
1. Introduction
Lightning activity is generally regarded to be invigorated with elevated aerosol loads (Li et  al.,  2019; Sun 
et al., 2021; Westcott, 1995), although excessive aerosol particles may lead to inhibition of convection and reduc-
tion of lightning activity (Altaratz et al., 2010; Mansell & Ziegler, 2013). Added aerosols increase the cloud drop-
let number and delay rain formation (Rosenfeld et al., 2008), then the updrafts lift more liquid hydrometeors to 
the mixed-phase region, where the increased latent heat of freezing helps to sustain the greater mass loading. Ulti-
mately, the increased supercooled water and ice-phase particle content affect the charge separation and lightning 
activity via non-induction electrification mechanism (Takahashi, 1978; Yair et al., 2021). Thornton et al. (2017) 
found that lightning is enhanced by about a factor of 2 directly over two of the world's busiest shipping lanes, 
related to elevated ship exhaust particles. This may be considered as a proof for an indirect effect of aerosols on 
the microphysics of thunderstorms. Similar results were reported by Hu et al. (2019) in the Houston region and 
by Yuan et al. (2011) over the West Pacific Ocean east of the Philippines.

The simultaneous impacts of thermodynamics and aerosols result in a complex response of lightning to 
increased aerosols (Berg et  al.,  2008; Stolz et  al.,  2015; Zhao et  al.,  2020). Utilizing observational data-
sets, Wang et al. (2018) showed that lightning frequency is much higher in moist central Africa than in the 
drier northern region and has a “boomerang shape” with a saturation effect around an aerosol optical depth 
(AOD) of 0.3. As AOD exceeds the threshold, the response turns to be negative and is more pronounced in 
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the northern African region, presumably due to the combined influences 
of aerosol and different thermodynamics [for example, convective availa-
ble potential energy (CAPE) and relative humidity (RH)]. Liu et al. (2021) 
found that increased aerosol in moist oceanic convection enhanced light-
ning discharges during the 2019–2020 Australian wildfire episode, owing 
to the augmentation of smaller ice particles and robust mixed-phase devel-
opment. Observational data is limited by its inability to provide detailed 
in-cloud pictures of the ice-phase microphysics (e.g., graupel, ice crystals), 
making it challenging to directly study the aerosol effects on microphysical 
and electrical processes.

Previous numerical simulations have examined the relative effects 
of aerosols and thermodynamics on convective cloud properties. Fan 
et  al.  (2007) found that the aerosol effect on the trade cumulus clouds 
depended on RH and vertical wind shear, with greater significance in 
humid air. However, Storer et al. (2010) indicated that changes in cloud 
droplet, raindrop, and ice water were more sensitive to the aerosol load-

ing, compared to the thermal conditions (i.e., CAPE). Furthermore, the simulated multicell storm in Mansell 
and Ziegler (2013) showed that increased condensation, graupel mass, and ice crystal production as cloud 
condensation nuclei (CCN) concentration was altered from 50 to >500 cm −3 in conditions with intermediate 
warm cloud depth (the vertical distance from the lifted-condensation level to the freezing level). They also 
noted that greater CCN concentrations enhanced peak updraft and lightning activity, but dropped again at 
extremely high CCN concentration (>2,000  cm −3) owing to the reduced rime ice splintering. Few stud-
ies have discussed the aerosol effects on cloud microphysical processes and associated electrification in 
varying environments, with sophisticated microphysics and charging schemes in the model (e.g., Mitzeva 
et al., 2006; Takahashi, 1984). How to distinguish the detailed impacts of aerosols and thermodynamics on 
storm electrification through modeling study remains a challenge.

Table 1 
Basic Configuration and Physical Parameterizations for the Model 
Simulations

Parameter Model option chosen

Horizontal domain Coverage 200 km × 200 km

Horizontal grid spacing dx = dy = 0.5 km

Vertical levels 40

Time step 3 s

Duration of model runs 6 hr

Microphysics Scheme NSSL 2-moment

Boundary Layer Scheme BouLac PBL

Land Surface Scheme Unified Noah LSM

Figure 1. The sounding used to initialize the simulations at surface mixing ratio of 14 g kg −1 (Weisman & Klemp, 1982).
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This study seeks to investigate the impacts of CCN concentrations on charge 
separation and lightning discharges under varying environments, via ideal-
ized modeling experiments. Different combinations will be adopted to eval-
uate the effects of both CCN and CAPE. This paper includes the following 
parts: Section 2 describes the methodology and the design of simulations, 
Section  3 presents the results, and Section  4 provides conclusions and 
discussions.

