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Abstract

Large predators exert control on lower trophic levels, often influencing long-term
changes in community structure. Many large predators are highly mobile and occur along a
continuum of presence and absence on habitats. In many natural systems, the movement of large
predators through an area has been shown to lead to rapid changes in prey distribution through
trait-mediated behavioral responses. To test whether a similar interaction also occurs for artificial
habitats, we examined how reef fish community metrics (abundance, species richness,
community composition) varied with the presence of a large coastal shark (sand tiger shark,
Carcharias taurus). Remotely-operated vehicle surveys of large sharks and reef fishes on
shipwrecks along the North Carolina, USA, continental shelf revealed that short-term shark
presence correlated with changes in reef fish community metrics. Specifically, when sharks were
present, fish species abundance and richness did not differ compared to when sharks were absent.
Finer-scale analyses near sharks revealed similar abundance but elevated species richness
proximate to sharks. We confirmed that this fine-scale pattern of similar abundance but higher
richness near sharks held when the ROV was not in the water by repeating analyses using time-
lapse videos from nearby shipwrecks. The detected differences in fish community metrics in the
presence of sharks correlated with higher numbers of water-column associated species, such as
jacks and barracuda, but lower numbers of benthic-associated species, including seabass and
grouper. These findings suggest that the presence of large predators on artificial structures, as in

natural systems, can drive short-term changes in community structure.

Keywords: artificial reef; elasmobranch; predator ecology; shipwreck; remotely-operated

vehicle
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Introduction

Large predators are ecologically important with roles ranging from the maintenance of
biodiversity (Ripple et al. 2014; Dalerum et al. 2008), regulation of prey population size
(Beschta & Ripple, 2009), alteration of prey behavior and habitat use (Heithaus et al. 2007,
Brown et al. 1999; Werner & Peacor, 2003), to limitations of prey productivity and reproduction
(Estes & Duggins, 1995; Creel et al. 2011). Because large predators often occupy upper trophic
levels, they can exert top-down control on lower trophic levels through consumptive and non-
consumptive effects (Ordiz et al. 2013; Baum & Worm, 2009). For example, large predators
consume prey items, which can affect diversity and species behavior (Johnson et al. 2007;
Johnson & VanDerWal, 2009; Pace et al. 1999; Barley et al. 2017) and stabilize prey oscillations
(Morozov et al. 2012) within food webs. Even predation risk associated with predator presence
can initiate behavior-mediated responses in lower trophic levels that can modify mesopredator
abundance and distribution (Ritchie & Johnson, 2009; Preisser et al. 2005). Despite playing
fundamental roles in ecosystems and their food webs, large predators are often highly mobile or
migratory (Brown et al. 1996; Haskell et al., 2002; Harestad & Bunnell, 1979).

Many examinations of how predator presence versus absence affects communities, food
webs, and ecosystems have focused on broad spatial or extended temporal scales (Mittelbach et
al. 1995; Whitehead et al. 2008; Menge et al. 2016; Schultz et al. 2016). The majority of
opportunities to examine large predator occurrence is through the lens of predator removal or
loss (e.g. killer whale, sea otter (Estes & Duggins, 1995); freshwater piscivorous fish (Browne &
Lutz, 2010; Ripple et al. 2014)). In general, the effects of predator decline and removal in food
webs manifest over long time periods, as lower trophic levels gradually adjust to the absence of

the largest, most functionally important individuals (Dulvy et al. 2017). This approach compares
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community structure and function within healthy ecosystems containing predators to those
without predators or with low predator densities, often attributable to overhunting, overfishing,
or habitat degradation. For example, long-term fence exclusion of dingoes, a large terrestrial
Australian predator, established an area where dingoes are functionally extinct and led to
pronounced changes in sheep distributions (Allen & West, 2013). Dingo absence also triggered
shifts in avian communities, including reduced species richness, whereas dingo presence
maintained avian diversity, largely through regulation of mesopredators and herbivores (Rees et
al. 2019), ultimately improving ecosystem resiliency (Letnic et al. 2009; Johnson et al. 2007). In
marine systems, the presence and absence of sharks have been associated with long term changes
in the distribution of sea turtles, dugongs, and seagrass as a result of predator avoidance and risk-
based foraging (Burkholder et al. 2013, Wirsing et al. 2007).

