41 0.4 0. 0.01 0.0 

Male VonBertlanffy k 371 0.371 9  20 014 0.014 7  17 
9. 9.97 9.8 0. 0.31 0.3 

SR_LN(R0) 705 9.700 9  46 305 0.304 3  03 
2011 Recruitment 0. - - 0. 1.19 1.3 

Deviation 09   0.09  0.33  0.019 221 0.221 6  93 
2012 Recruitment - - - 0. 1.19 1.3 

Deviation 0.76   -0.75  0.36  0.019 363 0.362 3  93 
2013 Recruitment 1. - 0. 0.86 1.3 

Deviation 76   1.76  1.85  0.019 130 0.130 6  93 
2014 Recruitment 0. - - 0. 1.32 1.3 

Deviation 13   0.13  0.09  0.019 226 0.226 2  93 
2015 Recruitment 1. - 0. 1.97 1.3 

Deviation 12   1.11  0.69  0.019 167 0.167 2  93 
2016 Recruitment 2. - 0. 1.17 1.3 

Deviation 25 2.24  1.28   0.019 137 0.138 1  93 
2017 Recruitment 0. - - 0. 1.23 1.3 

Deviation 60 0.60  0.27   0.019 264 0.263 7  93 

Table	 S2.	 Select  parameter estimates from the 2021 and 2011 stock assessment  model runs. Bold values represent years with reduce  d 
survey effort (2019) and no survey (2020). 
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2018 Recruitment 0. - 0. 1.37 1.3 
Deviation 32 0.31 0.19 0.019 397 0.398 4 93 

2019 Recruitment 0. - 1. 1.44 1.3 
Deviation 05 -0.04 0.15 0.019 255 1.235 0 93 

2020 Recruitment - - - 1. 1.25 1.3 
Deviation 0.19 -0.10 0.19 0.019 316 1.392 1 93 
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Table	 S3.	  Select derived estimates from the 2021 and 2011 stock assessment  model runs. Bold values represent years with reduced 
survey effort (2019) and no survey (2020). 
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20 
 21 

  Assessment 

2021  
Assessment, 
No DF1 sea 

level  

201 
1 Catch and 

DF1 sea 
level 

 hindcast 

2 
011 Catch 

 only 
 hindcast 

20 
 21 

Assessment 

2021  
Assessment, 
No DF1 sea 

level  

 2011 
 Catch and DF1 

sea level 
 hindcast 

2 
011 Catch 

 only 
 hindcast 

  Estimates   Standard Deviations 
 Unfished 

Spawning Biomass 
 (mt) 

 Unfished 
Recruitment (mt) 

   
  168,875 
    

  16,392 

       
  168,484 
       

  16,316 

    
  158,521 

     
21,571   

    
  145,676 

      
  18,889 

Recruitment 

    
31,187   

     
5,003  

        
  30,956 
        

4,956  

       
  31,820 
       

6,758  

 

 

    
28,653   

    
5,726  

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

     
6,446  

     
2,759  

    
  34,308 
     

6,709  
    

  18,011 
    

  55,595 
    

  10,689 
     

8,151  
     

6,274  
    

  12,455 

       
6,427  

       
2,767  

       
  33,934 
       

6,685  
       

  17,774 
       

  55,061 
       

  10,689 
       

7,966  
       

5,674  
       

  13,563 

                
4,951  6,042  2,147  

                
4,735  5,967  1,227  

                
42,799   5,934  9,685  

                
6,126  5,944  2,281  

                
13,334   5,929  5,450  

               
24,165   5,867  15,803   

                
5,277  5,775  3,906  

                
8,492  5,669  3,894  

                
8,282  5,560  8,224  

               
14,761     13,539 17,074   

 Fraction of unfished spawning biomass 

        
2,130  

        
1,225  

        
9,521  

        
2,262  

        
5,351  

        
  15,574 
        

3,885  
        

3,805  
        

7,319  
        

  19,633 

       
6,133  

       
5,854  

       
  38,892 
       

8,395  
       

  27,181 
       

  29,572 
       

6,786  
       

  12,144 
       

  12,410 
       

  19,264 

 

 

 

 

 

 

 

 

 

 

    
8,698  

    
8,592  

    
8,546  

    
8,561  

    
8,544  

    
8,460  

    
8,336  

    
8,195  

    
8,050  

    
19,642   

2011 

2012 

476 

469 

0. 

