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ABSTRACT 
A severe marine heat wave (MHW) persisted in the California Current ecosystem from 2014 
through 2016. The MHW featured record-high sea surface temperatures in 2015, with 2014 to 
2016 being the warmest three-year period on record. Our decade-long (2010-2019) breeding and 
diet monitoring of the rhinoceros auklet (Cerorhinca mococerata), a burrow-nesting seabird, at 
significant breeding colonies on Destruction Island (in the California Current) and Protection 
Island (in the Salish Sea) allowed us to compare reproductive and dietary responses to this 
MHW. Although the colonies are relatively close to each other and their reproductive output is 
similar on average, the auklets’ responses to the MHW differed. At Destruction Island, burrow 
occupancy rates were lower during the MHW (0.54±0.02 v. 0.61±0.02 in non-MHW years), 
suggesting that birds skipped breeding, but fledging success rates did not differ (0.85±0.02 v. 
0.89±0.03). At Protection Island, burrow occupancy remained at non-MHW levels (0.72±0.02 v. 
0.69±0.02), but reproductive success declined (0.71±0.03 v. 0.82±0.02). Chick provisioning also 
showed different patterns. The energy (kJ) per bill-load at Destruction Island showed no clear 
MHW effect, while at Protection Island it was reduced. At the same time, bill load prey item 
count rose at Protection Island, indicating increased foraging effort and/or a reduction in diet 
quality. Our results further suggest rhinoceros auklets may be more resilient than other seabird 
species to major climate perturbations. With marine heat waves predicted to become more 
frequent and severe, however, the auklets’ ability to maintain these levels of breeding success 
will be tested. 

Keywords: alcids, climate change, forage fish, marine heatwaves 
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1. INTRODUCTION 
Climate change has led to an increase in the frequency of extreme events in marine 

systems, including marine heatwaves (MHWs) (Hobday et al. 2016, Oliver et al. 2018, Jacox et 
al. 2020). Defined as extended periods of significantly elevated sea surface temperatures (SSTs) 
over large areas (Benthuysen et al. 2020), MHWs have been linked to reduced ocean 
productivity (Wernberg et al. 2013, Smale et al. 2019), shifts in the geographic distribution of 
organisms (Goddard et al. 2016, Mills et al. 2013), increased frequency of harmful algal blooms 
(Robert et al. 2019), local extinctions (Thomsen et al. 2019), unusual mortality events for both 
marine mammals and seabirds (McClatchie et al. 2016, Piatt et al. 2020), and negative effects on 
breeding phenology and reproductive success in seabirds (Fromant et al. 2021, Glencross et al. 
2021). 

One of the most recent and severe MHWs occurred in the northeast Pacific Ocean (Smith 
et al. 2023). In late 2013/early 2014, a large patch of anomalously warm water formed in the 
Gulf of Alaska due to low rates of heat loss and weak cold advection in the upper ocean (Bond et 
al. 2015). Over the next two years, the patch of warm water spread to cover more than 2.5 
million km2, extending from southern Alaska to Baja California (Smale et al. 2019) and 
becoming known colloquially as The Blob (Kintisch 2015). Offshore SSTs were more than three 
standard deviations above normal during the winter of 2013 – 2014, with elevated SSTs lasting 
through the summer of 2016; at their peak in 2015, SST anomalies were 3 – 6 ºC above the 1981 
– 2010 climatology (Bond et al. 2015, Gentemann et al. 2017). All of this combined at the time 
to make the NE Pacific MHW the largest documented MHW in terms of duration, geographic 
extent, and magnitude since recording began in 1982 (Oliver et al. 2018). 

Elevated temperatures during the NE Pacific MHW led to increased stratification of the 
upper ocean, lowering nutrient supplies at the surface and resulting in declines in net primary 
productivity (NPP), prey availability, and community production (Whitney 2015, Yang et al. 
2018). The 2014-16 NE Pacific MHW has been linked to mass mortality events in both marine 
mammals (Savage 2017) and birds (Jones et al. 2018, Jones et al. 2019, Piatt et al. 2020), as well 
as other significant ecological disruptions for organisms over a range of trophic levels (e.g., 
Cavole et al. 2016, Leising et al. 2016, McCabe et al. 2016, Peterson et al. 2017, Brodeur et al 
2019, Jones et al. 2021). Some of the NE Pacific MHW’s consequences, however, have been 
more subtle, and their full breadth is still being explored. 