Predator presence also affects lower trophic levels in the short-term. In natural systems,
the movement of large predators through an area leads to rapid changes in prey distribution
through behavior responses (Lima & Dill, 1990; Schmitz et al. 1997). Predator presence, for
example, can alter prey species distribution as evidenced through colonization patterns of marsh
decapod crustaceans (Dorn et al. 2006), seagrass habitat use of Australian salmon prey species
(Smith et al. 2011), and vertical migration of copepods (Bollens & Frost, 1989). Studies
explicitly and repeatedly support the theory that large predators relate to community structure in
natural ecosystems (Estes et al. 2013; Myers et al. 2007). Despite the proliferation of examples in
natural systems of predator presence being associated with variations in lower trophic levels,
whether this pattern holds on artificial or human-made systems is less well studied. To test
whether large predators exert short-term influences on communities requires an ecosystem where

large predators exhibit both presence and absence over short temporal and spatial scales.



92 Here, we test how the short-term presence or absence of a large predator, the sand tiger
93  shark (Carcharias taurus), correlates to the reef fish community metrics observed on artificial
94 habitats (shipwrecks) off the southeastern US continental shelf. We specifically tested whether:
95 1) Reef fish abundance and species richness differ when sand tiger sharks are present versus
96  absent; 2) Reef fish abundance and species richness differ immediately surrounding sand tiger
97  sharks versus farther from sharks; and 3) Reef fish community composition differs with sand
98  tiger shark presence versus absence.
99

100  Materials and Methods

101  Model predator selection

102 We selected a large coastal shark species, the sand tiger shark (Carcharias taurus), as a
103 model large predator because they commonly aggregate on shipwrecks off the coast of North
104  Carolina (NC), USA, the geographic area of our study. While the reason why sand tiger sharks
105  occupy these shipwrecks remains undocumented, sand tiger sharks likely use the shipwrecks as
106  “rest-stops” along their seasonal migration or, perhaps, as year-round habitat (Teter et al. 2015;
107  Jorgensen et al. 2009). More recently, evidence of site fidelity of sand tiger sharks to the same or
108  nearby shipwrecks has been documented (Paxton et al. 2019). Despite their affinity for

109  shipwrecks, sand tiger shark abundances on shipwrecks fluctuate and a sand tiger can be present
110 on a shipwreck one day or hour and absent the next. The highly mobile nature of sand tiger

111 sharks, coupled with their alternating presence and absence on shipwrecks (Teter et al. 2015;
112 Haulsee et al. 2018; Kneebone et al. 2012; Peterson et al. 2017) provides an opportunity to test
113 the short-term or fine-scale association of a large predator and the reef fish community

114 occupying coastal NC shipwrecks. Also, while other large predators do occur along the coast of
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NC, sand tiger sharks are the largest fish predator that can be commonly observed on shipwrecks
off NC (Paxton et al. 2017), making them the ideal model predator for this study since other
large predators like white sharks (Carcharodon carcharias), sandbar sharks (Carcharhinus
plumbeus), and nurse sharks (Ginglymostoma cirratum) occur infrequently on NC shipwrecks

(Paxton, personal observation).

Remotely-operated vehicle surveys

Site selection

Remotely-operated vehicle (ROV) surveys were conducted at seven shipwrecks located on
the continental shelf of NC (Figure 1A; Table S1). These shipwrecks, which extend from the
southwest to the northwest of Cape Lookout, NC, were selected because they are located in an
area where sand tiger sharks are known to occur (Haulsee et al. 2016; Teter et al. 2015). The
shipwrecks are 25-40 m deep, rest on sand, and all sank during 1942, except for one that sank in
1918. These shipwrecks also provide an opportunity to understand how artificial habitats, such as
artificial reefs, that are often installed to enhance, supplement, or restore fish habitat (Becker et

al. 2018) may function for sharks and reef fish in the future.

