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Abstract

The ensemble four-dimensional variational (En4DVar) data assimilation (DA)
system introduced in Part I (Pasmans and Kurapov, 2019) is tested in the
coastal waters offshore Oregon and Washington, U.S. West coast, during the
spring and summer of 2011. The background error covariance B is derived
from the forecast ensemble. Satellite sea-surface temperature (SST), sea-
surface height (SSH), and daily-averaged radial surface currents from high-
frequency radars (HFRs) are assimilated. The performance of the En4dDVar
system is compared with a “traditional” 4DVAR system using a static B.
It is found that the presence of the Columbia River plume has a profound
impact on the ensemble B. Near the plume front the SST-SSS covariance
can be up to a factor 20 larger in magnitude than in the static B. This
introduces large spatial and temporal variability in the ensemble B. The
En4DVar system is more successful than the 4DVAR with the static B pre-

serving the temperature-salinity properties when compared to glider data.
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The En4DVar system also produces more accurate forecasts and analyses
for temperature in the subsurface below 30 m at a buoy location on the
continental shelf. In comparisons with other surface and subsurface obser-
vations En4DVar shows consistent, albeit not significant, improvement over
traditional 4DVAR. Large surface temperature-salinity covariances in combi-
nation with the episodic occurrence of large-scale errors in the SST observa-
tions lead to erroneous freshening in the centre of the model domain. Adding
constraints on the surface salinity corrections based on the prior model re-

duces this effect.

Keywords: 4DVAR, Data assimilation, Coastal Oceanography, Ensemble

Background Error Covariance, River Plume, USA, Oregon

1. Introduction

For the benefit of the local fishing communities, government agencies
and other users, the Oregon State University (OSU) coastal ocean forecast
system has provided forecasts of temperature, salinity, currents, and other
oceanic fields of interest in the Oregon-Washington (OR-WA) coastal area
(http://nvs.nanoos.org/Explorer). While the system does produce useful
forecasts, we continue exploring ways to improve its performance. In this sys-
tem, initial conditions for the forecasts are corrected by assimilating surface
observations using the 4DVAR data assimilation (DA) algorithm in a series
of 3-day windows. This requires specification of the forecast, or background,
error covariance B. The B currently implemented in the OR-WA system is
static, i.e., it does not change from one assimilation window to the next. In

this covariance, the balance operator and its adjoint counterpart (Kurapov
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et al., 2011; Weaver et al., 2005) are used to correlate errors in different
components of the ocean state vector, including SSH and three-dimensional
fields of the horizontal velocity, temperature, and salinity. The balance oper-
ator uses diagnostic relations such as geostrophy, thermal wind balance, the
linearised equation of state, and a simplified, linear temperature-salinity rela-
tion based on multiyear glider observations. Details on the balance operator
used can be found in Appendix B.

Coastal waters in the OR-WA area are very dynamic, with wind-driven
currents in excess of 0.5 ms™!, strong temperature fronts, geostrophic and
ageostrophic baroclinic instabilities, and jets separating from the shelf toward
the ocean interior (Koch et al., 2010). The freshwater outflow from the
Columbia River creates a shallow plume, hereafter referred to as “the plume”,
that spreads over a large area (Berdeal et al., 2002; Hickey et al., 2005; Huyer
et al., 2005; Liu et al., 2009). The location of the Columbia River plume
changes on seasonal and shorter time scales in response to the winds. In
summer, due to the predominantly southward winds, the Columbia River
plume is transported to the south of the river mouth and offshore, with the
coastal upwelling. During periods of wind relaxation the plume is advected
toward the coast, freshening the coastal waters off Oregon. In such a dynamic
area the utility of a static B can be limited.

One way to capture the time-varying dynamics in B is to estimate it
from an ensemble of perturbed model runs. This approach has been tested
in meteorology with varying results. Kuhl et al. (2013) found that replacing
the static B with one coming partially from an ensemble 3DVAR system in

the Naval Research Laboratory Atmospheric Variational Data Assimilation
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System-Accelerated Representer (NAVDAS-AR) system reduced background
errors. In contrast, running an ensemble Kalman filter to produce B, the Met
Office found that a system using a pure ensemble B resulted in an overall
degradation of performance and produced forecasts with larger root-mean
square errors (RMSE) compared to a system using a static climatological
background covariance (Lorenc and Jardak, 2018). In this study we aim to
compare 4DVAR with static B and ensemble B, both applied to a realistic
ocean model. In Part I (Pasmans and Kurapov, 2019), the En4DVar method
generating the ensemble B was described. The OR-WA coastal ocean fore-
cast system was used to illustrate the computational efficiency of the cluster
search minimisation algorithm and to introduce essential statistical tests of
the dynamical ensemble and the resulting time-variable B. However, we did
not demonstrate if, in any regard, the use of the more computationally de-
manding En4DVar yields an improvement in the forecast accuracy compared
to a traditional 4DVAR system with the static balance operator B. This
void is filled here.

In the process of this study, we recognise one of the general potential dan-
gers using En4DVar for poorly observed fields. By design, an ensemble yields
large variances, and hence covariances, in frontal areas. At the same time, if
observations are affected by large-scale errors or biases in these areas, unob-
served fields can receive a large and erroneous correction.In our case, satellite
SST observations are occasionally found to contain large-scale spatial biases.
Combined with the large and negative temperature-salinity covariance in the
Columbia River plume and along the Oregon coastal upwelling front, assim-

ilation of the biased SST results in unrealistically large corrections to the
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surface salinity. This issue motivated us to test methodology to constrain
the near-surface salinity based on the forecast solution, the so-called salinity
constraint (SC) procedure.

This paper is organised as follows: section 2 provides a summary of the
ocean model, En4DVar DA, and the 4DVAR DA system. In this section, we
also introduce the SC procedure developed to deal with the erroneous cor-
rections to the salinity discovered during this study. Horizontal and vertical
spatial patterns of the static and the ensemble B are compared in section 3.
The problems with the salinity field are illustrated in section 4. Analyses
and forecasts from the En4dDVar system are compared to the model without
assimilation and with the standard 4DVAR in section 5. In section 6, our
findings are summarised and some other approaches not considered here, e.g.,

hybrid covariances are briefly discussed.

2. Model experiments

In the OR-WA system, nonlinear forecasts are obtained using the Re-
gional Ocean Modeling System (ROMS) (www.myroms.org) with a 2-km
resolution in the horizontal and 40 terrain-following layers in the vertical
direction. ROMS solves for temperature (7'), salinity (5), zonal velocity
(u), meridional velocity (v) and sea-surface height (¢). The salinity in this
paper is reported according to the PSS-78 standard and, following IAPSO
(1985) oceanographic standard, is reported as dimensionless quantity. The
4DVAR DA utilises the AVRORA tangent linear and adjoint codes that
were developed by our group at OSU and that are not part of the commu-

nity code developed by the broader ROMS community (Kurapov et al., 2009,
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2011; Yu et al., 2012). Model forcing includes wind stress and surface heat
flux derived using ROMS’s bulk flux formulation (Fairall et al., 2003) and
input from the North-American Mesocale model (NAM) (NOAA, 2011a),
tides from the Topex database (Egbert and Erofeeva, 2010) and river inputs
based on United States Geological Survey discharge measurements (USGS,
2011). Non-tidal lateral boundary conditions are obtained from the HY-
COM global model analyses (COAPS, 2015). The data assimilation period
runs from 19 April till 1 October 2011, covering a summer upwelling season
with the anomalously large Columbia River discharge (Mazzini et al., 2015).
Precipitation-evaporation is low in the region in summer and is not included
in the model. More details of the model forcing can be found in Pasmans

et al. (2019) and Pasmans and Kurapov (2019).

Table 1: Overview of the experiments in this study.

