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Abstract: Data assimilation in chaotic regimes is challenging, and among the challenging aspects
is placement of observations to induce convexity of the cost function in the space of control. This
problem is examined by using Saltzman’s spectral model of convection that admits both chaotic
and nonchaotic regimes and is controlled by two parameters—Rayleigh and Prandtl numbers. The
problem is simplified by stripping the seven-variable constraint to a three-variable constraint. Since
emphasis is placed on observation positioning to avoid cost-function flatness, forecast sensitivity
to controls is needed. Four-dimensional variational assimilation (4D-Var) is silent on this issue
of observation placement while Forecast Sensitivity Method (FSM) delivers sensitivities used in
placement. With knowledge of the temporal forecast sensitivity matrix V, derivatives of the forecast
variables to controls, the cost function can be expressed as a function of the observability Gramian
VTV using first-order Taylor series expansion. The goal is to locate observations at places that force
the Gramian positive definite. Further, locations are chosen such that the condition number of VTV
is small and this guarantees convexity in the vicinity of the cost function minimum. Four numerical
experiments are executed, and results are compared with the structure of the cost function inde-
pendently determined though arduous computation over a wide range of the two nondimensional
numbers. The results are especially good based on reduction in cost function value and comparison
with cost function structure.

Keywords: Rayleigh–Bénard convection; data assimilation; observation placement; forecast sensitivity;
chaotic regimes; low-order modeling

1. Introduction

In his pioneering work, Saltzman [1] derived the well-known spectral model of
Rayleigh–Bénard convection [2,3]. It was a 7-variable double Fourier series representation
of the convection herein called Saltzman’s low-order model and denoted by S-LOM (7). His
model included a single parameter, the Rayleigh number R. In the governing equations,
the ratio of the Rayleigh number to the critical Rayleigh number Rc, λ = R

Rc
, becomes

the key parameter. He assumed the other nondimensional number associated with this
convection problem, the Prandtl number σ, was set equal to 10. Historically, Saltzman’s [1]
model achieved fame by providing Lorenz [4] with a nonlinear deterministic model that
exhibits nonperiodic solution to explore the limitations of extended-range predictability.
Within a decade, Lorenz’s three-variable version of Saltzman’s model became known as
the chaotic-butterfly model [5], so-named because the phase-space depiction of model
evolution resembled butterfly wings.

The goal of the research is to explore data assimilation [6] for the Rayleigh–Bénard
convection in both chaotic and nonchaotic regimes. Two three-variable stripped-down
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versions of S-LOM (7) are used as dynamical constraints: (1) S-LOM (3) based on Saltzman’s
scaling, and L-LOM (3) based on Lorenz’s scaling. These truncated systems contain the
ingredients central to defining observation placement that yield a cost function minimum.
The strength of this methodology rests on expressing the cost function (to a first-order
accuracy around the true but unknown minimum) as a quadratic function of the incre-
ment in the control variable with (the symmetric and positive semi-definite) observability
Gramian as the matrix of this approximate quadratic function. It is shown that by choosing
the observation sites that maximize the square of the forecast sensitivities to control, we
can indeed force the observability Gramian to be a positive definite matrix. This in turn
avoids the occurrence of flat patches of the cost function in the control space. Refer to
Lakshmivarahan et al. [7,8] and Lewis et al. [9] for further details and applications. An
alternate strategy would be to place observations at locations that would lead to a small
condition number for the observability Gramian.

Following this Introduction, we summarize S-LOM (7) and its reduction to the three-
variable form [10] in Section 2. In Section 2, we also give attention to the scaling of S-LOM (3)
and L-LOM (3). Discussion of the three-variable spectral dynamics is presented alongside
graphics for nonchaotic and chaotic regimes in Section 3. Mechanics for data assimilation
follow in Section 4. Data assimilation experiments are executed in Section 5, and discussion
along with conclusions end the paper in Section 6.

2. Three-Variable Forms of Saltzman’s Model
2.1. Spectral Form of Solution

The laboratory experiments of Bénard [2] were conducted with a rigid surface (a metal
plate) below and a free upper surface while later experimental investigations used rigid
surfaces at top and below (Chandrasekhar 1961 [11], Ch. 2, sect. 18c; Turner 1973 [12],
Ch. 7, sect. 7.2). Saltzman’s [1] theoretical development assumed two free surfaces. The
onset of convection has different critical Rayleigh numbers Rc associated with the various
boundary conditions—roughly 600 for free surfaces, 1800 for rigid surfaces, and 1200 for
one-free and one-rigid surface. We use the free-surfaces value of Rc = 657.5 to develop the
data assimilation model.

In an earlier technical report by the authors (Lewis and Lakshmivarahan [13]), a
re-derivation of S-LOM (7) led to functional forms of coefficients in the equations that
governed the Fourier amplitudes. As it stood in Saltzman’s paper [1], the coefficients were
expressed in numerical values only. Since our goal was to use Saltzman’s equations in
FSM data assimilation with the two nondimensional numbers as parameters, we needed to
know the coefficients in terms of the wavenumbers and variable nondimensional numbers.

The three-variable form of Saltzman’s equations used in this study is a subset of his
seven-variable form. By setting the initial condition on the 3-horizontal wave temperature
departure to 1 while the other initial conditions are set to zero delivers the three-variable
form involving the (horizontal wavenumber 3/vertical wavenumber 1) streamfunction,
the (horizontal wavenumber 3/vertical wavenumber 1) temperature departure, and the
(vertical wavenumber 2) temperature departure. Let us label the three amplitudes in S-
LOM (3) as follows: x1 for the streamfunction (corresponding to amplitude A in Saltzman’s
notation). Temperature-departure components x4 and x7 (corresponding to amplitudes
D and G in Saltzman’ notation). This revised notation is consistent with the ordering of
coefficients from 1 to 7 in Lewis and Lakshmivarahan [13] where x1, x2, . . . , x7 replaced
A, B, . . . , G.