Data collection

Each shipwreck was surveyed once between July and September 2018 using a Teledyne
Benthos Stingray ROV. The survey period likely coincided with the seasonal migration period
when male sand tigers are thought to move into areas off the NC coast (Teter et al. 2015),

although it has been hypothesized that some sand tiger sharks may reside off NC year-round.
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After the ROV descended and located a particular shipwreck, we completed a 45 to 60-minute
survey of the fish community with the ROV facing the shipwreck and remaining down current of
the wreck, to avoid entanglement of the ROV tether in the wreck. If the ROV pilot observed
sharks via the topside video monitor, then the pilot steered the ROV toward the sharks, if
possible, to provide a closer glimpse of the fish community near the shark. The ROV field of
view was consistent across all surveys. Ethics approval was not required because this was an
observational study involving visual identification and counts of fish.

During the shipwreck surveys, the ROV position was tracked using a dual Hemisphere
GPS that recorded latitude, longitude, and heading, and a Tracklink 1505B ultra-short baseline
acoustic tracking system. The position of the survey vessel and ROV were logged in Hypack
(Xylem Inc. 2015). During surveys, Hypack also displayed the position of the ROV in real-time
to assist in visually piloting the ROV around the shipwrecks. We also utilized multibeam
bathymetry collected previously at the seven shipwrecks to aide in ROV navigation relative to
the shipwreck structures. The umbilical transmitted ROV video from the ROV to the survey
vessel during surveys, and this video footage was recorded by an HD recorder. On the front of
the ROV, parallel with the ROV video camera, we mounted two GoPro Hero 6 video cameras
(GoPro, USA), one as a primary video camera, and one as a backup video camera. The GoPro
recorded higher quality (2.7K primary GoPro and 1080p backup GoPro) video than the onboard
ROV video camera. We used videos collected by the primary GoPro with the highest video
resolution to assess fish communities.

For each 45 to 60 minute video for the seven shipwrecks, we first recorded whether sand
tiger sharks were present or absent at any point in the ROV dive. Second, we processed clips of

video from each shipwreck survey. Specifically, we processed one full minute of video every
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four minutes (e.g. three minutes between the end of one clip and the start of the next clip). In
total, we processed 70 one-minute video clips, ranging from 6 to 17 clips per dive across the
shipwrecks. In each video clip, we recorded whether sand tiger sharks were present or absent to
help differentiate whether sand tigers were present on the wreck at all during the survey versus
whether sand tigers were present in the one-minute processed video clips. We identified fish to
the lowest taxonomic level possible and recorded their approximate location relative to the shark.
We counted the maximum number (maxN) of each fish species visible within any frame during
each one-minute clip. Large schools of fish were counted using the group-counting method in
which we counted individuals within an arbitrarily drawn box and then multiplied by the number
of boxes that fit within the frame (Labrosse et al. 2002). We excluded the portions of the video
when the ROV ascended or descended from processing. Fish that were out of focus or otherwise

unidentifiable were counted, but their species was recorded as “unknown fish.”

Data analyses

Statistical analyses were conducted in R version 3.5.3 (R Development Core Team, 2019)
using an alpha value of 0.05. We first used generalized linear mixed models (GLMM) (Bolker et
al. 2009) to model the relationship between a) reef fish abundance and shark occurrence and b)
reef fish species richness and shark occurrence. The response variable reef fish abundance was
the total fish abundance in each one-minute video clip. Similarly, the response variable for
species richness was the total species richness in each one-minute clip. Abundance and species
richness from each clip were treated as individual samples or replicates. Given the elapsed time
between these one-minute clips, it is unlikely that we documented the same fish multiple times.