Experiment | DA B salinity constrained
No DA no - no
Ens yes ensemble no
Ens-SC yes ensemble yes
Bal yes balance operator yes

Four experiments are discussed in this paper. Experiment No DA starts
using the interpolated HYCOM analysis as initial condition on 2 January
2011 and is run continuously without DA. All DA experiments use the No
DA ocean state on 19 April 2011 as the initial condition. In all the DA
cases, the model is propagated forward in time as a series of three-day win-

dows. Initial conditions for the control run (cases Bal, Ens, and Ens-SC)
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and each ensemble member (Ens, Ens-SC) are updated at the beginning of
each window by the assimilation of the GOES satellite sea-surface temper-
ature (SST), daily-averaged radial current observations from high-frequency
radars (HFR) and along-track satellite sea-surface height (SSH) altimetry.
See Pasmans and Kurapov (2019) for the details on the data sets used. Prior
to assimilation the resolution of the SST and HFR observations is reduced to
the resolution of the tangent linear and adjoint models by averaging the SST
observations over 4 x 4 km horizontal cells and radial HFR data over 5 x 5 km
cells. The 24h-average of the tides based on the harmonical analysis of the
No DA model is added to the detided absolute dynamic topography SSH ob-
servations. In the DA system, this is matched against the 24h-average of the
model SSH, with the model and observed means removed along each satellite
track. No in-situ observations are assimilated because of inherent problems
assimilating very sparse hydrographic profiles (Pasmans et al., 2019). In ev-
ery assimilation-forecast cycle, the nonlinear ROMS is run for 6 days starting
from the corrected initial conditions. The model output over the first three
days is referred to as the analysis and the next three days as the forecast.
Corrections x™ to the ocean state at the beginning of each DA window
for both the control run and each of the ensemble members m are calculated

by maximising the conditional probability
p(X(m) |d(m)) ~ p(d(m) |X(m) )p(x(m)) (1)

with respect to x(™. Here ~ indicates that the two sides are equal apart from
a proportionality constant. The equality in (1) follows from Bayes’ theorem,
d™ is the vector with innovations, i.e. the differences between observations

and the nonlinear forecast predictions for the observations, p(x™|d™) the

7
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probability that the background error is —x(™ given the innovations d™,
p(d™|x™)) the probability that the innovations are d™ given that the back-
ground error is —x(™) and p(x(m)) is the a priori probability distribution for
the background errors. It is usually assumed that the aforementioned prob-
abilities follow normal distributions, i.e. p(d™|x™) ~ exp(—Jops(x™)),

p(x™) ~ exp(—Jy(x™)) with J,(x™) = {x(™TB~1x™ and
1
Jops(x™)) = §(d<m> — HMx™)TR~1(d™ — HMx™)

. Here H is the sampling operator that generates predictions for the differ-
ent observations from the model output and M the tangent linear model,
i.e. the ROMS model linearised around the forecast. The observation er-
ror covariance R is assumed to be diagonal. In this case, the maximisation
of p(x™|d™)) in (1) is equivalent to the minimisation of the cost function

(Courtier et al., 1994; Egbert et al., 1994):
Tx) = e () + Jy(x™) 2)

In experiments Ens and Ens-SC an ensemble of 40 forecasts is carried
throughout the study period. The control run is computed using the wind
forcing without perturbations. The other 39 runs are carried using per-
turbed winds and perturbed observations (see Pasmans and Kurapov (2019,
sec. 4)). The model fields for SSH, salinity, temperature and velocity are
averaged over a period beginning 12h prior to the DA window start time and
ending 12h after the start time. The time-averaged fields of the 39 runs are
then utilised to compute B. Based on the findings in Pasmans and Kurapov

(2017) localisation is applied in the horizontal such that zero correlations are
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imposed on points spaced further than 100 km apart. The wind perturba-
tions are linear combinations of the empirical orthogonal functions (EOF's)
derived from the NAM wind fields with their coefficients drawn from normal
distributions. Daubechies wavelets are added to these wind perturbations to
represent the small-scale errors in the wind field. Distributions of the EOF
coefficients are determined by comparison of the model wind field with AS-
CAT scatterometer data using a Bayesian Hierarchical Model (Pasmans and
Kurapov, 2019). All ensemble members start off from the same initial state
that is taken from experiment No DA on 10 March 2011 and are run till 19
April with perturbed winds, but without DA.

As the ensemble perturbations to the ocean state are generated from the
perturbations in the wind forcing using the physics that is contained in the
model, it is assumed that the ensemble perturbations are consistent with the
ocean dynamics. Therefore, it is expected that the DA corrections are in
leading order in geostrophic balance and that the amplitude of the transient
solutions that emanate from the DA corrections are sufficiently small that
no model blow-ups occur. Indeed, in the control run of experiments Ens and
Ens-SCno blow-ups are encountered. Sporadically, a blow-up is encountered
in one of the ensemble members. These blow-ups, however, are not due to
the DA corrections, as rerunning the ensemble member with different wind
forcing perturbations resolves the problem. The solution x™ that minimises
the cost-fuction J in (2) for each ensemble is approximated using a numer-
ical iterative solver. In case of the popular Reduced B-conjugate gradient
(RBCG) method (Giirol et al., 2014) the approximation to x™ would be

sought in a subspace that is expanded by 1 dimension in each inner loop
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iteration. For En4DVar this method was deemed too time- and resource
consuming. Instead, the newly developed cluster search method is used to
approximate x™. In the cluster search method, the search subspace is ex-
panded by Ny > 1 dimensions per inner loop iteration. If Ny = 1 the cluster
search method is identical to the RBCG method. For Ny, > 1 the cluster
search still searches for the same solution as ordinary 4DVar, i.e. x(™ that
minimises equation (2) or (3), but it converges faster than RBCG. Full details
on the cluster search method can be found in Pasmans and Kurapov (2019,
sec. 3). For practical reasons, we use the cluster search method with Ny = 4
and 12 inner loop iterations in this study. In experiment Bal no ensemble
is available. In order to use cluster search, and thus accelerate convergence
of the traditional 4DVAR, a low-rank surrogate ensemble is generated as
explained in Appendix C.

It is found in case Ens that unphysical DA corrections to the sea-surface
salinity (SSS) can occur. To reduce this effect, salinity constraints (SC) are
added to the 4DVAR cost function (2). These constrains “nudge” the DA
correction towards the prior model salinity. We do not want to nudge SSS
to the prior model point-by-point since this would suppress changes to the
location of the river plume front. Constraining simply the area-averaged SSS
does not effectively mitigate the adverse effect of the biased SST, since the
domain-averaged SSS can be preserved when salinity is wildly redistributed.
Instead, we cover the surface area in the model interior with a hierarchy
of boxes or rectangles (Figure 1). The largest box spans the entire domain
(area inside the blue edges in Figure 1), excluding the domain edges and

also excluding Puget Sound in the northeast corner of our domain. The

10
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next level of boxes (areas inside the green edges) is obtained by dividing the
largest box (blue edges) into 4. Level 3 boxes (areas bounded by the red
edges) are obtained by dividing level 2 boxes (areas bounded by the green
edges) by 4 and so on. In order not to impede corrections on the scale of
the background error covariance (R = 25km) only five levels of boxes are
used (the areas bounded by the blue, green, red, cyan edges respectively
plus a level not shown in Figure 1). In this way, the smallest boxes have
dimensions of 30 x 65 km. The prior, forecast SSS from a earlier window
can then be averaged in each of these boxes at the beginning of the current
assimilation window by a sampling operator Hg. These averaged salinity
values are treated as additional observations. The computational cost of
implementing this scheme in the 4DVAR is negligible. Using the incremental
4DVAR formulation (2), the innovation vector d™ corresponding to these
synthetic data is zero and an additional term is added to cost function (2).
This term provides a penalty on the deviations of the box-averaged SSS from

the prior:

Jsc = Z [Afi]z (3)