0. 
0.473 

0.467 

2 

9 

0.29 

0.27 
315 

301 

0. 

0. 
081 

081 

0. 

0. 
0.081 

0.081 

0.064 

0.065 

071 

072 

0. 

0. 



 

0. 0.27 0. 0. 0. 
2013 471 0.469 2 296 082 0.081 0.067 074 

0. 0.27 0. 0. 0. 
2014 475 0.472 2 297 082 0.081 0.069 077 

0. 0.26 0. 0. 0. 
2015 472 0.469 6 295 081 0.081 0.071 080 

0. 0.27 0. 0. 0. 
2016 466 0.463 0 284 081 0.081 0.075 081 

0. 0.29 0. 0. 0. 
2017 470 0.467 3 270 082 0.082 0.094 083 

0. 0.31 0. 0. 0. 
2018 478 0.475 2 254 084 0.084 0.115 084 

0. 0.32 0. 0. 0. 
2019 497 0.494 8 240 088 0.087  0.131 084 

0. 0.34 0. 0. 0. 
2020 537 0.534 3 225 094 0.094  0.148 085 
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Female Condition 

The best-fit model did a poor job of predicting recruitment in 2005-2007 and in 

2009. A previous analysis of condition of female sablefish noted that female condition was 

low in these years (Haltuch et al. 2019b). Since evaluating condition requires individual 

length-weight data, it has some limitations for hindcasting to data-poor years, so we do not 

evaluate it in the main manuscript. However, incorporating condition may help to elucidate 

the model failures above, and we examine its effects on model fit here. 

Female sablefish mature at approximately seven years (50% mature at 6.86 years; 

Head et al. 2014). Therefore, we evaluated whether adding condition for age-7+ females 

improved the model fit for the years 2003-2019—the years for which condition data 

(length and individual biomass) were available from the West Coast Groundfish Bottom 

Trawl Survey (WCGBTS, Keller et al. 2017). We used relationships for females north of 

Cape Mendocino (40° N) because the sea-level index in the best-fit model was northern sea 

level, because growth rates differ north and south of Cape Mendocino (Head et al. 2014), 

and because the majority of the length-age data are from the northern portion of the range 

(generally May – September for data north of Cape Mendocino) (Haltuch et al. 2019b; 

Kapur et al. 2021). The condition index (CI) is a relative measure of the overall health of the 

fish quantified as the observed weight of an individual relative to the expected weight from 

the length-weight relationship for the species (Ricker 1973, Ricker 1975, Stevenson and 

Woods 2006). We used data from the WCGBTS to calculate the condition index for female 

sablefish. We calculated condition for age-7+ females. First, we calculated the length-

weight relationship as: 

log(Wi) = log(a) + b*log(Li) 
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Where W = weight in kg, L = length in cm, a and b are estimated parameters, and i  

indicates the individual fish. There was a strong relationship on the log-scale (r2  = 0.98, Fig. 

S5). 

 

Fig. 	 S8. 	 Length-weight relationships for female  sablefish, coast-wide. a) log-scale  
relationships and b) untransformed data.  

Next, we back-transformed the resulting relationship (equation) to the original data 

scale to obtain the length-weight relationship as W = aLb, where a = 3.30 x 10-6, and b = 

3.27. We then calculated condition for each individual as: 

CI = Wobsserved/Wexpected * 100 

Finally, we averaged the Individual Condition Index by year to obtain an annual 

index of female condition for age 7+ females north of approximately Cape Mendocino. 