Both models included shark occurrence (presence vs. absence) within an entire ROV survey as a
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fixed effect. For example, if a shark was not observed during the entire duration of a dive at a
particular shipwreck, then we designated the shipwreck and all ROV videos from that particular
shipwreck survey as “shark absent.” Alternatively, if we spotted a shark or multiple sharks
anywhere during any portion of the ROV dive, then we recorded the corresponding shipwreck
and collected videos as “shark present” even if a shark was not immediately visible in a
particular one-minute clip. The shipwreck was included in the GLMM as a random effect to help
control for potential sources of variation in counts among the shipwrecks due to differing
shipwreck characteristics (e.g., area, volume, vertical relief) not directly accounted for. We fit
the models with the ‘glmmADMB’ package using Laplace parameter estimations (Fournier et al.
2012). We used a negative-binomial error distribution with a log link to allow for overdispersion
of the reef fish abundance and species richness counts. We used likelihood ratio tests (LRTs)
between the full model and a model without the fixed effect for shark presence to generate a p-
value for the fixed effect of shark presence. We then examined the fixed log-effects estimates to
determine the magnitude and significance of changes in reef fish abundance with shark presence
versus absence.

Second, we used GLMMs to again model the relationship between shark occurrence and
response variables (reef fish abundance and reef fish species richness) but this time using a fixed
effect called “shark visibility” that allowed a finer-scale analysis of the effect of shark
occurrence. For GLMM models, we used reef fish abundances from only the video clips
recorded on shipwrecks where we observed sharks at any point during the entire ROV survey.
This approach allowed us to test for a response of reef fish abundance and species richness near a
shark when a shark was visible in the clip versus farther away when a shark was not visible. We

included shark visibility as a fixed effect and shipwreck as a random effect. As above, we fit the
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GLMMs with negative-binomial error distributions and assessed evidence for patterns predicted
by shark visibility with LRTs.

To examine whether shark presence influenced fish community composition, we used
multivariate analyses, including nonmetric multidimensional scaling (nMDS) analysis,
permutational analysis of dispersion (PERMDISP), permutational analysis of variance
(PERMANOVA), and indicator species analysis. We performed all multivariate tests on square-
root transformed reef fish species abundance data from each one-minute video clip within the
‘vegan’ package (Oksanen et al. 2015) with an alpha value of 0.05. We first used PERMANOVA
(Anderson, 2001) with Bray-Curtis distances and 1,000 permutations to test whether fish
community composition varied with shark presence versus absence on shipwrecks. Second,
PERMDISP, a distance-based test for homogeneity of multivariate dispersion (Anderson, 2006)
helped interpret PERMANOVA results by determining whether multivariate dispersion differed
with shark presence versus absence. Together, PERMANOVA and PERMDISP permitted an
evaluation of whether reef fish communities differed when sharks were present versus absent.
Third, we performed nMDS with Bray-Curtis distances to visually summarize patterns in the
structure of the reef fish community with and without sharks. The nMDS mapped samples into
ordination space using ecological distances between samples ordered by rank. A Shepard
diagram confirmed linearity between ordination distances and Bray-Curtis distance. Biplots
illustrated the relationships among samples in ordination space with samples colored by shark
presence/absence and superimposed ellipses indicating 50% confidence intervals. Fourth, we
performed an indicator species analysis within the ‘indicspecies’ package (De Caceres &

Legendre, 2009) to identify which reef fish species correlated with the presence or absence of



228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

sharks on a shipwreck. The resulting indicator values represent the level of association between

particular species and whether sharks are present or absent.

Time-lapse video surveys
Site selection

To confirm patterns of reef fish abundance and species richness with shark visibility
when the ROV was not in the water, we repeated the shark visibility analyses using previously
collected stationary time-lapse videos from two nearby shipwrecks (Figure 1B; Table S2). The
nearby shipwrecks are two artificial reefs containing intentionally-sunk vessels located on soft
sediment bottom in the same geographic vicinity and depth as the seven shipwrecks surveyed
with the ROV. On each of the two additional shipwrecks, video footage collection occurred
during three sampling periods over five months in 2016. The artificial reef Spar sampling
spanned one to two weeks during the following periods: 1) November 2015; 2) January 2016;
and 3) April 2016. The artificial reef Aeolus was sampled during the April 2016 period. The
stationary camera field of view was consistent among the surveys, as the cameras were placed at

the same location on each individual shipwreck.