2. Methods
2.1. Model Description

A version of the Weather Research and Forecasting (WRF) Model (3.9.1.1; 
Skamarock et  al.,  2008) with explicit electrification (WRF-ELEC; Fierro 

et  al.,  2013) is used for this study. WRF-ELEC includes graupel-ice noninductive charging parameterization 
(Mansell et al., 2005) and a simplified local lightning discharge scheme (Fierro et al., 2013).

The NSSL microphysics scheme (Mansell et  al.,  2010) predicts the mixing ratio, number concentration, and 
electric charge of each hydrometeor species (i.e., cloud droplets, raindrops, ice crystals, snow, graupel, and hail). 
The deposition of water vapor, collection of supercooled water droplets, capture of ice particles, and collection 
of snow particles are all considered for the graupel growth. More detailed interactions and conversions among 
particles can be found in Mansell et al. (2010). The aerosol (representing with CCN) number concentration is set 
as a bulk activation spectrum, following Equation 1:

𝑁𝑁CCN = CCNC × 𝑆𝑆
𝑘𝑘 (1)

with CCNC is the assumed CCN concentration, S is the supersaturation, and k is arbitrarily set to 0.6 (Mansell 
et  al.,  2010). The cloud droplets are activated by the model according to Twomey  (1959). The model tracks 
the unactivated CCN, and the local CCN concentration is depleted when droplets are activated. The CCN are 
subjected to advection and subgrid turbulent mixing, but have no other interactions with hydrometeors (e.g., CCN 
are not scavenged by hydrometeors; Mansell & Ziegler, 2013).

In this study, explicit charging (Mansell et al., 2005) includes both non-inductive and inductive (or polarization) 
charging mechanisms. Non-inductive charging, which is independent of pre-existing electric field, is based on 
rebounding collisions of ice particles (e.g., ice crystal, graupel) in the presence of supercooled liquid water. The 
non-inductive electrification scheme herein is adapted from Saunders and Peck (1998). The inductive charging 
(i.e., dependent on external electric field) is also taken into account because it can be crucial for lower charge 
region (Mansell et al., 2010; Zhao et al., 2010). The electric potential is obtained through the MPI black box 
multigrid solver (Dendy, 1987), from which the field vector E field is computed.

The discharge scheme is used within a cylindrical volume surrounding each lighting initiation point, which 
extends vertically through the depth of the domain (Fierro et al., 2013). The lightning initiation points are defined 
as grid cells where the electric field magnitude Emag surpasses a critical breakdown threshold Ecrit (Dwyer, 2003). 
A charge reduction of 30% (Ziegler & MacGorman, 1994) is applied within a column of prescribed radius of 
R = 12 km centered at each initiation point, following Fierro et al. (2013). At a given time step, the discharge is 
repeated iteratively until the maximum Emag is less than the Ecrit anywhere in the domain. An estimation of light-
ning flash rate within a domain of D (during an interval 𝐴𝐴 𝐴𝐴 = 𝑡𝑡2 − 𝑡𝑡1 ) is defined as follows:

LFR(𝐷𝐷𝐷 𝐷𝐷 ) =

∑

(𝑖𝑖𝐷𝑖𝑖)∈𝐷𝐷

[

𝐺𝐺

𝐶𝐶 ∫
𝑡𝑡2

𝑡𝑡1

𝐵𝐵(𝑖𝑖𝐷 𝑖𝑖𝐷 𝑡𝑡)𝑑𝑑𝑡𝑡

]

𝐷 (2)

with G is the area of horizontal grid, C is the cross-section area of the cylinder. The integral describes the total 
discharges [𝐴𝐴 𝐴𝐴(𝑡𝑡) ] in the interval T.

Table 2 
Naming Conventions for the Sensitivity Experiments

Surface mixing ratio 
(g kg −1)

CCN concentration (cm −3)

400 800 1,600 3,200 6,400

10 A-400 A-800 A-1600 A-3200 A-6400

12 B-400 B-800 B-1600 B-3200 B-6400

14 C-400 C-800 C-1600 C-3200 C-6400

16 D-400 D-800 D-1600 D-3200 D-6400
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Figure 2. Time series of radar reflectivity (unit dBZ) of simulation A-400. (a) 30 min, (b) 60 min, (c) 90 min, (d) 120 min, 
(e) 150 min, (f) 180 min.
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2.2. Design of the Simulations