The streamfunction ψ in S-LOM (3) is given by

ψ(x, z, t) = −4x1(t) sin(πax) sin(πz) (1)

where a, the nondimensional wavenumber, is given by a = 1√
2

which defines the 3-
horizontal wavenumber wave, and the temperature departure θ is given by

θ(x, z, t) = 4x4(t) cos(πax) sin(πz) + 4x7(t) sin(2πz) (2)
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2.2. Amplitude Equations

When Equations (1) and (2) are substituted into the partial differential equations that
govern Rayleigh–Bénard convection, the two-dimensional (x, z) vorticity equation and
the temperature departure equation, followed by imposition of integral orthogonality
conditions for the double Fourier series, ordinary differential equations governing the
time-dependent amplitudes follow where we have expressed coefficients to two decimal
places (same accuracy as used by Saltzman [1]):

Saltzman’s S-LOM (3) equations:

.
x1 = −σπ2(1 + a2)x1 − σ ax4

π(1+a2)

= −14.80σ x1 − 0.15σx4
(3)

.
x4 = −4π2ax1x4 − πaRcλx1 − π2(1 + a2)x4

= −27.92x1x7 − 1460.62λx1 − 14.80x4
(4)

.
x7 = 2π2ax1x4 − 4π2x7

= 13.96x1x4 − 39.48x7
(5)

where
λ =

R
Rc

(R : Rayleigh number) (6)

Lorenz [4] used another scaling for the derivation of his L-LOM (3) that took the form:
Lorenz’s L-LOM (3) equations:

.
x1 = −σx1 + σx4 (7)

.
x4 = −x1x7 + λx1 − x4 (8)

.
x7 = x1x4 − bx7 (9)

where
b =

4
1 + a2 =

8
3

(10)

Table 1 shows non-dimensional and scaling for S-LOM (3) and L-LOM (3). The dif-
ferent signs on the right-hand sides of S-LOM (3) and L-LOM (3) stem from the fact that
Lorenz assumed double Fourier representation of temperature departure and streamfunc-
tion as follows:

θ(x, z, t) = x4(t) cos(πax) sin(πz)− x7(t) sin(2πz) (11)

ψ(x, z, t) = x1(t) sin(πax) sin(πz) (12)

where the sign of the x7-component term in Equation (11) is opposite the corresponding
term in Equation (2) and the sign of the streamfunction in Equation (12) is opposite the sign
in Equation (1). These sign differences lead to a shift of temperature departure structure
relative to the streamfunction structure in the convective regime compared to Saltzman’s
results. However, temperature–motion structures in S-LOM (3) and L-LOM (3) are both
faithful to Rayleigh–Bénard cellular convection.

1
(1 + a2)π2 = 0.068;

1 + a2

a
= 2.121;

[π(1 + a2)]
3

a2 = 209.292 (13)

If the physical parameters are taken to be those associated with water at 20 ◦C (Chan-
drasekhar [11] (1961, Ch. 2, Table V1), the physical parameters are given by

ν = 1.006·10−2 cm2 sec−1

κ = 1.433·10−3 cm2 sec−1

ε = 2.0·10−3 ◦C−1
(14)
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Table 1. Nondimensional forms of Saltzman and Lorenz variables. The superscript asterisk (*)
denotes the nondimensional variables where physical parameters for the model follow: g, H, κ, ν, ε:
acceleration of gravity, depth of the fluid, coefficient of thermal diffusivity, kinematic viscosity, and
coefficient of volume expansion, respectively.

Saltzman Lorenz

t = H2

κ t∗ t = H2

κ t∗ 1
(1+a2)π2

x = Hx∗, z = Hz∗ x = Hx∗, z = Hz∗

Ψ = κψ∗ Ψ = κψ∗ 1+a2

a
Θ = κν

gεH3 θ∗ Θ = κν
gεH3 θ∗ [π(1+a2)]

3

a2

In laboratory experiments, the fluid height falls between 2 mm and 1 cm (Chandrasekhar
1961 [11], Ch. 2, sect. 18). Let us assume H = 2 mm. Then, the relative values of Saltzman’s
and Lorenz’s nondimensional variables follow:

• Lorenz’s nondimensional t∗ is roughly 15 times greater than Saltzman’s nondimen-
sional t∗,

• Lorenz’s nondimensional x∗ and z∗ are equal to Saltzman’s nondimensional x∗ and z∗,
• Lorenz’s nondimensional ψ∗ is roughly 2 times less than Saltzman’s nondimensional

ψ∗, and
• Lorenz’s nondimensional θ∗ is roughly 200 times less than Saltzman’s nondimen-

sional θ∗

Thus, for example, if the nonchaotic convective regime comes to equilibrium at
Lorenz’s t∗ = 15, it comes to equilibrium at Saltzman’s t∗ = 1. Similarly, a tempera-
ture departure of θ∗ =200 in Saltzman’s case is associated with Lorenz’s value of θ∗ = 1.

The equations governing the evolution of forecast sensitivities are found by taking
partial derivatives of S-LOM (3) and L-LOM (3) with respect to λ and σ separately. Thus,
six equations are added to each set, S-LOM (3) and S-LOM (3).

We demonstrate the process of determining evolution of forecast sensitivities by
deriving the equation governing for ∂x4

∂λ :

.
x4 = dx4

dt = −x1x7 + λx1 − x4
d
dt

(
∂x4
∂λ

)
= −x1

∂x7
∂λ − x7

∂x1
∂λ + x1 + λ ∂x1

∂λ −
∂x4
∂λ

(15)

Similar ordinary differential equations are derived for the other forecast sensitivities.
The initial conditions for the six sensitivity equations are zero, i.e., change in controls
λ and σ affect the sensitivity solutions for t > 0, but not at t = 0. The 3-variable amplitude
solutions feed into the forecast sensitivity equations as shown in Equation (15), but the
forecast sensitivity equations do not feedback into the equations governing x1, x4, and x7.
The set of nine differential equations are solved simultaneously as a coupled set.