Data collection

Time-lapse videos were recorded at each of the two wrecks for 20 seconds every 20
minutes using a stationary GoPro Hero 3+Black video camera (GoPro, USA) with
intervalometers mounted in a cylindrical housing with dome port (Sexton Co, Oregon, USA). A
total of 547 videos were processed, 332 from the Spar, and 215 from the Aeolus. In each of the

stationary 20-second videos, the video analyst noted the presence or absence of sand tigers and
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identified all visible reef fish (Pierce et al. 2018) and recorded their position relative to the shark,
as well as the sharks’ position relative to the reef. The analyst also counted the maximum
number (maxN) of each fish species visible during each one-minute clip. The group-counting
method was used to count large schools of fish (Labrosse et al. 2002), as detailed above.
Additionally, for all 20-second clips within 60 minutes, we recorded whether a sand tiger shark

was present in any of the 20-second clips.

Data analyses

Analyses were conducted in R to test effects of shark presence on species abundance and
richness. To ensure that our analytical approach matched the approach from the ROV videos as
closely as possible, we used the subset of 20-second video clips from clock hours where sharks
were present. We categorized each 20-second video clip as either having a shark visible or not,
so using video clips where sharks were present enabled us to test whether the changes in
communities proximal to versus farther away from sharks that we detected with ROV videos
were preserved in the time-lapse video dataset. To conduct this test, we fit two GLMMs, one for
the response variable reef fish abundance and one for the response variable reef fish species
richness. Both were fit and assessed using the ‘glmmADMB’ package and negative-binomial
error distribution, as described above (Fournier et al. 2012). The models included shark visibility

as a fixed effect and the shipwreck as a random effect.

Results
Reef fish abundance did not differ with shark presence or absence on shipwrecks

surveyed with the ROV (Figure 2A; p = 0.64; Table S3). On the three shipwrecks with sharks,
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reef fish abundance was similar in the immediate vicinity of (several meters) and farther away
from sharks (Figure 2B; p = 0.44; Table S3). We confirmed that the lack of a pattern near sharks
held when the ROV was not in the water by using time-lapse videos (Figure 2C; p = 0.17; Table
S3). Reef fish species richness was marginally, but not significantly lower, on shipwrecks with
than without sharks (Figure 3A; p = 0.07). On shipwrecks with sharks, however, there was a
higher species richness near sharks than farther away from sharks (Figure 3B; p = 0.04), and fish
were observed swimming behind, above, under, or in sync with the predator movements. We
confirmed that the pattern of elevated species richness near sharks held when the ROV was not
in the water by using stationary, time-lapse videos (Figure 3C; p < 0.0001).

Reef fish community composition differed on shipwrecks with and without sharks that
were surveyed with the ROV (Figure 4; PERMANOVA p < 0.001), and this was attributed to
greater dispersion in community composition when sharks were absent than present (PERMDISP
p = 0.02). These differences in community composition with shark presence versus absence
correlated with prevalence of water-column associated species, such as banded rudderfish
(Seriola zonata, indicator value = 0.36, p = 0.04) and barracuda (Sphyraena barracuda, indicator
value = 0.58, p = 0.008), on shipwrecks with sharks. In contrast, benthic-associated species, like
black sea bass (Centropristis striata, indicator value = 0.62, p = 0.004) and gag grouper
(Myceteroperca microlepsis, indicator value = 0.53, p = 0.008) occurred in lower numbers on

sites with sharks, instead frequenting shipwrecks without sharks.

Discussion
Our study provides evidence that large predator presence correlates with fine-scale

changes in reef fish community metrics on artificial habitats, as in natural habitats. While reef
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fish abundance did not vary with large predator presence, we found that species richness differed
based on proximity to the large predator. Community composition varied with large predator
presence versus absence, with water-column associated fish species indicative of large predator
presence and benthic-associated species more often found when the large predator was absent.

Our finding that reef fish abundance did not vary with large predator presence but that
species richness was lower when sharks were present is inconsistent with previous studies. For
example, mesopredator abundance often positively correlates with predator presence (Masi et al.
2018; Ritchie & Johnson, 2009). We posit that this difference between our findings and those
from previous research may relate to the scale of our study. In particular, demonstrations of
increased biodiversity around large predators are often over broad spatial scales (Ripple et al.
2014; Dalerum et al. 2008), whereas our video collection occurred over short periods (45-60
min) and small areas (shipwrecks). Therefore, our findings suggest that abundance, and likely by
extension - species richness - may be spatially or temporally dependent and thus the response of
fish community metrics to trophic interactions, such as predator presence, may differ across fine
and broad scales.