The simulations were triggered by horizontally homogeneous but vertically different soundings. Table 1 shows 
a summary of the WRF-ELEC model settings. The domain has a horizontal resolution of 0.5 km (400 × 400 
grid points). The top is set to be 50 hPa with 40 vertical levels. In order to obtain a full picture of the convec-
tion, the simulations were integrated up to 6 hr. The thermodynamic profile used for the control simulation is 
presented in Figure 1, following Weisman and Klemp (1982) to represent a continental deep convective storm 
environment. This profile has surface water vapor mixing ratio (Qv) and RH of 14 g kg −1 and 70%, respectively, 
and a surface-based CAPE of 1,900 J kg −1. A moderate vertical wind shear was used to produce convection of 
longer lifetime (Seifert & Beheng, 2006; Storer et al., 2010), making it possible to study the effects of aerosols 
and thermodynamics on long-lived storms. To examine the sensitivity of CAPE, the boundary layer Qv was 
modified in the original sounding from 10 to 16 g kg −1 by increments of 2 g kg −1 to obtain different pre-storm 
environments, which is a similar range as Seifert and Beheng (2006) and Storer et al. (2010). The CAPE increases 
with added surface Qv, with the values of 276, 1,010, 1,900 and 3,100 J kg −1 at Qv = 10, 12, 14, 16 g kg −1. Over 
the lowest 750 m, Qv was assumed constant to represent a well-mixed boundary layer, following Weisman and 
Klemp (1982) and Storer et al. (2010). Changes in CAPE have also been achieved by altering the temperature 
profile. But previous tests suggested that the qualitative results are insensitive to at least minor changes in the 
above profile (Weisman & Klemp, 1982).

Figure 3. Temporal evolution of 5 m s −1 updraft volume for the different surface mixing ratios. (a) A, (b) B, (c) C, (d) D. 
The red, orange, blue, navy blue and purple lines correspond to the different cloud condensation nuclei concentrations of 400, 
800, 1,600, 3,200, and 6,400 cm −3.



Journal of Geophysical Research: Atmospheres

SUN ET AL.

10.1029/2022JD037450

6 of 22

To examine the impacts of CCN concentration on the storm structure and lightning activity in different ther-
modynamic environments, four sets of simulations were carried out with a wide range of CCN concentra-
tions: 400, 800, 1,600, 3,200, and 6,400 cm −3. The CCN concentration of 400 cm −3 was chosen to represent 
a relatively pristine continental condition, and the value of 6,400 cm −3 was selected for a highly polluted 
case (Mansell & Ziegler, 2013; Sun et al., 2021). The charge separation required for lightning formation are 
resulted from the collisions between ice-phase particles in the presence of supercooled water (e.g., Saunders 
& Peck, 1998; Takahashi, 1978). In order to investigate the aerosol effects upon lightning activity, high CCN 
concentrations were prescribed to guarantee the small droplet sizes and make the ice process dominant for 
precipitation formation (Mansell et al., 2005). The cloud droplets of small diameters should effectively turn 
off the warm rain process (Dye et al., 1974). The local CCN concentration is defined as N×(⍴air/⍴0) cm −3, 
where ⍴0 = 1.225 kg m −3 is the sea level air density and N/⍴0 is the initial number mixing ratio. Table 2 
shows the combinations of surface Qv and initial CCN concentration for the sensitivity experiments. The 
corresponding naming conventions are also shown in Table 2, among which the letters A-D represent varied 
values of surface Qv.

3. Results
3.1. Simulation of the Storm Development

The simulations produced comparable developments of the storm. Figure 2 presents the time series of radar 
reflectivity of the A-400 case (i.e., lowest CCN concentration and lowest CAPE). Around 60 min into the simu-
lation, the storm splits into two separate cells, of which the right one persists for the entire duration of the storm. 
The left cell slowly develops into widespread multicellular convection after the initial split. These developments 

Figure 4. Temporal evolution of the horizontal maximum radar reflectivity (shaded, unit dBZ) and vertical velocities (solid line: 10, 15, 25, 35, 45 m s −1; dashed line: 
−10, −15 m s −1) for the model run (a) A-400, (b) A-6400, (c) D-400, (d) D-6400. The 0, −10, −20, −30 and −40°C isotherms are represented by the dashed lines.
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are similar to the observed and simulated studies (e.g., Storer et  al., 2010; Weisman & Klemp, 1984). Some 
noteworthy differences occur in storm strength and duration, however, due to the varied thermal conditions and 
CCN concentrations.

As shown in Figure 3, the updraft volume (threshold of 5 m s −1) is dramatically affected by the CAPE. Increasing 
the CAPE (from 276 to 3,100 J kg −1) leads to an enhancement of the updraft volume up to ～260%. The highest 
volume of updraft occurs at the very large value of CAPE (3,100 J kg −1), corresponding to the extremely strong 
convection (Figure 4). The convection is less sensitive to CCN concentrations compared to thermal conditions, 
with similar updraft volume under comparable CAPE values (Figures 3 and 4). As the surface vapor mixing 
ratio reaches 16 g kg −1, the aerosol effects on the updraft volume tend to be slightly more obvious (Figure 3d). 
With high CCN concentration, the increased latent heat release partially enhances the updrafts but is offset by 
increased mass loading (Rosenfeld et al., 2008; Williams et al., 2005). The differences of updraft volume between 
the higher CCN (1,600, 3,200, and 6,400 cm −3) and the lower CCN concentrations (400 and 800 cm −3), however, 
are still less than 20%. The increase in updraft volume is mainly attributed to the increased CAPE, and is less 
dependent on CCN.