3. Dynamics of 3-Mode Systems: S-LOM (3) and L-LOM (3)
3.1. Overview

The 3-mode truncated systems that describe Rayleigh–Bénard convection have similar
strength (they capture the interaction between temperature and vorticity that produce
the physically meaningful convective motions) and similar weakness (inability to depict
turbulent cellular motion with limited wave structures in the presence of large Rayleigh
numbers). However, it is the difference in scaling and nondimensional forms that high-
lights the dynamical difference in the equation sets. It would be interesting to ask Lorenz
why he refused to follow Saltzman’s scaling and associated coefficients for the differen-
tial equations plainly set forth in Saltzman’s Table 2 [1] One can guess that he wanted
differential equations where the coefficients exhibited comparable magnitudes that lead
to ease in understanding interaction between terms in the equation set. However, beyond
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this difference, the model forecast sensitivities to controls are drastically different between
the two sets—relatively large model forecast sensitivity to controls in S-LOM (3)’s case
compared to L-LOM (3)’s case. These differences lead to poor data assimilation results
when slight changes in ideal observation times are used in the S-LOM (3) experiments.
On the other hand, L-LOM (3) tolerated these slight changes very well. Results of these
experiments are discussed in Section 5.1 (L-LOM (3) dynamics) and Section 5.2 (S-LOM (3)
dynamics). All calculations in Sections 3.2 and 3.3 use L-LOM (3).

3.2. Nonchaotic Regime: λ = 12, σ = 7 (σ = ν
κ = 7.03 for Water at 20 ◦C)

When λ = 12, the Rayleigh number R is given by

R = λRc = 12 (657.5) = 8.106·103 (16)

With this value of R and H = 2 mm for water at 20 ◦C, Rayleigh’s [3] formula for the
temperature difference ∆T between the upper and lower boundaries of the fluid is given by

∆T =
κνR

gεH3 = 7.11 ◦C (17)

In the first three panels of Figure 1, amplitudes are depicted in pairs between t = 0
and t = 10 (5 min dimensionally): x1x4 (first panel, top), x4x7( second panel), and x1x7
(third panel). In each of these panels, amplitudes are oscillatory and exhibit convergence
to x1

∼= 5.50, x4 = 5.75, and x7 = 12.0. In the bottom panel of Figure 1, the 3D trajectory
of the amplitudes in phase space—(λ, σ) space—is shown over the period t = 0 to t = 10.
This plot indicates convergence of L-LOM (3) to the x1, x4, x7 values stated above.
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Panel 1 (x1, x4), Panel 2 (x4, x7), Panel 3 (x1, x7), and Panel 4 (x1, x4, x7) with axes: horizontal
x1[0, 10], x4[0, 12], x7[0, 20].
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The forecast sensitivities of x4 and x7 with respect to λ and σ are shown in Figure 2.
These two amplitude components are used to represent the temperature departure, and
since only temperature departure observations will be used in the data assimilation ex-
periments, we confine our forecast sensitivity analysis to these two components. These
sensitivities exhibit oscillatory decay as steady state is approached.
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The structure of the convection at t = 10 is shown in Figure 3—two panels, the tem-
perature departure and streamfunction. The maximum/minimum values of temperature
departure are ∼ ±15 (±3 ◦C dimensionally for water at 20 ◦C) where the maximum values
are in the top portion of the water and the minimum values in the bottom portion. This
leads to a spurious stable stratification first noted by Kuo [14] when convection is controlled
by a truncated low-order spectral system. Within the cells, the maximum ( ∂ψ

∂x > 0) and

minimum ( ∂ψ
∂x < 0) upward/downward vertical velocities, respectively, are the order of

1 mm·s−1 so roughly 50 circuits of a fluid particle around the cell takes place between the
onset of convective motion (t = 0) and steady state (t = 10).
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3.3. Chaotic Regime: λ = 28, σ = 10

The Prandtl number σ = 10 was assumed by Saltzman [1] in nonchaotic regimes
and by Lorenz [4] in chaotic regimes. With these nondimensional numbers, Lorenz [4]
found that instability of steady convection occurred when λ = 24.74 and beyond. The
slightly supercritical value of λ = 28 was used by Lorenz in his numerical experiments [4].
The states of steady convection are then represented by amplitude points (x1, x4, x7):
(6
√

2, 6
√

2, 27) and (−6
√

2, −6
√

2, 27), while the state of no convection corresponds to
the origin in phase space (0, 0, 0).

In the first three panels of Figure 4, amplitudes are depicted in pairs between t = 0
and t = 30: x1x4, x4x7, and x1x7. The well-known butterfly pattern appears for each pair
over the time period t = 0 to t = 30. The convergence to (x1, x4, x7): (6

√
2, 6
√

2, 27) and
(−6
√

2, −6
√

2, 27) does not occur in finite time, only as t −→ ∞ . The 3-D phase plot
of amplitudes is shown in the lower right corner of Figure 4 where the two steady-state
solutions are located at the centroids of the circular/elliptical trajectories.

The time evolution of sensitivities ∂x7
∂λ , ∂x7

∂σ is shown in Figure 5. Here, we have broken
the plots into two time zones: t [0, 5] and t [5, 10] for ∂x7

∂λ and t [0, 3] and t [3, 10] for ∂x7
∂σ .