PR

Here AS; is the DA change in the box-averaged salinity of box 7 and og; some
specified variability. We have opted to base these values for og; on the natu-
ral variance in experiment No DA for two reasons. First, 4DVAR corrections
arc applied to all ensemble members and consequently the large salinity cor-
rections can exaggerate the ensemble spread resulting in unrealistically large
estimates of 0§, from the ensemble. Second, the additional penalty terms

serve solely to limit SSS corrections to climatologically realistic values. Con-

trary to the No DA solution, the 4DVAR ensemble is not available prior to

11
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DA and therefore cannot be used to estimate climatological values. Specifi-
cally, the value for aéi has been determined by first calculating the box SSS
in No DA at the beginning of each window, then taking differences in the
box SSS between consecutive windows and after this defining o3 ; as 5% of
the variance in these SSS differences for box i. This yields average values of
the standard deviation og; of 0.058, 0.12, 0.17, 0.21, and 0.23 for the boxes
at levels 1 through 5 respectively. As the period covered in the case No DA
is limited to one upwelling season, it is possible that in reality the plume
front moved beyond the maximal extent of the plume in experiment No DA.
In that case, the values for og; obtained using the aforementioned procedure
would underestimate the background error in the SSS. The application of
salinity constraints under these conditions would lead to unnecessary local
suppression of DA corrections to the SSS.

Even though in practice the salinity constraints are implemented as addi-
tional observations, they are no actual observations and Jgc depends solely
on the background errors in the model SSS. Therefore, in the interpretation of
DA based on Bayes’ theorem, the addition of Js¢c to the cost function is equiv-
alent with replacing the a priori background error probability distribution
p(x™) in (1) with p(x™) ~ exp(—J,(x™)) exp(—3x™THLE?Hgx(™),
where 3 is a diagonal matrix with the values o; on its diagonal. I.e. DA cor-
rections that change surface salinity on scales equal or larger than the scale
of the smallest boxes become less probable than they would be without the
addition of Jgc. In this way, SSS corrections on scales smaller than 20 km
are not impacted by the additional penalty, while large scale corrections will

result in changes of box-averaged salinity in multiple boxes at multiple levels,

12
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thus rapidly increasing Jsc.

The DA case in which (3) is added to cost function (2) is referred to as
Ens-SC. Experiment Bal uses the standard 4DVAR with the static, balance
operator B as described in Kurapov et al. (2011) and Appendix B. Exper-
iment Bal also uses the SC to enable a fair comparison with Ens-SC, the

En4DVar experiment with physically acceptable salinity fields.

3. Covariances

In this section, spatial structures in the static, balance operator based
and ensemble B are compared. First, comparisons will be made for the
offshore part of the ocean, where dynamics are governed at the lowest order
by geostrophy and where the balance operator covariance is expected to be an
accurate approximation of the background error covariance. Then a similar
analysis will be obtained for a location near the plume edge. The focus will
be on the correlations and covariances with SST as this is the field for which
most observations are available.

Surface maps of the background error correlation between T at a point
far offshore, rqg = (127.57°W, 47.00°N), and fields of T, S, and surface
currents are shown in Figure 2. In the balanced B (Figure 2a,b), the SST-
velocity correlation, plotted as a vector field, exhibits an anticyclonic eddy,
consistent with lowering of the isopycnal surfaces in the core of such an eddy.
Contrary to other implementations of the balance operator in oceanography
(Balmaseda et al., 2008, 2013; Weaver et al., 2005) our implementation of
the balance operator does not have an unbalanced component. Le. it is

assumed that all background errors can be derived from the background
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error in the ocean temperature. As a consequence, the static balanced T-S
cross-correlation (Figure 2b) is, apart from a sign change, equal to the static
balanced T-T" correlation (Figure 2a). In particular, the 7-S correlation at rg
is —1. The correlation between T'(ry) and the surface velocity in the vicinity
of this location peaks at 0.41.

We hypothesise that far offshore, away from strong coastal fronts and
jets, the ensemble B computed using daily-averaged member fields yields
correlation structures that are overall close to the static, balanced B. To test
this, ensemble perturbations from the window ensemble mean are collected
from all ensemble members and all windows in experiment Ens. These N x
N, perturbations, with N; the number of DA windows and N = 39 the
number of ensemble members, forms a set to which we will refer as the “super-
ensemble”. The correlation structures obtained from this super-ensemble
(Figure 2¢,d) are qualitatively similar to the static balanced B (Figure 2a,b).
A more quantitative assessment reveals that the T'(ry)-S(rg) correlation is
only —0.58, compared to the value of —1 in the balanced B. This is partly
due to the fact that mean vertical profiles of 1" and S are different from
window to window, affected by the wind-driven mixing and other conditions.
The cross-correlation of 7'(rg) with the surface velocity field is also weaker,
with peak magnitudes reaching 0.15-0.21.

Correlation maps for locations near the upwelling front reveal more com-
plicated horizontal structures, particularly if computed for a single assimi-
lation window. Figure 3 shows the surface ensemble error correlation for a
point chosen at the inshore edge of the river plume, S = 31.5, on 9 July 2011.

The fresher, warmer plume water is found to the west and saltier and colder

14
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upwelled water to the east of this location. The error in the surface T'(ry)
is strongly correlated with the error in the cross-front surface current (cor-
relation magnitudes up to 0.79), reflecting the dominance of the advection
mechanism displacing the front. The point where the temperature-velocity
correlation is the largest is marked by a green dot. The largest T-S correla-
tion in this surface map is also large in magnitude, —0.86.

To analyse the impact of the river plume on the T-T and T-S ensemble
error correlations, fifty 200-km meridional sections are selected randomly in
each assimilation window. Along each section the ensemble-averaged SSS is
determined using the same ensemble of 24h-averaged ocean states that is also
used in the calculation of the ensemble-based background covariance. If the
minimum ensemble-averaged salinity along the section is larger than 31.5,
the section is classified as outside the plume. If the maximum ensemble-
averaged salinity along the section is lower than 31.5, the section is classified
as inside the plume. Only sections fully inside or outside the plume are
retained for analysis here. The ensemble correlation between the SST at
the middle point of each section and SST and SSS along the length of each
section have been calculated using all 39 ensemble members (excluding the
control forecast run). The localised ensemble correlations found in this way
along the different sections are shown in Figure 4 (grey lines). The average
ensemble correlations (dashed lines) are obtained by first removing the en-
semble mean from each section and combining the ensemble perturbations
from all different sections, spanning all windows into one “super-ensemble”.
The correlation is then calculated from this super-ensemble. The T-S' cross-

correlations in individual sections and windows (grey lines) vary widely, e.g.,
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taking either sign outside the plume (Figure 4c). Consequently, the averaged
cross-correlation at the central point, —0.25, is only a fraction of the —1.0
cross-correlation used in the balance operator. Within the plume (Figure 4d),
the averaged T-S' ensemble correlation is closer to the balance operator cor-
relation, being mostly negative and yielding the averaged value of —0.73 at
the section centre. Qualitative analysis of the satellite SST imagery and sur-
face model fields suggests that the Columbia River plume water is relatively
warmer than the ambient ocean, partly since the river source is warmer and
possibly also since strong stratification inhibits downward vertical turbulent
heat flux at the base of the river plume. The higher temperature of the plume
compared to the surrounding ocean explains the more definitive negative T-S
error correlation within the plume compared to areas outside.

In the balanced B, the T-T and T-S horizontal correlations have a Gaus-
sian shape. The correlation is thus 60% and 14% of its peak value at dis-
tances R = 25 km and 2R = 50 km, respectively, where R is the horizontal
correlation length scales assumed in the balance operator covariance. For
the averaged ensemble correlations in Figure 4, we determine the distances
from the centre r at which the average correlations have dropped to 60%
and 14% of their value at » = 0. For the correlation without localisation
these distances are found to lie between 14-20 and 40-54 km. While the lat-
ter is comparable to the 50 km value in the balance operator, the former is
smaller than its balance operator equivalent. So, although both correlations
decrease to 14% of their maximum values in about the same distance, the
ensemble correlations decrease faster than the Gaussian. This is also directly

visible in Figure 4a,b. As expected, the localisation scheme creates an addi-
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tional reduction in scale: for the localised correlations the above-referenced
correlation benchmarks lie between 12-16 and 34-40 km.