The pattern that we observed of similar abundance but elevated species richness near
sharks in both ROV and time-lapse video datasets supports previous food webs literature
documenting that animals respond to predation risk in real-time and utilize avoidance and other
behavioral strategies to reduce predator encounters (Burkholder et al. 2013; Lima & Dill, 1990;
Madin et al. 2012; Wirsing et al. 2007; Gallagher et al. 2017). For example, even though the
constant threat of predation can promote a heightened sensitivity in prey, the levels of predation
risk experienced are largely species-specific and can depend on fine-scale changes in predator

behavior (Schmidt & Kuijper, 2015; Hamilton, 1971; Stankowich, 2003; Creel et al. 2019).
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Additionally, predation risk has a spatial component because closer proximity to large predators
elevates risk. In our study, however, we observed species close to the large predators swimming
behind, under, and in sync with the predator movements and we observed a greater number of
species close to the predators. Finding more species near the predator may, at first, seem
counterintuitive, but prey responses could be attributed to rapid, strategic maneuvers of prey
species reacting to subtle changes in large predator movements, the benefits of polyspecific
associations (Au, 1991), or reduced predation risks associated with forming multispecies groups
(Scott et al. 2012). Further, this finding suggests that there may be a “halo-of-influence” around
large predators, where elevated species richness occurs, driven largely by species that frequently
associate with the predator.

The notion that a halo-of-influence may exist around large predators is further supported
by our finding that reef fish community composition differed with and without sharks. When
sharks were absent, the fish community exhibited higher multivariate dispersion, which we
interpret to mean that the community composition was more variable. In contrast, when sharks
were present, community composition was more consistent. When we examined species driving
community composition patterns, we discovered that the dissimilarities in fish community
composition with sharks were largely attributable to how benthic and water-column associated
fish species and their trophic roles correlated with or without sharks.

The large reef-associated fish species that exhibited an association with reefs with sharks
(barracuda, banded rudderfish) or without sharks (gag grouper, black sea bass) occupy high
trophic levels but have smaller body sizes than sand tiger sharks. The location of fish within the
water column relates to their feeding methods and diet (Young et al. 2015), which may explain

the different association of water-column versus bottom-associated fishes to predators.
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Barracuda and banded rudderfish consume prey in the water-column, whereas gag grouper and
black seabass are benthic feeders. Sand tiger sharks are nocturnal feeders that have not been
found to consume barracuda, banded rudderfish, gag grouper, or black seabass. Instead, sand
tiger sharks often consume smaller-bodied prey. For example, sand tiger sharks gut content
analyses in the Chesapeake Bight region, which is north of our study area, demonstrate that this
shark preys upon teleosts (65% of diet), elasmobranchs (35% of diet), crustaceans (<0.1%),
unidentified plant material (<0.1%), and molluscks (<0.1%) (Gelsleichter et al. 1999). The
teleost prey items include water-column associated species, such as Atlantic menhaden
(Brevoortia tyrannus) and bluefish (Pomatomus saltatrix), but also benthic-associated species,
such as sea robin (Prionotus carolinus) and summer flounder (Paralicthys dentatus)
(Gelsleichter et al. 1999). Elasmobranch prey include skates (Rajidae) and their eggs, as well as
small sharks (Gelsleichter et al. 1999). As such, the four reef-associated predatory fish species
(barracuda, banded rudderfish, gag grouper, black seabass) whose abundances varied with shark
presence should not experience consumptive predation pressure from sand tiger sharks. We posit
that the differential presence of predatory fish species in the presence or absence of sharks is
likely not attributable to consumptive pressure, but instead that the ability of reef-associated
fishes to optimize success in their differing modes of foraging (Au, 1991). It is also possible that
water-column associated predators may perceive sharks as a threat or as competitors for prey.
Although we do not understand the exact mechanism, we suggest that benthic predators
can maximize foraging success in the absence of sharks, whereas water-column predators may
achieve higher foraging success in the presence of sharks. This likely relates to the landscape of
fear and energy paradigms between predator and prey species that, respectively, dictate tradeoffs