For the lower CAPE cases, the maximum updraft has less pronounced CAPE dependence than the updraft 
volume. As shown in Figure 5, increasing the CAPE value from 276 to 1,010 J kg −1 leads to a <20% change in 
domain-averaged max updraft speed, increasing only from 22 m s −1 (CAPE value of 276 J kg −1) to ∼25 m s −1 
(CAPE value of 1,010 J kg −1). At a constant CAPE, when looking at changes due to CCN concentration, it can 
also be seen that the storms with increased CCN concentrations have similar maximum updraft speed, before 
270 min (Figure 5). A substantial reduction in peak updraft was found by Li et al. (2008) at extremely high CCN 

Figure 5. Temporal evolution of domain-averaged maximum updraft speed (m s −1) for the different surface mixing ratios. (a) 
A, (b) B, (c) C, (d) D. The red, orange, blue, navy blue, and purple lines correspond to the different cloud condensation nuclei 
concentrations of 400, 800, 1,600, 3,200, and 6,400 cm −3.
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concentration (>5,000 cm −3). Mansell and Ziegler (2013) showed no dramatic decrease in peak updraft speed 
under high CCN, which is more consistent with the result found in this study. Varied grid resolution and storm 
initialization could be the possible reasons for these differences (Bryan et al., 2003; Fierro et al., 2009). The 
duration of the convection in the study area is prolonged, especially in the lower CAPE cases (Figure 5a), mainly 
because the storms move more slowly and stay in the domain longer under polluted conditions.

3.2. Microphysical Properties of the Storm

As examples of how different the microphysical processes can be, Figures 6 and 7 depict the combinations of the 
lowest (highest) values of CAPE and CCN concentration (i.e., A-400, A-6400, D-400, and D-6400). Shown are 
the mass mixing ratio and number concentration of various hydrometeors. These properties are averaged hori-
zontally over the cloudy grid points (those without zero values) at each given altitude. As shown in Figure 6, the 
increasing CAPE leads to dramatic increases in the mixing ratio of cloud droplet, as is the case for the number 
concentration. The responses of the number concentration and mean-mass radius of hydrometeors, which are 
averaged spatially and temporally over cloudy grid points, are presented in Figure  8. It can be seen that the 
dynamic-thermodynamics effects on properties of cloud droplets and rain drops are especially significant in 
the higher CAPE cases (1,900 and 3,100 J kg −1, Figures 8a and 8c). Enhanced CAPE will be transformed into 
differences in dynamic characteristics (i.e., vertical velocity), which could further influence the activation of 
aerosol as CCN due to the increased supersaturation created by the stronger updrafts. The aerosol impacts on the 
cloud microphysics are dependent on CAPE, and these impacts become more pronounced in the higher CAPE 
conditions (Figures 6b and 6d).

Figure 6. Temporal evolution of the horizontally domain-averaged mass mixing ratio (g kg −1, shaded) and number concentration (kg −1, solid line) of cloud water for 
the model run (a) A-400, (b) A-6400, (c) D-400, (d) D-6,400. Contour levels in (a–d) are 10 6, 2 × 10 7, 5 × 10 7, 10 8 kg −1 for the cloud droplet number concentration.
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For the polluted cases, the increase in CCN concentration increases droplet concentration and decreases 
droplet radius (Lynn et al., 2020; Sun et al., 2021; Yair et al., 2010; Figure 8a). Cloud droplets with smaller 
radius suppress the collection-coalescence processes. Thus, the rainwater content decreases with the added 
CCN (Figures  7b and  8c), particularly above the 0°C level. Those small droplets ascend in updrafts and 
continue growing, leading to an increase in supercooled cloud water content (CWC; Figures  6b and  6d). 
Smaller cloud droplets lifted to higher levels (above 8  km) will generate more ice particles in the upper 
glaciated region by homogeneous freezing of these droplets. From Figure 9b, it can be seen that the increased 
CCN concentration leads to the increase of ice crystal mixing ratio, even at the lowest CAPE value. Enhanced 
microphysical processes will increase the latent heat from both condensation and freezing, in turn boosting 
updraft velocities.