Not only are the background error correlations produced by the ensemble
different from those produced by the balance operator, but so are the error
covariances. Figure 5 shows surface maps of the ensemble error SST variance,
at the top, and the T-S covariance, at the bottom. In the 7-S covariance
maps 1" and S ensemble perturbations are sampled at the same point. Three
windows, 1 May, 30 July, and 28 September 2011, are selected to represent
three different Columbia River plume geometries. On 1 May, the plume
stretches over the shelf northward of the river mouth. On 30 July the plume
is diverted southward and offshore by the upwelling favourable winds. On
28 September 2011, at the end of the upwelling season, the plume is found
in the same area as on 30 July, but the salinity signal is weaker. Also, a
new plume is forming northward of the mouth as the winds have reversed to
northward.

On average, the ensemble variance in SST (Figure ba-~c) is considerably
smaller than the one assumed in the balanced B: the latter is 0.81 °C?2, while
the former has a median value of 0.10°C?2. However, locally, in frontal areas,
where SST assimilation will have the largest impact, the ensemble standard
deviation can obtain much larger values, up to 1.63 °C2. These high variances
are found, in particular, near the 15°C isotherm (solid black line). Along the
coast between 41-48°N, this isotherm is indicative of the location of the cold
upwelling front. Similarly (Figure 5d-f), the median of the T-S covariance
over all windows is —0.002 °C, which is two orders of magnitude smaller than

the —0.13°C used in the balanced B. Once again, locally the strength of the
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SST-SSS ensemble covariance can become a factor 20 larger in magnitude
than that of the balanced covariance, reaching —2.7°C. Similarly to the
large SST-variances these large SST-SSS covariances can be found at frontal
locations, both at the inshore and offshore edge of the river plume. However,
in contrast to the SST-variances, they can also be found within the river

plume (see Figure 5e.f).

The point-by-point ensemble covariance between SST and the daily-averaged

surface current in each direction as well as the surface velocity variance in
each direction are calculated for the same dates. Then, for each direction,
the absolute value is taken. This generates a (co)variance ellipse for each lo-
cation comparable to tidal ellipses obtained in the tidal current analysis. The
length of the major semi-axes of these ellipses, i.e. the maximum absolute
values of the SST-surface current covariance and surface current variance are
shown in Figure 6a-c and Figure 6d-f respectively. The areas of the largest
SST-velocity covariance match the locations of the largest SST variances (cf.
Figure Ha-c). In contrast, the largest surface current variances (Figure 6d-
e) are found within the plume. This is notwithstanding that the ensemble
variability in the wind forcing in this region on these days is actually lower
than in the adjacent areas near the coast and the west side of the model do-
main (not shown). This paradoxical result could be caused by the fact that
the Ekman depths in the plume area are smaller, influenced by the stronger
stratification in the shallower mixed layer (Fong and Geyer, 2001; Gan et al.,
2009; McWilliams et al., 2009; Price and Sundermeyer, 1999). Hence, the
Ekman transport in the plume is distributed over a relatively shallower wa-

ter column and consequently currents in the plume are more sensitive to
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perturbations to the wind forcing.

4. The DA impact on the Columbia River Plume volume

In the initial En4DVar runs performed without SC, we noticed that the
extent of the Columbia River plume and generally salinity at the surface
occasionally exhibited rapid changes as a result of the DA. To illustrate,
we use daily analysis fields and estimate the volume of fresh water in the
river plume. To compute this volume, grid cells for which S < 31.5 are
only considered. The amount of fresh water contained in each such grid cell,

Viresh,ijk, is computed using mass conservation:
Sijk‘/ijk = Srivervfresh,ijk + Socean(v;jk - Vfresh,ijk)v (4)

where Syjper = 0.3 is taken as the salinity of the river water, Spceqn = 32.2 as
the salinity of the oceanic near-surface water, and V;;;, is the grid cell volume.
Then Vipesn,ijr is summed over grid cells for which S < 31.5 to obtain the
estimate of the total fresh water volume in the river plume Vy,.cq,. Figure 7
shows the difference in Vg, from its value on 19 April 2011, the staring point
of all the DA experiments. For reference, we also show the cumulative outflow
of the Columbia River since 19 April 2011. As the model forcing does not
include evaporation and precipitation, the Columbia River is the only model
source of fresh water in the plume region. Since vertical mixing reduces the
fresh water volume within the plume volume (Hetland, 2005; MacCready
et al., 2009), this cumulative outflow represents an upper bound on Viyyegp.
However, Figure 7 shows that the fresh plume volume in experiment FEns

occasionally jumps (e.g. on 3 July, 21 July, 26 August) and exceeds the
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upper bound set by the cumulative river outflow. Experiment Ens-SC'is not
fully effective in constraining the unphysical instantaneous changes in fresh
plume water volume. Concurrently with the jumps in experiment Ens, jumps
of smaller amplitude are still noticeable in experiment Ens-SC. However,
their magnitude is small enough such that the fresh plume water volume
difference in experiment Ens-SC stays below the cumulative river outflow.
The problems with constraining the fresh plume volume are exclusive to
En4DVar: in Experiment Bal the change in freshwater volume is comparable
to that in experiment No DA.

The jumps in fresh plume water volume as shown in experiment FEns
are always found at the beginning of the windows and are caused by the
instantaneous DA correction. As an example, a particularly large change
in fresh plume water volume occurred on 21 July 2011 in experiment Ens.
Figure 8a,b show the SSS field before and after the DA correction on this day.
During this period the plume region is fully covered by the available SST data
(Figure 8c). Without the additional salinity constraint, the DA correction
in SSS expands the plume area to the west and northwest of the plume and
decreases the salinity within the plume by approximately 3. Further analysis
suggests that these large erroneous freshwater volume changes stretching over
the whole plume area are associated with a bias in the assimilated SST
observations compared to the forecast SST which is exaggerated by the large
magnitude of the T-S covariance in the plume area (Figure 8c). On this
day, the Ens forecast is colder than the observed SST over the majority
of the model domain, on average by 0.5°C. If contour lines for the SST-

SSS covariance are laid over the SSS DA correction (Figure 8d), it becomes
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apparent that the instantaneous freshening, introduced by DA, takes place
in the area where large SST-SSS covariances overlap with regions in which
the SST forecast is colder than the observations.

In this study, the SC are also applied to experiment Bal. Although this
study did not investigate the need for salinity constraints in the balance op-
erator case in more depth, the abnormally large SSS corrections observed
in experiment Ens have never been noticed in the operational OSU coastal
forecasting system, which uses a balance operator without salinity contours.
So, there seems to be no indication that the salinity constraints in experi-
ment Bal are essential to ensure physically realistic corrections to the SSS.
A possible explanation for this difference between the balance B and en-
semble B is that the surface temperature-salinity covariances in the balance
B used (—0.13 < covpg < 0°C) are an order of magnitude smaller than
those that appear in and around the plume in the ensemble-based B (ranges
in the plume region from ~ —1.4°C and —0.1°C). Consequently, the SSS
corrections created with the erroneous SST observations do not become non-

physically large when the balance B is used.