Understanding climate-biology relationships in marine systems is critical for 
conservation and resource management, and seabirds, as conspicuous and widespread top 
predators, are good sentinels to detect shifts in marine systems (Parrish et al. 2007, Hazen et al. 
2019). In this paper, we draw on a long-term monitoring study to compare the responses of the 
rhinoceros auklet (Cerorhinca monocerata), a colonial burrow-nesting seabird, to the NE Pacific 
MHW at two major breeding colonies. One is it at Destruction Island on the outer coast of 
Washington, USA, in the California Current Large Marine Ecosystem. The other is at Protection 
Island, in the Strait of Juan de Fuca, and is part of the Salish Sea, a fjord estuary complex that 
includes the interior waters of Washington and southern British Columbia, Canada. Although the 
two colonies are less than 150 linear km apart, the systems in which they sit are subject to 
distinct physical forcing mechanisms (e.g., MacCready et al. 2021). The NE Pacific MHW’s 
most extreme effects, for example, may have been buffered in the Salish Sea due to increased 
freshwater inputs, and peak temperature anomalies were elevated just 2.3 ºC above average 
(Khangaonkar et al. 2021). Auklets at the two colonies also rely on different prey bases (Wilson 
& Manuwal 1986). 
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We hypothesized that auklets’ responses on the two islands would be neither uniform nor 
synchronous, despite their geographic proximity. Due in part to the more severe marine 
conditions auklets at Destruction Island faced during the NE Pacific MHW, we predicted they 
would experience more pronounced disruptions than auklets at Protection Island. These 
disruptions would manifest in the form of lower burrow occupancy and fledging success rates, 
and bill load characteristics indicative of poor prey quality and / or greater compensatory 
foraging effort (cf. Schrimpf et al. 2012). By relating breeding metrics (burrow occupancy, hatch 
success, and fledge success) and diet metrics (prey species composition, bill load weight, energy, 
prey item count, fish condition) to marine conditions at the two colonies, we aim to detect shifts 
that indicate how the NE Pacific MHW affected a sentinel species. 

2. MATERIALS & METHODS 
2.1. Study Sites and Species 

The rhinoceros auklet is a medium-sized alcid whose breeding and non-breeding ranges 
encompass much of the northern Pacific. In the northeast Pacific and the Salish Sea it is a year-
round resident. Adults return to breeding colonies in March and April, where pairs either re-
occupy existing burrows or excavate new ones. The female lays one egg in early- to mid-May 
(Leschner 1976, Wilson & Manuwal 1986), and mates share incubation duties for approximately 
45 days. After the chick hatches, one or both adults bring back a single bill load of fish per night 
for approximately 50 days until the chick fledges (Wilson 1977). 

Since 2010, we have been monitoring breeding metrics at two major colonies in 
Washington, USA. Protection Island (48°08’N, 122°55’W) is a 143-ha island about 3 km off the 
mouth of Discovery Bay at the eastern end of the Strait of Juan de Fuca in the Salish Sea. Along 
its perimeter, the island contains beach and spit habitats that give way to cliffs and steep slopes, 
while the interior of the island is flat or rolling. Approximately 36,000 breeding pairs nest in 
burrows on the island’s grass-dominated habitats on cliff edges and steeper slopes (Pearson et al. 
2013). Destruction Island (47°40’N, 124°24’W) is located 4.8 km west of the Olympic Peninsula 
and the mouth of the Hoh River (Figure 1). The 15-ha flat-topped island is part of an extensive 
sandstone reef (Wilson & Manuwal 1986) and is surrounded by rocky islets. Approximately 
6,500 auklet pairs nest in burrows on cliff tops and the island’s steep slopes in grass, shrub, and 
willow habitats (Pearson et al. 2013). 

2.2. Breeding Metrics 
On Protection Island, we established multiple study sites and monitored all burrows 

within a 2.5-m radius from the center of each. We randomly located sites in habitats dominated 
by grass and flowering plants (see Pearson et al. 2013). More than 95% of all auklet burrows on 
Protection Island occur in these habitats, and burrow occupancy does not differ among them 
(Pearson et al. 2013). On Destruction Island, we established study sites and monitored 
individually marked burrows in all habitat types occupied by auklets (grass-, willow-, and 
salmonberry-dominated) on the south and southwestern sides of the island (see Pearson et al. 
2013). 

We monitored breeding activity from 2010 – 2019 on both islands, timing our sampling 
trips to phenological patterns reported in Leschner (1976) for Destruction Island and Wilson 
(1977) for Protection Island. On an initial trip in late May/early June, we assessed breeding 
activity by examining all burrows in our study areas using infra-red camera probes. We defined a 
burrow as any excavation that contained both a tunnel and at least one nesting chamber. A 
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burrow with an adult and/or egg on two consecutive days during that initial trip was considered 
occupied by a breeding pair. During a second trip in mid/late June (except for 2012), we assessed 
hatch success. On a third trip in mid/late July (except for 2012), we assessed chick survival and 
presumed fledging success by scoring chicks according to plumage development; the stages 
included downy chick, chick with partial feathering, and chicks that were either mostly or fully 
feathered. Chicks absent on the final trip that had been recorded as at least partially feathered on 
the previous trip were assumed to have fledged; similarly, we assumed that chicks that were at 
least partially feathered on the last trip would survive to fledge. Any burrow occupied on the first 
visit was rechecked on the last visit, even if it had no contents on the second visit. This ensured 
we would account for missed chicks. 

