U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Southeast Fisheries Science Center • 75 Virginia Beach Drive • Miami, Florida 33149

CRUISE REPORT

Meso-American System Transport & Ecology Research M.A.S.T.E.R Cruise

Cruise 0701: NOAA Ship GORDON GUNTER January 8 - February 5, 2007

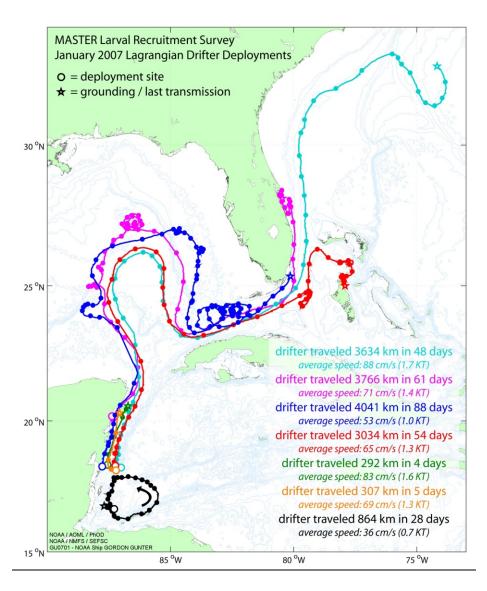


Figure 1. MASTER Cruise drifter tracks.

Introduction

The NOAA Ship Gordon Gunter departed Pascagoula Mississippi on January 8, 2007 for the Meso-American System Transport & Ecology Research Cruise (MASTER Cruise). The cruise was a joint international effort between NOAA's Southeast Fisheries Science Center and the Atlantic Oceanographic and Meteorological Laboratory, El Colegio de La Frontera Sur (ECOSUR) in Chetumal, Centro de Investigacion y de Estudios Avanzados (CINVESTAV) in Merida, Mexico, and the University of Belize. The cruise was directed at surveying the coral reef fish larval distribution and physical oceanography of the western Caribbean coast from the Yucatan Channel to the waters of southern Belize (Figure 1). Known grouper spawning locations were specifically targeted such as the one shown below at Mahahual, Mexico (Figure 2).

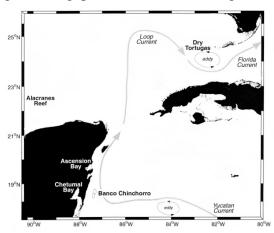


Figure 2. Spawning aggregation of; Nassau grouper (Epinephelus striatu) Mahahual, Mexico.

Reef fish populations are part of one of the most complex ecosystems in the marine environment. They are also the most heavily exploited part of the ecosystem and have been pushed to extremely low levels throughout South Florida and the wider Caribbean. Despite the importance of these populations, relatively little is known about most stages of their life cycles or their interaction with small and mesoscale oceanographic patterns. Important information such as adult spawning behavior, location, and depth of spawning aggregations and recruitment is mostly unknown. Little is known about the status of these fish populations in the western Caribbean along the Meso-American reef system, though stocks there are generally considered to have suffered relatively less exploitation. There are also significant gaps in our understanding of the

complex circulation patterns along the western Caribbean's Yucatan coast where the Caribbean Current and the Loop Current connect and flow into the Gulf of Mexico (Figure 3).

This area plays a potentially important but still unknown role in the route of subtropical gyre circulation which drives the biological production and transport of larvae throughout this region. This research project is designed to provide a baseline study of the fisheries oceanography of the western Caribbean during winter spawning and to provide a basis for future fisheries management decisions.

Figure 3. Circulation patterns of the Yucatan coast and the Gulf of Mexico.

Objectives

Two broad questions drive this research:

- 1. What is the level of larval dispersal and recruitment connectivity within and amongst the Mesoamerican reef, the Dry Tortugas, and the Florida Keys National Marine Sanctuary's reserves?
- 2. Is there evidence of self-recruitment within these marine reserves?

Specific objectives of this cruise:

- Map large-scale larval transport/export and distribution using a one- and a ten-meter MOCNESS;
- Map currents and eddies along the Yucatan Peninsula and the Quintana Roo and Belize coasts with shipboard ADCP;
- Map temperature/salinity fields from Yucatan Channel to southern Belize;
- Collect ichthyoplankton samples at known snapper and grouper spawning aggregations;


Objectives (continued)

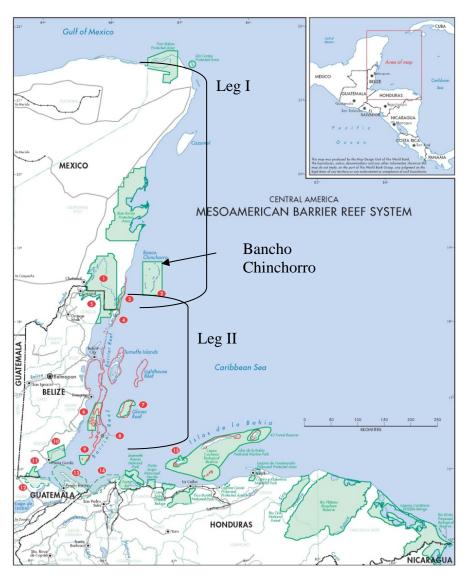
- Collect light trap, settlement trap, and tidal net samples from the inshore areas of marine reserves at Xcalak and Banco Chinchorro;
- Measure depth of chlorophyll maximum and map surface chlorophyll;
- Use these data to model the major flow-regime along the Yucatan Peninsula and the physical processes affecting larval transport and/or retention onto and along the coral reef tracks;
- Deploy satellite-tracked drifters to measure current flow and identify gyre circulation patterns;
- Ground-truth satellite imagery provided by ROFFS Roffer's Ocean Fishing Forecasting Service, Inc.

Materials and Methods

Stations were selected to provide a map of larval fish distribution from the Yucatan channel south along the coast of Belize and to resolve dynamic oceanographic features (Figs 7 and 10). ROFFS provided daily updates of oceanographic features and fronts and these are included as Addendum I. AOML provided MODIS color images. Ichthyoplankton tows were conducted by Multiple Opening and Closing Net Environmental Sensing System (MOCNESS).

Both one and ten meter nets were used (Figure 4).

Figure 4. 10 meter MOCNESS deployment.


CTD's were conducted/deployed using a standard 24 bottle rosette with dual Temperature, Conductivity, and Oxygen sensors, a fluorometer and lowered Acoustic Doppler Current Profiler (Figure 5). CTD casts were made to the bottom or 1800 meters. Casts were limited to this depth by the amount of cable on the hydro-winch. Oxygen and chlorophyll samples were measured.

Each ichthyoplankton station consisted of a tow to 100 m with discrete sampling depths of 100-75, 75-50, 50-25, and 25-0 meters. All zooplankton samples were preserved in ethanol. A two meter juvenile fish trawl was used at selected stations. Neuston samples were not collected due to winch limitations.

Figure 5. CTD deployment.

Currents were measured by the hull-mounted ADCP and the self-contained lowered ADCP attached to the CTD frame. Temperature, salinity, and chlorophyll fields were derived from CTD casts as well as the flow-through system on the Gordon Gunter. Both 10-meter and 1-meter MOCNESS tows were collected from the Yucatan Channel south to Belize. Copies of ADCP data, CTD casts, and XBT's were provided to ECOSUR at the end of the cruise. Copies have also been provided to the NOAA Coal Reef Conservation Program, and data will be on file at the SEFSC Library with a copy of this report. CTD and MOCNESS stations are listed in Addendum II.

Results and Discussion

Ninety-four 1-meter and 7 ten-meter MOCNESS tows, 16 juvenile fish trawls, and 101 CTD casts were conducted between the Yucatan Channel and Gladden Spit Belize. Sixteen light trap settlement trap stations were collected over a two-week period coinciding with the **GORDON GUNTER** collections at Arrecifes de Xcalak Marine Reserve, and Banco Chinchorro's Biosphere Reserve. The cruise divided into two legs. The first leg (Figures 6 and 7) focused on the area from the Yucatan Channel south Bancho to Chinchorro. Leg 2,

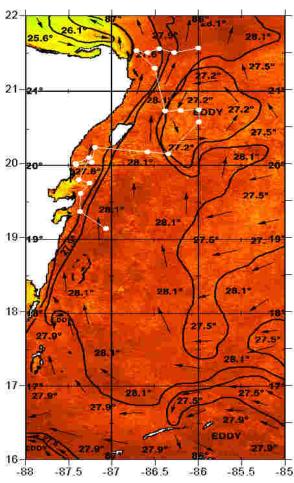
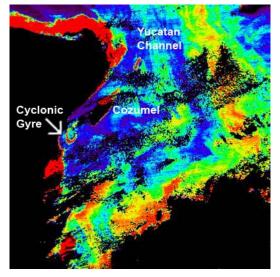
in cooperation with the University of Belize and Conservation International, focused on the area from the northern border of Belize south to Glovers Reef, with emphasis on known grouper spawning sites (Figures 6 and 10.)

Figure 6. Map of cruise area showing Meso-American reefs and Biosphere Reserves (Map: World Bank).

LEG₁

The first leg of the cruise began at the Yucatan Channel and sampled an area south to just north of Banco Chinchorro. Preliminary ADCP dataderived flow fields from 2007 indicated a strong generally northward flow, throughout the first leg as was noted in 2006. All satellite deployed drifters indicated a strong northerly flow as did ADCP measured currents. A strong northward flow was also found in the Cozumel channel. This can be seen in the satellite analysis shown Figure 7. The satellite analysis for 9 January 2007 shows northward flowing currents with some eddy formation in the Caribbean current to the east of Cozumel. The stations and ship track are shown in white. Zooplankton collections were made with the one and 10 meter MOCNESS. The first transect covered the northward flowing Yucatan Channel, and the second was adjusted to the east to sample a northern moving cyclonic gyre which can be seen in the satellite analysis. The previously planned track was resumed along an east-west line south of Cozumel.

However, an unusual southerly flowing feature was noted during the transect southeast of Cozumel where satellite imagery, drifter tracks, and shipboard ADCP indicated a probable cyclonic flow pattern (Figure 8). A southward flow was also noted southwest of Cozumel. The MODIS color image below depicts the unusual formation of a cyclonic flow field of as yet undetermined vorticity. When this feature was noted by the shipboard ADCP, the cruise track was rerouted. A satellite tracked drifter was deployed and additional biological and physical measurements were collected. Preliminary analysis depicted below (Figure 9) showing the depth of the 12⁰ isotherm indicates significant cyclonic flow just north of Punta Allen, and southwest of Cozumel. The drifter can be seen to follow the cyclonic flow before becoming entrained in the strong northern flow in the Cozumel Channel. Because of subsequent cloudy conditions it was not possible

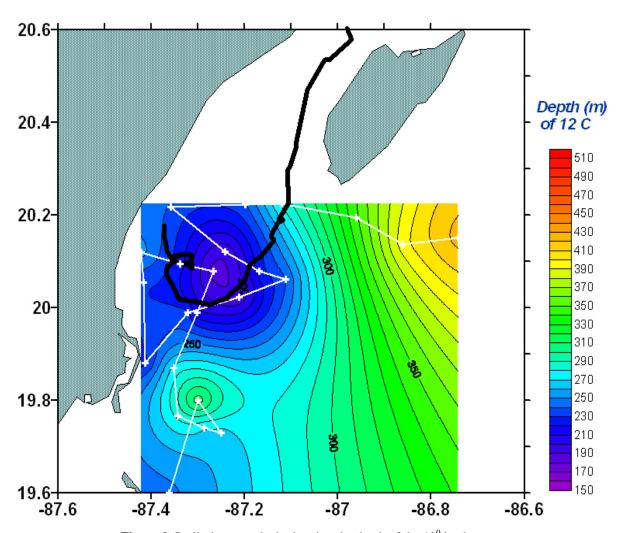

Figure 7. Strong northerly flow.

Figure 8. Satellite image of a southerly flow.

LEG I (continued

to determine the duration of this flow but transitory features such as these may have a large impact on local recruitment and larval transport. Additional MOCNESS tows were added to biologically characterize this area.

Figure 9. Preliminary analysis showing the depth of the 12⁰ isotherm.

LEG II

Leg II began at Mahual, and sampled the channel between Xcalack and Banco Chinchorro, and around the Banco Chinchorro Biosphere Reserve. Sampling was concurrent with shore based collections at both Xcalak and Banco Chinchorro. The ship then proceeded south along the track line noted in Figure 10.

Initially all measured current flow fields indicated a strong northward flow throughout the Xcalack Channel, and west and South of Banco Chinchorro. Northward flow continued to be strong until about 18⁰. Continuing satellite analysis indicated the possible development of the Honduran gyre and the ship's track was diverted to that area. Samples were collected in the gyre and a drifter deployed. Sampling continued as planned along the reef system of Belize throughout the second leg.

As the ship sampled back to the north, it was noted that by 25 January, flow was considerably different south of Banco Chinchorro at approximately 18⁰ north. Currents had shifted from a strong northerly flow to a strong westerly flow in an onshore direction with weaker flow to the south. This shift in current direction may be caused by increased vorticity associated with eddy development north of Honduras at 17⁰ N. As this cyclonic gyre developed, it appears to pull water from the Caribbean current westward and southward. Both the initial strong northern flow and the gyre can be seen in the satellite tracked drifter deployments (Figure 11). This major shift in the flow

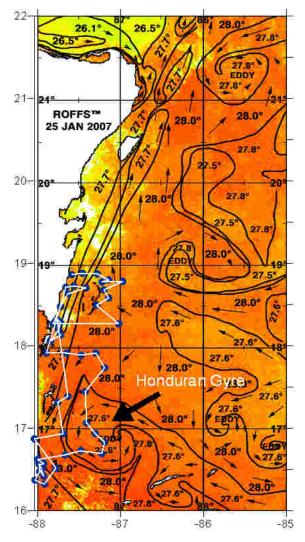
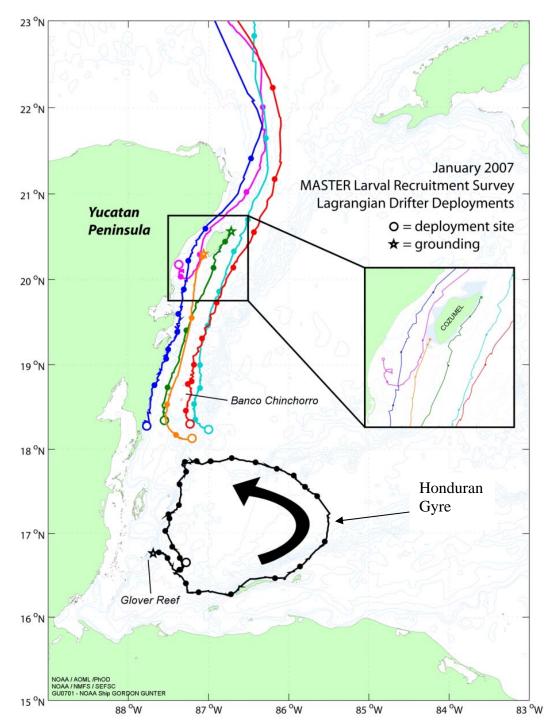



Figure 10. Ship's track and the Honduran

of the Caribbean current occurred in less than seven days. During this time current flow just south of Banco Chinchorro Reserve was measured due west by shipboard ADCP. Additional drifter plots and initial current vectors are plotted in Addendum III. MOCNESS samples from both legs are being sorted and identified by ECOSUR. Status of samples from 2006 and 2007 are included in Addendum IV. All samples from 2006 have been sorted, and approximately 50% have been identified to date. Major families are noted based upon initial identification of over 10,000 larvae. Scaridae, Myctophidae, Labridae, and Gobiidae are the most abundant families from those samples identified. There are 385 zooplankton samples to be sorted from 2007 and 45% have been sorted to date. Also see initial cruise results, 2006 pages 17-24 this report.

LEG II (continued)

Figure 11. Satellite drifter tracks showing Honduran gyre circulation (Black) and Caribbean current flow.

BANCO CHINCHORRO

Concurrent with the MASTER Cruise, a research team was stationed at Banco Chinchorro Biosphere Reserve in cooperation with Comision Nacional de Areas Naturales Protegidas Reserva de la Biosfera Banco Chinchorro. Inshore samples were collected using light traps and settlement traps. Collections were also made at Arrecifes de Xcalak Reserve, at the southern border of the Yucatan (Figure 6). Three types of gear were utilized; light traps (Jones 2006), channel nets (Shenker *et al.* 1993), and settlement traps (Steel *at al.* 2002), and they were

Offshore

Channel

Ch

Figure 12. Light traps and channel nets deployed at Banco Chinchorro.

deployed at Arrecifes de Xcalak Reserve as shown below.