Note that the coordinate axes are scaled differently in these plots. Plots for ∂x4
∂λ , ∂x4

∂σ exhibit
similar structures. The common thread between sensitivity plots is that the magnitudes
oscillate between + and − values and increase ad infinitum.
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The sensitivity of the x1(t) solution to a small change in the initial condition is shown
in Figure 6. In this figure, a 5% change in the initial condition leads to significant change in
x1(t) after t∼20.
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4. Design of Observation Network
4.1. Model and Forecast Sensitivities

Let X(k) = (x1(k), x4(k), x7(k)) εR3 be the state of the S-LOM (3) or L-LOM (3) model
at times k = 0, 1, 2, 3 . . . given by

X(k + 1) = M(X(k), α) ε R3 (18)
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with X(0) εR3 as initial condition, α = (α1, α2) = (λ, σ)Tε R2, the parameter vector, and
X(k) = X(k, X(0), α) the solution.

Define forecast sensitivity to parameters as

V(k) = ∂X(k)
∂α ε R3x2

=


∂x1
∂λ

∂x1
∂σ

∂x4
∂λ

∂x4
∂σ

∂x7
∂λ

∂x7
∂σ

 (19)

It can be shown that V(k) evolves according to the discrete time dynamics given by

V(k + 1) = DM(k)V(k) + Dα
M(k)

with V(0) = 0
(20)

where
DM(k) =

∂

∂xj(0)
[Mi(X(k), α)] ε R3x3 (21)

Dα
M(k) =

∂

∂αj
[Mi(X(k), α)] ε R3x2 (22)

with α = (α1, α2)= (λ , σ ) [15,16].
An example of forecast sensitivity to parameter λ has been shown earlier in Equation (15).

4.2. Forecast Error

Let c = α be the true control and X(k) be the solution starting from c. Let c = α be the
arbitrary control and let X(k) be the model solution starting from c.

Define
δc = c− c = δα = α− α (23)

where α− α = (λ− λ, σ− σ)
T
=

[
δλ
δσ

]
= δα.

Let δX(k) be the change in the state X(k) resulting from change δc. Then, from
Equation (19) and using first-order Taylor expansion, we obtain

δX(k) = X(k)−X(k)
= X(k, X(0), α)−X(k, X(0), α)

= ∂X(k)
∂α δα

= V(k)δα

(24)

4.3. Observations and Cost Function

We work with L-LOM (3) in this subsection.
Consider the physical domain defined by the rectangle

D =
{

η = (x, z)T
}

, 0 ≤ x ≤ 6
√

2, 0 ≤ z ≤ 1 (25)

where x denotes the lengthwise coordinate and z the breadthwise coordinate of a point η in
D. Convection is confined to this domain.

Define a matrix
H(η) = [ f4(η), f7(η)]ε R1x2 (26)

where
f4(η) = cos(πax) sin(πz)
f7(η) = − sin(2πz)

(27)

Let

θ(k, η) = H(η)

[
x4
x7

]
= H(η)X̂ + ξ(k) (28)
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be the actual observation where X̂ is the projection of X onto its last two elements and
ξ(k) is the observation noise with variance σ2.

Let

θM(k, η) = H(η)

[
x4
x7

]
= H(η)X̂ (29)

where θM(k, η) is the model counterpart to the observation based on perturbed control.
The difference is called the forecast error or innovation (innov).

e(k) = θ(k, η)− θM(k, η) (30)

Using Equations (28) and (29), we rewrite Equation (30) as

e(k) = H(η)
(

X̂− X̂
)

= H(η)δX̂
(31)

For α ε R2 and η ε R2, we define the cost function for a given (k, η) as

J(α, k, η) =
1

2σ2 (θ(k, η)− θM(k, η))
2

(32)

The squared difference between the observation θ(k, η) and its model counterpart
θM(k, η). This cost function in Equation (32) is additive in the number of observations.
Using Equations (31) and (32), we get

J(α, η) =
1

2σ2 (H(η)(δX̂)
T H(η)

(
δX̂
)
=

1
2σ2 (δX̂)

T HT(η)H(η)
(
δX̂
)

(33)

Using first-order Taylor expansion, the vector of temperature departure error compo-

nents,
[

δx4
δx7

]
, can be represented by

δX̂ =

[
δx4
δx7

]
=

[
∂x4(k)

∂λ
∂x4(k)

∂σ
∂x7(k)

∂λ
∂x7(k)

∂σ

][
δλ
δσ

]
= V̂(k)δα, (34)

where V̂ (k) is a submatrix of the forecast sensitivity matrix V(k); namely, the last two
rows of that matrix. Arguments related to the derivation of Equation (34) are found in
Lakshmivarahan et al. [7].

Substituting Equation (34) into Equation (33), we get

J(α, η) =
1

2σ2 (δα)T
[
V̂T(k)

(
HT(η)H(η)

)
V̂(k)

]
δα =

1
2σ2 (δα)TG (δα) =

1
2σ2 (δα)TG (δα) (35)

where
G(k) ≡ V̂T(k)

(
HT(η)H(η)

)
V̂(k)]= V̂T(k)H(η)V̂(k)

]
(36)

and
H(η) ≡ HT(η)H(η) (37)

Remark 1. It is important to note that G(k) applies to a single time k. Since the cost function is
additive in the number of observations, i.e., if there is more than one observation, a separate matrix
exists for each time. Take the case when observations are available at three observation times with
G matrices G1, G2, and G3, then the appropriate combined matrix will be G = G1 + G2 + G3.

In the presence of two forms of the cost function, namely Equation (32) and (35), we
use Equation (35) to determine observation placement. We use Equation (32) to display the
structure of the cost function in the space of controls.