2.3. Diet Sampling 
2.3.1. Bill-Load Collection and Diet Metrics 

After chicks hatch, adult auklets return to the colony after dark to deliver bill loads of 
one-to-many prey items. We collected bill loads from adults using a spotlighting method for 
seven seasons on Protection Island (2010, 2013, 2015 – 2019) and six seasons on Destruction 
Island (2010, 2013, 2016 – 2019). For analysis, we used only bill loads verified as entire bill-
loads (“complete confirmed”). 

Diet sampling was done during the second and third visits to each colony, so we could 
detect differences in bill-load size during early and late chick provisioning (e.g., Bertram & 
Kaiser 1993, Hedd et al. 2006). Collection sites at each colony were varied within trips and 
between trips to ensure that few, if any, chicks were not deprived of more than one meal over the 
course of the season, and also that we did not collect samples from the same adults. 

2.3.2. Prey Species Identification and Energy Content 
We weighed and measured prey either in the field the morning after collection or in the 

lab within a week of collection, after storing bill loads in a freezer. We recorded standard length 
(SL, from the tip of the snout to the end of the last vertebrae), fork length (FL, from the tip of the 
snout to the middle of the caudal fin rays) and total length (TL, from the tip of the snout to the 
end of the longer caudal fin lobe) to the nearest millimeter, and wet mass to the nearest 0.1 gram. 
Some taxa, including juvenile rockfish (Sebastes spp.) and juvenile greenling (Hexagrammos 
spp.), were treated each as single taxa in the analysis. Although rare, fish too badly mangled to 
obtain a reliable species ID were identified to the lowest possible taxon. 

Energy densities (J/g wet mass) were calculated in 2008 and 2009 by bomb calorimetry 
on a representative subset of samples as described in Schrimpf et al. (2012) (See Table S1 for 
energy densities and a more detailed methods description). 

2.4. Principal Components Analysis of Marine Conditions 
To test whether and how breeding and diet metrics correlated with marine conditions at 

Destruction Island in the California Current and Protection Island in the Salish Sea, we 
performed a principal component analysis (PCA) using basin-wide, regional-scale, and local 
environmental predictors. For basin-wide predictors, we used the Pacific Decadal Oscillation 
(PDO) index and Multivariate ENSO Index (MEI v.2). For the PDO the MEI, we took the 
average of the indices from September through August so that the values encompassed the whole 
of an auklet breeding cycle, i.e., the start of the non-breeding season to the end of the breeding 
season. 
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At the regional scale, we used two indices to account for annual spring cold-water 
upwelling, the main driver of regional productivity (Hickey 1989). The first is the onset of the 
biological spring transition (day of year), which begins the day the northern cold-water copepod 
community first appears at NH 05, a sampling station about five miles offshore along the 
Newport Line (44.6517N, 124.1770W)—a signal that upwelling has begun. Second, as a 
measure of upwelling intensity, we used the Biologically Effective Upwelling Transport Index 
(BEUTI), averaging the monthly means of daily indices for March – July. BEUTI is an estimate 
of the total quantity of nitrate upwelled or downwelled during a given period (Jacox et al. 2018). 
We preferred BEUTI to other upwelling indices because it quantifies both the intensity of 
upwelling and the nutrient quality of the waters being upwelled (Jacox et al. 2018), rather than 
just the former. 

For local predictors, we used monthly SSTs, area-averaged by the MODIS-Aqua satellite 
at 4 km spatial resolution around both Protection Island and Destruction Island as a proxy, since 
the precise foraging locations for auklets from both colonies are unknown. Using the NASA 
Giovanni tool (https://giovanni.gsfc.nasa.gov/giovanni/), we delimited boxes from 47.6042N, 
124.562W to 47.7292N, 124.479W (roughly 24 km2 around Destruction) and 48.1458N, 
123.146W to 48.3958N, 122.937W (roughly 30 km2 around Protection). As a proxy for food 
quality and availability, we used island-specific monthly values from the Carbon-based 
Productivity Model of Net Primary Production (CbPM-NPP), a model-based dataset of primary 
production from the Oregon State University Ocean Productivity Group 
(http://sites.science.oregonstate.edu/ocean.productivity/). CbPM-NPP estimates phytoplankton 
carbon concentration and uses that as a metric for biomass rather than chlorophyll a. NPP is 
therefore described as the product of carbon biomass and growth rate, rather than the traditional 
product of chlorophyll and photosynthetic efficiencies (Behrenfield et al. 2005, Westberry et al. 
2008). For both Protection and Destruction islands, we averaged values for spring SST and 
CbPM-NPP from February through April, to match the spring conditions affecting their prey 
base; and for summer SST and CbPM-NPP from May through August, to match the auklet 
breeding season (see Figure 2 for a time series of all indicators). 