Light Traps: six and nine light traps were sampled in the coral reef lagoon in Xcalak and Banco Chinchorro respectively. traps were set 100 m or 150 m apart (Figure 12). Each trap has a built in fluorescent light and an automatic timer that turns on at sunset, and turns off at 4 a.m. The samples were collected every morning and all the plankton was fixed in 96% Ethanol. The traps were serviced daily, with the rechargeable batteries changed and resetting the timer. The traps were sampled seven nights in Xcalak and nine nights in Banco Chinchorro. Light trap design is detailed in Addendum VII.

Channel Nets: Three channel nets were deployed to catch the inflow of larvae into natural reef openings or reef channels into the Xcalak reef lagoon. The rectangular frame measured 1.20 m x .9 m and had a 1 mm mesh. A digital flow meter (General Oceanic) was attached to record the volume filtered. The flow meter data was documented each day upon deployment (between 6-7 pm) and at morning collection. The samples collected were fixed in 96% Ethanol.

Settlement Traps: Twenty settlement traps were deployed in the reef lagoon in between light traps. These traps (15 ft x 1 ft x 6 in) float in the water column and comprise of a 2-mm mesh inside that attracted larvae to hide within. A snorkeler used a collecting bag that envelops the trap underwater to collect any larvae that are using the traps as refuge. The snorkeler swims the trap to the boat and any larvae collected is fixed in 96% ethanol.

Current meters were placed in both sampling sites and recovered after the cruise. Data is being analyzed by Dr. Laura Carrillo Bibriezca at El Colegio de La Frontera Sur (Figure 13).

BANCO CHINCHORRO (continued)

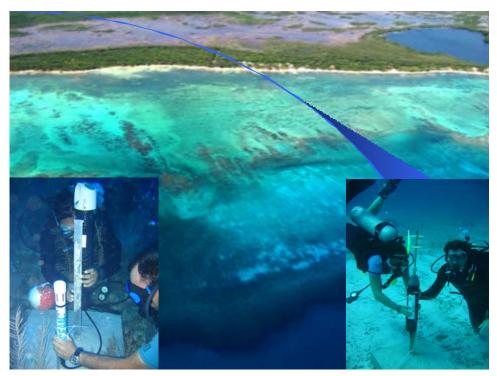


Figure 13. Deployment of current meters at Xcalak.

Light trap samples have been sorted and are being identified. The list of samples is given in Addendum V. Larval reef fish MOCNESS samples have been sorted for 2006 and sorting from 2007 is 30% complete. Over 30,000 fish were sorted from the 2006 samples. Identification to family has been completed for approximately 20%. Status of sorting, biomass measurements and number of larvae are given in Addendum VI.

LIST OF PERSONNEL

Leg I: January 11-19, 2007 -- Key West to Majahual Mexico

Name	Sex	Organizati SRE	on Title	Citizenship
LT Gildardo Alarcon Daowz	М	Mexico	Observer	Mexico
Keith Martin	М	NOAA	Technician	USA
Elizabeth Johns	F	AOML	Physical Oceanographer	· USA
Grant Rawson	М	AOML	Physical Oceanographer	· USA
John Lamkin	M	SEFSC NOAA	Chief Scientist	USA
LTJG Natasha Davis	F	Corps	Officer	USA
Estrella Malca	F	SEFSC	Biologist	USA
Anne Morgan	F	UM	Biologist	USA
Akihiro Shiroza	М	SEFSC	Biologist	Japan
Edgar Tovar	M	Mexico	Biologist	Mexico
Ivan Castellanos Osorio	М	ECOSUR	Biologist	Mexico
Laura Carrillo Bibriezca	F	Mexico	Physical Oceanographer	Mexico
Javier Gonzalez	М	Mexico	Physical Oceanographer	Mexico
Aurora Beltrans	F	Mexico	Biologist	Mexico
Francisco Alemany	M	Spain	Biologist	Spain

Leg II: January 21 – January 31, 2007 -- Majahual, Mexico to Key West, Florida

Lt. Gildardo Alarcon Daowz	M	SRE Mexico	Observer	Mexico
Keith Martin	M	NOAA	Technician	USA
Annie Morgan	F	UM	Biologist Physical	USA
Elizabeth Johns	F	AOML	Oceanographer Physical	USA
Grant Rawson	M	AOML	Oceanographer	USA
John Lamkin	M	SEFSC	Chief Scientist	USA
Estrella Malca	F	SEFSC	Biologist	USA
Akihiro Shiroza	М	SEFSC NOAA	Biologist	Japan
LTJG Natasha Davis	F	Corps	Officer	USA
Ivan Castellanos Osorio	M	ECOSUR	Biologist	Mexico
Elsa Falfan Vasquez	F	CINVESTAV	Biologist	Mexico
Uriel Ordonez	М	CINVESTAV	Biologist Physical	Mexico
Laura Carrillo Birbriezca	F	Mexico	Oceanographer Physical	Mexico
Javier Gonzalez	M	Mexico	Oceanographer	Mexico
Maria De Carmen Garcia	F	Mexico	Reserve Manager	Mexico

List of personnel

Banco Chinchorro

Lourdes Vasquez Yeomans Jose A Cohuo Monica Lara Dave Jones

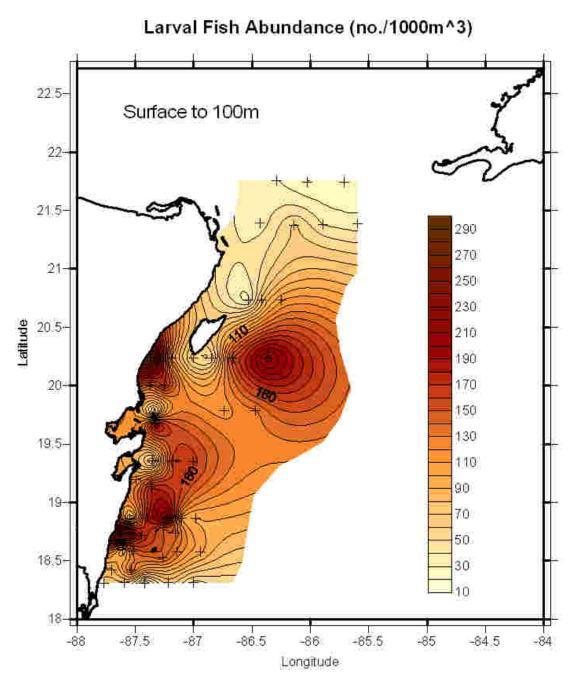
Recommendations for Improved Scientific Support

These comments were developed as part of the GORDON GUNTER 0601 cruise report and are included here again to maintain attention to needed improvements in scientific capability. In general, the scientific party of Cruise 0601 agrees that the *NOAA Ship Gordon Gunter* is a solid research platform and has great potential for improved oceanographic data gathering capabilities. Given the current resources, we were able to accomplish a great deal during the cruise. Below is a list of suggestions we think are important for future cruises as well as for general upgrading of the ship's capabilities. We believe that implementation of these suggestions would strengthen this valuable NOAA asset and raise its capabilities to the level of comparably sized UNOLS research vessels.

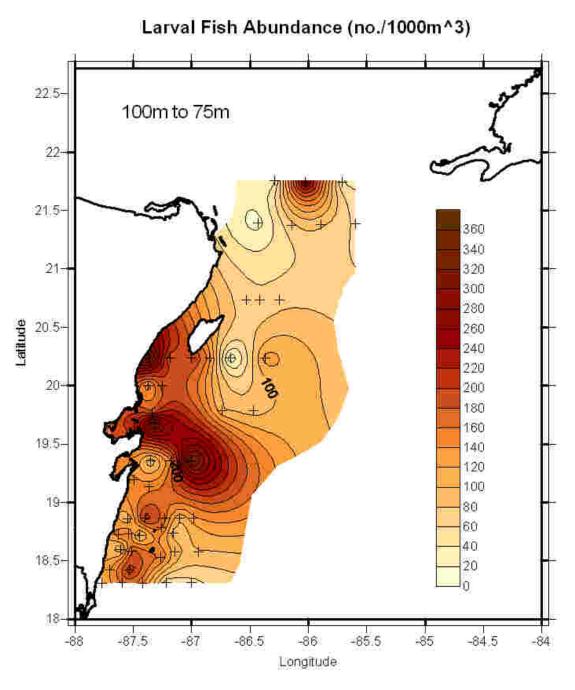
- There are not enough winches available for collecting gear. With both MOCNESS and CTD we could not deploy a neuston net. This is a significant problem when sampling for tuna and billfish. There needs to be at least one additional winch available. The neuston net does not require large amounts of cable. A small electric winch with hydro wire would be sufficient
- Upgrade the small oceanographic winch to a 6000 meter capable winch designed to take loads associated with standard 24 bottle frame and rosette with ADCP. Otherwise overhaul and move small winch to centerline facing aft to use for deploying MOCNESS via A-frame (fantail deployment) freeing up the Desh-5 for CTD.
- 3) Spool Desh-5 with at least 6000 m of .322 conductor cable. Load winch under tension and gear winch for use at speeds of 60 meters per minute. Slow winch speeds significantly increase time on station and increased difficulties for vessel station keeping
- 4) Install larger diameter turning block on J-frame for use with CTD.
- 5) Regarding all winches used for scientific purposes (CTD, MOCNESS, trawl, etc.), route wire tension, speed, and meters out readings to all winch control stations and to SCS data stream.
- 6) Upgrade ship's depth sounding capabilities. Knowing the depth of the bottom is critical to CTD operation. Vessel must be able to sound full ocean depth (5000 m) without difficulty. On all shipboard sounders, log depth and data quality flag to SCS data stream.
- 7) Install cleats (2) inside railing on either side of port quarterdeck CTD deployment area for leading CTD deployment and recovery lines. These cleats may be removable.
- 8) Correct air lock troubles with TSG flow-through system seawater inlet. This has been an ongoing problem for years. AOML engineers would be happy to aid in suggesting most the desired route and design for scientific flow-through plumbing.
- 9) Add remote inlet temperature sensor to TSG flow-through system. The internal TSG temperature recorded to SCS is over one degree higher than the ambient SST. Log flow rate of flow-through system to SCS data stream.
- 10) Repair and recalibrate the ship's CTD, CTD pylon, and associated CTD sensors.

Recommendations for Improved Scientific Support (continued)

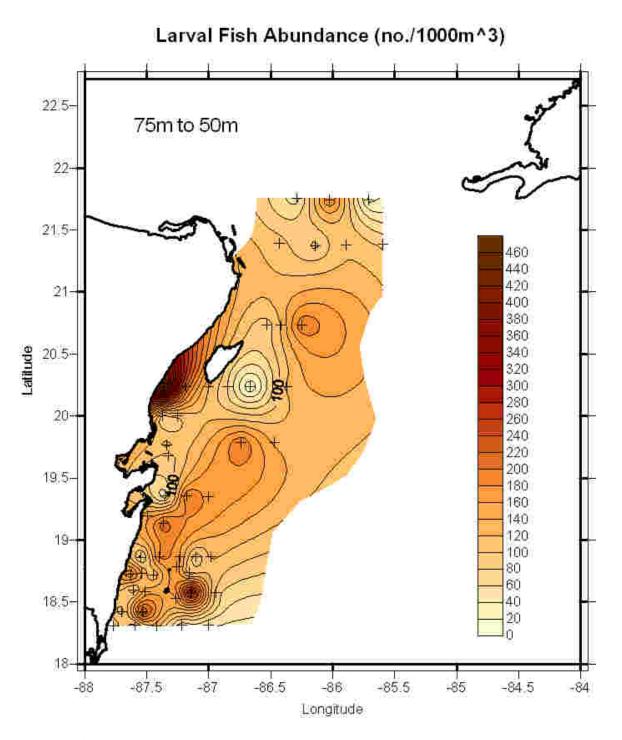
- This cruise has demonstrated the need for a backup CTD and sensors. Ship should have a second CTD and spare sensors aboard and available.
- Install a working XBT system on the ship. The *Gunter* may be able to work with AOML to upgrade their existing AMVER SEAS system to include XBT launching capabilities. XBT data would then be transmitted directly via the AMVER SEAS data stream in near real-time (with meteorological and oceanographic observational data).
- 13) Cut a canvas cover for the ship's CTD package to protect this valuable equipment from UV radiation, salt spray, and deck generated debris (rust, scale, paint). Store the ship's CTD on the boat deck when not in use.
- 14) Repair and rebuild the ship's folding crane.
- Modify hydraulics and reposition inboard stops on the ship's A-frame to allow for extended inboard range. This would simplify deployment and recovery of scientific instrumentation on the fantail (e.g. at present, use of the ship's crane is required, in addition to the A-frame, for every MOCNESS deployment and recovery).
- 16) If a spare transducer well is available, install 12kHz transducer with associated line scan recording equipment for tracking acoustic pingers (attached to lowered equipment) and for communicating with moored acoustic releases.

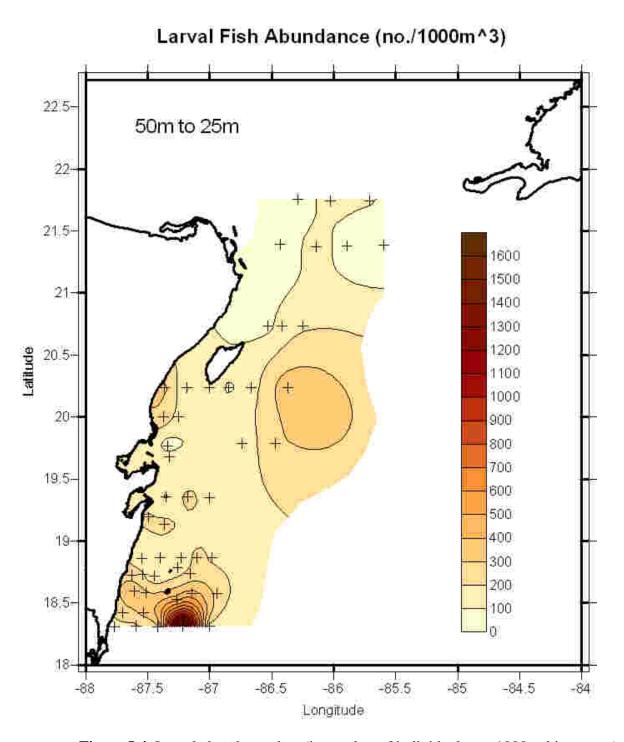

Submitted by:	
Dr. John T. Lamkin, Field Party Chief Early Life History Lab, NOAA-SEFSC	
Approved by:	
Dr. John W. Watson, Acting Director Mississippi Laboratories	
Approved by:	
Dr. Bonnie Ponwith, Director Southeast Fisheries Science Center	

2006 CRUISE INITIAL RESULTS


Initial analyses of the first cruise in 2006 suggest several patterns in the distribution of larvae in the strata. Highest larval abundance (in number of larvae per 1,000 cubic meters) were found in the upper 50 meters (Figures L1, L2, L3, L4, and L5), with mean abundance values for the depth strata ranging from 113 to 218 larvae/1,000m³ (Table L1). Contour analysis reveals distinct features in the data that vary with the vertical strata. From the surface to a depth of 100 meters, several features of high larval abundance were present (Figure L1). Two features were located just south of the island of Cozumel, with one to the southeast and another to the southwest along the coast. Further south, below 19 degrees north latitude, two additional peaks were found in the general location of Banco Chinchorro. In general, lower values of abundance were found north of Cozumel. Values of larval abundance ranged from 20 to 296 larvae/1000m³ (Table L1). Although the data has been presented here, it is important to remember that the data in Figure L1 was collected during the downcast when the sampling gear is not flown in the ideal configuration. Figure L2 represents data collected from 100 to 75 meters. Relatively high values of larval abundance were found east and south of Bahia de Ascension as well as southwest of Cozumel along the Yucatan Coast. As with the previous figure, slightly lower values of abundance dominated in the north, with the exception of one station at the northernmost extent of the study area in the central Yucatan Straits (Fig. L2). Values ranged from 2 to 350 larvae/1,000m³ (Table L1). Data sampled from 75 to 50 meters (Fig. L3) shows less distinct features, but the high larval abundance along the Yucatan Coast southwest of Cozumel persists. Values of larval abundance ranged from 13 to 471 larvae/1000m³ (Table L1). In depths ranging from 50 to 25 meters (Figure L4), only one distinct feature is found at the southern boundary of the study area, at approximately 18.3 degrees north latitude, 87.25 degrees west longitude. The

2006 CRUISE INITIAL RESULTS (continued)


highest values of larval abundance are found at this location, with a minimum of 15 larvae/1000m³ and a maximum of 1,664 larvae/1000m³ (Table L1). High larval abundances are also found in the vertical strata extending from 25 meters to the surface, with a range of values from 1 to 1471 larvae/1000m³ (Table L1). Maximum larval abundance was found in an offshore feature at approximately 19 degrees north latitude (Figure L5).