From Equation (35), the gradient of J(α, η), ∇J(α, η), is given by
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∇J(α, η) =

[
∂J
∂λ
∂J
∂σ

]
= G (δα) (38)

To determine the optimal adjustment to control through FSM, we write the cost
function as

J(α, η) =
1

2σ2 (HX̂ +
∂H(η)X̂

∂α
δα− θ)

T

(HX̂ +
∂H(η)X̂

∂α
δα− θ) (39)

where
∂H(η)X̂

∂α
= H(η) V̂ (40)

Expanding Equation (40) and setting its gradient to zero yields

δα = (GTG)
−1

GTinnov (41)

where the innovation innov is given by

innov = HX̂− θ (42)

4.4. Observation Placement

In this paper we consider two structures for the observations: (1) time only, and (2) time
and space. Our strategy for observation placement is to render G positive definite. However,
not only render it positive definite, but also reduce its condition number so that a “bowl-like”
cost function’s structure is present in the vicinity of its true minimum located at α =

(
λ, σ

)
for error-free observations. Two types of observations are considered: (a) observations in
time alone (Section 4.4.1) and (b) observations in space and time (Section 4.4.2).

4.4.1. Observations in Time Alone

When we consider observations of spectral components X(k) as a function of time
alone in our data assimilation problem, the H (η) matrices in Equation (36) are replaced by
identity matrices and the cost function then becomes

J(α) =
1

2σ2 (δα)T
[
V̂T(k) V̂(k)

]
δα (43)

where G = V̂T(k)V̂(k) is positive definite as shown below. In matrix form

V̂T(k)V̂(k) =

 ( ∂x4(k)
∂λ )

2
+ ( ∂x7(k)

∂λ )
2 (

∂x4(k)
∂λ

∂x4(k)
∂σ + ∂x7(k)

∂λ
∂x7(k)

∂σ

)
(

∂x4(k)
∂λ

∂x4(k)
∂σ + ∂x7(k)

∂λ
∂x7(k)

∂σ

)
( ∂x4(k)

∂σ )
2
+ ( ∂x7(k)

∂σ )
2

 (44)

or alternatively represented by

V̂(k) = (ε1(k), ε2(k)) V̂T =

[
εT

1 (k)
εT

2 (k)

]
(45)

V̂T(k)V̂(k) =
[

εT
1 (k)ε1(k) εT

1 (k)ε2(k)
εT

2 (k)ε1(k) εT
2 (k)ε2(k)

]
(46)

From this point onwards, we simplify notation by omitting the parenthetical expres-
sion “(k)” following forecast sensitivities.

From the physics of our problem, V(k) is sensitive to λ and σ. The dot products
“〈a, b〉” are expressed in matrix-vector notation where ε1(k) and ε2(k) are the first and
second columns of V̂(k).

〈ε1, ε2〉 = εT
1 ε2 = εT

2 ε1 = 〈ε2, ε1〉 (47)
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〈
εT

1 , ε1

〉
=‖ ε1 ‖2,

〈
εT

2 , ε2

〉
=‖ ε2 ‖2

Thus,

V̂T(k)V̂(k) =
[
‖ ε1 ‖2 〈ε1, ε2〉
〈ε2, ε1〉 ‖ ε2 ‖2

]
(48)

Further, ‖ ε1 ‖2> 0 and ‖ ε2 ‖2> 0, and the determinant of V̂T(k)V̂(k) is given by

det
(

V̂TV̂
)
=‖ ε1 ‖2 ‖ ε2 ‖2 − < ε1, ε2 >2 (49)

and
〈ε1, ε2〉 =‖ ε1 ‖ ‖ ε2 ‖ cos θ (50)

so
< ε1, ε2 >2=‖ ε1 ‖2‖ ε2 ‖2 cos2 θ (51)

The determinant of V̂TV̂ can then be written as

det
(

V̂TV̂
)
=‖ ε1 ‖2‖ ε2 ‖2 − ‖ ε1 ‖2‖ ε2 ‖2 cos2(θ) =‖ ε1 ‖2‖ ε2 ‖2

(
1− cos2 θ

)
> 0 (i f θ 6= 0) (52)

So long as ε1 and ε2 are not colinear or θ = 0 or 180◦, then

cos θ 6= 0, anddet
(

V̂TV̂
)
> 0 (53)

and the following inequalities hold

‖ ε1 ‖2> 0, ‖ ε2 ‖2> 0, and det
(

V̂TV̂
)
> 0 (54)

These inequalities imply that V̂TV̂ is a positive definite matrix.
The strategy for choosing observations is therefore:
Pick observation z(k) = X̂(k) + υ(k) when z(k) ε R2 and noise υ(k) ε R2 such that

z(k1) at time k1 makes ‖ ε1 ‖2 a maximum and z(k2) makes ‖ ε2 ‖2 a maximum.
Then, at

k1 : V(k1) = [ε1(k1), ε2(k1)]

and at
k2 :V(k2) = [ε1(k2), ε2(k2)]

and
G = VT(k1)V(k1) + VT(k2)V(k2) = G(k1) + G(k2) (55)

4.4.2. Observations Taken in Space and Time

When observation locations are to be determined in space and time, the G matrix takes
the form

G(k, η) = V̂T(k)
(

HT(η)H(η)
)

V̂(k)]= V̂T(k)H(η)V̂(k)
]
. (56)

The space element H(η) is separable from the time elements V̂T(k) and V̂T(k) or in
combination V̂T(k) V̂(k). In the presence of this separability, the strategy reduces to first
determining desired times as explained above. This is followed by determining desired
positions in (x, z) space.