5. En4DVar versus balance-operator 4DVAR

In this section the results from the different experiments are compared
to remote and in-situ measurements to find whether En4DVar yields better
model analyses and forecasts than the “traditional” 4DVAR with the static

covariance currently implemented in the OR-WA forecast system.
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5.1. Surface

Here model results are compared with surface remote sensing observa-
tions. The same data sets that are assimilated are used in this comparison,
but with different processing. The hourly GOES SST observation resolution
is not reduced. Instead of using the radial daily-averaged surface velocity
HFR components, the HFR maps of the zonal and meridional velocity com-
ponents on a 6-km grid are used (Cook and Paduan, 2001; Gurgel, 1994;
Kosro, 2005) and instead of presenting the along-track altimetry as the 24h-
averaged sea level anomaly, it is compared to the instantaneous SSH minus
the along-track mean. In this case, model tidal predictions obtained from
case No DA using Pawlowicz et al. (2002) are added to the detided SSH
observations prior to comparison with the model SSH. The RMS difference
between the measured values for the aforementioned observations and their
model predictions will be referred to as the root-mean-square error (RMSE).

Figure 9 shows the time series of the area-averaged, 3-day time-averaged
RMSE for each window. The continuous blue line corresponds to the case No
DA. Each short line segment is associated with one six-day analysis-forecast
cycle. The value at the left side is the RMSE over the first three days of
this cycle, i.e. the analysis period, while the value on the right-hand side
is the RMSE for the last three days, i.e. the forecast. The opaque bands
around the lines represent the 90%-confidence intervals indicating what other
RMSEs could have been obtained if the observations had been spread over
the domain differently and are constructed using bootstrapping. Details on
the bootstrapping method used can be found in Appendix A. Analysis RM-

SEs are consistently smaller than forecast RMSEs even though for individual
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Table 2: The time average of the daily-averaged analysis RMSE (combining analysis days
1, 2, and 3 from each cycle) with 90%-confidence interval, 19 April to 1 October 2011.

Smallest averaged RMSE for each observation type is shown in bold.

Analysis
No DA | Ens Ens-SC Bal
SST [°C] 1.17 0.78 0.78 0.78

+0.06 | £0.02 £0.02 £0.03
Uewrface [cms™] | 164 | 111 110 117
£1.0 +0.5 +0.4 £0.5
Vsurface [ems™Y | 192 | 125 125 131

+1.0 +0.5 £0.5 £0.5
SSH [cm)] 7.1 5.0 5.1 5.2

£0.6 +0.6 £0.6 +0.6

windows the difference is not always significant at the 90% level. Forecast
and analysis RMSEs are also predominantly smaller than the RMSEs in No
DA. Initially, however, improvement in the reduction is not significant at the
90%-level. As the upwelling seasons progresses RMSEs in all experiments
increase, but faster in No DA than in the other experiments. Eventually,
RMSEs in SST, SSH and meridional velocities are significantly smaller in
the DA experiment than in No DA. Table 2 and Table 3 present a summary
of the RMSE, providing in each case the RMS of the daily averaged RMSEs,
taking into account analysis or forecast days 1, 2, and 3 from each DA cycle.
All DA runs yield RMSEs that are close to each other and all are a signifi-
cant improvement over case No DA at the 90%-level. However, no one DA

experiment is significantly better than the others. This is partly a testament
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Table 3: The time average of the daily-averaged forecast RMSE (combining forecast days
1, 2, and 3 from each cycle) with 90%-confidence interval, 19 April to 1 October 2011.
Smallest forecast RMSE for each observation type is shown in bold. Every three-day

forecast period is preceded by a three-day analysis.

Forecast
No DA | Ens Ens-SC Bal
SST [°C] 1.17 0.95 0.95 0.99

+0.06 | £0.04 +£0.04 +0.04
Usurface [coms™'] | 164 | 12.6 127 132
+1.0 +0.5 +0.5 +0.6
Vsurface [cms™'] | 192 | 14.1 14.3 14.8
+1.0 +0.6 +0.7 +0.6
SSH [cm] 71 | 56 58 58

+0.6 +0.5 +0.6 +0.5

to a reasonably good presently operating OR-WA ocean forecast system, us-
ing the static balanced B, and partly the result of extensive observational
coverage of the surface.

A more detailed analysis of the model skill against the surface data is done
using the Taylor diagrams (Figure 10) where standard deviations normalised
by the observational standard deviation and correlations with the observed
values are shown for the forecasts and analyses. The crosses mark the extent
of the 90%-confidence interval in the correlation and normalised standard
deviation. The model skill, here defined as (Taylor, 2001),
41+ p)?

-1 -1
2 (Umodel O sbs + Oobs T model )

S = (5)
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is indicated by green lines in the diagrams. Measured by skill, experiment
No DA performs significantly worse than the DA experiments for all four
types of surface observations shown. This is mainly because its correlation
with the observations is closer to zero than for the DA cases. The analyses
in the DA experiments are a significant improvement over the forecast. The
ranking of the different DA experiments is the same for the forecasts as for
the analyses, e.g. if the forecast of experiment Bal has the largest standard
deviation of the three forecasts, it also has the largest standard deviation of
the three analyses. By any measure the model provides better predictions for
SST (Figure 10a) than for any of the other surface observations shown. We
attribute this to the fact that large part of the variability of the SST around
its mean is caused by the north-south gradient in SST and the seasonal
heating of the ocean surface over the model period. These large-scale, long-
term processes are captured well by the model dynamics. With the exception
of SSH (Figure 10d), for which the standard deviation of the En4DVar is
closer to the observational standard deviation than in experiment Bal, the

DA experiments do not perform significantly different.

5.2. Subsurface

In our tests, subsurface observations are not assimilated but used only
for verification. In the following we compare model results with independent
subsurface observations to see if using Ens-SC' yields improvement over Bal
in any way. Special attention will be paid to salinity observations as this
field is not assimilated at all.

On a regular basis temperature and salinity measurements are made by

gliders, low-power autonomous underwater vehicles, in cross-shore sections
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along the Newport line, near 44.65°N (Erofeev, 2011) (Figure 11). On their
tracks, Slocum gliders repeatedly descend to depths of 200 m and return
to the surface. A single transect (either west-to-east or east-to-west) takes
about three days. The transects are located in a region with dynamics that
are challenging to model: it partly runs over the continental shelf (depth <
200 m) just south of the point where the southward coastal current separates
from the shore (Barth et al., 2005a; Kosro, 2005; Kurapov et al., 2005; Oke
et al., 2002a). During episodes of strong upwelling driven by the southward
winds, the glider samples the cold and salty upwelled water with a potential
density > 26.5kgm™ in the shallower portion of the transect (Austin and
Barth, 2002; Barth et al., 2005b; Huyer, 1977; Pasmans et al., 2019). As
the glider goes farther offshore, it crosses the Columbia River front, with
relatively warmer and fresher water near the surface.

T-S diagrams are presented in Figure 12 using glider observations and
model solutions. Results for Ens are similar to those in Ens-SC are therefore
not included in Figure 12. Diagrams at the top correspond to the the first
half of the study period, 19 April through 29 June 2011; diagrams at the
bottom correspond to the second half of the study period, 30 June through 1
October. In the beginning of the upwelling season, observations show a cloud
of points corresponding to the shallow river plume (S < 31.5) (Figure 12a).
The T-S diagram in experiment No DA (Figure 12b) is qualitatively similar
to the observed. A problem emerges in case Bal (Figure 12¢) where a line
of points builds up along S = —aT" enforced by the very simple choice of
the T-S relation in the balance operator (B.2), literally assuming this linear

relation between corrections to S and 71'. This line is absent in case No
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DA (Figure 12b) and the verification data (Figure 12a). We mark the top
portion of this line (7" > 13.5°C in Figure 12¢) with black dots, and colour
their counterparts in every diagram black as well. The low salinities of the
black points in the observations (Figure 12a) indicate that they correspond
to samples taken while the glider was in the river plume. Qualitatively,
Ens-SC DA is more successful in reproducing the plume 7-S composition
during this time period (Figure 12d); in particular the artificial line implied
by the specific choice in the balance operator is gone. As the upwelling season
progresses, the cold water front and the river plume move farther offshore.
Under these conditions the glider samples only inshore of the plume and
the observed T-S diagram reverts to a straight line with the slope close to
—a~! (Figure 12e). Consequently, the forecasts in experiment Bal are able
to correctly simulate the observed T-S relation (Figure 12g). The ensemble
covariance is sensitive to adapt to the new background oceanic conditions and
also yields the correct T-S diagram along the glider section (Figure 12h).