All predictors were scaled and normalized using the mean and standard deviation of the 
study period (2002 – 2019). The sign of each index was standardized so that the direction 
associated with conditions favorable to ocean productivity was always positive, ensuring that the 
indices could be interpreted together. All indices were then combined in a PCA to create 
summary variables that captured the overall interannual environmental fluctuations (Figure 3). 

2.5. Statistical Analysis 
2.5.1. Models for Breeding Metrics and Marine Condition 

To test for differences in burrow occupancy, hatch success, and fledging success, both 
between the colonies and in different marine conditions, we fit a generalized linear mixed model 
(GLMM; Bolker et al. 2009) using a hierarchical Bayesian framework for inference. Response 
variables were modeled as binomial with a logit link function. For burrow occupancy, the sample 
size N was the total number of viable burrows and successes y were burrows in which a pair 
attempted to breed (i.e., laid an egg). For hatching, N was the number of burrows containing an 
egg and y was the number of chicks that hatched. For fledging, N was the number of eggs and y 
the number of chicks that were either observed or presumed to have fledged. All models included 
random intercepts grouped by site-within-island and year, with a year-varying effect of island. 
Thus the full model for observation i in site j[i] and year k[i] was 
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             𝑦𝑦𝑖𝑖  ~  Bin(𝑁𝑁𝑖𝑖, 𝜋𝜋𝑖𝑖)                                                                                                                    
logit(𝜋𝜋𝑖𝑖) =  𝛼𝛼 + 𝑎𝑎𝑗𝑗[𝑖𝑖] + 𝑎𝑎𝑘𝑘[𝑖𝑖] + �𝛽𝛽 +  𝑏𝑏𝑘𝑘[𝑖𝑖]�𝐼𝐼𝑖𝑖 + 𝛾𝛾1PC1𝑖𝑖 + 𝛾𝛾2PC2𝑖𝑖 +  𝜑𝜑1𝐼𝐼𝑖𝑖𝑃𝑃𝑃𝑃1𝑖𝑖 +  𝜑𝜑2𝐼𝐼𝑖𝑖𝑃𝑃𝑃𝑃2𝑖𝑖  
             𝑎𝑎𝑗𝑗  ~  N(0, 𝜎𝜎site) 

𝑎𝑎
        � 𝑘𝑘 �  ~ N�𝟎𝟎, 𝚺𝚺 �, 𝑏𝑏 year                                                                                                    [1]  

𝑘𝑘 
 
where I  is a dummy indicator for island  and  PC1  and PC2  are the first and second principal  
components, with  interactions  between island, PC1, and PC2  (but no three-way interaction). We 
did not conduct model selection to compare  restricted models to the full model, as the terms  
included represent a parsimonious description of known sources of variation; instead we focused 
on interpreting the posterior distributions of parameters and quantities of interest in the full 
model (Gelman & Rubin 1995).  

To draw samples  from the posterior distributions of model parameters we  used the  
rstanarm  package, which is an R interface to Stan, a probabilistic programming language for  
Bayesian estimation (Gabry  & Goodrich 2018). The  rstanarm  package allows fitting  many of the 
most common applied regression models using Markov chain Monte Carlo  –  in this case 
Hamiltonian Monte Carlo (Monnahan et  al. 2017). All prior  distributions were selected to be  
weakly informative, with N(0, 5) priors on the intercept and regression coefficients. We ran three  
independent chains for 5000 iterations after  a warmup of 1000 iterations. MCMC convergence  
was assessed using the potential  scale reduction factor diagnostic (𝑅𝑅�  ≤ 1.05; Gelman et al. 2014)  
and visual inspection of chains.  
 
2.5.2. NMDS of Prey Species Composition  

To analyze  differences in  prey species  composition  between islands  and years, we  used a 
nonmetric multidimensional  scaling (NMDS) ordination with  the vegan  package  in R, based on  
Bray-Curtis  distances  (Oksanen et al. 2017). P rey  data from both islands were combined and two  
axes were selected for each ordination based on the least-stress  ordination configuration after  
200 randomizations. Stress values reflect  goodness-of-fit, or how well the  ordination summarizes  
the observed differences  between the samples. Due to the small sample size and wide range in  
relative abundances  (from < 0.01 to > 0.75), the  data were square-root-transformed and then 
submitted to a Wisconsin double standardization, the standard transformation in vegan. We used 
Shepherd stress plots to determine the reliability of these analyses by plotting the relationship  
and computing the  correlation between actual dissimilarities and ordination distances (linear  R2 = 
0.918 and non-metric  R2  = 0.987; stress = 0.11, indicating g ood ordination fit).  