The size of raindrops is more dependent on the CCN concentration, as shown in Figure 8d. The raindrop size is 
larger in polluted conditions. The less efficient coalescence of cloud droplets could probably be compensated by 
the melting of larger amounts of ice-phase particles, leading to a larger raindrop size under polluted conditions. 
Figure 10 displays the temporal variation of volumetric precipitation in different conditions. It is obvious that 
storms with higher CAPE produce more precipitation. Under the same CCN concentration, the storm with the 
highest CAPE value forms more precipitation, which is about three times that is produced in the lowest CAPE 
condition. It should be noted that the accumulated precipitation is reduced in the most polluted case (6,400 cm −3) 
under higher CAPE conditions (1,900 and 3,100 J kg −1). This decrease in precipitation within the simulated scope 
of CCN concentration is ∼20%.

Figure 7. As in Figure 6, but for the rain water. Contour levels in (a–d) are 100 and 300 kg −1 for the rainwater number concentration.
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It is interesting to find that the initial CCN concentration and CAPE value have counteracting effects on the prop-
erties of graupel (Figure 11). Figure 12a shows that the graupel number concentrations increase with the increase 
of CAPE, however, the increased CCN concentration leads to a significant decrease in graupel content. With 
variable predicted graupel density in the simulations, the rime density increases during wet growth. The graupel 
volume is only allowed to increase at the minimum density (300 kg m −3) when it collects ice crystals (Mansell 
et al., 2010). The increase in droplet freezing into cloud ice at high CCN concentration (Figure 9) is a reflection of 
reduced precipitation production, whether by warm rain processes or total accretion. Owing to more appreciable 
rainwater content and associated raindrop formation and freezing, the graupel mixing ratio increases under high 
CAPE conditions. It is clear that the maximum graupel concentration occurs in simulation D-400, with the lowest 
CCN concentration and the highest value of CAPE. Even in the highest CAPE case, the graupel number concen-
tration still decreases with the added CCN concentration, indicating the impact of aerosol loading on the graupel 
number concentration. This might elucidate that the graupel particle size increases more dramatically with the 
increase of CCN concentration in the lower CAPE conditions (276 and 1,010 J kg −1), compared to that at higher 
CAPE (1,900 and 3,100 J kg −1, Figure 12b). Small hail could be represented by frozen drops in the graupel cate-
gory, which has variable density (300–900 kg m −3) in the microphysical scheme (Mansell et al., 2010). And the 
hail category, whose density is allowed from 500 to 900 kg m −3, tends to represent larger hail resulting from the 
conversion of graupel when wet growth riming conditions exist (Milbrandt & Yau, 2005). The changes of proper-
ties of hail particle are similar to those of graupel, and its mean-mass diameter (range from about 0.25 to 0.5 cm, 
see Figure S5 in Supporting Information S1) is larger than that of graupel. The aggregation of snow is mainly 
through collecting droplets and cloud ice (Ziegler, 1985; Zrnic et al., 1993). Since there are more cloud water 

Figure 8. Domain-averaged (left) number concentration (kg −1) and (right) mean-mass radius (10 3 μm) with respect to cloud 
condensation nuclei concentration for different species. (a, b) Cloud water, (c, d) rainwater. The black, blue, red and orange 
lines represent the different surface mixing ratios. (a) A, (b) B, (c) C, (d) D.



Journal of Geophysical Research: Atmospheres

SUN ET AL.

10.1029/2022JD037450

11 of 22

and ice crystals under polluted conditions, the snow content increases in simulations with higher CCN, so as the 
number concentration. Thus, the increases in the snow size (see Figures S4 and S6 in Supporting Information S1) 
are not as obvious as those of graupel. The strong dependence of these microphysical properties, particularly 
these of ice-phase particles, on the initial aerosol forcing, however, has not been thoroughly studied. Such changes 
in the microphysical processes could undoubtedly affect in-cloud electrification and discharges, whose impacts 
are expected to be more notable under low CAPE conditions (e.g., Mansell & Ziegler, 2013; Sun et al., 2021).

3.3. Electrification and Lightning

To illustrate how different the electrical processes can be, the vertical profiles of the charge density at differ-
ent periods are shown in Figure 13. The combinations of the lowest (highest) values of the CAPE and CCN 
concentration are displayed. It is noted that the total charge density shown in Figure 13 is obtained by averaging 
horizontally (Fierro et al., 2013), which makes it possible for the sign of total charge density to represent the 
charge polarity at different levels. During each simulated period, it can be seen that CAPE has some variable 
effect on the maximum positive and negative charge densities. But it should be noted that these values are saved 
at the end of the time step after the lightning parameterization, which has reduced all electric field magnitudes 
below the initiation threshold. Therefore, the profiles in Figure 13 do not necessarily fully reflect differences in 
charging rates. A general charge structure with positive charge above the negative charge, which is classified as 
normal dipole (e.g., Thomas et al., 2001), is simulated during the entire simulated period (Figures 13a and 13b). 
And this is also the case in simulations A-400 and D-400 at various times (i.e., 120 min, 240 min), as shown in 
Figures 13c and 13e. Different from the cases of lower CCN, a negative charge center appears in upper levels 
(about 10 km), with a positive charge region located in the middle and a negative charge region in lower levels 

Figure 9. As in Figure 6, but for the cloud ice. Contour levels in (a–d) are 0.1 × 10 7, 1 × 10 7 and 5 × 10 7 kg −1 for the ice number concentration.
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(Figure 13d; e.g., Mansell et al., 2005; Eddy et al., 2021). Then the charge structure turns into a normal dipole, 
as shown in Figure 13f.