in optimizing survival and energetic costs (Gallagher et al. 2017). Banded rudderfish are
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commonly referred to as “pilot fish,” reflecting their tendency to closely follow sharks and other
large predators (Kells & Carpenter, 2011), which supports the notion that water-column
associated species may reap foraging benefits from close associations with sharks. Also, we
observed densely packed schools of baitfish with shark presence, and schooling formations could
dilute predation pressure from sharks (Hamilton, 1971; Stankowich, 2003; Turner & Pitcher,
1986).

Sharks likely resided on the shipwrecks before our ROV descended and began collecting
video footage, but we do not know how long the sharks were present before our ROV surveys.
We tried to control for the amount of time the shark was present by analyzing the time-lapse
videos. Since the time-lapse cameras were stationary, they likely recorded footage closer to the
moment that the sharks arrived on the wrecks. If, however, sharks and reef fish cohabited reefs,
the reef fish response that we documented may not represent the immediate response of reef fish
to the sharks but rather a post-arrival response. Future studies should monitor the habitat and
conduct associated surveys before a shark arrives, at the moment of arrival, at intervals while the
shark is present, and immediately after a shark leaves. It is also possible that fish community
metrics may respond differently to first-time predator visits versus more frequent predator visits.
While we did not observe this directly, predation pressure on younger sharks from more mature
conspecifics, as has been demonstrated in another aggregating shark species, the lemon shark
(Negaprion brevirostris; Guttridge et al. 2009) or complex social dynamics among predators
(Guttridge et al. 2012; Haulsee et al. 2016) may relate to reef fish community metrics.
Additionally, since the ROV video and time-lapse video footage demonstrated the same pattern
in reef fish community metrics with shark presence, our findings were unlikely to have been

influenced by the presence of the ROV in the water. It would be worthwhile to test whether these
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patterns hold with diver-conducted surveys and whether a predator correction factor may be
needed when for reef fish surveys when fish predators or human (diver) predators are present.
We acknowledge that other rare predators may be present on these reefs and also relate to reef
fish distributions. Future efforts should focus on teasing apart the relative influence of different
large predators on reef fish.

Our study confirms that large predator occurrence not only relates to changes in
community metrics in natural habitats but also in artificial habitats. In marine environments,
artificial habitats, such as artificial reefs, are commonly deployed to enhance or supplement
existing natural habitat or to restore degraded natural habitat (Becker et al. 2018). In this context,
artificial reefs are intended to mimic functions of natural habitats. Whether artificial reefs
provide functions similar to natural reefs is a topic of debate. It has been demonstrated, for
example, that artificial reefs have different trophic structures than natural reefs (Burt et al. 2009;
Simon et al. 2013) and can function differently than natural reefs by facilitating not only the
spread of invasive species (Dafforn et al. 2012; Langhamer, 2012) but also the likely movement
of tropical fish poleward (Paxton et al. 2019). Other studies, such as a meta-analysis of fish
community metrics on artificial reefs relative to natural reefs, reveal performance similarities
between these two reef types (Paxton et al. 2020). Our demonstration that large predator
presence correlates with fine-scale changes in reef fish community metrics on artificial habitats,
as in natural habitats, reveals that artificial habitats can provide similar ecosystem properties to
natural habitats, increasing our understanding of how these novel habitats function ecologically
within the context of food webs.

Our findings reveal that the presence of sand tiger sharks is associated with variations in

reef fish community metrics. Specifically, elevated species richness occurred within a “halo of
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influence” around the large predator, and community composition differed on reefs with and
without sharks. The differences in community composition linked to species-specific responses
to shark presence, where pelagic predatory fish associated with sharks but bottom-associated reef
fish predators did not. Our study supports previous research on the role of large predators in
structuring communities (i.e. Mittelbach et al. 1995, Myers et al. 2007) but also adds to the body
of literature on predator ecology by providing evidence of short-term influences of a large

predator on reef fish communities occupying artificial habitats.
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706  Figure 1: A) Location of seven shipwrecks surveyed using a remotely-operated vehicle (ROV).
707  B) Location of two shipwrecks surveyed without an ROV using stationary time-lapse
708  videography.