We followed this with  a permutational multivariate analysis of  variance (PERMANOVA)  
using the  adonis  function  in the vegan  package  in  R to test  if there were multivariate  community  
differences  both be tween the two islands and between years.  
 
2.5.3. Models for  Diet Metrics  and Marine Conditions, and Fish Condition  

As with the breeding metrics, we used hierarchical  Bayesian regression models to test for  
differences in average bill load mass (g), and count of prey items  per bill load  (as a proxy for 
adult  foraging effort  (e.g., Fayet  et al. 2021)), and average energy content per bill load (kJ), both 
between the  colonies and in different marine conditions. We used linear  mixed models for bill 
load mass  and energy content, and a Poisson GLMM for prey item count. These models did not  
include site-within-island as a random  effect  since  birds were  caught opportunistically outside of  
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272 the study areas, but did include a random effect of the number of  weeks since June 1 to account  
for changes in chick age  and size, which can influence the  amount of food a parent brought back 
as a season progresses (Leschner 1976, Wilson 1977). Year was  also a random effect, again with  
the intercept and inter-island differences varying across  years. For bill load mass  and energy  
content, the full model for observation i  in week  j[i]  and year  k[i] was  

 
     𝑦𝑦𝑖𝑖  ~ N(𝜇𝜇𝑖𝑖, 𝜎𝜎)   
     𝜇𝜇𝑖𝑖 =  𝛼𝛼 + 𝑎𝑎𝑗𝑗[𝑖𝑖] + 𝑎𝑎𝑘𝑘[𝑖𝑖] + �𝛽𝛽 +  𝑏𝑏𝑘𝑘[𝑖𝑖]�𝐼𝐼𝑖𝑖 + 𝛾𝛾1PC1𝑖𝑖 + 𝛾𝛾2PC2𝑖𝑖 +  𝜑𝜑1𝐼𝐼𝑖𝑖𝑃𝑃𝑃𝑃1𝑖𝑖 +  𝜑𝜑2𝐼𝐼𝑖𝑖𝑃𝑃𝑃𝑃2𝑖𝑖  
     𝑎𝑎𝑗𝑗  ~ N(0, 𝜎𝜎week) 
𝑎𝑎
� 𝑘𝑘 �  ~ N�𝟎𝟎, 𝚺𝚺year�.                                                                                                      [2] 𝑏𝑏𝑘𝑘 

 
The model for prey item  count was identical, but  with a Poisson observation model and linear  
predictor on the log link scale, i.e., 𝑦𝑦  ~  Pois(𝑒𝑒𝜇𝜇𝑖𝑖𝑖𝑖  ). 

To test whether the  average size of individual fish in a bill load increased during a  
season, we fit a linear mixed model in a Bayesian  framework. Average prey  item size per bill  
load (i.e., the bill load mass divided by the prey count) was the response variable, the number of  
weeks since June 1 (log-transformed) and the  first two principal components were main effects,  
and inter-island differences varying across  years was a random  effect.  

Finally, to test whether the condition of major prey  species varied among  years, we used 
Fulton’s body  condition factor  K (Fulton, 1904)   

 
106 x  𝑊𝑊 

𝐾𝐾 =  
𝐿𝐿3                                                                                                    [3]  

 
where W is the weight (g) and L the standard length (mm), using only  whole, intact fish. This  
factor  assumes that heavier fish  of a given length are in  better  condition (Sutton et al. 2000). We 
separated bill loads by island and tested for annual differences in  K  using  a linear mixed-effects  
model  (with  year  as a factor rather than  a continuous variable), where number of weeks  since 
June 1 was a random effect. For species whose models had significant results, we did a post-hoc  
pairwise comparison on the least-square means. 

All analyses were performed using R version 4.2.0 (R Core Team 2022).  
 
3. RESULTS  
3.1. Breeding Metrics  and Marine Conditions  

During the 10 years of our study, we checked  an  average of  87.9±4.4 burrows per  year  at  
Destruction Island  (DI), and 95.4±2.6 burrows  at Protection Island  (PI). Over  all years, the  two  
colonies differed in burrow occupancy (DI: 0.59±0.02; PI: 0.67±0.02) and fledging success rates  
(DI: 0.87±0.02; PI: 0.79±0.04), but not hatching  success rates (DI: 0.90±0.02; PI: 0.87±0.02, 
Figure 4, Table 1).  