The charging rates, unlike the net charge densities, directly correspond to microphysical changes that affect the 
ice collision rates. In the simulations, the electrification mainly results from non-inductive charging (Mansell 
et al., 2005), which is caused by rebounding ice collisions (e.g., graupel, ice crystals). Its rate is about an order 
of magnitude higher than inductive charging (figure not shown; Mansell et al., 2010). Thus, only the changes 
of non-inductive electrification under various CAPE values and CCN concentrations will be discussed herein. 
The sensitivity of the peak non-inductive charging rate to the changes in CCN concentration and CAPE are 
presented in Figure 14. Some differences occur as a function of both. Either increased CAPE, or increased CCN 
concentration, can lead to the enhancement of non-inductive charging. Under the same CCN concentration, the 
peak non-inductive charging rates are 500 and 550 pC m −3 s −1 for the lower CAPE cases in A-6400 and B-6400, 
respectively. Increasing the CAPE (from 276 to 1,010 J kg −1) results in an increase of charging rate less than 10% 
in the most polluted condition (6,400 cm −3), which is much less than the increase of updraft volume caused by 
the change of CAPE (∼30%). The change of peak non-inductive charging rate is about 350%, due to the increase 
of CCN concentration (from lowest to highest) with the highest CAPE value (Figure 14d). And with the lowest 
CAPE value, changing the CCN (from 400 to 6,400 cm −3) brings about an increased peak non-inductive charging 
rate from 40 to 480 pC m −3 s −1 (Figure 14a). The electrical processes are arguably more sensitive to the available 
aerosol loading than to CAPE.

Figure 10. Temporal evolution of volumetric precipitation (10 9 m 3) at the different surface mixing ratios. (a) A, (b) B, (c) C, 
(d) D. The red, orange, blue, navy blue and purple lines correspond to the different cloud condensation nuclei concentrations 
of 400, 800, 1,600, 3,200, and 6,400 cm −3.
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As the maxima of the peak non-inductive charging rate occurs at about 120  min (Figure  14), we further 
depicted the vertical profiles of non-inductive charging rate at this time. Since the charge separation param-
eterization primarily depends on graupel-ice collisions in mixed-phase updrafts (Mansell & Ziegler, 2013), 
the profiles of the charge carried by graupel and ice crystals are also shown in Figure 15. In the lowest CAPE 
(value of 276 J kg −1) case, the maximum charging rate occurs at 8–10 km (Figure 15a), which corresponds to 
the upper positive  charge  center in the normal dipole structure. And as the CCN concentration is increased, 
the non-inductive charging rate increases significantly. In the corresponding levels (8–10 km), the graupel 
particles are primarily charged positively (Figure 15b), with ice crystals charged negatively. In the cases of 
lower CCN and highest CAPE, the graupel particles are charged negatively at ∼10 km and charged positively 
at lower levels (Figure 15e). Based on the non-inductive charging curve (Saunders & Peck, 1998), graupel can 
be charged negatively within regions of lower CWC at ∼10 km. In cases of higher CCN, graupel particles are 
charged positively with the existence of higher CWC and the reverse for ice crystals. Therefore, a negative 
charge center appears in upper levels (above 12 km) under polluted conditions, with a positive charge region 
located in the middle levels (Figure 13e). As shown in Figure 15b, the peak charge density of graupel particles 
is 0.2 nC m −3, which is about twice that of ice crystals. Considering that the ice crystal content is notably less 
in these circumstances (lower CAPE values; Figure 12c) and hardly contributes to the non-inductive charg-
ing, the charged graupel particles thus play a vital role in the upper charge region. These graupel particles of 
larger radius account for an enhanced charging primarily owing to the higher collision-collection efficiency 
with other ice species (e.g., snow and hail particles).