We added female condition to the base model (DF1) in several forms and selected 

the best-fit model based on the lowest AICc. We add female condition as a continuous 

variable and as a categorical predictor in which years with condition exceeding the upper 

and lower 1.0 s.d. bound were classified as “good” or “poor” and other years were classified 
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as “normal” (Fig. S6). We also fit each as lagged one year or estimated recruitment and 

condition in the same year.   

Three models had AICc less than 2.0 (Table S4), including the base DF1 only model 

(r2 0.27, ranked third). Including current year condition as a continuous variable produced 

the lowest AICc and r2 = 0.37 (Table S5). Condition as a factor produced the highest r2 

(0.48), and closer examination of the model parameters (Table S6) suggests that years with 

low condition were important to the model fish (coefficient was different from zero).  

Fig. 	 S9. 	 Condition	 of	 age‐7+ 	 females	 north	 of	 Cape	 Mendocino 	 for	 2003‐2019. 	 See 	
Haltuch	 et	 al. 	(2019b) 	for 	details 	on	 calculation. 	Index 	is	 the	 percentage 	of	 expected 	weight 	for 	
that 	year.	 Values 	below	 100	 indicate	 poor	 condition. 	Solid 	line	 is 	the	 average 	condition 	across	 
the	 time 	series. 	Dotted 	lines 	are 	+/‐	1.0 	s.d. 		
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Table	 S4. 	Comparison of model fits evaluating predictors of  recruitment for 2003-2018 for the 
base model plus condition as a factor, continuous variable, and lagged or within  the same year.  

AIC ΔAI Pa
R2  Model c Cc   rameters 

60. 0.3
 DF1 + condition 58 - 7 3

61. 0.7 0.4
 DF1 + condition, factor 30  2 9 4

61. 0.9 0.2
DF1 48 0 7 2

62. 2.1 0.2
 DF1 + condition, lagged 75  7 6 3

64. 3.4 0.0
Condition, lagged 04  6 2 2

64. 3.7 0.0
 Condition 37  9 4 2

DF1 + condition, lagged, 64. 4.0 0.3
 factor 67 9 5 4

64. 4.3 0.1
 Condition, factor 94  6 9 3

65. 4.7 0.1
Condition, factor, lagged 30  2 4 3 

 

Table	 S5. 	 Results of adding condition  (continuous  variable) of  age 7+ females north of 40° N 
to the base model predicting recruitment  deviations  from the  stock assessment model.  

 Parameter 
Estimat 

e (SE) value 

t P-

value 

Intercept -20.87 - 0.16 

(14.11) 1.479 1 

Northern sea -0.93 - 0.01 

level (DF1) (0.24) 2.735 6 

Condition 0.21 1.491  0.15 

(0.14) 8 

 

Table	 S6. 	Results of adding  condition (factor = good, average, poor) o f age  7+  females north  of 
40° N to  the base model predicting recruitment  deviations from the stock assessment model.  
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Parameter 
Estimate 

(SE) 

t 

value 
P-value 

Intercept 0.4867 1.572 -

(0.310) 0.1400 

Northern sea level -8.8761 -2.744 0.01 

(DF1) (0.319) 67 

Condition - good 0.3418 -0.412 0.68 

(0.829) 67 

Condition - poor -1.6030 -2.323 0.03 

(0.690) 70 
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Fig. S10. Results of model fitting using female condition as a categorical variable. ‘DF1 
Index’ are the predicted recruitment deviations for the best‐fit model in the main analysis. ‘DF1 
& F_Cond’ are the results when condition is included as a two‐level factor in the model. “C_Cond” 
shows standardized female condition for age‐7+ individuals (north of Cape Mendocino), and DF1 
is the first dynamic factor from the primary analysis. Dotted lines are the 95% confidence limits 
for DF1 & F_Cond index. 
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