The islands also responded differently  to the NE  Pacific MHW.  During the  MHW  years  
(2014 – 2016), average burrow occupancy  rates declined at Destruction Island (0.54±0.01 vs. 
0.61±0.02 in non-MHW years), but  increased at Protection Island (0.72±0.04 vs. 0.65±0.03 in 
non-MHW  years) due to sharp declines in the  years immediately following  the MHW (2017:  
0.56; 2018: 0.59). Hatching success rates did not differ  at either island  between the MHW and 
non-MHW years (Figure 4B, Table 1). Fledging r ates at Destruction Island did not differ  
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between MHW and non-MHW years (0.85±0.02 vs. 0.89±0.05), but at Protection Island they 
were lower in MHW years (0.71±0.03 vs. 0.82±0.02). 

The first two principal components accounted for 61% of the observed variation in the 
environmental variables (Figure 3). The first principal component (PC1, 46% of variation) 
described years when all conditions were unfavorable (e.g., late or absent spring transition, 
higher SSTs in both spring and summer and lower NPP at both locations, weak coastal 
upwelling, positive PDO and MEI), in effect capturing the effects of the NE Pacific MHW. The 
second principal component (PC2, 15% of variation) described conditions that were more 
moderate (e.g., PDO and MEI closer to neutral or negative, average SST Spring / Summer 
temperatures and comparatively increased NPP at both locations, although note that NPP and to 
a lesser extent SST were separated between the outer coast and Salish Sea). The annual values 
for the principal components detected an initial overall ocean warming in 2014 and by 2015 and 
2016 showed a strong MHW signal (Table S2). Prior to 2014, the principal components describe 
marine conditions that were closer to the mean. Conditions remained warmer once the MHW had 
dissipated. 

By themselves, PC1 and PC2 did not correlate with auklet breeding metrics, but there 
were interactions with the island term, although not consistently. For burrow occupancy, PC1 had 
a strong positive interaction with island, while PC2 had a strong negative interaction (Table 1), 
meaning that when marine conditions were warmer and/or less moderate, burrow occupancy 
rates were higher at Protection Island than at Destruction Island. Neither PC correlated with 
hatch success rates, but with fledging rates, PC1 had a weak negative interaction with island, 
meaning that when marine conditions were warmer, breeding success was lower at Protection 
Island (Table 1). There was no interaction with PC2 (Table 1). 

3.2. Diet Metrics 
3.2.1. Prey Species Composition 

Over seven seasons at Protection Island, we collected 231 complete confirmed bill loads 
(range: 13 – 56 per season) composed of 1498 individual prey items from at least 13 species. In 
six seasons at Destruction Island, we collected 184 complete confirmed bill loads (range: 15 – 53 
per season) composed of 679 individual prey items from at least 16 species. 

The NMDS and PERMANOVA analyses showed the two colonies differed in the fish 
prey taxa that adults brought back to chicks in all years (PERMANOVA: Island: F = 19.9, R2 = 
0.62, P = 0.001; Year: F = 4.1, R2 = 0.14, P = 0.04, Figure 5). At Protection Island, the two most 
abundant species in all years were Pacific sand lance (Ammodytes hexapterus; mean 70%, range 
52% - 79%), followed by Pacific herring (Clupea pallasii: mean 25%, range 11% - 44%). No 
other single species had an overall average of greater than 2%, and other than juvenile salmon, 
which made up 7% of prey items in 2010, no other species had an average of >5% in a single 
year (Figure 6A). 

Prey species composition at the Destruction Island colony was much more variable over 
time (Figure 6B). Northern anchovy (Engraulis mordax) was the most abundant species in all 
years (40%), with peaks in 2010 (72%) and 2013 (81%); however, it declined in proportion from 
46% in 2016 to just 3% in 2019. Anchovy was replaced largely by smelt species, which 
increased from 17% of prey items in 2010 to 58% in 2019. Major prey species (mean abundance 
>5%) also included Pacific sand lance (mean 12%, range 0 – 33%), Pacific herring (mean 12%, 
range 0 – 33%), and juvenile rockfish (mean 6%, range 0 – 28%). No other species made up 
>5% of prey items in a single year. 
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3.2.2. Diet Metrics, Fish Condition, and Marine Conditions 
Although bill loads from the two colonies differed in prey species composition, their 

mass (DI: 27.9±1.1 g, PI: 29.0±1.0 g) and energy content (DI: 138.0±7.8 kJ, PI: 147.9±8.5 kJ) 
were similar (Figure 7A, 5C, Table 2). Auklets from Protection Island brought more prey items 
per bill load in all sample years, however (DI: 3.63±0.4, PI: 6.54±0.8, Figure 7B, Table 2). 
Between 2015 and 2016, the peak years of the NE Pacific MHW, bill load energy content at 
Protection Island declined by more than 50% even as the number of prey items per bill load more 
than doubled. The average mass of individual prey items in bill loads was also less at Protection 
Island in all years, but increased at both islands as a season progressed, indicating that, generally, 
adults brought larger prey items to their chicks as they grew (Table 3). 