RMSE between the glider data and model analyses or forecasts are calcu-
lated separately close to the surface (depth< 22 m) and below the seasonal
thermocline (depth> 50 m) and the results are shown in Table 4. Similarly
to the RMSE for the surface observations (Table 2 and Table 3) the glider
RMSE for the ensemble DA experiments is generally better than for exper-
iment Bal, but each difference by itself is not significant at the 90% level.
Below 22m.

Mooring NH10 is located on the shelf 10 nautical miles offshore of the
Oregon coast at the Newport line, anchored at 81 m below the surface (see

Figure 11). Temperature and salinity are measured by sensors at different
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Table 4: The time-averaged RMSE (combining analysis or forecast days 1, 2, and 3 from

each cycle) in glider observations for No DA and the analyses and forecasts together

with their 90%-confidence interval. Model results are compared to the glider observations

available between 19 April to 1 October 2011 in the top 22 m and below 50 m depth. Note

that salinity is a dimensionless quantity.

Analysis Forecast
No DA | Ens Ens-SC  Bal Ens Ens-SC  Bal
Above 22m depth
glider T [°C] 1.27 1.31 1.24 1.44 1.25 1.21 1.48
+0.15 | £0.15 +£0.19 +£0.16 | £0.14 +0.21 +£0.19
glider S 0.86 0.68 0.71 0.76 | 0.69 0.71 0.78
+0.12 | £0.11 £0.14 £0.13 | £0.10 +£0.13 +£0.13
Below 50 m depth
glider T [°C] | 0.83 0.68 0.79 091 | 0.71 0.82 0.91
+0.04 | £0.03 £0.04 £0.06 | £0.04 £0.05 +0.05
glider S 0.20 0.20 0.20 0.23 0.20 0.21 0.23
+0.02 | £0.01 £0.02 £0.02 | £0.02 +£0.02 +£0.02
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depths. Hourly-averaged measurements are compared with model output
from the different experiments. The differences are then filtered with a 24h
Bartlett filter as we focus on subtitdal time scales. Next, we will discuss the
vertical profiles of the time-averaged RMSE and the mean of the differences
(i.e., the bias) between the model outputs (analyses and forecasts) and the
buoy observations, shown in Figure 13 (temperature) and Figure 14 (salinity).

The largest temperature RMSE in experiment No DA is found in the top
10 m where surface heating, the river plume, and coastal upwelling all con-
tribute to model uncertainty in 7'. Below 10 m the No DA RMSE decreases
sharply (Figure 13a). At the surface, the bias in experiment Ens and Ens-SC
analyses is higher than in experiment No DA (Figure 13¢,d), though not sig-
nificantly at the 90%-confidence level. This bias is equal to the average error
in the GOES SST observations compared to the moored temperature mea-
surements (see the “4+” mark in the figure). Hence the increase in the bias
results from the DA correctly fitting erroneous SST observations. Below the
20-m depth the bias for experiments No DA/ Bal and experiments Ens/Ens-
SC start to differ significantly with the bias in the latter lying closer to zero
below 30 m depth. As a result, RMSE below 30 m is significantly smaller for
the En4DVar experiments than in experiment No DA and experiment Bal.
These points hold true for both the analyses and the forecasts.

Near the surface, experiments Ens and Ens-SC yield NH10 salinity anal-
yses and forecasts with a smaller RMSE and a smaller bias magnitude than
the other experiments (Figure 14), esp. when compared to the forecasts and
analyses of experiment Bal, which are too fresh over the entire depth range

for which NH10 salinity measurements are available (Figure 14c,d). However,
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differences at each depth are not significant at the 90%-level.

We note that the case with the balanced B yields worse RMSEs than the
No DA case both for T and S. Furthermore, the forecast RMSE is smaller
than analysis RMSE above the 40 m depth. We can identify three reasons for
the lacklustre performance of the standard 4DVAR against the verification
shelf mooring data. First, the nearby assimilated satellite SST differ. The
RMSE and the time-mean of the difference between satellite and buoy surface
temperatures are marked by a “+” in Figure 13a,b and Figure 13c,d respec-
tively. The average SST in No DA matches the average buoy observations
(Figure 13c,d) and consequently the assimilation of satellite SST observa-
tions, which are on average too warm, results in a deterioration of the model
performance at the buoy location. Second, in case Bal surface velocity correc-
tions must be fully balanced by corrections in the density. When SST is not
constrained by the satellite observations, experiment Bal can overcorrect the
temperature fitting the velocity observations. This results in a higher tem-
perature analysis RMSE in experiment Bal than in the other experiments.
After the erroneous 1" correction the forecast RMSE relaxes to be closer to
the No DA RMSE. Third, in the static B errors in all the components of
the ROMS state vector (SSH, horizontal velocity, 7', and S) can be derived
if the error statistics for 7" and the depth-integrated transport stream func-
tion are defined. For the latter, for the lack of a better guess, zero variance
has been assumed. While the assumption that the depth-integrated trans-
port is not changed by DA is reasonable over deep water, it is limiting at
the shelf where changes in the surface currents correlate with changes in the

depth-averaged current (e.g. Oke et al., 2002b). In case Bal increase in the
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alongshore surface current by the DA correction has to be compensated by
the decreasing subsurface current which adversely influences variability in
the subsurface temperature and salinity. In the EndDVar cases, we do not
have to make an explicit assumption about the error in the depth-averaged
flow. The ensemble provides the covariance that yields better performance
and helps to reveal yet another limitation of the specific balance operator
formulation chosen.

The observed differences in RMSEs between the experiments can partially
be explained from the observed biases (13c¢,d), which are discussed in more
detail next. At the surface the bias in Ens and FEns-SC analyses matches
the bias in the SST observations (marked by the '+’ in 13¢,d). This results
in an overall increase in the time-averaged water temperature in the top 70
m during experiments Ens and Ens-SC compared to experiment No DA.
As all experiments overestimate the vertical temperature gradient at the
buoy location, this overall increase results in experiment No DA having a
smaller absolute bias than experiments Ens and Ens-SC in the top 30 m,
but a larger absolute bias below it. Consequently, in experiment No DA
the RMSE is smaller than in experiments Fns and Ens-SC between 10-30
m depth, but significantly larger below 30 m. The temperature bias in the
forecasts and analyses below 30 m in case Bal is not significantly different
from No DA. At the surface the temperature bias in case Balis larger than the
other experiments (though not significant at the 90%-confidence level), which
cannot be explained by the fact that SST observations are biased (since the
same observations are assimilated in all the cases). We find that in case Bal

the correction to the surface T is stronger than in the other cases as a result
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of the assimilation of the surface currents, particularly in windows where
SST was unavailable. This happens because of stronger coupling between
surface velocity and temperature errors in the balanced B, compared to the
ensemble B (see section 3). Depending on the shape, location and magnitude
of the velocity errors, the with the velocity corrections associated temperature
corrections can result in the appearance of a local bias in the SST field.
While experiments Ens and Ens-SC perform close to or better than the
other experiment at the NH10 location, they do not show good performance
against a limited set of Argo float locations (Argo, 2000) farther away from
the coast. The locations used in this analysis are shown in Figure 11. Fig-
ure 15a and ¢ show the average 7' and S profiles prior to 20 July 2011,
when the profile locations were outside the river plume (SSS> 31.5), and
Figure 15b and d show the average profile after 20 July 2011 when each of
the profiles sampled was located inside the river plume. The forecasts from
experiments Ens and Ens-SC fail to reproduce the strength of the vertical
temperature gradient in the thermocline (Figure 15a,b). The deterioration
of these forecasts at depths 30-100 m may result from random non-zero cor-
relations between SST and other subsurface fields present in B as no local-
isation is applied in the vertical direction. The latter was not applied since
the ensemble error variance generally strongly decreases with depth. Also
worrisome is the fact that Ens-SC and FEns, contrary to cases Bal and No
DA, produce salinity forecasts that are too fresh above 50 m (Figure 15¢,d).
Without salinity constraints, the forecasts in experiment Ens produce a river
plume with salinity that is 3 units too low at the surface (Figure 15d). Ap-

plying salinity constraints is highly beneficial in this case. It reduces the
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negative bias to about 1. However, it does not completely eliminate the ten-
dency of the ensemble DA system to overestimate the magnitude of the SSS
corrections in and around the plume (given the negative bias in the SST data

in our particular case). This in agreement with our findings in section 4.