Figure 11. As in Figure 6, but for the graupel. Contour levels in (a–d) are 10, 30, 50, 100, 300, 500, 700, and 1,000 kg −1 for the graupel number concentration.
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To investigate the relationship between hydrometeors and electrification under different CCN conditions 
(namely, A-400 and A-6400), vertical cross sections are shown in Figures  16 and  17. According to the 
non-inductive charging mechanism, the charge structure could vary among separate cells owing to the differ-
ences in updrafts and CWC (Saunders & Peck,  1998). These cross sections are chosen depending on the 
location of maximum value of radar reflectivity. The total charge density carried by different ice-phase parti-
cles is displayed at about 120 min. As shown in Figure 16a, the charge structure with positive charge above 
the negative charge exists in case A-400. This positive charge region (above 10 km) mainly results from the 
cloud ice and snow particles (Figure  16b). In case A-6400, a negative charge center appears in the upper 
level (>10 km) at this time, with a positive charge center in the middle and a negative charge center in lower 
levels (Figure 17a). This simulated vertical charge distribution is caused by ice and snow particles charged 
negatively at 8–12 km, and graupel and hail particles charged positively at 4–8 km (Figures 17b and 17d). As 
discussed above, more supercooled cloud droplets in upper levels (>10 km) probably explains the existence 
of positively charged graupel and the anomalous polarity charging at higher CCN. And the efficient collisions 
between graupel of larger size and other ice-phase particles (i.e., hail, snow and ice crystals) further lead to 
the intense positive charge center located at 8–10 km (Figures 17a and 17b). In caseA-6400, the maximum 
positive charge density at this time is up to +1 nC m −3, which is much higher than that in the A-400 (less than 
+0.5 nC m −3).

This enhanced non-inductive electrification leads to greater charge density and in turn reinforces the electric 
intensity, further underlining the significance of aerosol on the lightning discharges through microphysical 
processes under lower CAPE conditions. As shown in Figure  18a, the lightning flash rates increase with 
greater CCN concentration, even with the lowest CAPE value. The sensitivity of these electrical properties on 
the aerosol loading in the higher CAPE and shear conditions has not previously been demonstrated in model 
simulations.

Figure 12. As in Figure 8 but for the (a, b) graupel and (c, d) cloud ice.
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As the CAPE value increases, the ice-phase particles increase, resulting in a significant increase in charging rate 
(Figure 14d) and charge density (Figure 13). The increase of charge density leads to the enhancement of electric 
processes and subsequent lightning discharges (Figure 18d). Liu et al.  (2021) found that added aerosol could 
lead to a greater number of smaller-size ice crystals above the freezing level, consequently boosting lightning 

Figure 13. Vertical profiles of peak charge density (solid lines, nC m −3) and domain-averaged after-discharging total charge 
density (marked lines, nC m −3) for different cloud condensation nuclei concentrations at various periods. (a) 400 cm −3, (b) 
6,400 cm −3 during the entire simulated period, (c) 400 cm −3, (d) 6,400 cm −3 at 120 min, (e) 400 cm −3, (f) 6,400 cm −3 at 
240 min. The red and blue lines correspond to the different surface mixing ratios of A and D. The x axis above is for the 
averaged values; the x axis below is for the maximum values.
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flash rates in oceanic convection. Our simulations support this hypothesis, that is, the augmentation of ice crystal 
content significantly increases the charge density. In this study, we also demonstrate that elevated aerosol concen-
tration under low CAPE conditions leads to increased charge density, electric field magnitude and lightning 
activity, primarily resulting from the graupel of larger radius. Under high CAPE circumstances, added aerosol 
concentration further enhances the microphysical processes, leading to a more strengthened non-inductive charg-
ing, which in turn invigorates lightning flash rates.

4. Conclusions and Discussion
In this work, the dual effects of initial CAPE and concentration of aerosols acting as CCN on storm-scale micro-
physics, electrification and lightning discharges have been examined employing the WRF model coupled with a 
2-moment microphysics parameterization and an explicit charging scheme. Our results indicate that the dynamic 
properties of storms are considerably influenced by the values of the CAPE, and that storms developing in condi-
tions of higher CAPE produce more accumulated precipitation.

Under the same thermodynamic profile, the effects of increasing CCN concentration exhibit an increased cloud 
droplet concentration and a decreased droplet radius. It leads to the decrease in droplet self-collision and a delay 
in the formation of rain. These small droplets are transported by updrafts, and riming (i.e., ice-water collisions) 
will be intensified due to the increased supercooled CWC. The latent heat released from condensation and freez-
ing supports the greater hydrometeor mass within updrafts. The aerosol impacts on these microphysical processes 
are consistent across the range of CAPE.