709
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Figure 2: Reef fish abundance per video clip when A) sharks are present versus absent on
shipwrecks during ROV surveys, B) sharks are visible versus not visible on shipwrecks occupied
by sharks during ROV surveys, and C) sharks are visible versus not visible on shipwrecks
occupied by sharks during each hour of stationary time-lapse video. Violin plots display the
observed data, where the shaded area is proportional to the number of observations. Predicted
values of reef fish abundance and corresponding confidence intervals from generalized linear

mixed models are shown inside the violin plots as colored points and lines.
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Figure 3: Reef fish species richness per video clip when A) sharks are present versus absent on
shipwrecks during ROV surveys, B) sharks are visible versus not visible on shipwrecks occupied
by sharks during ROV surveys, and C) sharks are visible versus not visible on shipwrecks
occupied by sharks during each hour of stationary time-lapse video. Observed data are displayed
as violin plots, where the shaded area is proportional to the number of observations. Predicted
values of reef fish richness and corresponding confidence intervals from generalized linear

mixed models are shown inside the violin plots as colored points and lines.
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728
729  Figure 4: Nonmetric multidimensional scaling ordination of community composition when
730  sharks are present (red circles) versus absent (blue triangles). Each point represents the

731  community in a one-minute video clip from ROV surveys. Ellipses represent 50% confidence

732  intervals.
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Supplementary Materials

Table S1: Descriptions of shipwrecks surveyed with remotely-operated vehicles.

Shipwreck Description ?r:)p th Latitude Longitude gz:]ek gg:;ley lei‘:J eso ﬁ:‘: srl;s; t
Caribsea Freighter 27  34.6069 -76.3146 1942 2018-07-16 17  Yes

SS Atlas Tanker 38  34.5285 -76.2422 1942 2018-08-06 6 Yes
Ashkhabad Tanker 18  34.3815 -76.3650 1942 2018-08-06 11 No

HMT Bedfordshire  Converted 32 34.3141 -76.4525 1942 2018-08-06 10 No
U-352 German U-boat 35  34.2280 -76.5649 1942 2018-08-07 8 No

USS Schurz US Navy 33  34.1873 -76.6022 1918 2018-08-07 7 No

W.E. Hutton Tanker 38  34.1437 -76.6524 1942 2018-08-07 11 Yes



737  Table S2: Description of artificial reef shipwrecks surveyed with time-lapse videography.

. . Depth . . Video Sharks
Shipwreck Description (m) Latitude Longitude clips Present
Spar US Coast Guard Buoy Tender 34  34.2771 -76.6455 332 Yes
Aeolus US Navy Cable Layer 35 34.2783 -76.6432 215 Yes

738
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Table S3: Generalized linear mixed model (GLMM) results for models corresponding to each
survey approach and response variable. The fixed and random effects, as well as the data used to
fit the model, are specified. Deviance and p-values from the likelihood ratio test (LRT) between
the full model and reduced model without the fixed effect are provided, as are the GLMM

estimates for the mean reef fish abundance when sharks are absent and present.

Survey Response . Random .
approach variable Data Fixed effect effect Deviance p-value  Mabsent Mpresent
. Shark
ROV Reetfoh presencevs.  Shipwreck 0.214 0.64 826 565
absence
Reef fish Shipwrecks  Shark visible .
ROV abundance with sharks  vs. not Shipwreck 0.60 0.44 1084 676
Time Reef fish Hours with  Shark visible .
lapse abundance sharks vs. not Shipwreck 1.88 0.17 393 465
Reef fish Shark
ROV species All presence vs. Shipwreck 3.22 0.07 5.61 4.45
richness absence
Reef fish . .
ROV species Shipwrecks - Shark visible gy, yre0 4.15 0.04 382 6.3
: with sharks  vs. not
richness
. Reef fish . .
Time . Hours with  Shark visible .
lapse figﬁﬁleess sharks vs. not Shipwreck 4756  <0.0001 3.36 4.65