Recall that x̂ = (x4, x7)
T and α = (λ, σ)T and represent V̂ as a column partition

V̂ =

[
∂x4
∂λ

∂x4
∂σ

∂x7
∂λ

∂x7
∂σ

]
=

[
∂x̂
∂λ

,
∂x̂
∂σ

]
= [V1, V2] (57)

Define vectors

g4 =

[
∂x4

∂α

]
= (

∂x4

∂λ
,

∂x4

∂σ
)

T
ε R2 (58)
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and

g7 =

[
∂x7

∂α

]
= (

∂x7

∂λ
,

∂x7

∂σ
)

T
ε R2 (59)

It can be verified that the row partition of V̂ is given by

V̂ =

[
gT

4
gT

7

]
(60)

Recall that H is given by
H = [ f4, f7] ε R1x2 (61)

where f4 = cos(πax) sin(πz) and f7 = − sin(2πz).
Using Equations (60) and (61), we obtain a row vector w(k, η) = (w1(k, η), w2(k, η))

given by

w(k, η) = HV̂ = [ f4, f7]

[
gT

4
gT

7

]
= ( f4gT

4 + f7gT
7 ) ε R1x2 (62)

Consequently, we can express the Gramian G(k, η) as a rank-one symmetric prod-
uct matrix

G(k, η) = wT(k, η)w(k, η) =

[
w2

1(k, η) w1(k, η)w2(k, η)
w2(k, η)w1(k, η) w2

2(k, η)

]
(63)

Strategy for determining observation placement:

(1) Pick η(x, z) such that ‖ f4 ‖ and ‖ f7 ‖ are maximum
(2) Let k1, k2, k3, k4 be four time instances where the squares of ∂x4

∂λ , ∂x4
∂σ , ∂x7

∂λ , ∂x7
∂σ are

maximum. Determine the respective G(ki, η)’s. Then, the final Gramian is given by

G = G(k1, η) + G(k2, η) + G(k3, η) + G(k4, η) (64)

Remark 2. In principle we can use just two observations at times k1 and k2 where ( ∂x4
∂λ )

2
and

( ∂x7
∂σ )

2
attain their maxima.

5. Data Assimilation Experiments

Once the observations and their locations have been determined, the FSM method of
data assimilation is used to determine optimal values of controls. Development of the FSM
was first shown in Lakshmivarahan and Lewis [15] and explored with numerous examples
in the textbook Lakshmivarahan et al. [16]. In our case, the optimal values of control are
found through the iterative methodology captured by Equation (41). Starting from guess
control, solution to Equation (41) delivers the adjustment to guess control. The adjustment
is added to the guess and the second operating point in space of control is determined.
New forecasts and new forecast sensitivities are found from the updated controls. The
process continues until the cost function’s change falls within a specified tolerance.

5.1. Experiment I: Nonchaotic Data Assimilation Process (Lorenz Scaling)

True controls are taken to be λ = 12.0, σ = 7.0. The forecasts of x1, x4, x7 based on
guess control (λ = 12.6, σ = 4.0) are shown in Figure 7. The amplitudes reach steady state
near t = 10. Graphs of the diagonal elements of VTV that dictate observations to be made
at t = 1 are shown in Figure 8. The observations at this time are found by adding ≈ 10%
random error to the forecast based on true controls. The observations of x4 (Obx4) and x7
(Obx7) at t = 1 are given by

(Obx4, Obx7) = (0.371, 11.378). (65)
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Figure 7. Forecast of the three amplitudes x1, x4, x7 for the nonchaotic regime using L-LOM (3) over
the time span [0, 10] with guess controls λ = 12.6, σ = 4.0.
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(2,2)—for the nonchaotic regime using L-LOM (3) when guess controls are given by 𝜆 = 12.6, 𝜎 =4.0. 

  

Figure 8. Plots of the diagonal elements of the product sensitivity matrix VTV—elements (1,1) and
(2,2)—for the nonchaotic regime using L-LOM (3) when guess controls are given by λ = 12.6, σ = 4.0.

Table 2 summarizes results from FSM. The assimilation process converges to a solution
in 4 steps. The last column of Table 2 displays the sequential reduction in cost function
values from ~19 to 3·10−5, reduction by a factor of 10−6. FSM determines values of
∆λ and ∆σ at each of the 4 iterations. The plot of these values is shown in Figure 9. The
contours are always elliptical since the FSM cost function at each iteration is quadradic in
∆λ and ∆σ. Display of cost function Equation (32) is shown in Figure 10 and the minimum
is found to be located at λ = 12, σ = 7.
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In a test that changed observation time from tobs = 1.00 to t = 1.05, the data assimilation
algorithm converged to (λ, σ) = (11.995, 6.968) in 4 iterations.

Atmosphere 2022, 13, x FOR PEER REVIEW 20 of 29 
 

 

Table 2 summarizes results from FSM. The assimilation process converges to a solu-
tion in 4 steps. The last column of Table 2 displays the sequential reduction in cost function 
values from ~19 to 3 ∙ 10ିହ, reduction by a factor of 10ି଺ . FSM determines values of ∆𝜆 𝑎𝑛𝑑 ∆𝜎 at each of the 4 iterations. The plot of these values is shown in Figure 9. The 
contours are always elliptical since the FSM cost function at each iteration is quadradic in ∆𝜆 𝑎𝑛𝑑 ∆𝜎. Display of cost function Equation (32) is shown in Figure 10 and the minimum 
is found to be located at 𝜆 = 12, 𝜎 = 7. 

In a test that changed observation time from 𝑡௢௕௦ = 1.00 to t = 1.05, the data assimila-
tion algorithm converged to (𝜆, 𝜎) = (11.995, 6.968) in 4 iterations. 