Figure L1. Larval abundance contours (in number of individuals per 1000 cubic meters) collected during the downcast of the MOCNESS, from the surface to 100 meters.

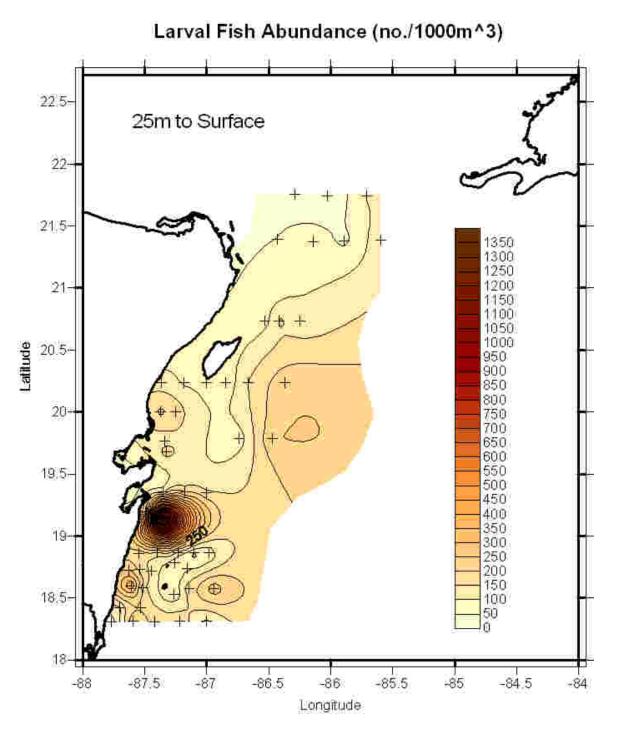

Figure L2. Larval abundance data (in number of individuals per 1000 cubic meters) collected from 100 to 75 meters.

Figure L3. Larval abundance data (in number of individuals per 1000 cubic meters) collected from 75 to 50 meters.

Figure L4. Larval abundance data (in number of individuals per 1000 cubic meters) collected from 50 to 25 meters.

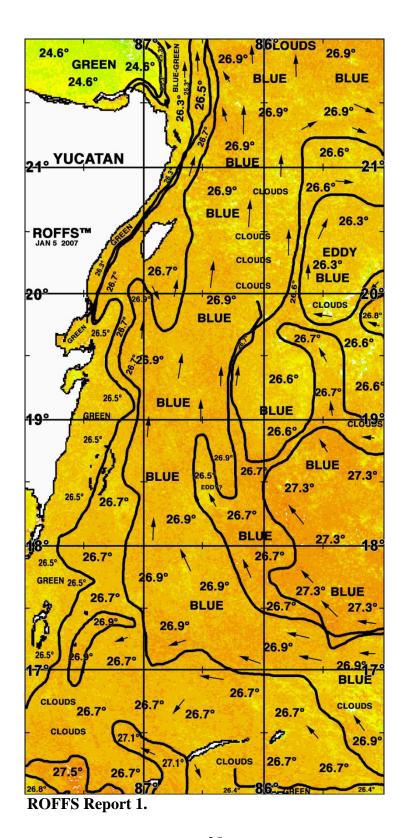
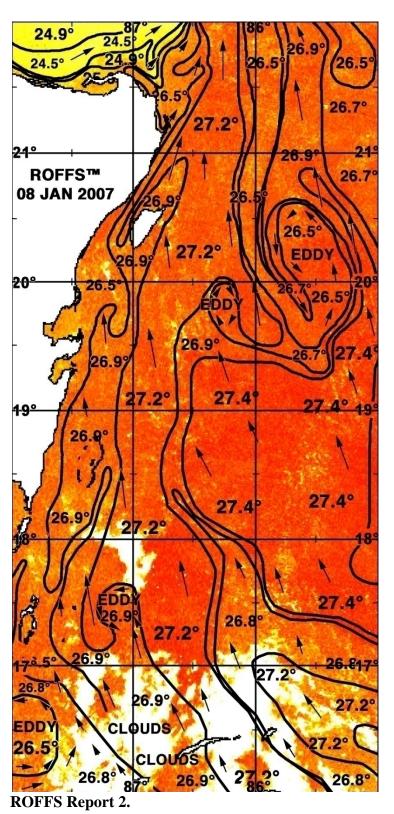
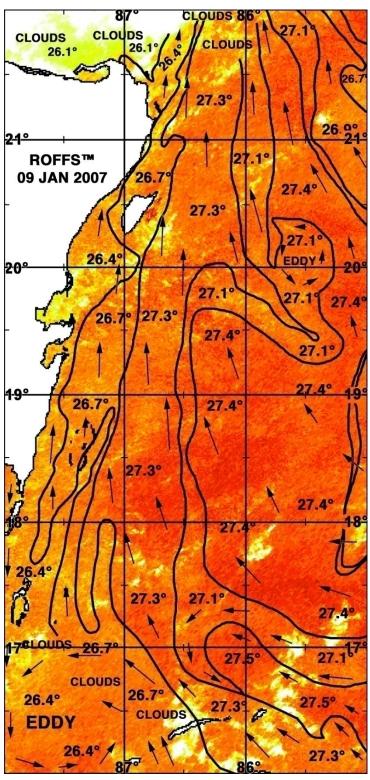
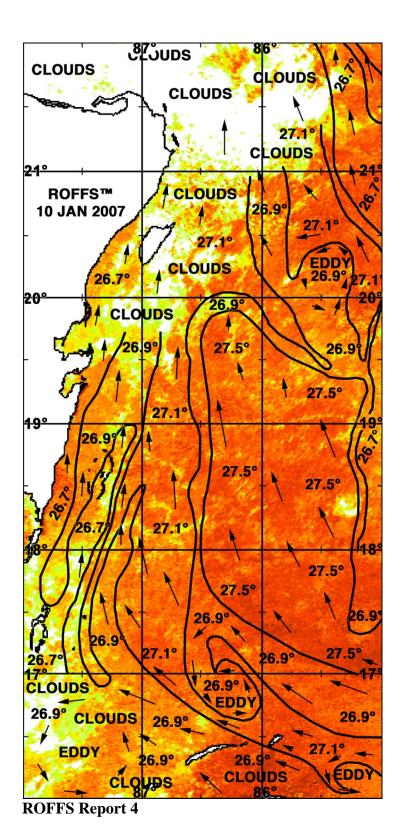
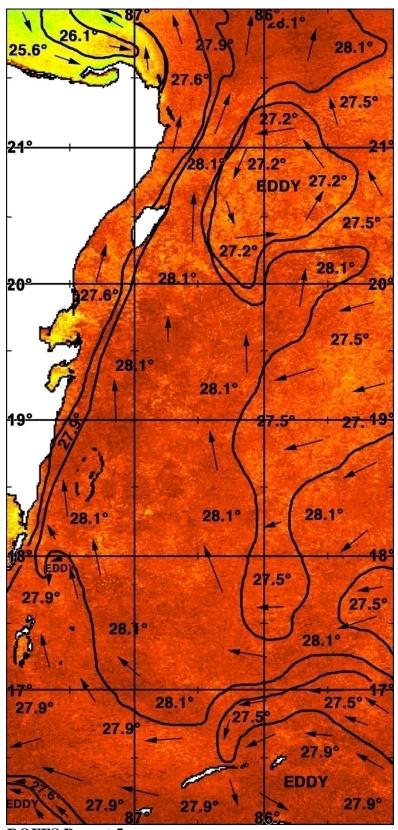


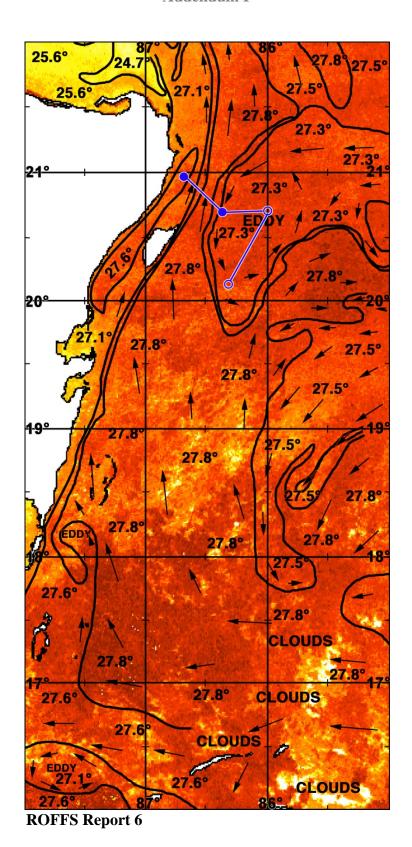
Figure L5. Larval abundance data (in number of individuals per 1000 cubic meters) collected from 25 to 0 meters.

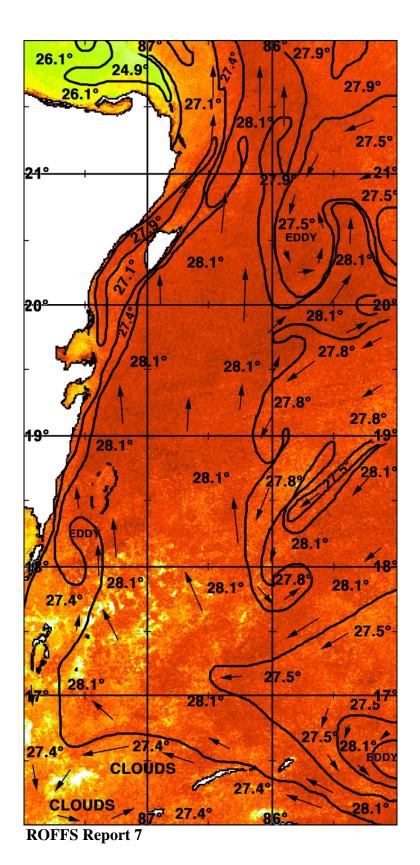

Vertical Strata	0 to 100m	100 - 75m	75 - 50m	50 - 25m	25 - 0m
Minimum abundance	20.11	1.86	12.82	15.20	1.25
Maximum abundance	296.14	349.95	470.90	1663.81	1471.39
Mean	113.60	135.97	135.29	218.47	165.20


Table L1. Minimum, maximum, and mean larval abundance for each of the MOCNESS sampling nets.

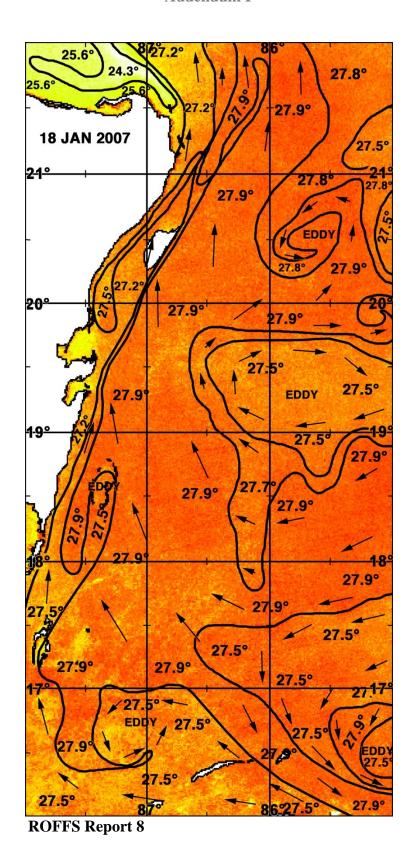

U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum I


U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum I

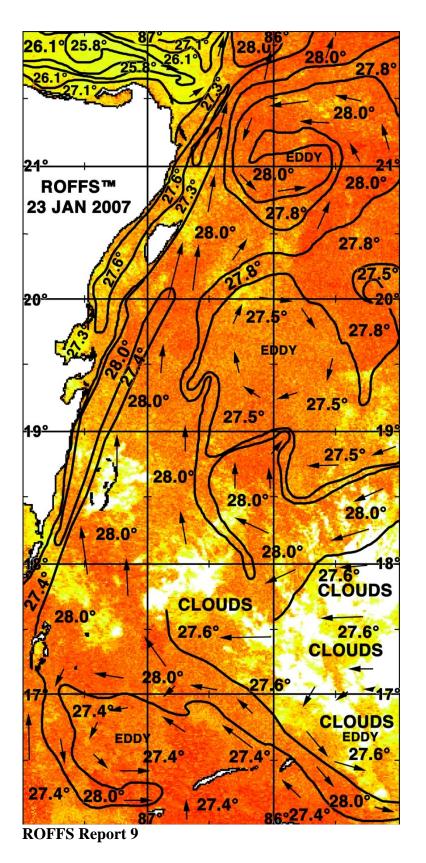


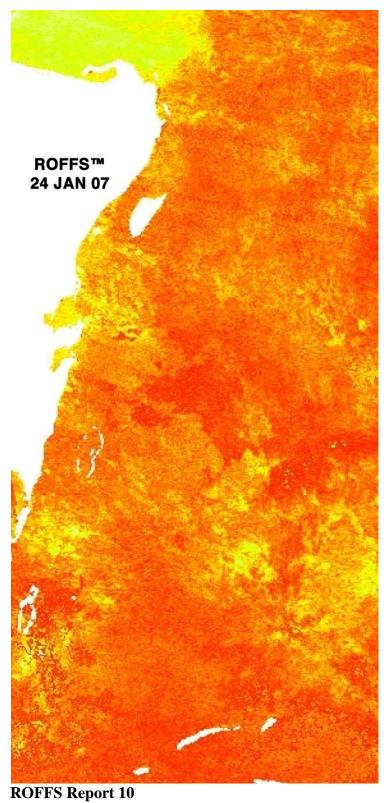


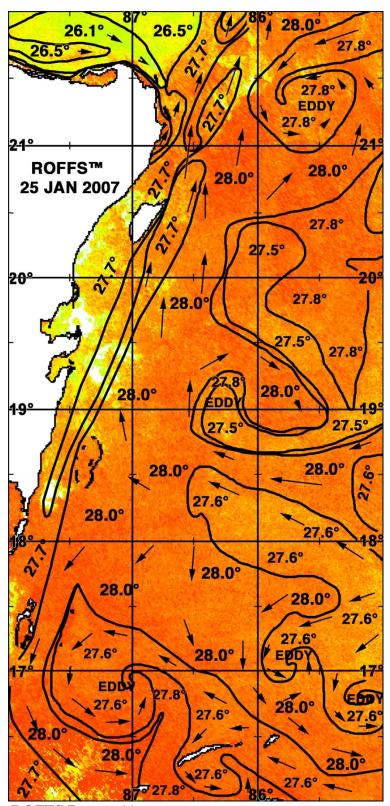
U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum I