Figure 14. Temporal evolution of peak positive non-inductive charging rate (pC m −3 s −1) at different surface mixing ratios. 
(a) A, (b) B, (c) C, (d) D. The red, orange, blue, navy blue and purple lines correspond to the different cloud condensation 
nuclei concentrations of 400, 800, 1,600, 3,200, and 6,400 cm −3.
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The properties of graupel particles are determined jointly by the available aerosol concentration and the CAPE. 
They have counteracting effects on the graupel content and size. The graupel contents are greater at higher CAPE 
owing to larger precipitable water (more available vapor for condensation), while the graupel mass is reduced 
under polluted conditions via lower precipitation efficiency (mass diverted to anvil outflow). In the low CAPE 
environments, although the graupel mixing ratio is lower, the radius of graupel is noticeably larger under polluted 
conditions owing to the much lower number concentration. To some extent, the development of microphysical 
processes is promoted by the elevated aerosol loading, due to the larger size of graupel involved in charge sepa-
ration. Owing to the increase in supercooled CWC, graupel charges more positively, and a charge structure with 
a negative charge region in upper levels appears because of the negatively charged ice crystals. Higher collision 
rates between ice-phase particles brings about the enhancement of charge separation and lightning formation. 
With the increase of CAPE value, the ice crystal content and charging rates increases significantly. While the 
graupel radius decreases slightly due to the increased graupel concentration, the larger ice crystal content ensures 
a more active non-inductive electrification. These yield a much higher charge density, leading to Emag exceeding 
the specific breakdown value, ultimately culminating in higher lightning flash rates, compared to the low CAPE 
conditions.

Recent studies have shown that added aerosol concentration significantly boosts the lightning discharges in deep 
convective environments (Liu et al., 2021; Qie et al., 2021; Wang et al., 2018). Some observations have suggested 
that augmentation of total ice contents and robust mixed-phase processes under polluted conditions eventually 
lead to higher lightning flash rates (Liu et al., 2021; Zhao et al., 2020). Meanwhile, larger CAPE and mid-level 
RH also help to intensify lightning activity (Liu et al., 2011; Lu et al., 2022; Wang et al., 2018). The tangled influ-
ences of aerosol forcing and dynamics-thermodynamic effects on electrification are still poorly understood based 
on convection-resolved model simulation. In this study, we found that high CAPE significantly reinforced the 
non-inductive charging, and fueled more lightning flash rates. Under low CAPE conditions, the charge separation 
was enhanced even with smaller ice crystals content, mainly due to the increasing ice collisions resulting from 

Figure 15. Vertical profiles of (a, d) peak non-inductive charging rates (pC m −3 s −1), (b, e) peak charge density (nC m −3) of graupel particle, and (c, f) peak charge 
density (nC m −3) of ice crystal for the different surface mixing ratio conditions at the mature stage (120 min). (a–c) A, (d–f) D. The red, orange, blue, navy blue and 
purple lines correspond to the different cloud condensation nuclei concentrations of 400, 800, 1,600, 3,200, and 6,400 cm −3.
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larger graupel at greater CCN concentrations. It is noted that the cloud dynamics are more sensitive to instability 
than to aerosol loading, which is also indicated by Fan et al. (2007) and Storer et al. (2010). The aerosol effects 
on electrification and lightning were found to be more sensitive in environments of lower CAPE. Additional 
tests have been conducted by warming the ambient profile in mid-levels to achieve similar initial CAPE value 
(Van Weverberg, 2013), which is more like a tropical environment. The trends in charging rate and lightning 
formation for increasing aerosol concentrations are not robust in this condition. The results for aerosol effects 
on electrification and lightning therefore may not necessarily extend to, for example, tropical environments (see 
Figures S7–S9 in Supporting Information S1).

Figure 16. Vertical cross sections (northeast to southwest) at the location shown in Figure 2d of simulated variables at 120 min for case A-400. (a) Total net space 
charge (nC m −3, shaded). The 0°C, −10°C, −20°C, −30°C and −40°C isotherms are shown by dashed gray lines in (a–d). (b) +0.1 nC m −3 space charge density 
contours for cloud ice (orange), graupel (purple), snow (blue), and hail (black). The cloud outline (reflectivity echoes ≥5 dBZ) is denoted by the gray shaded contour. 
(c) Radar reflectivity (unit: dBZ), black lines for vertical velocities (solid line: 2, 5, 10, 20, 25 m s −1; dashed line: −2 m s −1). (d) As in (b), but for −0.1 nC m −3 charge 
density.
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It should be mentioned that our study only considered highly idealized model simulations, let  alone more 
complex systems such as MCS or tropical cyclones. The impacts of aerosol concentration and instability on cloud 
microphysics and electrical processes can be distinct among different convective storms (Chen et al., 2020; Lee 
et al., 2017; Qie et al., 2020; Wu et al., 2013). More numerical simulations are still required to disentangle the 
detailed impacts of aerosol loading and dynamics-thermodynamics on electrification and lightning discharges 
with real case studies.

Figure 17. As in Figure 16, but the vertical cross sections for case A-6400.
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Data Availability Statement
This WRF-ELEC model (version 3.9.1) and the corresponding documentation are available at https://sourceforge.
net/projects/wrfelec/ (Fierro et al., 2013; Mansell et al., 2010). The input data for the simulations can be found in 
the Zenodo repository (Sun et al., 2023).
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