We only collected bill loads at Destruction Island during one of the MHW years, and for 
two years at Protection Island, and the principal components had little explanatory power: the 
only relationship was PC2, which had a strong negative effect on prey item count, meaning that 
the more moderate marine conditions were, the fewer prey items auklets brought back to their 
chicks (Table 2). There were no interactions between the islands and the PCs. 

Of the six major prey species at Destruction Island, only Pacific sand lance and smelt 
spp. showed any interannual variation in average fish condition. For sand lance, individuals in 
2019 were in better condition than 2016 individuals, with no differences among the other years; 
for smelts, individuals in 2018 and 2019 were in better condition than individuals in 2013 
(Figure 8, Table 4, Table S3). At Protection Island, Pacific sand lance and Pacific herring 
showed marked interannual variation in condition (Figure 9, Table 4, Table S3). Notably, 
individuals of both species that auklets captured were in the poorest condition in 2013 and 
2017—the two years that bracketed the NE Pacific MHW; they were in the highest condition in 
2015, during the MHW. 

4. DISCUSSION 
4.1. Differing Responses in Breeding Metrics Without Catastrophic Declines 

This study showed the degree to which a species’ responses to a large MHW can vary 
even on relatively small spatial scales. Our hypothesis that the consequences of the NE Pacific 
MHW for the two colonies might not be identical was supported. However, our prediction that 
Destruction Island, owing to its location on the outer coast where conditions were more extreme, 
would be more significantly affected both in terms of burrow occupancy/egg production and 
fledging success rates, was not supported. Finally, our study suggests that the rhinoceros auklet 
may have a greater capacity to withstand significant climate perturbations than many other 
seabirds—particularly other alcids (see Suryan et al. 2021). 

Breeding metrics at the two islands generally covaried positively in non-MHW years, but 
during the NE Pacific MHW the islands had differing responses. At Destruction Island, the 
MHW’s main effect was an immediate ~30% decline in burrow occupancy/egg production rates 
in 2014 and 2015, before they returned to the pre-MHW average in 2016, where they remained. 
Chick fledging rates dipped somewhat, but the decline during the MHW did not depart 
substantially from general interannual variation. At Protection Island the response was almost the 
reverse. There, fledging success rates declined by nearly 50% from 2015 to 2016 before 
returning to pre-MHW levels in 2017. Occupancy rates declined as well, but neither as steeply 
nor during the MHW years, reaching a low in the same season that fledging rates recovered, 
before returning to more typical levels by 2019. 
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Since burrow occupancy and egg production rates declined at Destruction Island while 
fledging rates remained steady, adults at that colony likely skipped breeding due to unfavorable 
marine conditions, a well-known phenomenon in seabirds (Bradley et al. 2000, Cubaynes et al. 
2010). The NE Pacific MHW may not have affected the nearshore environment off the 
Washington coast until 2015 (e.g., Jones et al. 2018), but auklets wintering in offshore waters 
may have still encountered suboptimal conditions (e.g., Black et al. 2010, Schroeder et al. 2012). 
What is notable, then, is that auklets returning to Protection Island as the MHW approached its 
peak in 2015 either did not receive the same non-breeding season signal as those at Destruction 
Island (e.g., Crossin et al. 2022), or did not heed it, being in good enough body condition to 
attempt to breed regardless. If this was the case, then it may be because auklets from the two 
colonies overwinter in different areas (Hipfner et al. 2020). 

The resulting pattern at Protection Island of decreasing reproductive success for two 
years followed by a ~20% decrease in burrow occupancy rates in 2017 further suggests that 
carry-over effects from the NE Pacific MHW may have extended by a year for those auklets and 
their prey (PSEMP 2017, PSEMP 2018). Although the MHW signature had disappeared by late 
2016 from surface waters in the Queen Charlotte Sound, British Columbia, for example, warmer 
temperatures persisted below the surface mixed layer at least through 2018 (Jackson et al. 2018). 
Additionally, auklets in the Salish Sea underwent an unusual mortality event in 2016 due to an 
outbreak of septicemia (Knowles et al. 2019). Autopsied adults were often emaciated, but 
whether it was a result of reduced prey quality and/or availability, weak foraging ability due to 
illness, or both is uncertain (Pearson et al. in prep). Disease outbreaks in marine environments 
could increase, however, with warming conditions (e.g., Burge et al. 2014). 

Seabird breeding success frequently declines in response to MHWs, as we observed at 
Protection Island. Fairy prions (Pachyptila turtur) and common diving petrels (Pelecanoides 
urinatrix) both showed delayed laying dates, slower chick growth, and reduced breeding success 
during MHWs in Australia, although the effects were not as pronounced for the prion (Eizenberg 
et al. 2021). Short-tailed shearwaters (Ardenna tenuirostris) exhibited both delayed breeding 
onset and reduced breeding success in response to a MHW in southern Australia, before being 
subject to a die-off in response to a MHW in 2019 in the NE Pacific (Glencross et al. 2021). 