ROFFS Report 5

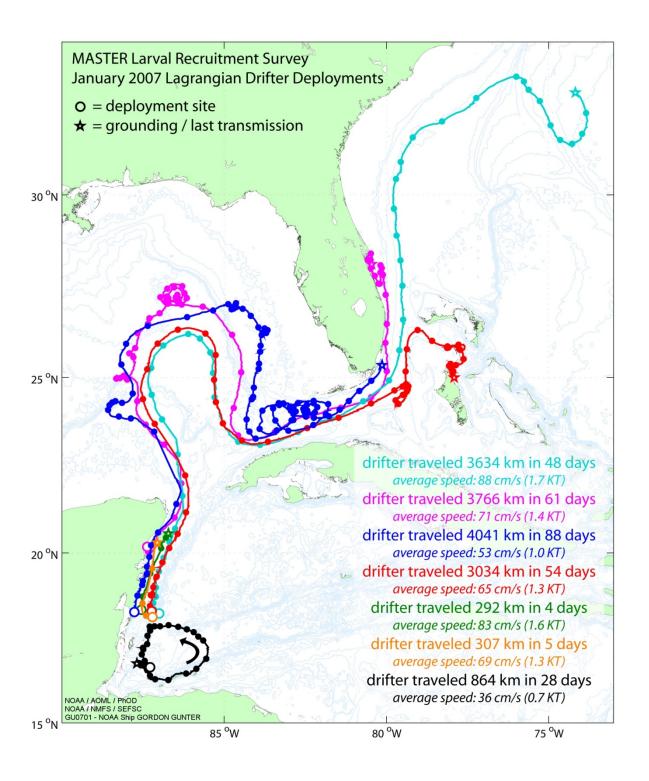




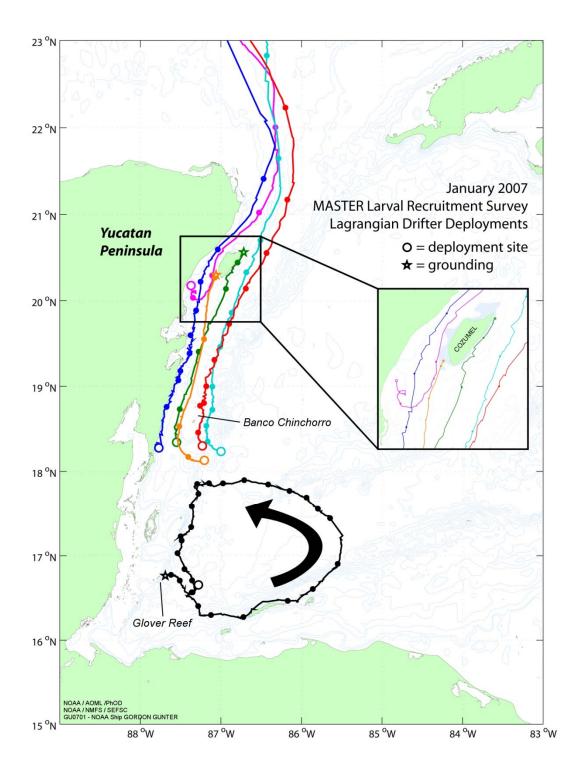

U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum I

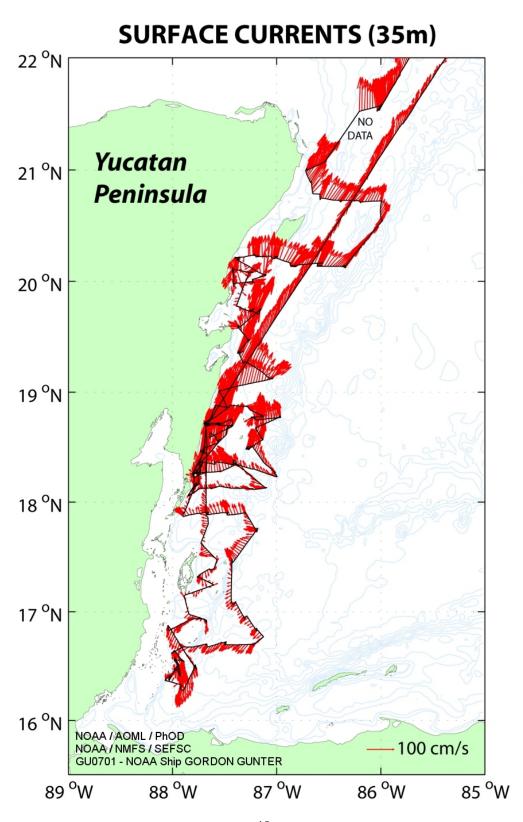
U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum I

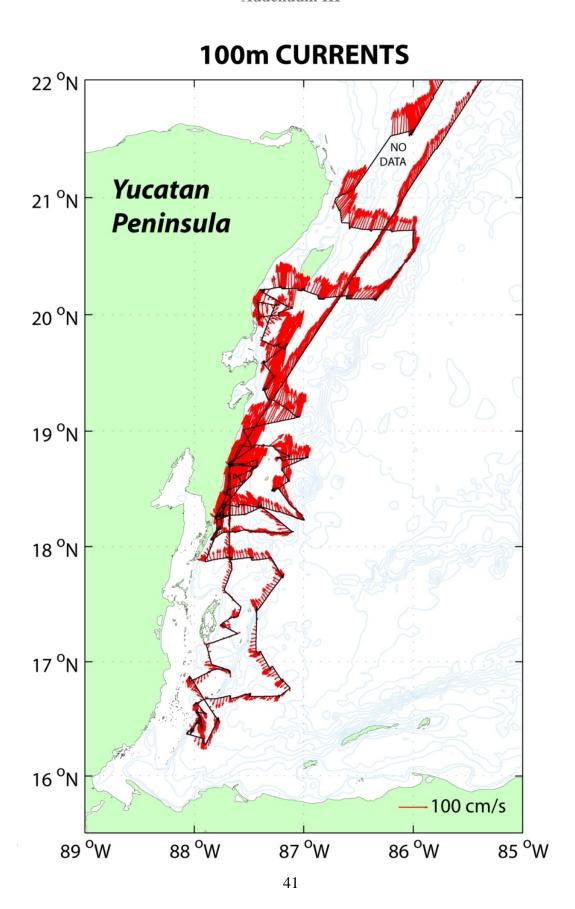
ROFFS Report 11

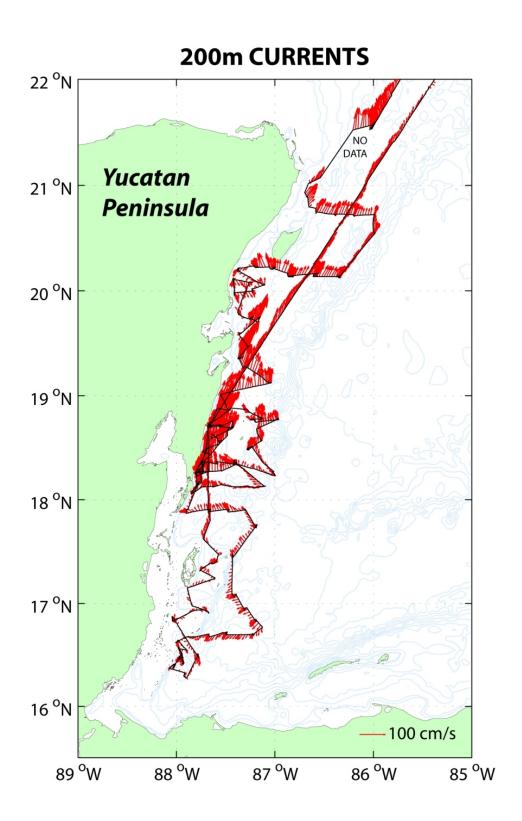

GG0701 - Post Cruise Station List

00070	1 - Post Cruise	e Station List									
Station	Date (ship	Max Depth		MOC		LAT	LAT	LON	LON	DECIMAL	DECIMAL
	time/Central		MOC	Nets	CTD						
No.	Time)	sampled (m)		sampled		DEG	MIN	DEG	MIN	LAT	LON
001	14-Jan-2007	100	1	8	Х	21	33.851	086	0.004	21.5642	-086.0001
001	14-Jan-2007	100	10	5	x	21	35.351	085	59.065	21.5892	-085.9844
002	14-Jan-2007	100	1	5		21	29.791	086	16.888	21.4965	-086.2815
					X						
002	14-Jan-2007	93.3	10	5	Х	21	34.211	086	16.743	21.5702	-086.2791
003	14-Jan-2007	50	1	4							
004	14-Jan-2007	20	1	1	x	21	30.194	086	35.400	21.5032	-086.5900
005	15-Jan-2007	/	1	1	Χ	21	31.3//	086	43.041	21.5230	-086./1/4
006	15-Jan-2007	50	1	3	x	21	17.538	086	30.381	21.2923	-086.5064
007	15-lan-2007	Juvenile Fish Trawl	1	1	Х					20.9880	-086.7178
800					Х						
009					×						
010	15-Jan-2007	100	1	4	x	20	42.800	086	23.000	20.7133	-086.3833
011	16-Jan-2007	96	1	5	Х	20	43.309	086	12.391	20.7218	-086.2065
012	16 Jan 2007	99.6	1	4	х	20	43.430	085	59.752	20.7238	085.9959
013	16-Jan-2007	99.6	1	5	x	20	33.746	085	59.832	20.5624	-085.9972
013	16-Jan-2007	100	1	5		20	7.742	086	20.977	20.1290	-086.3496
					Х						
014	16-Jan-2007	100	10	4	Х	20	8.129	086	27.088	20.1355	-086.4515
015	16-Jan-2007	97	1	5	х	20	9.563	086	35.185	20.1594	-086.5864
015	16-Jan-2007	100	10	4	х						
04.6	47.1 0007		,			20	2 222			22.4222	200.0042
016	17-Jan-2007	Juvenile Fish Trawl	1	1	Х	20	8.030	086	51.675	20.1338	-086.8613
017	17-Jan-2007	Juvenile Fish Trawl	1	1	х	20	13.315	087	1.180	20.2219	-087.0197
017	17-Jan-2007	99.9	1	5	X	20	13.313	037	1.100	20.2225	-087.1992
010	17-Jan-2007	33.3	1	5	Х					20.2225	-067.1992
019	17-Jan-2007	Juvenile Fish Trawl	1	1	Х					20.2170	-087.3311
020	17-Jan-2007	100	1	5	х	20	0.961	087	14.014	20.0160	-087.2336
021	17-Jan-2007	100	1	5	x	19	58.980	087	24.845	19.9830	-087.4141
022	18-Jan-2007	100.7	1		_	20	0.071	087	25.510	20.0012	-087.4252
				5	Х						
023	18-Jan-2007	101.1	1	5	Х	20	4.889	087	15.783	20.0815	-087.2631
024	18-Jan-2007	100.2	1	5		19	46.661	087	22.940	19.7777	-087.3823
025	18-Jan-2007	100.3	1	5	Х	19	44.032	087	15.669	19.7339	-087.2612
026					x						
027	18-Jan-2007	100.2	1	5	x	19	35.900	087	21.700	19.5983	-087.3617
028											
029	18-Jan-2007	100.2	1	5						19.3533	-087.3689
030	20 3411 2007	15012								13.5555	507.5003
	10 Ion 3007	00.6	1	L		10	7 1.30	00.7	4.202	10.1364	0970700
031	19-Jan-2007	98.6		5	Х	19	7.528	087	4.202	19.1255	-087.0700
032	21-Jan-2007	100.5	1	5		18	51.484	087	35.370	18.8581	-087.5895
033	21-lan-2007	100	1	5	Х	18	52.660	087	27.418	18.8777	-087.4570
034	21-Jan-2007	90	1	5	Х	18	52.116	087	16.861	18.8686	-087.2810
035	21-Jan-2007	100	1	6	х	18	47.600	087	8.510	18.7933	-087.1418
036	22-lan-2007	100.4	1	.5	х	18	46.143	087	13.393	18.7691	-087.2232
037	22-Jan-2007	100	1	5	Х	18	45.780	086	58.456	18.7797	-086.9743
038	22 Jan 2007	99.9	1	5	х	18	40.452	087	12.020	18.6742	087.2003
039	22-Jan-2007	99.9	1	5	х	18	34.717	087	8.739	18.5786	-087.1457
040	22-Jan-2007 22-Jan-2007	100	1	5	X	18	29.328	087		18.4888	-087.1437
040	22 Jan 2007	100	10	4	х	18	30.170	087	16.508	18.5028	087.2751
041	22-Jan-2007	100	1	6	Х	18	15.762	087	1.210	18.2627	-087.0202
042					Х						
043	23 Jan 2007	100.6	1	5	х	18	22.160	087	23.319	18.3693	087.3887
044					Х						
045	23-Jan-2007	99.2	1	6	Х	18	16.238	087	45.883	18.2706	-087.7647
046	23-Jan-2007	100	1	5	x	18	15.843	087	18.810	18.2641	-087.8135
047		100			X	10	_5.515	557	.5.510	10.2011	227.0133
	22 1:0: 2007	100	4	4		10	20 107	007	42 70F	10 4700	097 7300
048	23-Jan-2007	100	1	4	Х	18	28.197	087	43.785	18.4700	-087.7298
049	23-Jan-2007	Juvenile Fish Trawl	1	1	х	18	33.830	087	33.660	18.5638	-087.5610
050	24-Jan-2007	505.1	1	5	^	18	3/./5/	087	38.35/	18.6293	-087.6393
051	24-Jan-2007	99.6	1	5	х	18	41.872	087	25.234	18.6979	-087.4206
052	24-Jan-2007	100	1	5	Х	18	43.153	087	34.040	18.7192	-087.5673


U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum II


054	24-Jan-2007	100	1	5	Х	17	54.301	087	53.700	17.9050	-087.8950
055	25-Jan-2007	100.5	1	5	Х	17	54.444	087	39.418	17.9074	-087.6570
056	25-Jan-2007	100.8	1	5	Х	17	53.085	087	28.548	17.8848	-087.4758
057	25-Jan-2007	100.3	1	5	Х	17	54.452	087	18.113	17.9075	-087.3019
058	25-Jan-2007	100	1	5	Х	17	43.833	087	11.527	17.7306	-087.1921
059	25-Jan-2007	100	1	4	Х	17	26.396	087	25.807	17.4399	-087.4301
060	25-Jan-2007	100	1		Х	17	3.715	087	24.721	17.0619	-087.4120
061	25-Jan-2007	100	1		Х	16	56.020	087	18.310	16.9337	-087.3052
062	26-Jan-2007	100.4	1	5	Х	16	49.550	087	11.509	16.8258	-087.1918
063	26-Jan-2007	99.5	1	5	Х	16	41.453	087	13.421	16.6909	-087.2237
064					Х						
065	26-Jan-2007	100.2	1	5	Х	16	43.416	087	29.085	16.7236	-087.4848
066	26-Jan-2007	102.4	1	5	Х	16	40.555	087	39.965	16.6759	-087.6661
067					Х						
068	26-Jan-2007	101	1	5	Х	16	37.216	088	0.227	16.6203	-088.0038
069	26-Jan-2007	100.5	1	5	Х	16	34.144	087	55.559	16.5691	-087.9260
070	26-Jan-2007	100.5	1	5	Х	16	33.463	087	58.760	16.5577	-087.9793
071	27-Jan-2007	101	1	5	Х	16	30.220	087	57.230	16.5037	-087.9538
072	27-Jan-2007	100.2	1	5	Х	16	28.232	087	58.293	16.4705	-087.9716
073	27-Jan-2007	101	1	5	Х	16	25.204	087	55.515	16.4201	-087.9253
074	27-Jan-2007	100.3	1	5		16	33.712	087	58.652	16.5619	-087.9775
075	27-Jan-2007	99.4	1	5		16	33.519	087	58.896	16.5587	-087.9816
076	27-Jan-2007	101	1	5		16	28.381	087	58.701	16.4730	-087.9784
076	27-Jan-2007	100	10	3		16	29.890	087	57.537	16.4982	-087.9590
077	27-Jan-2007	101	1	5	Х	16	22.322	088	1.916	16.3720	-088.0319
077	27-Jan-2007	76	10	4	Х	16	24.610	088	0.510	16.4102	-088.0085
078	27-Jan-2007	101	1	5	Х	16	19.380	087	54.980	16.3230	-087.9163
079	28-Jan-2007	100.3	1	5	Х	16	30.624	087	46.879	16.5104	-087.7813
080	28-Jan-2007	100.3	1	5	Х	16	52.018	088	2.625	16.8670	-088.0438
081	28-Jan-2007	99.5	1	5	Х	16	55.827	087	41.551	16.9305	-087.6925
082	28-Jan-2007	121	1	3	Х	17	18.790	087	45.660	17.3132	-087.7610
083	28-Jan-2007	100.7	1	5	Х	17	22.860	087	38.390	17.3810	-087.6398
084	29-Jan-2007	104	1	5	Х	18	19.435	087	46.202	18.3239	-087.7700
085	29-Jan-2007	104	1	1	Х	18	16.922	087	43.680	18.2820	-087.7280
086	29-Jan-2007	Juvenile Fish Trawl	1	1	Х	18	16.020	087	47.950	18.2670	-087.7992
087	29-Jan-2007	107	1	5	Х	18	11.621	087	45.086	18.1937	-087.7514
088	30-Jan-2007	Juvenile Fish Trawl	1	1	х	18	8.146	087	47.754	18.1358	-087.7959
089	30-Jan-2007	97	1	5	X	18	3.351	087	50.729	18.0559	-087.8455
090	30-Jan-2007	99.9	1	5	X	18	7.414	087	43.645	18.1236	-087.7274
091	30 3411 2007	Juvenile Fish Trawl		1	х	10	7.11	007	13.013	10.1230	007.7271
092		Juvenile Fish Trawl		1	х						
093		Juvenile Fish Trawl		1	х						
094					Х						
095		Juvenile Fish Trawl		1	х						
096		Juvenile Fish Trawl		1	х						
097		Juvenile Fish Trawl		1	х						
098		Juvenile Fish Trawl		1	х						