6. Summary and Discussion

In this study the En4dDVar DA system described in Pasmans and Ku-
rapov (2019) was tested with the Oregon-Washington coastal ocean circula-
tion model. An ensemble of 4DVAR runs is used to estimate the background
error covariance B. The results of the En4dDVar system are verified against
observations that have yet to be assimilated or that will not be assimilated
at all and compared with forecasts from a 4DVAR system using a static,
balanced B.

The ensemble B yields T-S error correlations and covariances that are
different from those assumed in the static B. In particular, ensemble T-S
error correlations and covariances are weak outside the plume. In and near
the plume, however, the magnitude can be a factor 20 larger than in the static
B. These differences between the static and ensemble B have little impact
on the accuracy of the forecasts for the fields associated with the assimilated
observations (SST, surface velocity, SSH). Time-averaged forecast RMSE in
Ens-SC, compared to surface data, is ~3-5% smaller, but not significantly
different from experiment Bal at the 90%-confidence level.

The story is different for fields for which no observations are assimilated
like salinity or the subsurface fields. Comparison with glider observations

showed that using the ensemble B yields corrections that can reproduce the
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observed spatial structure and temporal variability in the water properties
on the T-S plane. This comparison helped us reveal one of the deficiencies of
the presently used balance operator in which a very simple 7-S relation is as-
sumed: it fails to reproduce the observed T-S relationship in the earlier half
of the study period when water of different origins (including the river plume)
is present in the area sampled by the glider. The reason our balance opera-
tor B used such a simple T-5 relation is that more complicated approaches,
e.g., using the forecast state to provide a more realistic and spatially varying
T-S relation, resulted in unstable results. Similarly, comparison against the
mooring 7" and S profile data not only showed the advantageous effect of us-
ing the ensemble error covariance on the subsurface results, but also pointed
to yet another problem with the balance operator where improvements must
be made: the correction to the depth-integrated transport must be allowed
on the shelf. The problems revealed here will encourage future research to
re-evaluate the approach used to build the balance operator appropriate for
the shelf flows. We must note that although the En4DVar system performs
better on many of the skill assessment metrics used, the differences with the
4DVAR using the static B are small: when each metric is considered on its
own, the 90%-confidence intervals of the RMSE in the cases using En4DVar
and 4DVAR with the static B do overlap.

The salinity constraints were added as an additional term to the penalty
function to inhibit large and erroneous variations in the surface salinity
caused by the assimilation of the biased SST data, amplified by the large
ensemble T-S covariance. Such an issue is specific only to the En4DVar and

did not present a problem in the case with the balanced B. The salinity con-
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straint was found to suppress, but not completely eliminate the erroneous SSS
corrections. Several measures could possibly improve this. First, the weights
0;? in (3) can be increased, especially for the larger boxes. Second, a bias
correction scheme (e.g. Dee and Uppala, 2009; Derber and Wu, 1998; Donlon
et al., 2012; Lea et al., 2008; Lellouche et al., 2013) that removes large-scale,
systematic errors in the observations, can be tried. Third, currently only the
wind velocities are perturbed in the ensemble. The resulting perturbations in
the transport and vertical mixing give rise to the large temperature-salinity
covariances, particularly in the frontal regions. Adding perturbations to the
atmospheric temperature and radiative flux in the ensemble members is ex-
pected to increase the SST ensemble variance whilst only weakly impacting
the SSS variance. This would reduce the SST-SSS ensemble correlation and
yield smaller SSS corrections. We also note that since the bulk flux formu-
lation is utilised for the atmosphere-ocean fluxes, perturbations to the wind
velocity already result in perturbations to sensible heat flux and latent heat
flux. We expect that the problem of amplification of large and erroneous
DA corrections to non-assimilated fields due to the presence of large ensem-
ble error covariances will not be limited to salinity. For example, it may
also concern poorly constrained biochemical fields in coupled biogeochemical
model applications (Ciavatta et al., 2011, 2014). Furthermore, erroneous ob-
servations are not the only possible source of unphysically large corrections
to tracer fields. If observational coverage is limited to specific areas, correc-
tions to the tracer field can be local to these areas. Such local corrections
would not conserve the total tracer volume in the model. Model domain-wide

constraints, as the one proposed in this paper, would ideally help preserve
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the tracer in the volume-averaged sense.

The benefits and drawbacks of En4DVar listed above have to be weighted
against the extra wall-time and computational resources required by the
En4DVar compared to the 4DVAR with the balanced B . The En4DVar
system used in this study requires 16,000 core-hours per 3-day window on
an Intel Xeon E5-2680v3 hyper-threaded 2.5 GHz processor (Towns et al.,
2014), whilst the balanced B 4DVAR only needs 100 core-hours per window.
The major part of this 10-fold increase comes from the need to run an ensem-
ble of nonlinear model runs in the En4DVar system. Fortunately, En4DVar
allows for significant parallelisation and the required wall-clock time for both
systems is 12 hours per window.

In this study the DA systems compared used either a purely static or a
purely ensemble B. In meteorology it was found that 4DVAR systems in
which a combination of the static and ensemble covariances are used (so-
called hybrid systems) outperform the purely ensemble or static systems
(Clayton et al., 2013; Kuhl et al., 2013; Lorenc and Jardak, 2018). Apart
from finding a suitable weighting, there are no impediments to implementing
such a hybrid scheme in the En4DVar system described here. Performance of
a DA system using the static B will also depend on the formulation details.
In the ensemble B large covariances are located near the fronts and this
spatial and temporal variability could possibly be reproduced in the static
covariance without running the ensemble by estimating the point-by-point
covariance at each point from the spatial variability around the point (Fu
et al., 1993). Furthermore, the assumption that the T-S correlation is -1

was found to contradict the T-S ensemble correlation. This suggests that
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the addition of an unbalanced, univariate part to the balance operator B

(Derber and Bouttier, 1999) can help to produce a more realistic static B.

In conclusion, here we have presented the first initial results using Ensd DVAR

in a realistic coastal ocean circulation setting. The research on En4dDVar must
be continued. Although it may seem the En4DVar did not show sizeable im-
provement over the “traditional” 4DVAR in every aspect, it has helped us to
resolve or at least identify several shortcomings of the traditional approach
and point to future research directions. Some of these problems could be
remedied by a more extensive sampling of the coastal ocean to better con-
strain the forecasts. E.g., when satellite salinity products become more ma-
ture and more suitable for assimilation, there will be less need in adding a
constraint on the SSS change based on the forecast model. When wide-swath
altimetry (Rodriguez et al., 2017) becomes routinely available, it will provide
a much better constraint on the location of the upwelling fronts and eddies
than just a few nadir altimeters available for this study. Using data from
several satellites for SST will improve coverage within an assimilation win-
dow. While research toward the best representation of the background model
errors in B must be continued, without doubt, at the coastal and regional
scale we operate in the data-hungry environment. Any future efforts to sam-
ple surface and subsurface fields at an ever improving spatial and temporal

resolution are key to improved prediction.
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Appendix A. Bootstrap confidence intervals

Let H be an error statistic defined as
1
H= T > e (A1)

with ¢; the error for observation i, I a set of observational indices, || the
number of indices in [ and n = 1 if H is the bias and n = 2 if H is the

RMSE. Define
B — |—}| S e (A.2)

1€l

with I, a set of || indices randomly drawn from I, possibly with du-

plicates. To estimate the 90%-confidence interval, H is calculated for
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m =1,2,...,200 and the lower and upper limits of the confidence interval are
then defined as the 5% and 95%-percentiles of the set HW, H® . F100)
(percentile bootstrap, see Efron (1982, p. 78-80)).