Table 2. FSM Iterates for 𝜆 = 12. 

i 𝚫𝝀(𝒊) 𝚫𝝈(𝒊) 𝝀(𝒊) 𝝈(𝒊) 𝑰𝒏𝒐𝒗 (𝒙𝟒) 𝑰𝒏𝒐𝒗 (𝒙𝟕) Cost Fcn 
0 — — 12.600 4.000 −1.987 −5.831 18.957 
1 −2.787 1.735 9.813 5.735 −2.245 −1.456 3.580 
2 0.252 1.579 10.065 7.309 −1.048 0.113 0.555 
3 1.499 −0.087 11.559 7.213 −0.210 0.172 0.037 
4 0.439 −0.243 11.997 6.969 −0.002 −0.005 3 ∙ 10ିହ 

 

 

FSM Cost Fcn (Iteration 1) 

 

FSM Cost Fcn (Iteration 2) 

Atmosphere 2022, 13, x FOR PEER REVIEW 21 of 29 
 

 

 

FSM Cost Fcn (Iteration 3) 

 

FSM Cost Fcn (Iteration 4) 

Figure 9. Contour plots of the FSM cost function in the space of control increments (𝛿𝜆 along the 
horizontal axis and 𝛿𝜎 along the vertical axis). The values of 𝛿𝜆 and 𝛿𝜎 at the cost function min-
imum are the incremental adjustments to controls at the operating point. 

 
Figure 10. Plot of the cost function given by Equation (32). The minimum is located at 𝜆 = 12.0, 𝜎 =7.0 (𝜆 the horizontal axis and 𝜎 the vertical axis). 
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Table 2. FSM Iterates for λ.

i ∆λ(i) ∆σ(i) λ(i) σ(i) Inov (x4) Inov (x7) Cost Fcn

0 — — 12.600 4.000 −1.987 −5.831 18.957
1 −2.787 1.735 9.813 5.735 −2.245 −1.456 3.580
2 0.252 1.579 10.065 7.309 −1.048 0.113 0.555
3 1.499 −0.087 11.559 7.213 −0.210 0.172 0.037
4 0.439 −0.243 11.997 6.969 −0.002 −0.005 3·10−5

Atmosphere 2022, 13, x FOR PEER REVIEW 21 of 29 
 

 

 

FSM Cost Fcn (Iteration 3) 

 

FSM Cost Fcn (Iteration 4) 

Figure 9. Contour plots of the FSM cost function in the space of control increments (𝛿𝜆 along the 
horizontal axis and 𝛿𝜎 along the vertical axis). The values of 𝛿𝜆 and 𝛿𝜎 at the cost function min-
imum are the incremental adjustments to controls at the operating point. 

 
Figure 10. Plot of the cost function given by Equation (32). The minimum is located at 𝜆 = 12.0, 𝜎 =7.0 (𝜆 the horizontal axis and 𝜎 the vertical axis). 

Figure 10. Plot of the cost function given by Equation (32). The minimum is located at λ = 12.0,
σ = 7.0 (λ the horizontal axis and σ the vertical axis).

5.2. Experiment II: Nonchaotic Data Assimilation Process (Saltzman Scaling)

This data assimilation experiment follows the exact steps for the nonchaotic data
assimilation process as shown in Section 5.1 except that the governing 3-mode equations
are scaled according to Saltzman’s form of the equations as found in Equations (3)–(5).

Figure 11 displays the time-dependent solutions to the 3-mode model. The solid curves
are derived from the true controls (λ = 12, σ = 7) and the dashed curves from forecast
controls (12.6, 4.0). The primary difference between this forecast and the one shown earlier
for Lorenz’s scaling is the much greater magnitudes of the variables and the shorter time
required to reach equilibrium. Otherwise, the time-dependent oscillatory nature of the
components is the same. The forecast sensitivity of x4 and x7 to λ and σ are shown in
Figure 12—again the sensitivities are much greater than those associated with Lorenz’s
scaling. Based on the elements of the sensitivity product matrix VTV, tobs = 0.16. The
observations at this time are found by adding ≈ 10% random error to the forecast based on
true controls. The observations of x4 (Obx4) and x7 (Obx7) at t = 0.16 are given by

(Obx4, Obx7) = (427.5− 260.6) (66)
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Figure 12. S-LOM (3) forecast sensitivity of x4 and x7 to controls for the non-chaotic regime.

Results from the data assimilation experiment are shown in Table 3. The data assimila-
tion process converges to (λ, σ) = (13.8, 4.8) in 4 iterations. The cost function is reduced 9
orders of magnitude. The cost function for this case is shown in Figure 13. The converged
values of control shown in Table 3 are consistent with this cost function’s minimum.

In a test that changed observation time from tobs = 0.16 to t = 0.10, FSM did not converge
to an optimal state. Instead, after a single iteration the result was (λ, σ) = (−46.3, 26.8),
unreasonable physically.

Table 3. FSM Iterates for λ = 12, Saltzman Scaling, Observations taken at t = 0.16.

i ∆λ(i) ∆σ(i) λ(i) σ(i) Inov (x4) Inov (x7) Cost Fcn

0 — — 12.600 4.000 191.857 63.905 2·104

1 2.397 −0.102 15.000 3.900 −52.480 58.896 3·103

2 −1.054 0.638 13.943 4.536 4.627 10.944 7·101

3 −0.135 0.218 13.807 4.754 0.750 0.742 6·10−1

4 −0.006 0.018 13.801 4.771 0.006 0.004 3·10−5
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Figure 13. Plot of the cost function based on Equation (32) for the nonchaotic regime using S-LOM (3).
The minimum is located at λ = 13.8, σ = 4.8 (λ the horizontal axis and σ the vertical axis).