U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum III


U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum III

U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum III

U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum IV

STATUS OF GORDON GUNTER SAMPLES

(GG0701), JANUARY 2007

TOTAL SAMPLES =428

											Alcoho I		Dry	
Вох	Date	Hour	Sta	Туре		Lat		Lon	Tow	Net	or formali n	Volume (ml)	wt.	No. Iarva e
	1/14/200				2		8							
	7		1	2mm	1	32.543	6	1.421	1	Moc-10	Α	24	22	90
	1/14/200				2		8	59.72					14.	
	7		1		1	34.91	5	7	2	Moc-1	Α	15	3	60
	1/14/200				2		8							
	7		1	2mm	1	32.543	6	1.421	2	Moc-10	Α	1	1.1	0
	1/14/200				2		8	59.72					11.	
	7		1		1	34.91	5	7	3	Moc-1	Α	12	5	20
	1/14/200				2		8							
	7		1	2mm	1	32.543	6	1.421	3	Moc-10	Α	3	2.3	0
_	1/14/200				2		8	59.72					11.	
1	7		1		1	34.91	5	7	4	Moc-1	Α	12	3	20
	1/14/200			_	2		8							
	7		1	2mm	1	32.543	6	1.421	4	Moc-10	Α	3	2.6	2
	1/14/200				2		8	59.72	_				10.	
	7		1		1	34.91	5	7	5	Moc-1	Α	11	7	72
	1/14/200				2	00 = 40	8		_					
	/		1	2mm	1	32.543	6	1.421	5	Moc-10	Α	3	2.5	2
	1/14/200				2	0.4.00.4	8	16.73				1.0	10.	
	/		2	2mm	1	34.204	6	8	2	Moc-10	Α	12	4	3
	1/14/200		_	_	2		8	16.73					10.	
	7		2	2mm	1	34.204	6	8	3	Moc-10	Α	12	3	6
	1/14/200				2	0.4.00.4	8	16.73					0.6	
	7		2	2mm	1	34.204	6	8	4	Moc-10	Α	4	2.8	1
	1/14/200				2		8	16.88		1			18.	10
	7		2		1	29.793	6	9	1	Moc-1	Α	21	9	4

	1/14/200		1	2		8	16.73					12.	
	7	2	2mm	1	34.204	6	8	1	Moc-10	Α	14	4	29
	1/14/200			2		8	16.88					18.	
	7	2		1	29.793	6	9	2	Moc-1	Α	21	9	13
	1/14/200			2		8	16.88					12.	
	7	2		1	29.793	6	9	3	Moc-1	Α	14	9	55
	1/14/200			2		8	16.88						
	7	2		1	29.793	6	9	4	Moc-1	Α	6	4.3	15
	1/14/200			2		8	16.88	_				17.	
2	7	2		1	29.793	6	9	5	Moc-1	Α	18	4	40
	1/14/200			2	0.4.00.4	8	16.73	_					
	7	2	2mm	1	34.204	6	8	5	Moc-10	Α	6	5.3	3
	1/14/200 7	3		2	29.407	8	26.71 4	2	Moc-1	_	4	1.7	5
	1/14/200	3		2	29.407	8	26.71		IVIOC- I	Α	4	1.7	5
	7	3		1	29.407	6	4	3	Moc-1	Α	3	1.9	8
	1/14/200	3		2	29.407	8	26.71	3	IVIOC-1	1	3	18.	0
	7	3		1	29.407	6	4	4	Moc-1	Α	21	9	84
	1/14/200			2	25.407	8	26.71	_	IVIOC 1		21	3	07
	7	3		1 1	29.407	6	4	5	Moc-1	Α	2	1.2	3
	1/14/200			2		8	35.47					13.	
	7	4		1	30.19	6	5	1	Moc-1	Α	15	5	42
	1/15/200			2		8	43.16					12.	
	7	5		1	31.384	6	7	1	Moc-1	Α	13	6	75
	1/15/200			2		8	30.50					13.	13
	7	6		1	17.409	6	5	1	Moc-1	Α	14	6	7
	1/15/200			2		8	30.50						
	7	6		1	17.409	6	5	2	Moc-1	Α	6	5.4	45
	1/15/200	_		2		8	30.50					16.	
	7	6		1	17.409	6	5	3	Moc-1	Α	17	3	91
I	1/15/200			2	E0 00E	8	43.06		Juv.	_			
JT	7	7		0	59.325	6	9	1	Trawl	Α			
	1/15/200	7		2	E0 22E	8	43.06	2	Mag 1	_	11	40	EO
	7 1/15/200	7		0	59.325	6	9 43.06	2	Moc-1	Α	14	13	50
2	7	7		2 0	59.325	8	43.06	3	Moc-1	Α	6	5.7	10
3	1/15/200			2	03.020	8	43.06	J	IVIOC- I	+^-	0	10.	10
	7	7		0	59.325	6	9	4	Moc-1	Α	12	3	51
		7		2		_	1	5	+		22	21.	14
	1/15/200	/			59.325	8	43.06	5	Moc-1	Α	22	Z1.	14

	7		0		6	9		1			6	1
	1/15/200		2		8	23.78					12.	22
	7	10	0	43.473	6	2	1	Moc-1	Α	15	6	9
	1/15/200		2		8	23.78						13
	7	10	0	43.473	6	2	2	Moc-1	Α	13	13	2
	1/15/200		2		8	23.78					24.	
	7	10	0	43.473	6	2	3	Moc-1	Α	26	6	97
	1/15/200		2		8	23.78					24.	
	7	10	0	43.473	6	2	4	Moc-1	Α	27	1	74
	1/16/200		2		8	15.49					32.	
	7	11	0	43.559	6	5	1	Moc-1	Α	33	4	
	1/16/200		2		8	15.49					16.	19
	7	11	0	43.559	6	5	2	Moc-1	Α	19	7	0
	1/16/200		2		8	15.49					33.	52
	7	11	0	43.559	6	5	3	Moc-1	Α	36	7	3
	1/16/200		2		8	15.49					35.	11
	7	11	0	43.559	6	5	4	Moc-1	Α	40	8	2
	1/16/200		2		8	15.49					29.	19
4	7	11	0	43.559	6	5	5	Moc-1	Α	31	8	1
	1/16/200		2		8	59.77					16.	11
	7	12	0	43.465	5	3	1	Moc-1	Α	20	2	2
	1/16/200		2		8	59.77					13.	19
	7	12	0	43.465	5	3	2	Moc-1	Α	15	5	7
	1/16/200		2		8	59.77					37.	
	7	12	0	43.465	5	3	3	Moc-1	Α	41	6	
	1/16/200		2		8	59.77					15.	
	7	12	0	43.465	5	3	4	Moc-1	Α	16	2	
	1/16/200		2		8	59.98						
	7	13	0	33.957	5	1	1	Moc-1	F	26	23	
	1/16/200		2		8	59.98					15.	
	7	13	0	33.957	5	1	2	Moc-1	Α	17	5	
	1/16/200		2		8	59.98					23.	21
	7	13	0	33.957	5	1	3	Moc-1	Α	26	5	6
	1/16/200		2		8	59.98					12.	13
	7	13	0	33.957	5	1	4	Moc-1	Α	15	8	8
	1/16/200		2		8	59.98					21.	14
	7	13	0	33.957	5	1	5	Moc-1	Α	25	4	2
	1/16/200		2		8	20.99					15.	
	7	14	0	7.759	6	3	1	Moc-1	Α	17	5	44

1	1/16/200			2		8	20.99	1		i			
	7	14	2mm	0	7.759	6	3	1	Moc-1	Α	10	8.8	81
	1/16/200			2		8	20.99					15.	
	7	14		0	7.759	6	3	2	Moc-1	Α	17	5	40
	1/16/200			2		8	21.62						
	7	14	2mm	0	8.471	6	5	2	Moc-10	Α	5	5	25
	1/16/200			2		8	21.62					16.	
5	7	14	2mm	0	8.471	6	5	3	Moc-10	F	17	2	
	1/16/200			2		8	20.99					23.	14
	7	14		0	7.759	6	3	3	Moc-1	Α	25	4	2
	1/16/200			2	0.4=4	8	21.62	١.			1.0	13.	
	7	14	2mm	0	8.471	6	5	4	Moc-10	A	16	7	11
	1/16/200	4 4		2 0	7.759	8	20.99	1	Mac 1		20	15.	11
	7 1/16/200	14			7.759	6	3 21.62	4	Moc-1	Α	20	4	7
	7	14	2mm	2 0	8.471	8	5	5	Moc-10	Α	6	5.1	3
	1/16/200	14	2111111	2	0.471	8	36.32	3	IVIOC-10	 ^	0	30.	11
	7	15		0	9.406	6	30.32	1	Moc-1	Α	32	30.	'1
	1/16/200	13		2	3.400	8	36.32	'	IVIOC-1		32	17.	'
	7	15		0	9.406	6	3	2	Moc-1	Α	18	4	63
	1/16/200	1.0		2	0.100	8	36.32	_				26.	
	7	15		0	9.406	6	3	3	Moc-1	Α	30	4	
	1/16/200			2		8	36.32					18.	
	7	15		0	9.406	6	3	4	Moc-1	Α	21	4	
	1/16/200			2		8	36.32					28.	
	7	15		0	9.406	6	3	5	Moc-1	Α	33	2	
	1/16/200			2		8	36.04					61.	
6	7	15	2mm	0	8.166	6	4	1	Moc-10	F	65	3	
	1/16/200			2		8	36.04					86.	
	7	15	2mm	0	8.166	6	4	2	Moc-10	F	90	4	
	1/16/200	,_		2		8	36.04	_		1.		25.	_ ,
	7	15	2mm	0	8.166	6	4	3	Moc-10	Α	28	5	54
	1/16/200		0	2	0.400	8	36.04		NA: 40		10	15.	40
	7	15	2mm	0	8.166	6	4	4	Moc-10	Α	18	3	43
I	1/17/200	40	2,,,,,,	2	0.000	8	51.84	4	Juv.				
JT	7 1/17/200	16	2mm	0	8.029	6	6	1	Trawl	Α		20	
	1/17/200	16		2 0	8.029	8	51.84	1	Moc-1	F	34	32. 5	
							6	1					
	1/17/200	16		2	8.029	8	51.84	2	Moc-1	Α	15	11.	

	7			0		6	6	1		1		8
	1/17/200		2	2		8	51.84					29.
	7	16		0	8.029	6	6	3	Moc-1	Α	31	6
	1/17/200			2	0.000	8	51.84		111100			20.
	7	16		0	8.029	6	6	4	Moc-1	Α	21	8
	1/17/200			2		8	51.84					30.
	7	16		0	8.029	6	6	5	Moc-1	Α	33	8
	1/17/200			2		8	_					28.
	7	17		0	13.292	7	1.344	1	Moc-1	F	29	3
	1/17/200			2		8			Juv.			
JT	7	17		0	13.292	7	1.344	1	Trawl	Α		
	1/17/200			2		8						
7	7	17		0	13.292	7	1.344	2	Moc-1	Α	11	9.9
	1/17/200			2		8						19.
	7	17		0	13.292	7	1.344	3	Moc-1	Α	21	9
	1/17/200		2	2		8						18.
	7	17		0	13.292	7	1.344	4	Moc-1	Α	21	8
	1/17/200			2		8						16.
	7	17		0	13.292	7	1.344	5	Moc-1	Α	18	9
	1/17/200		2	2		8	12.00					31.
	7	18	(0	13.371	7	1	1	Moc-1	F	32	6
	1/17/200			2		8	12.00					15.
	7	18		0	13.371	7	1	2	Moc-1	Α	15	2
	1/17/200			2		8	12.00					23.
	7	18		0	13.371	7	1	3	Moc-1	Α	25	9
	1/17/200			2		8	12.00					14.
	7	18	(0	13.371	7	1	4	Moc-1	Α	16	6
	1/17/200			2		8	12.00					20.
	7	18		0	13.371	7	1	5	Moc-1	Α	25	7
	1/17/200			2		8	19.84					24.
	7	19		0	13.021	7	4	1	Moc-1	F	27	4
	1/17/200			2		8	19.84		Juv.			
JT	7	19		0	13.021	7	4	1	Trawl	F		
	1/17/200			2		8	19.84					
	7	19	I I	0	13.021	7	4	2	Moc-1	Α	7	6.7
	1/17/200			2		8	19.84					11.
8	7	19		0	13.021	7	4	3	Moc-1	Α	13	1
	1/17/200			2		8	19.84					10.
	7	19		0	13.021	7	4	4	Moc-1	Α	13	3

1	1/17/200		2	I	8	19.84				1	10.
	7	19	0	13.021	7	4	5	Moc-1	Α	11	9
	1/17/200		2		8	14.00					34.
	7	20	0	0.973	7	7	1	Moc-1	F	36	7
	1/17/200		2		8	14.00					10.
	7	20	0	0.973	7	7	2	Moc-1	Α	9	3
	1/17/200		2		8	14.00					16.
	7	20	0	0.973	7	7	3	Moc-1	Α	19	2
	1/17/200		2		8	14.00					17.
	7	20	0	0.973	7	7	4	Moc-1	Α	19	4
	1/17/200		2		8	14.00					39.
	7	20	0	0.973	7	7	5	Moc-1	Α	49	3
	1/18/200	0.4		50.00	8	24.84		NA 4			36.
	7	21	9	58.98	7	5	1	Moc-1	Α	38	8
	1/18/200			F0.00	8 7	24.84	2	Mos 4	_		7.0
	7 1/18/200	21	9	58.98		5 24.84	2	Moc-1	Α	8	7.6 15.
	7	21	1 9	58.98	8 7	24.84 5	2	Moo 1		16	15.
	1/18/200	21	1	36.96	8	24.84	3	Moc-1	A	10	16.
	7	21		58.98	7	5	4	Moc-1	Α	20	2
	1/18/200	21	1	30.30	8	24.84	7	IVIOC-1		20	26.
9	7	21	9	58.98	7	5	5	Moc-1	Α	30	4
	1/18/200		2	00.00	8	25.46	<u> </u>	1000 1	7.	- 00	26.
	7	22		7.343	7	3	1	Moc-1	F	29	9
	1/18/200		2	11010	8	25.46					15.
	7	22	0	7.343	7	3	2	Moc-1	Α	17	8
	1/18/200		2		8	25.46					17.
	7	22	0	7.343	7	3	3	Moc-1	Α	19	6
	1/18/200	_	2		8	25.46					13.
	7	22	0	7.343	7	3	4	Moc-1	Α	15	5
	1/18/200		2		8	25.46					19.
	7	22	0	7.343	7	3	5	Moc-1	Α	20	7
	1/18/200		2		8	17.29					24.
	7	23	0	5.103	7	8	1	Moc-1	F	26	9
1	1/18/200		2	5.460	8	17.29				10	11.
	7	23	0	5.103	7	8	2	Moc-1	A	12	1
	1/18/200		2	5 400	8	17.29	_	NA 4	_	00	23.
	7	23	0	5.103	7	8	3	Moc-1	A	26	8
	1/18/200	23	2	5.103	8	17.29	4	Moc-1	Α	23	20.