To account for the correlations between the errors not every index in I,,
is drawn separately. Instead, for the surface observations, we randomly draw
a horizontal position within the model and all observations that are within
50 km of this location and that are within the same window are added to I,,,.
This process, called moving block bootstrap (Kunsch, 1989), is repeated until
|I,,| = |I|. Similarly, for the time series we pick a time and all observations
that are at the same depth and that lie within a 3 day window around of the
selected time are added. This is then repeated until |I,,,| = |I|.

Appendix B. Balance Operator Covariance

Temperature-temperature background error covariance in the balance op-

erator is specified as

er(ry eI =

< T( 1) T( 2)) y . N . N - (Bl)
r1—x - 81—S8

Ugal,T exp(ﬁ)exp(—§ T a g T 1D§2 )

with e the background error in the temperature field and (-) the expecta-
tion value. All other covariances, (er(ri)es(ra)), (es(r1)es(ra)), ete., can be

derived from this using the assumptions that

es(ry) = —aep(ry)
e(r1) = —appoer(ri) + Bspoes(ri)
Der) = s e(r) +oelr) (B2)
%Eu(rl) = 7;%8%%(1“1) - Q%Edrl)
0,00 = Sy (eulr) en(r1)) d2
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with z, y the horizontal coordinates, z the vertical Cartesian coordinate in-
creasing in the upward direction, s the vertical s-coordinate ep(ry),es(ry),
€u(r1), €,(r1), €c(r1) the background error at location r; in the temperature,
salinity, zonal velocity, meridional velocity and SSH field respectively, H the
water depth, f is the Coriolis parameter, g the gravitational acceleration,
po = 1025 kg m~3 the reference density, ap = 1.7x1074°C~!, g = 7.5x107%.
a = —0.16 which is based on a linear least-square fit to all in-situ glider tem-
perature and salinity observations made by the OSU glider group on the
Oregon shelf between 2006 and 2013. These observations are available at
COAS (2017). The vertical length scale of the temperature-temperature co-
variance Dy, = 100m, Dy is the vertical scale in s-coordinates and is chosen
such that it is 50 m in 3091 m deep water. R = 25km, which is equal to
the Rossby radius of deformation for the first baroclinic mode in this re-
gion (Chelton et al., 1998). The background error standard deviation for the
temperature is set to o = 0.9°C. It was determined by calculating the
standard deviations of the difference between observed daily-averaged tem-
peratures at National Data Buoy Center buoys 46015, 46022, 46027, 46029,
46041, 46050, 46087, 46088, 46089, 46094, 46211, 46229, 46243, 46244, 46248
(NOAA, 2011b) and predictions from experiment No DA over the period 19
April 2011 to 1 October 2011 and then taking the median of these standard

deviations.

Appendix C. The ensemble for the balance operator

The cluster search method (Pasmans and Kurapov, 2019) requires a low-

rank approximation of
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A2 with A = R"Y2HMBM H"R /2 + 1. In experiment Ens and Ens-

7R*DR/D)".

SC this approximation is constructed using A ~ 7

Here, the columns of D are the innovation vectors for the control run and
the different ensemble members and M is the number of ensemble mem-
bers (including control run). ILe. the columns are the differences between
the observations and the forecasts for those observations. As no ensemble
members are available in experiment Bal a different approach is used. The
singular value decomposition (SVD) UAVT of AS is calculated. Here the

RDX(M—I)

clements of S € are drawn from a standard normal distribution,

U € RP*M vV € RM*XM are orthonormal and A € RIM-Dx(M=1) djagonal
with D the number of observations and M = 40, the number of ensemble
members including the control run used in experiments Ens and Ens-SC. The
j-th column of U, u; € R”, and the (3, j)-th element of A%, A3, then are the

j-th eigenvector and eigenvalue respectively of
UA2UT = ASSTAT ~ (M —1)ATA” = (M —1)A? (C.1)
Consequently, the required low-rank estimate for A'/? is constructed as (M —

1)~VAUAY2,
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Figure 2: Surface maps of the background error correlations in the interior ocean, away

from strong fronts. Shown are correlations of 7' at the grey dot location rg and (left)

surface T' and (right) surface S. (Top) static balanced B, (bottom) ensemble B, where

correlations are computed using ensemble member perturbations from all the windows.

T'(xg)-surface velocity correlations are shown as vectors in each panel. Black circles indicate

points lying 25km (inner circle) and 50 km (outer circle) from the centre, corresponding

to respectively one and two times the standard deviation of the Gaussian shape function

used for the horizontal balance operator co8lation function.
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Figure 3: Surface maps of ensemble background error correlations for the reference point
at the inshore edge of the Columbia River front (black line is S = 31.5). Shown are surface
maps of the background error correlations of T" at the grey dot location ro and (a) surface
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Figure 5: Point-by-point surface (a-c) temperature variance and (d-f) temperature-salinity
ensemble covariance for 1 May (1st column), 30 July (2nd column), 28 September 2011
(3rd column). Solid black lines mark the (a-c) 15°C isotherm and (d-f) 31.5 isohaline in

the forecast solution. Note that salinity is a dimensionless quantity.
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Figure 7: Change in fresh water volume in the river plume (S < 31.5) since 19 April 2011
in experiment No DA (dark blue) and the analyses from experiments Ens (light blue),
Ens-SC (green), Bal (red). Also shown is the cumulative discharge of the Columbia River
since 19 April 2011 (black).
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Figure 8: The study of DA-induced SSS changes, 21 July 2011: (a) forecast SSS in ex-
periment Ens, prior to DA correction; the black line is S = 31.5; (b) analysis SSS, after
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inside the river plume (blue) as well as the location of the NH10 buoy (black). The 200,
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Figure 12: Glider-observed and model forecast T-5 diagrams along the glider transect near
44.65°N. (Top) 19 April 00:00 to 30 June 00:00 2011, (bottom) 30 June 00:00 through 1
October 2011 00:00. (Left to right): observed, No DA, Bal, Ens-SC. Colours indicate the
depth at which the observations are taken. Black solid line is T = 13.5°C and the black
dashed line shows the slope in the relation 7 = —a~1'6S used in the balance operator
(B.2). Black dots indicate where points cog%sponding to T' > 13.5°C in experiment Bal

show up in all the experiments. Note that salinity is a dimensionless quantity.
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Figure 13: Vertical profiles of the time-averaged, 19 April 2011 to 1 October 2011 (Top)

RMSE and (bottom) bias in NH10 temperature. (Left) model analyses, (right) forecasts.
Experiments: No DA (dark blue), Ens (light blue), Ens-SC (green) and Bal (red) over
the period 19 April 2011 till 1 October 2011. The “+” symbol marks the RMSE and

bias between the GOES SST observations in the 6 km radius around the mooring and the

mooring temperature at 2 m depth (i.e. GOES minus mooring temperature).
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Figure 15: Time-averaged temperature-depth profiles (top row) and salinity-depth profiles

(bottom row) from ARGO observations (black) and forecasts from experiment No DA

(blue), Ens (light blue), Ens-SC (green) and Bal (red). Separate average profiles are

shown based on profiles taken while the float was outside the river plume (a,c) and while

the float was in or beneath the river plume (b,d). See Figure 11 for the location of the

ARGO floats.
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