5.3. Experiment III: Chaotic Data Assimilation Process (Lorenz Scaling)

True controls are taken to be λ = 28.0, σ = 10.0. The forecasts of x1, x4, x7 based on
guess control (λ = 29.0, σ = 8.0) are shown in Figure 14. Based on the elements of the
product sensitivity matrix VT ·V, observations are collected at t = 0.4. The observations at
this time are found by adding ≈ 10% random error to the forecast based on true controls.
The observations of x4 (Obx4) and x7 (Obx7) at t = 0.4 are given by

(Obx4, Obx7) = (22.832, 40.194). (67)

Table 4 summarizes results from FSM. Assimilation process converges to a solution
in 4 steps. The last column of the table displays the sequential reduction in cost function
values from ~74 to ~10−4, reduction by a factor of 106. The cost function is shown in
Figure 15 and the minimum is found to be located at λ = 28, σ = 10, nearly identical to the
solution found by FSM.
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Table 4. FSM Iterates for λ = 28.

i ∆λ(i) ∆σ(i) λ(i) σ(i) In (x4) In (x7) Cost Fcn

0 — — 29.000 8.000 −5.732 10.712 73.801
1 −4.419 3.130 24.581 11.130 0.773 7.839 31.024
2 3.003 −0.815 27.584 10.315 0.294 0.258 8·10−2

3 0.251 −0.136 27.835 10.178 −0.008 0.011 9·10−5

4 0.000 0.002 27.835 10.180 3·10−6 3·10−6 9· 10−12
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Figure 5. There is no reason to believe that observations at these times would not give a 
reasonable result. The reasonableness of the result, however, would be dependent on the 
smallness of the condition number.  

  

Figure 15. Plot of the cost function based on Equation (32) for the chaotic regime using L-LOM (3).
The minimum is located at λ = 27.6, σ = 10.3 (λ the horizontal axis and σ the vertical axis).

It is interesting to consider cases where the optimal observation time was greater than
t = 0.4, times where the model forecast sensitivities are extremely large as shown earlier in
Figure 5. There is no reason to believe that observations at these times would not give a
reasonable result. The reasonableness of the result, however, would be dependent on the
smallness of the condition number.

5.4. Experiment IV: Data Assimilation in Time and Space (x, z)

We confine our attention to a single numerical experiment that combines space and
time. Our experiment focuses on true controls λ = 2 and σ = 7, a nonchaotic regime. The
perturbed controls are λ = 2.5 and σ = 3.0. The time of observation is determined from the
structure of the sensitivity product matrix VTV. Based on the trace of VTV, observations
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are taken at tobs = 2. The spatial observation sites are determined from the trace of HT H at
t = 2. These spatial locations are

x1 = 0.10 z1 = 0.25
x2 = 0.10 z2 = 0.75
x3 = 2.55 z3 = 0.23
x4 = 3.11 z4 = 0.68

(68)

In this case, the condition number for the G matrix is 3.8 which builds convexity into
the cost function as shown in Figure 16.
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Figure 16. Plot of the cost function based on Equation (32) for the nonchaotic regime using L-LOM (3)
with observations in space-time. The minimum is located at λ = 2.0, σ = 4.4 (λ the horizontal axis
and σ the vertical axis).

Table 5 summarizes to convergence to optimal solution. The innovations at the
observation locations exhibit a reduction of 107 in the 3 iterations and the optimal minimum
is very close to the minimum shown in Figure 16.

Table 5. FSM Iterates for the space-time constraint.

i ∆λ(i) ∆σ(i) λ(i) σ(i) Innov
(x1,z1)

Innov
(x2,z2)

Innov
(x3,z3)

Innov
(x4,z4)

0 — — 2.500 3.000 0.076 −0.638 0.138 −0.599
1 −0.412 0.824 2.087 3.824 −0.032 0.056 −0.034 0.051
2 0.004 0.334 2.091 4.158 −0.002 0.006 −0.002 0.005
3 0.002 0.009 2.093 4.167 5·10−6 7·10−7 4·10−6 9·10−7

6. Discussion and Conclusions

S-LOM (3) and L-LOM (3), low-order forms of spectral equations that govern Rayleigh–
Bénard convection developed by Saltzman [1] and used by Lorenz [4], respectively, have
been used to study advantages of observation placement in dynamic data assimilation.
Observation placement is controlled by forecast sensitivity to model control; in this case
the control has two elements, Rayleigh and Prandtl numbers. We have used FSM data
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assimilation since it delivers forecast sensitivities to control that are used to determine
observation placement.

By examination of the cost function in terms of forecast sensitivities, a Gramian matrix
G becomes the centerpiece to determine observation placement. For time-only observations,
the Gramian matrix reduces to the product of VTV where V is the time-dependent forecast
sensitivity to control. This matrix is symmetric positive definite and the maximum values
of the trace or norm of this matrix determine the best observation locations. Observation
locations that yield the matrix’s smallest condition number build convexity into the cost
function’s minimum. For our case study, the contours of the cost function in the space of
the two controls are ellipses. As the condition number approaches the number 1, the major
and minor axes of the ellipses approach the same number and the ellipses approach circles.
In this case, the path to the minimum is along a straight line. For time-space observations,
the Gramian matrix is symmetric semi positive definite in the form VT HT HV where H is
the spatial-dependent matrix that accounts for the double Fourier series representation
of the observations. This product exhibits separability in space and time and therefore
permits determination of observation-time placement as a first step to be followed by
spatial placement of observations.

We tested the observation placement strategy for both nonchaotic and chaotic regimes.
Results from the numerical experiments with FSM were especially good based on (1) itera-
tive reduction of the cost functions’ values, and (2) comparison of the optimal parameters
with the cost function minimum in the space of controls.

We also wanted to test the role of equation scaling in the data assimilation process. The
two models have different scaling where S-LOM (3) follows the standard fluid dynamical
scaling based on the fluid’s physical parameters while L-LOM (3) incorporates various
forms of the non-dimensional wavenumber along with the physical parameters in its
scaling. The scaling for L-LOM (3) leads to coefficients of comparable magnitude in the
governing amplitude differential equations while scaling for S-LOM (3) leads to order
of magnitude differences in the coefficients. In turn, the forecast sensitivity equations
for S-LOM (3) exhibit large differences in their coefficients. Nevertheless, the FSM data
assimilation method delivered good results for both models. On the other hand, when the
ideal observation time is changed slightly, S-LOM (3) results were poor while L-LOM (3)
were excellent. It thus appears that scaling plays an important role in data assimilation, at
least for our limited number of experiments.
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