	7		0		7	8			1		3
	1/18/200		2		8	17.29					33.
	7	23	0	5.103	7	8	5	Moc-1	Α	35	3
	1/18/200		1		8	22.90					25.
	7	24	9	47.239	7	3	1	Moc-1	F	26	3
	1/18/200		1		8	22.90					
	7	24	9	47.239	7	3	2	Moc-1	Α	6.9	10
	1/18/200		1		8	22.90					25.
	7	24	9	47.239	7	3	3	Moc-1	Α	27	7
	1/18/200		1		8	22.90					
10	7	24	9	47.239	7	3	4	Moc-1	Α	8	8
	1/18/200		1		8	22.90					
	7	24	9	47.239	7	3	5	Moc-1	Α	10	9
	1/18/200		1		8	15.73					23.
	7	25	9	43.924	7	6	1	Moc-1	F	25	8
	1/18/200		1		8	15.73					
	7	25	9	43.924	7	6	2	Moc-1	Α	7	5.9
	1/18/200		1		8	15.73					19.
	7	25	9	43.924	7	6	3	Moc-1	Α	22	3
	1/18/200		1		8	15.73					10.
	7	25	9	43.924	7	6	4	Moc-1	Α	13	3
	1/18/200		1		8	15.73					17.
	7	25	9	43.924	7	6	5	Moc-1	Α	18	5
	1/18/200		1		8	21.75					30.
	7	27	9	35.332	7	7	1	Moc-1	F	32	6
	1/18/200		1		8	21.75					
	7	27	9	35.332	7	7	2	Moc-1	Α	5	3.4
	1/18/200		1		8	21.75					
	7	27	9	35.332	7	7	3	Moc-1	Α	7	6.3
	1/18/200		1		8	21.75					
	7	27	9	35.332	7	7	4	Moc-1	Α	7	6.3
	1/18/200		1		8	21.75					20.
11	7	27	9	35.332	7	7	5	Moc-1	Α	24	8
	1/18/200		1		8	22.20					22.
	7	29	9	21.175	7	4	1	Moc-1	F	24	4
	1/18/200		1		8	22.20					
	7	29	9	21.175	7	4	2	Moc-1	Α	9	7.3
	1/18/200		1		8	22.20					15.
	7	29	9	21.175	7	4	3	Moc-1	Α	16	2

1	1/18/200		1	I	8	22.20			ĺ	1	1 1
	7	29	9	21.175	7	4	4	Moc-1	Α	13	13
	1/18/200		1		8	22.20					32.
	7	29	9	21.175	7	4	5	Moc-1	Α	33	1
	1/19/200		1		8						29.
	7	31	9	7.575	7	4.365	1	Moc-1	F	32	8
	1/19/200		1		8						10.
	7	31	9	7.575	7	4.365	2	Moc-1	Α	11	7
	1/19/200		1		8						23.
	7	31	9	7.575	7	4.365	3	Moc-1	Α	24	5
	1/19/200		1		8						18.
	7	31	9	7.575	7	4.365	4	Moc-1	Α	23	5
	1/19/200				8	4.6.5-	_				30.
	7	31	9	7.575	7	4.365	5	Moc-1	Α	33	3
	1/21/200				8	35.75	١.		_		16.
	7	32	8	51.257	7	7	1	Moc-1	F	19	8
4.0	1/21/200			54.057	8	35.75				40	
12	7	32	8	51.257	7	7	2	Moc-1	Α	13	9.5
	1/21/200			F4 0F7	8	35.75		Mand		00	28.
	7	32	8	51.257	7	7 35.75	3	Moc-1	A	29	10.
	1/21/200	32	1 8	51.257	8 7	35.75	1	Moc-1	_	13	10.
	1/21/200	32	1	31.237	8	35.75	4	IVIOC-1	Α	13	0
	7	32		51.257	7	7	5	Moc-1	Α	10	8.6
	1/21/200	32	1	31.231	8	27.42	J	IVIOC-1		10	27.
	7	33		52.659	7	1	1	Moc-1	F	30	3
	1/21/200	- 00	1	02.000	8	27.42		1000 1	•	00	
	7	33	8	52.659	7	1	2	Moc-1	Α	10	8.5
	1/21/200		1	52.555	8	27.42					20.
	7	33	8	52.659	7	1	3	Moc-1	Α	21	2
	1/21/200		1		8	27.42					
1	7	33	8	52.659	7	1	4	Moc-1	Α	47	43
	1/21/200		1		8	27.42					19.
	7	33	8	52.659	7	1	5	Moc-1	Α	22	5
	1/21/200		1		8	16.88					
	7	34	8	52.143	7	9	1	Moc-1	F	21	20
	1/21/200		1		8	16.88					10.
	7	34	8	52.143	7	9	2	Moc-1	Α	11	6
	1/21/200	34	1	52.143	8	16.88	3	Moc-1	Α	20	17.

	7		8		7	9					7
	1/21/200		1		8	16.88					14.
	7	34	8	52.143	7	9	4	Moc-1	Α	15	5
	1/21/200		1		8	16.88				-	24.
13	7	34	8	52.143	7	9	5	Moc-1	Α	26	7
	1/21/200		1		8						50.
	7	35	8	47.6	7	8.505	1	Moc-1	F	54	3
	1/21/200		1	-	8						37.
	7	35	8	47.6	7	8.505	1	Moc-1	F	39	1
	1/21/200		1		8						
	7	35	8	47.6	7	8.505	2	Moc-1	Α	10	9.1
	1/21/200		1		8						24.
	7	35	8	47.6	7	8.505	3	Moc-1	Α	26	5
	1/21/200		1		8						18.
	7	35	8	47.6	7	8.505	4	Moc-1	Α	20	6
	1/21/200		1		8						27.
	7	35	8	47.6	7	8.505	5	Moc-1	Α	28	6
	1/21/200		1		8	14.83					18.
	7	36	8	45.949	7	9	1	Moc-1	F	20	4
	1/21/200		1		8	14.83					
	7	36	8	45.949	7	9	2	Moc-1	Α	12	9.1
	1/21/200		1		8	14.83					22.
	7	36	8	45.949	7	9	3	Moc-1	Α	23	7
	1/21/200		1		8	14.83					13.
	7	36	8	45.949	7	9	4	Moc-1	Α	14	2
	1/21/200		1		8	14.83					29.
	7	36	8	45.949	7	9	5	Moc-1	Α	26	4
	1/22/200		1		8	58.50					31.
14	7	37	8	46.831	6	1	1	Moc-1	F	33	1
	1/22/200		1		8	58.50					
	7	37	8	46.831	6	1	2	Moc-1	Α	10	9.3
	1/22/200		1		8	58.50					11.
	7	37	8	46.831	6	1	3	Moc-1	Α	12	6
	1/22/200		1		8	58.50					11.
	7	37	8	46.831	6	1_	4	Moc-1	Α	12	5
	1/22/200		1		8	58.50					29.
	7	37	8	46.831	6	1	5	Moc-1	Α	31	7
	1/22/200		1		8	12.02					25.
	7	38	8	40.478	7	4	1	Moc-1	F	27	5

	1/22/200		1		8	12.02					
	7	38	8	40.478	7	4	2	Moc-1	Α	10	8.1
	1/22/200		1		8	12.02					29.
	7	38	8	40.478	7	4	3	Moc-1	Α	26	4
	1/22/200		1		8	12.02					10.
	7	38	8	40.478	7	4	4	Moc-1	Α	12	9
	1/22/200			40.470	8	12.02	_				31.
	7	38	8	40.478	7	4	5	Moc-1	Α	33	3
	1/22/200	20	1	24.040	8	0.000	4	Maga	F	07	26.
	7 1/22/200	39	8	34.819	7 8	8.869	1	Moc-1	Г	27	33.
15	7	39	8	34.819	7	8.869	2	Moc-1	Α	38	33.
13	1/22/200	39	1	34.019	8	0.009		IVIOC-1		30	49.
	7	39	8	34.819	7	8.869	3	Moc-1	Α	51	2
	1/22/200		1	0 110 10	8	0.000		11100 1	1	0.	63.
	7	39	8	34.819	7	8.869	4	Moc-1	Α	70	8
	1/22/200		1		8						
	7	39	8	34.819	7	8.869	5	Moc-1	Α	4	2.6
	1/22/200		1		8	16.94					
	7	40	8	30.054	7	8	1	Moc-10	F	20	18
	1/22/200		1		8	17.33					
	7	40	8	29.321	7	1	1	Moc-1	F	40	37
	1/22/200	40		00.054	8	16.94				144	40.
	7	40	8	30.054	7	8	2	Moc-10	Α	41	7
	1/22/200	40	1 8	29.321	8 7	17.33	2	Moc-1	Α	7	6.5
	1/22/200	40	1	29.321	8	16.94		IVIOC- I	 A		33.
	7	40	8	30.054	7	8	3	Moc-10	Α	45	1
	1/22/200	10	1	30.007	8	17.33		10.00 10	 	1.0	12.
	7	40	8	29.321	7	1	3	Moc-1	Α	13	6
	1/22/200		1		8	16.94				-	26.
	7	40	8	30.054	7	8	4	Moc-10	Α	28	6
	1/22/200		1		8	17.33					
16	7	40	8	29.321	7	1	4	Moc-1	Α	10	9.1
	1/22/200		1		8	17.33			1.		21.
	7	40	8	29.321	7	1	5	Moc-1	Α	22	7
	1/22/200			45.000	8	4.00			_	00	57.
	7	41	8	15.922	7	1.36	1	Moc-1	F	60	4
	1/22/200	41	1	15.922	8	1.36	1	Moc-1	F	100	98.

1	7		8		7	I					2
	1/22/200		1		8						11.
	7	41	8	15.922	7	1.36	2	Moc-1	Α	13	2
	1/22/200		1		8						
	7	41	8	15.922	7	1.36	3	Moc-1	Α	11	11
	1/22/200		1		8						21.
	7	41	8	15.922	7	1.36	4	Moc-1	Α	22	5
	1/22/200		1		8						34.
	7	41	8	15.922	7	1.36	5	Moc-1	Α	37	1
	1/23/200		1		8	23.32					36.
	7	43	8	22.208	7	8	1	Moc-1	F	37	9
	1/23/200		1		8	23.32					13.
	7	43	8	22.208	7	8	2	Moc-1	Α	15	5
	1/23/200		1		8	23.32					23.
	7	43	8	22.208	7	8	3	Moc-1	Α	23	1
	1/23/200		1		8	23.32					38.
	7	43	8	22.208	7	8	4	Moc-1	Α	41	6
	1/23/200		1		8	23.32					
	7	43	8	22.208	7	8	5	Moc-1	Α	5	5.3
1	1/23/200		1	10.440	8	46.97					21.
17	7	45	8	16.116	7	7	1	Moc-1	Α	23	1
	1/23/200	4.5	1	40.440	8	46.97			_	45	
	7	45	8	16.116	7	7	1	Moc-1	F	15	12
	1/23/200 7	4.5	1	40.440	8 7	46.97		Mand		40	40
		45	8	16.116		7	2	Moc-1	Α	10	10
	1/23/200 7	45	1 8	16.116	8 7	46.97 7	3	Moc-1	_	15	13.
	1/23/200	43	1	10.116	8	46.97	3	IVIOC- I	Α	10	10.
	7	45	8	16.116	7	7	4	Moc-1	Α	10	7
	1/23/200	75	1	10.110	8	46.97	_	IVIOC-1	<u> </u>	10	25.
	7	45	8	16.116	7	7	5	Moc-1	Α	26	8
	1/23/200	10	1	10.110	8	48.81	-	101001	, ,		
	7	46	8	15.845	7	4	1	Moc-1	F	25	238
	1/23/200	1.0	1	. 5.5 10	8	48.81					
1	7	46	8	15.845	7	4	2	Moc-1	Α	9	7
	1/23/200		1		8	48.81					
	7	46	8	15.845	7	4	3	Moc-1	Α	10	9.1
	1/23/200		1		8	48.81					
	7	46	8	15.845	7	4	4	Moc-1	Α	12	12

	1/23/200			1		8	48.81	ĺ				16.
	7	46		8	15.845	7	4	5	Moc-1	Α	18	2
	1/23/200			1		8						27.
	7	48		8	28.197	7	43.83	1	Moc-1	F	29	9
	1/23/200			1		8						
18	7	48		8	28.197	7	43.83	2	Moc-1	Α	10	8.8
	1/23/200	1.0		1	00.40=	8	40.00		l.,			12.
	7	48		8	28.197	7	43.83	3	Moc-1	Α	11	6
	1/23/200	40		1	00.407	8	40.00	١,	Mand	_	40	18.
	7	48		8	28.197	7	43.83	4	Moc-1	Α	16	8
	1/23/200	40		1	22.040	8 7	33.81	,	Maga	F	47	45. 2
	7 1/23/200	49		8	33.816	8	3 33.81	1	Moc-1	Г	47	11.
	7	49		8	33.816	7	33.61	2	Moc-1	Α	12	7
	1/23/200	13		1	33.010	8	33.81		IVIOC-1		12	14.
	7	49		8	33.816	7	3	3	Moc-1	Α	16	2
	1/23/200	10		1	00.010	8	33.81		1000	1	10	24.
	7	49		8	33.816	7	3	4	Moc-1	Α	25	4
	1/23/200			1	001010	8	33.81					
	7	49		8	33.816	7	3	4	Moc-1	Α	1 organismo	
	1/23/200			1		8	33.81					45.
	7	49		8	33.816	7	3	5	Moc-1	Α	50	1
	1/23/200		1 d 3, 2mm	1		8	33.81		Juv.			
JT	7	49	juvenil	8	33.816	7	3		Trawl			
	1/24/200			1		8	38.35					31.
	7	50		8	37.794	7	1	1	Moc-1	F	32	2
	1/24/200			1	07.704	8	38.35		l.,	_		11.
	7	50		8	37.794	7	1	2	Moc-1	F	12	2
	1/24/200	50		1	07.704	8	38.35		Mand	_	40	17.
	7	50		8	37.794	7	1	3	Moc-1	Α	16	1
19	1/24/200	50		8	37.794	8 7	38.35	4	Moc-1	Α	19	16. 9
13	1/24/200	30		1	31.134	8	38.35	4	IVIOC- I	 ^	13	9
	7	50		8	37.794	7	1	5	Moc-1	Α	4	4.2
	1/24/200	30		0	31.134		1	J	IVIOC- I		<u> </u>	20.
	7	51						1	Moc-1	F	22	5
	1/24/200							-	155		_ 	
	7	51						2	Moc-1	Α	10	8.9
	1/24/200	51			NO DATA			3	Moc-1	Α	4	5.3

	7			AVAILABLE			1				
	1/24/200										14.
	7	51					4	Moc-1	Α	15	9
	1/24/200										25.
	7	51					5	Moc-1	Α	25	5
	1/24/200		1		8	34.10					30.
	7	52	8	43.142	7	2	1	Moc-1	F	32	6
	1/24/200		1		8	34.10					15.
	7	52	8	43.142	7	2	2	Moc-1	Α	15	3
	1/24/200		1		8	34.10					21.
	7	52	8	43.142	7	2	3	Moc-1	Α	18	3
	1/24/200		1		8	34.10					13.
	7	52	8	43.142	7	2	4	Moc-1	Α	14	3
	1/24/200		1		8	34.10					19.
20	7	52	8	43.142	7	2	5	Moc-1	Α	22	1
	1/24/200		1		8	39.98					26.
	7	53	8	42.662	7	4	1	Moc-1	F	28	1
	1/24/200		1		8	39.98					10.
	7	53	8	42.662	7	4	2	Moc-1	Α	10	2
	1/24/200		1		8	39.98					22.
	7	53	8	42.662	7	4	3	Moc-1	Α	26	1
	1/24/200		1		8	39.98					16.
	7	53	8	42.662	7	4	4	Moc-1	Α	18	4
	1/24/200		1		8	39.98					14.
	7	53	8	42.662	7	4	5	Moc-1	Α	15	1
	1/24/200		1		8	53.67					30.
	7	54	7	54.452	7	3	1	Moc-1	F	33	6
	1/24/200		1		8	53.67					
	7	54	7	54.452	7	3	2	Moc-1	Α	10	12
	1/24/200		1		8	53.67					
	7	54	7	54.452	7	3	3	Moc-1	Α	10	11
	1/24/200		1 1		8	53.67				1	17.
	7	54	7	54.452	7	3	4	Moc-1	Α	17	7
	1/24/200		1		8	53.67		1			23.
	7	54	7	54.452	7	3	5	Moc-1	Α	25	2
	1/25/200			F 4 F 0 F	8	39.38		N4. 4	_	40	38.
	7	55	7	54.565	7	8	1	Moc-1	F	40	5
	1/25/200			E 4 505	8	39.38		Maid	1	40	17.
	7	55	7	54.565	7	8	2	Moc-1	Α	18	4

	1/25/200		1	1	8	39.38					11.
21	7	55	7	54.565	7	8	3	Moc-1	Α	20	4
	1/25/200		1		8	39.38					21.
	7	55	7	54.565	7	8	4	Moc-1	Α	23	7
	1/25/200		1		8	39.38					23.
	7	55	7	54.565	7	8	5	Moc-1	Α	27	2
	1/25/200		1		8	28.13					
	7	56	7	54.43	7	9	1	Moc-1	F	33	31
	1/25/200		1		8	28.13					
	7	56	7	54.43	7	9	2	Moc-1	Α	7	4.7
	1/25/200		1		8	28.13					
	7	56	7	54.43	7	9	3	Moc-1	Α	12	9.1
	1/25/200		1		8	28.13					17.
	7	56	7	54.43	7	9	4	Moc-1	Α	17	6
	1/25/200			54.40	8	28.13	_			00	29.
	7	56	7	54.43	7	9	5	Moc-1	Α	32	6
	1/25/200			54.40	8	18.13		Mana	_	00	21.
	7	57	7	54.49	7	8	1	Moc-1	F	22	9
	1/25/200 7	57	1 7	54.49	8 7	18.13 8	2	Mag 1		10	8.3
	1/25/200	37	1	34.49	8	18.13		Moc-1	Α	10	0.3
	7	57		54.49	7	8	3	Moc-1	Α	10	8.2
	1/25/200	31	1	34.43	8	18.13	3	IVIOC-1		10	17.
22	7	57		54.49	7	8	4	Moc-1	Α	18	6
	1/25/200	- 07	1	54.45	8	18.13	 -	IVIOC 1		10	22.
	7	57	7	54.49	7	8	5	Moc-1	Α	23	2
	1/25/200	0.	1	0 11 10	8	17.44	<u> </u>	11100 1	71	20	32.
	7	58	7	53.499	7	2	1	Moc-1	F	33	8
	1/25/200		1		8	17.44					
	7	58	7	53.499	7	2	2	Moc-1	Α	8	7.6
	1/25/200		1		8	17.44					22.
	7	58	7	53.499	7	2	3	Moc-1	Α	25	3
	1/25/200		1		8	17.44					13.
	7	58	7	53.499	7	2	4	Moc-1	Α	14	2
	1/25/200		1		8	17.44					18.
	7	58	7	53.499	7	2	5	Moc-1	Α	20	7
	1/25/200		1		8	25.80					29.
	7	59	7	26.394	7	9	1	Moc-1	F	30	8
	1/25/200	59	1	26.394	8	25.80	2	Moc-1	Α	13	11.

	7		7		7	9					1
	1/25/200		1		8	25.80					14.
	7	59	7	26.394	7	9	3	Moc-1	Α	17	1
	1/25/200	- 1	1		8	25.80		11100			14.
	7	59	7	26.394	7	9	4	Moc-1	Α	15	1
	1/26/200		1		8						26.
	7	62	6	49.444	7	11.46	1	Moc-1	F	29	3
	1/26/200		1	-	8					-	
23	7	62	6	49.444	7	11.46	2	Moc-1	Α	12	8.8
	1/26/200		1		8						12.
	7	62	6	49.444	7	11.46	3	Moc-1	Α	10	4
	1/26/200		1		8						17.
	7	62	6	49.444	7	11.46	4	Moc-1	Α	20	6
	1/26/200		1		8						34.
	7	62	6	49.444	7	11.46	5	Moc-1	Α	50	6
	1/26/200		1		8	13.35					15.
	7	63	6	41.468	7	6	1	Moc-1	F	17	4
	1/26/200		1		8	13.35					
	7	63	6	41.468	7	6	2	Moc-1	Α	9	7.5
	1/26/200		1		8	13.35					
	7	63	6	41.468	7	6	3	Moc-1	Α	10	7.8
	1/26/200		1		8	13.35					
	7	63	6	41.468	7	6	4	Moc-1	Α	10	6.8
	1/26/200		1		8	13.35					21.
	7	63	6	41.468	7	6	5	Moc-1	Α	20	6
	1/26/200		1		8	29.41					
	7	65	6	41.569	7	9	1	Moc-1	F	25	23
	1/26/200		1		8	29.41					
	7	65	6	41.569	7	9	2	Moc-1	Α	10	8.3
	1/26/200		1		8	29.41					17.
	7	65	6	41.569	7	9	3	Moc-1	Α	17	3
	1/26/200		1		8	29.41					15.
24	7	65	6	41.569	7	9	4	Moc-1	Α	20	7
	1/26/200		1		8	29.41					26.
	7	65	6	41.569	7	9	5	Moc-1	Α	30	1
	1/26/200		1		8	39.96					21.
	7	66	6	40.552	7	4	1	Moc-1	F	23	7
	1/26/200		1		8	39.96					
	7	66	6	40.552	7	4	2	Moc-1	Α	12	9.1

1	1/26/200	1	I I 1	I	8	39.96	I		1	1	
	7	66	6	40.552	7	4	3	Moc-1	Α	10	8.3
	1/26/200		1		8	39.96	_			1.5	
	7	66	6	40.552	7	4	4	Moc-1	Α	10	6.3
	1/26/200		1		8	39.96					25.
	7	66	6	40.552	7	4	5	Moc-1	Α	28	2
	1/26/200		1		8						28.
	7	68	6	37.172	8	0.272	1	Moc-1	F	31	3
	1/26/200		1		8						10.
	7	68	6	37.172	8	0.272	2	Moc-1	Α	14	3
	1/26/200		1		8						13.
	7	68	6	37.172	8	0.272	3	Moc-1	Α	17	8
	1/26/200		1		8						
	7	68	6	37.172	8	0.272	4	Moc-1	Α	10	8.8
	1/26/200		1		8						
	7	68	6	37.172	8	0.272	5	Moc-1	Α	33	29
	1/26/200		1		8	55.64					43.
25	7	69	6	34.183	7	8	1	Moc-1	F	48	8
	1/26/200		1		8	55.64					
	7	69	6	34.183	7	8	2	Moc-1	Α	10	4.5
	1/26/200		1		8	55.64					
	7	69	6	34.183	7	8	3	Moc-1	Α	12	8.3
	1/26/200		1		8	55.64					
	7	69	6	34.183	7	8	4	Moc-1	Α	17	16
	1/26/200		1		8	55.64					29.
	7	69	6	34.183	7	8	5	Moc-1	Α	33	3
	1/26/200		1		8						14.
	7	70	6	33.525	7	58.82	1	Moc-1	F	15	7
	1/26/200		1		8						
	7	70	6	33.525	7	58.82	2	Moc-1	Α	6	3
	1/26/200		1		8						
	7	70	6	33.525	7	58.82	3	Moc-1	Α	5	4.6
	1/26/200		1		8						
	7	70	6	33.525	7	58.82	4	Moc-1	Α	10	8.4
	1/26/200		1		8		_	1			
	7	70	6	33.525	7	58.82	5	Moc-1	Α	10	7.3
	1/26/200				8	57.26		1			20.
	7	71	6	30.535	7	7	1	Moc-1	F	21	7
26	1/27/200	71	1	30.535	8	57.26	2	Moc-1	Α	11	9.2

	7		6	I	7	7					
	1/27/200		1		8	57.26					
	7	71	6	30.535	7	7	3	Moc-1	Α	9	6.8
	1/27/200		1		8	57.26					11.
	7	71	6	30.535	7	7	4	Moc-1	Α	13	3
	1/27/200		1		8	57.26					22.
	7	71	6	30.535	7	7	5	Moc-1	Α	26	9
	1/27/200		1		8	58.42					
	7	72	6	28.181	7	7	1	Moc-1	F	39	37
	1/27/200		1		8	58.42					10.
	7	72	6	28.181	7	7	2	Moc-1	Α	10	8
	1/27/200		1		8	58.42					12.
	7	72	6	28.181	7	7	3	Moc-1	Α	12	3
	1/27/200		1		8	58.42					11.
	7	72	6	28.181	7	7	4	Moc-1	Α	12	9
	1/27/200		1		8	58.42					18.
	7	72	6	28.181	7	7	5	Moc-1	Α	22	8
	1/27/200		1		8	55.89					13.
	7	73	6	24.589	7	2	1	Moc-1	F	15	2
	1/27/200		1		8	55.89					
	7	73	6	24.589	7	2	2	Moc-1	Α	7	7.7
	1/27/200		1		8	55.89					
	7	73	6	24.589	7	2	3	Moc-1	Α	9	4.1
	1/27/200		1		8	55.89					14.
27	7	73	6	24.589	7	2	4	Moc-1	Α	13	5
	1/27/200		1		8	55.89					18.
	7	73	6	24.589	7	2	5	Moc-1	Α	20	9
	1/27/200		1		8	58.60					12.
	7	74	6	33.512	7	1	1	Moc-1	F	15	6
	1/27/200		1		8	58.60					
	7	74	6	33.512	7	1	2	Moc-1	Α	5	6.1
	1/27/200		1		8	58.60					
	7	74	6	33.512	7	1	3	Moc-1	Α	10	10
	1/27/200		1		8	58.60					16.
	7	74	6	33.512	7	1	4	Moc-1	Α	18	3
	1/27/200		1		8	58.60					26.
	7	74	6	33.512	7	1	5	Moc-1	Α	30	5
	1/27/200		1		8	58.93					12.
	7	75	6	33.945	7	5	1	Moc-1	F	15	2

	1/27/200		l I 1		8	58.93					1 1
	7	75	6	33.945	7	5	2	Moc-1	Α	5	5
	1/27/200		1		8	58.93					
	7	75	6	33.945	7	5	3	Moc-1	Α	5	4.2
	1/27/200		1		8	58.93					10.
	7	75	6	33.945	7	5	4	Moc-1	Α	11	1
	1/27/200		1		8	58.93					15.
	7	75	6	33.945	7	5	5	Moc-1	Α	13	8
	1/27/200		1		8	58.91					22.
28_A	7	76	6	28.187	7	3	1	Moc-1	F	24	4
	1/27/200		1		8	58.91					10.
	7	76	6	28.187	7	3	2	Moc-1	Α	9	7
	1/27/200		1		8	58.91					
	7	76	6	28.187	7	3	3	Moc-1	Α	7	8.8
	1/27/200		1		8	58.91					11.
	7	76	6	28.187	7	3	4	Moc-1	Α	10	1
	1/27/200		1		8	58.91					24.
	7	76	6	28.187	7	3	5	Moc-1	Α	26	8
	1/28/200		1		8						
	7	80	6	52.278	8	2.656	3	Moc-1	Α	9	8.1
	1/28/200		1		8						
	7	80	6	52.278	8	2.656	4	Moc-1	Α	16	15
	1/27/200		1		8	58.91				ESTA VACIO EL	
	7	76	6	28.187	7	3	1	Moc-10		FRASCO	
	1/27/200		1		8	57.45					12.
	7	76	6	30.04	7	8	2	Moc-10	Α	13	2
	1/27/200		1		8	57.45					
	7	76	6	30.04	7	8	3	Moc-10	Α	9	6.8
	1/27/200		1		8						27.
	7	77	6	22.3	8	1.951	1	Moc-1	F	29	4
	1/27/200		1		8					1.0	
	7	77	6	22.3	8	1.951	2	Moc-1	Α	10	8.8
	1/27/200			000	8			1			
28B	7	77	6	22.3	8	1.951	3	Moc-1	Α	9	6.8
	1/27/200		1	00.0	8	4.05.				40	
	7	77	6	22.3	8	1.951	4	Moc-1	Α	10	8.4
	1/27/200			00.0	8	4.05.	_				33.
	7	77	6	22.3	8	1.951	5	Moc-1	Α	36	3
	1/27/200	77	1	24.447	8	1.797	1	Moc-10	Α	40	37.

	7		6		8			1	1		8	
	1/27/200		1		8						19.	
	7	77	6	24.447	8	1.797	2	Moc-10	Α	20	7	
	1/27/200		1		8					-	70.	
	7	77	6	24.447	8	1.797	3	Moc-10	Α	75	8	
	1/27/200		1		8							
	7	77	6	24.447	8	1.797	4	Moc-10	Α	63	62	
	1/27/200		1		8	54.94					41.	
	7	78	6	19.448	7	3	1	Moc-1	F	42	6	
	1/27/200		1		8	54.94						
	7	78	6	19.448	7	3	2	Moc-1	Α	10	8.6	
	1/27/200		1		8	54.94						
1	7	78	6	19.448	7	3	3	Moc-1	Α	7	5.4	
	1/27/200		1		8	54.94					18.	
	7	78	6	19.448	7	3	4	Moc-1	Α	20	6	
	1/27/200		1		8	54.94					22.	
	7	78	6	19.448	7	3	5	Moc-1	Α	25	2	
	1/28/200		1		8	47.02					71.	
29	7	79	6	30.607	7	9	1	Moc-1	F	72	5	
	1/28/200		1		8	47.02					10.	
	7	79	6	30.607	7	9	2	Moc-1	Α	11	4	
	1/28/200		1		8	47.02						
	7	79	6	30.607	7	9	3	Moc-1	Α	10	8.2	
	1/28/200		1		8	47.02						
	7	79	6	30.607	7	9	4	Moc-1	Α	11	10	
	1/28/200		1		8	47.02					44.	
	7	79	6	30.607	7	9	5	Moc-1	Α	45	2	
	1/28/200		1		8						32.	
1	7	80	6	52.278	8	2.656	1	Moc-1	F	33	8	
	1/28/200		1		8							
	7	80	6	52.278	8	2.656	2	Moc-1	Α	9	7.4	
	1/28/200		1		8						22.	
1	7	80	6	52.278	8	2.656	5	Moc-1	Α	24	5	
	1/28/200		1		8	41.75						
	7	81	6	55.871	7	3	3	Moc-1	Α	7	5.9	
	1/28/200		1		8	41.75					13.	
	7	81	6	55.871	7	3	4	Moc-1	Α	14		35
	1/28/200		1		8	41.75					17.	
	7	81	6	55.871	7	3	5	Moc-1	Α	18	2	

	1/28/200		1		8	45.66			I		19.
	7	82	7	18.775	7	6	2	Moc-1	Α	20	2
	1/28/200		1		8	45.66					
30	7	82	7	18.775	7	6	3	Moc-1	Α	9	8.5
	1/28/200		1		8	43.66					
	7	85	8	16.951	7	2	2	Moc-1	Α	7	6.8
	1/28/200		1		8	43.66					
	7	85	8	16.951	7	2	3	Moc-1	Α	7	6.5
	1/28/200		1		8	43.66					
	7	85	8	16.951	7	2	4	Moc-1	Α	12	11
	1/28/200		1		8	43.66					22.
	7	85	8	16.951	7	2	5	Moc-1	Α	23	3
	1/29/200		1		8	47.99					17.
	7	86	8	16.098	7	2	2	Moc-1	Α	19	4
	1/29/200		1		8	47.99					
	7	86	8	16.098	7	2	3	Moc-1	Α	22	22
	1/24/200		1		8	47.99		Juv.			
	7	50	8	16.098	7	2	5	Trawl	F		
	1/28/200		1		8						28.
	7	81	6	52.278	8	2.656	1	Moc-1	F	30	4
	1/28/200		1		8	41.75					
	7	81	6	55.871	7	3	2	Moc-1	Α	9	7.3
	1/28/200		1		8	45.66					
	7	82	7	18.775	7	6	1	Moc-1	F	30	29
	1/28/200		1		8	45.66					
	7	82	7	18.775	7	6	4	Moc-1	F	19	19
	1/28/200		1		8	45.66					37.
31	7	82	7	18.775	7	6	5	Moc-1	Α	40	2
	1/28/200		1		8	38.39					
	7	83	7	22.838	7	9	1	Moc-1	F	45	40
	1/28/200		1		8	38.39					14.
	7	83	7	22.838	7	9	2	Moc-1	Α	15	6
	1/28/200		1		8	38.39					
	7	83	7	22.838	7	9	3	Moc-1	Α	10	10
	1/28/200		1		8	38.39					
	7	83	7	22.838	7	9	4	Moc-1	Α	30	24
	1/28/200		1		8	38.39					50.
	7	83	7	22.838	7	9	5	Moc-1	Α	54	2
	1/28/200	84	1	19.411	8	46.22	1	Moc-1	F	30	28

	7		8		7	3					
	1/28/200		1		8	46.22					15.
	7	84	8	19.411	7	3	2	Moc-1	Α	18	4
	1/28/200		1		8	46.22					13.
	7	84	8	19.411	7	3	3	Moc-1	Α	16	3
	1/28/200		1	-	8	46.22					13.
	7	84	8	19.411	7	3	4	Moc-1	Α	15	8
	1/28/200		1	-	8	46.22				-	
	7	84	8	19.411	7	3	5	Moc-1	Α	20	18
	1/28/200		1	-	8	43.66					35.
	7	85	8	16.951	7	2	1	Moc-1	F	36	8
	1/29/200		1		8	47.99					50.
32	7	86	8	16.098	7	2	1	Moc-1	F	55	9
	1/29/200		1		8	47.99		Juv.			
JT	7	86	8	16.098	7	2	J	Trawl	F		
	1/29/200		1		8	47.99		Juv.			
JT	7	86	8	16.098	7	2	J	Trawl	F		
	1/29/200		1		8	47.99					12.
	7	86	8	16.098	7	2	4	Moc-1	Α	15	6
	1/29/200		1		8	47.99					23.
	7	86	8	16.098	7	2	5	Moc-1	Α	25	4
	1/29/200		1		8	45.10					59.
	7	87	8	11.663	7	4	1	Moc-1	F	60	8
	1/29/200		1		8	45.10					19.
	7	87	8	11.663	7	4	2	Moc-1	Α	21	6
	1/29/200		1		8	45.10					13.
	7	87	8	11.663	7	4	3	Moc-1	Α	16	3
	1/29/200		1		8	45.10					
	7	87	8	11.663	7	4	4	Moc-1	Α	30	24
	1/29/200		1		8	45.10					37.
	7	87	8	11.663	7	4	5	Moc-1	Α	40	2
	1/29/200		1		8	47.75		Juv.			
JT	7	88	8	8.147	7	6	1	Trawl	F		
	1/29/200		1		8	47.75					
	7	88	8	8.147	7	6	1	Moc-1	F	48	47
	1/29/200		1		8	47.75					11.
	7	88	8	8.147	7	6	2	Moc-1	Α	12	9
	1/29/200		1		8	47.75					11.
33	7	88	8	8.147	7	6	3	Moc-1	Α	12	6

	1/29/200	1	1	1		8	47.75	I	Juv.	I		1 1	ĺ
JT	7	88		8	8.147	7	6	J	Trawl				
	1/29/200			1	91, 11	8	47.75						
	7	88		8	8.147	7	6	4	Moc-1	Α	16	13	
	1/29/200			1		8	47.75					30.	
	7	88		8	8.147	7	6	5	Moc-1	Α	40	7	
	1/30/200			1		8	50.72					39.	
	7	89		8	3.35	7	9	1	Moc-1	F	40	2	
	1/30/200			1		8	50.72					18.	
	7	89		8	3.35	7	9	2	Moc-1	Α	19	4	
	1/30/200			1		8	50.72					13.	
	7	89		8	3.35	7	9	3	Moc-1	Α	14	1	
	1/30/200			1		8	50.72						
	7	89		8	3.35	7	9	4	Moc-1	Α	10	9.8	
	1/30/200			1		8	50.72						
	7	89	<u> </u>	8	3.35	7	9	5	Moc-1	Α	32	28	
	1/30/200			1		8	43.64					33.	
	7	90		8	7.412	7	5	1	Moc-1	F	35	9	
	1/30/200			1		8	43.64					19.	
	7	90		8	7.412	7	5	2	Moc-1	Α	20	1	
	1/30/200			1	7.440	8	43.64				40	12.	
	7	90		8	7.412	7	5	3	Moc-1	Α	13	6	
24	1/30/200	00		1	7.412	8 7	43.64	_	Maad	۸	10	0.7	
34	•	90		8	7.412		5 43.64	4	Moc-1	Α	10	9.7	
	1/30/200 7	90		1 8	7.412	8 7	43.64 5	5	Moc-1	Α	16	8	
	1/30/200	90		0	7.412	/	5	5	Juv.	A	10	0	
JT	7	91						J	Trawl	F			
01	1/30/200	31			NO DATA			0	Juv.	•			
JT	7	91			AVAILABLE			2	Trawl	Α	LEPTOS		
<u> </u>	1/30/200	0.			711711271322				Juv.	7.			
JT	7	93						1	Trawl	F			
_	1/30/200								Juv.				
JT	7	95						J 1/2	Trawl	F			
	1/30/200								Juv.				
JT	7	95						J 2/2	Trawl	F			
	1/30/200				NO DATA				Juv.				
JT	7	96			AVAILABLE			J	Trawl	Α			
JT	1/30/200	96						J	Juv.	F			

	7						Trawl			
JT	1/30/200						Juv.			
35	7	97				1	Trawl	Α		
	1/30/200					11/	Juv.			
JT	7	97				2	Trawl	F		
	1/30/200			NO DATA		12/	Juv.			
JT	7	97		AVAILABLE		2	Trawl	F		
	1/30/200						Juv.			
JT	7	98				1	Trawl	F		
	1/30/200						Juv.			
JT	7	99				1	Trawl	F		
		42								
		8								

U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum V

CHINCHORRO LT SAMPLES 2007

2001									
	Date	Sta.	Time	Bottle #	Wet Wt (g)	Vol (mL)	Fish Total	Sorter	Notes
	15-Jan- 07	1	8:00				102	MX	no zoo, only fish in bag
	15-Jan- 07	4	8:55		18.7	23	33		LD
	15-Jan- 07	5	9:15		3.8	5	4		LD
	40.1								
Z00	16-Jan- 07	1	8:30		32	40	221		
	16-Jan- 07	2	8:45				30	MX	no zoo, only fish in bag
	16-Jan- 07	3	9:00		65.4	66	12		LD
	16-Jan- 07	4	9:30		17	19	6		LD
	16-Jan- 07	5	9:45		1.8	3	4		LD
	16-Jan- 07	6	10:00		42	50	13		
	16-Jan- 07	6	10:00		38	80			

17-Jan-							
07	1	9:55	143	160	89		LD
17-Jan-							
07	1	9:55	244	214	154		LD
17-Jan-							
07	2	10:20	149	170	34		LD
17-Jan-	_						
07	2	10:20	104.4	116	16		LD Sample
							in
17-Jan-							Ecosur,
07	3	10:30	54.2	58	?		they will sort it.
17-Jan-	<u> </u>	10.50	J7.2	- 50	:		SUIT IL.
07	4	9:05	6.1	6	20		LD
17-Jan-							
07	5	9:20	0.5	1	5		LD
17-Jan-							
07	6	9:30	4.2	4	6		LD
17-Jan-							
07	8	8:50	14.1	15	32		LD
18-Jan-	4	0.50	4 40 4	450	470		
07	1	8:50	146.4	158	478		LD
18-Jan- 07	2	9:10	94.9	96	61		
07		9.10	94.9	90	01		LD
18-Jan-							LD - check
07	3	9:25	16.1	20	?	**FIND	w/ Lulu
18-Jan-							
07	4	10:10	2.3	4	15		LD
 18-Jan-							
07	6	10:10	2.1	2	12		LD
18-Jan-	_						
07	7	9:40	9.4	10	20?		LD
18-Jan-	•	0.55	4.0		70		
07	8	9:55	4.9	6	73		LD
19-Jan-	11	7:15	26	32.5	241		

07								
19-Jan-								
07	2	7:25		67.1	68	43		LD
19-Jan-								
07	3	7:40		12.9	13	10		LD
19-Jan-								
07	4	8:20		0.8	1	12		LD
19-Jan-								
07	5	8:30		0.8	1	1		LD
19-Jan-								
07	6	8:40		0.8	1	12		LD
19-Jan-								
07	7	7:50		78.9	81	18		LD
19-Jan-								
07	8	8:10		7.6	10	11		LD
20-Jan-								
07	1	14:45		36.8	38	78		LD
20-Jan-								
07	2	14:50		40.8	42	14		
20-Jan-								
07	3	15:00		9.8	10	3		LD
20-Jan-								
07	4	16:00		0.5	1	4		LD
00 1								LD -
20-Jan-	G	16.15		0.0	1	?		check
07	6	16:15		0.8	- 1			w/ Lulu
20-Jan- 07	7	15:10		11.4	13	6		1.5
20-Jan-		15.10		11.4	13	Ö		LD
20-Jan- 07	8	15:40		4.7	5	9		LD
01	<u> </u>	10.40		7.7		3		LLD
				1	1			*STA
								21 No
21-Jan-				1				STA 2
07	1	14:25	1 of 2	52	62.5	158		& 3
21-Jan-	Į.	17.20	1 01 2	02	02.0	100		4 0
07	1	14:25	2 of 2	44	53			
21-Jan-	4	16:20		0.7	1	4		LD
∠ 1-Jai1-		10.20		0.7			1	LLD

	07						
	21-Jan-						
	07	6	16:45	1.8	2		LD
	21-Jan-						
	07	7	15:35	16	15	33	LD
	21-Jan-	_					
	07	8	16:00			6	
	21-Jan-	D0	45.00	40.0	40		
	07	RC	15:00	10.2	10	2	LD
	00.15						
	22-Jan-	4	7.40	4.40.7	450	400	
Z00	07	11	7:40	146.7	159	136	LD
700	22-Jan- 07	2	7:55	16	19	13	
Z00	22-Jan-		7.55	10	19	13	
Z00	07	3	8:10	23.6	24	2	LD
200	22-Jan-		0.10	20.0	27		LD
Z00	07	4	8:50	0.5	1	2	LD
	22-Jan-		0.00				
Z00	07	6	9:05	2	2	4	LD
	22-Jan-						
Z00	07	7	8:15	16.8	17	14	LD
	22-Jan-						
Z00	07	8	8:35	4.7	7	4	LD
	22-Jan-						
	07	RC	8:00	24.1	24	96	LD
	23-Jan-						
	07	1	7:30	147.6	160	494	LD
	23-Jan-				400		
	07	1	7:30	117.1	128	-	LD
	23-Jan-	0	7.40	F 4	F.C.	4	
	07 23-Jan-	2	7:40	54	56	4	LD
	23-Jan- 07	3	8:00	194	200	3	10
	23-Jan-	<u> </u>	0.00	134	200	J	LD
	07	4	8:45	0.5	1	4	LD
	23-Jan-	т	0.40	0.0	•	7	
	07	6	8:55			7	

	23-Jan-							1 1
Z00	07	7	8:15		20	20	17	
	23-Jan-							
	07	8	8:30		9	9	30	LD
	23-Jan-							
	07	9	9:20		0.8	1	6	LD
	23-Jan-	D0	0.05		05.0	0.7	74	
	07	RC	8:05		35.8	37	71	LD
	24-Jan-		0.45		00	405	200	
	07 24-Jan-	1	8:45		89	105	399	
Z00	24-Jan- 07	2	8:55	1 of 1	34	40	4	
200	24-Jan-		0.00	1 01 1	34	40	4	
	07	3	9:25		35.6	36	?	LD
	24-Jan-		0.20		00.0	- 55	-	
	07	6	10:35		1	1	3	LD
	24-Jan-							
	07	7	9:55		18.9	23	33	LD
	24-Jan-							
	07	8	10:10		4.5	5	82	LD
	24-Jan-	_					_	
	07	8	16:00		3.9	4	?	LD
	24-Jan-	N4 1 -	40.55		0.5			
	07	Mangle	10:55		0.5	1	2	LD
	24-Jan- 07	RC1	9:35		25.4	26	71	1.5
	24-Jan-	KCI	9.33		25.4	20	284	LD
	07	RC2	9:15		40	41	+	LD
	0,	1102	0.10		10			
	25-Jan-							
Z00	07	1	8:00	2 of 2	62	79	354	
	25-Jan-				-	-		
Z00	07	1	8:00	1 of 2	62	0	-	<u> </u>
	25-Jan-							
Z00	07	2	8:10		88	103	62	
	25-Jan-							
Z00	07	3	8:20		148	175	7	
Z00	25-Jan-	3	8:20		68	80	4	

	07								
	25-Jan- 07	6	10:50		4.3	5	12		LD
	25-Jan- 07	6	10:50		0.6	1	-		LD
	25-Jan- 07	7	8:35	2 of 2			56		no zoo, only fish in bag
Z00	25-Jan- 07	7	8:35	1 0f 2	90	105	-		
	25-Jan- 07	8	11:15		7.7	9	53		LD
	25-Jan- 07	RC1	8:30		15	14.8	21		LD
	25-Jan- 07	RC2	8:15				12		LD"no sample"
Z00	26-Jan- 07	1	8:35	1/2	76	90	55?		
Z00 Z00	26-Jan- 07	1	8:35	1 of 2 2/2	50	65	115		
200	26-Jan- 07	2	8:50	2,2	26	25	75		
Z00	26-Jan- 07	3	9:15	2/2	78	95	103	STA 3 total	
Z00	26-Jan- 07	3	9:15	1/2 2/2	64	72.5			
Z00	26-Jan- 07	3	9:15	1 of 2 2/3	90	107.5			
Z00	26-Jan- 07	3	9:15	2 of 2 2/3	90	101			
Z00	26-Jan- 07	3	9:15	1/4	104	124	20		
Z00	26-Jan- 07	3	9:15	1/3	128	153	31		
	26-Jan- 07	4	11:10				15		no zoo, only fish in bag
Z00	26-Jan-	6	11:20		2	3	11		Ĭ

	07								
	26-Jan-			2 of 2				STA 7	
	07	7	8:35	2/2			58	Total	
	26-Jan-								
Z00	07	7	9:30	2 of 2	90	101	-		
	26-Jan-	_							
Z00	07	7	9:30	1 of 2	60	74	-		
	26-Jan-	-	0.00	0.10	50	00			
Z00	07	7	9:30	2 of 2	56	68	-		
700	26-Jan- 07	7	0.25		102	116			
Z00	26-Jan-		9:35		102	116	-		
Z00	07	8	11:00		2	2	23		
200	26-Jan-	0	11.00				23		
	07	RC1	9:25		5.2	5	105		LD
	26-Jan-		0.120						
	07	RC2	9:05		3.5	3	34		LD
_	27-Jan-								
	07	1	8:30		36	45	235		
	27-Jan-								
	07	2	8:40		30	30	38		
	27-Jan-								
	07	3	9:10		50.2	52	1		LD
	27-Jan-		0.40						
Z00	07	3	9:10		24	25			
									no zoo, only
	27-Jan-		40.00				_		fish in
	07	4	10:00				7		bag
									no zoo, only
	27-Jan-		40.40				_		fish in
	07	6	10:10				7		bag
700	27-Jan-	7	0.20		F0	F0			
Z00	07 27-Jan-	7	9:30		50	58			
Z00	27-Jan- 07	7	9:30		8	10	29		
200	27-Jan-		3.30		0	10	23		
Z00	07	8	9:45		2	1.5	3		
	27-Jan-	RC1	9:18		8.9	10	58		LD
	21 -Jail-	1101	3.10	1	0.5	10	50		LU

	07						
	27-Jan-						
	07	RC2	8:55	2.8	3	36	LD
	27-Jan-				,		
	07	Dyoni	Dive	n/a	n/a	10	
	28-Jan-	4					
Z00	07	1	9:08	26	32	272	
	28-Jan-		0.45	0.4	-00	70	
Z00	07	2	9:15	24	28	72	
	28-Jan-		0.05	70	0.5	00	
Z00	07	3	9:35	72	85	29	
	28-Jan- 07	_	12:45			58	
	28-Jan-	4	12.43			56	
Z00	20-Jan- 07	6	12:35	10	8	28	
200	28-Jan-	0	12.33	10	0	20	
Z00	07	7	9:45	14	16	24	
200	28-Jan-		0.10				
Z00	07	8	12:55	2	3.5	20	
							no zoo,
	28-Jan-						only fish in
	07	mangle	13:10			7	bag
							no zoo,
	28-Jan-	Baliza					only
	07	W	11:30			11	fish in bag
	28-Jan-						79
	07	RC2	9:30	4.5	4	113	LD
	29-Jan-						
	07	RC1	8:40	9.5	10	56	LD
	29-Jan-						
	07	RC2	8:30	5.4	5	30	LD
Z00	no label	?	?	72	87.5	21	

U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum VI

Table 2. Samples	collec	ted														
Date	15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan	25-Jan	26-Jan	27-Jan	28-Jan	29-Jan	T
Light trap 1	x	X	X	X	x	X	x	x	x	x	x	X	x	x		14
Light Trap 2	X	X	X	X	X	X		X	X	X	X	X	X	X		13
Light Trap 3	X	X	X	X	X	X		X	X	X	X	X	X	X		13
Light Trap 4	X	X	X	X	X	X	X	X	X	X	X	X	X	X		14
Light Trap 5	X	X	X	X	X											5
Light Trap 6	e	X	X	X	X	X	X	X	X	X	X	X	X	X		13
Light Trap 7			e	X	X	X	X	X	X	X	X	X	X	X		12
Light Trap 8			X	X	X	X	X	X	X	X	X	X	X	X		12
Light Trap Mangrove										X				X		2
Chanel Net 1						x	x	x	x	X	X	X	X	X	X	10
Chanel net 2											X	X	X	X	X	5
Total Light Trap	5	6	8	8	8	7	5	7	7	8	7	7	7	8		97
Total Chanel Net						1	1	1	1	2	2	2	2	2	2	16
	e – trap er	пріу														
	shading= t	trap lost														

U. S. DEPARTMENT OF COMMERCE • NOAA-Fisheries Cruise 0601: NOAA Ship GORDON GUNTER Addendum VII

omass	s light tra	ps		
2-4-	TI	Link Too	Mal. ()	14/-1-b4 />
Date	Time	Light Trap	Vol. (ml)	Welght (gr)
15 15	8:55	4 5	23 5	18.7
15	9:15	5	5	3.8
16	9:00	3	66	65.4
16	9:30	4	19	17
16	9:45	5	3	1.8
17	8:50	8	15	14.1
17	9:05	4	6	6.1
17	9:20	5	1	0.5
17	9:30	6	4	4.2
17	9:55	1	160	143
17	9:55	1	214	244
17	10:20	2	170	149
17	10:20	2	116	104.4
17	10:30	3	58	54.2
18	8:50	1	158	146.4
18	9:10	2	96	94.9
18	9:25	3	20	16.1
18	9:40	7	10	9.4
18	9:55	8	6	4.9
18	10:10	4	4	2.3
18	10:10	6	2	2.1
19	7:25	2	68	67.1
19	7:40	3	13	12.9
19	7:50	7	81	78.9
19	8:10	8	10	7.6
19	8:20	4	1	0.8
19	8:30	5	1	0.8
19	8:40	6	1	0.8