Of note is that, even as rhinoceros auklets at both islands experienced declines in 
breeding metrics during the NE Pacific MHW, the MHW’s consequences were not nearly as 
catastrophic as they were to other species—even other alcids (e.g., Jones et al. 2018, Piatt et al. 
2020). Additionally, the dynamic we observed at Destruction Island is the first instance we know 
of where we see a decline in burrow occupancy and egg production rates without concurrent 
declines in breeding success. We will explore possible mechanisms for this pattern in the next 
section, but we recognize that our chick survey methods hinge on visual inspection, which may 
overestimate fledging success rates. In auklet chicks, the partial feathering stage can last a long 
time depending on chick feeding and development rates (e.g., Harfenist, 1995). Because we did 
not measure or weigh auklet chicks, we could not know the condition of those present on our last 
visit, i.e., whether they were close to a minimum fledging weight. 

4.2. Diet Shifts to Mitigate Climate Impacts 
Auklet bill loads for chicks from Destruction Island differed from those at Protection 

Island both in terms of dominant prey species and overall species composition, consistent with 
historical studies (Wilson & Manuwal 1986). In all years of this study, auklets at Protection 
Island depended on Pacific sand lance and Pacific herring, but prey species composition at 
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Destruction Island was highly variable across years, shifting from a diet dominated by northern 
anchovy through 2013 to one made up of mostly smelt species by 2019. Whether the NE Pacific 
MHW drove this shift is unknown, but anchovy abundance in the California Current has been 
variable during this period (e.g., Harvey et al. 2020). 

The ability to take advantage of an expanded prey pool may serve to insulate auklets at 
Destruction Island against extreme events that affect the abundance or condition of one or two 
prey species (Kondoh 2003). Auklets eat mostly pelagic forage fish, but as generalists, adults in 
this study brought back squid, juvenile rockfish, and other species more commonly associated 
with benthic nearshore environments (e.g., Hexagrammidae spp.). Auklets may also specialize 
more in a particular foraging location than on a target species in an effort to maximize bill load 
mass and energy, resulting in the capture of more variable prey species (Cunningham et al. 
2018). Additionally, Suryan et al. (2002) suggested that interannual variation in environmental 
forcing creates a threshold above which a seabird’s parental behavior can flexibly accommodate 
shifts in the prey base. 

At Protection Island, there was no such shift in prey species composition. During the two 
years that sampling overlapped with the NE Pacific MHW, sand lance and herring comprised 
~90% of auklet bill loads, as they did in other years. This dependence suggests the Salish Sea is a 
wasp-waisted system (Cury et al. 2000, Therriault et al. 2009), in which an intermediate trophic 
level controls the abundance of predators through a bottom-up interaction. Although sand lance 
and herring have different life history strategies (e.g., timing of spawning, being migratory or 
non-migratory), the NE Pacific MHW may have overwhelmed their capacity to buffer against 
environmental variance (e.g., Arimitsu et al. 2022). 

Both sand lance and herring in the Salish Sea fluctuate in abundance depending on their 
environment, with pronounced declines in fish condition due to anomalous warming (Baker et al. 
2019); herring in particular underwent steep population declines during the NE Pacific MHW 
and did not apparently recover until 2019 (Frick et al. 2022). Because rhinoceros auklets only 
deliver on average one bill load per parent to their chick each night (Wilson 1977), they do not 
have the opportunity to compensate with more bill-loads per day should prey be difficult to find 
or of poor quality, unlike diurnal provisioning common murres (Uria aalge) and tufted puffins 
(Fratercula cirrhata) (Schrimpf et al. 2012, but see Gjerdrum et al. 2003). One way for 
rhinoceros auklets to offset a poorer energy-per-prey-item relationship is to bring back more 
items per bill load, in which case there is likely a physical limit to the amount of prey they can 
effectively carry (e.g., Watanuki et al. 2022). Alternatively, they could try to capture more 
energy-rich species, although doing so could confer an energetic cost to adults, as they may have 
to fly farther to reach optimal foraging sites or spend more time hunting once they get there (e.g., 
Ballance et al. 1997, Davoren 2000). 

We only sampled diets during one of the MHW seasons at Destruction Island in the 
California Current, but bill-load characteristics did not differ from other years and reproductive 
success rates were similar. At Protection Island, however, bill load characteristics showed a clear 
effect of the MHW. Even as the condition of the sand lance and herring auklets captured did not 
immediately decline compared to non-MHW years, the individual fish were smaller. Sand lance 
and herring condition was highest in 2015, which is evidence that auklets were able to target 
higher-condition prey in that year at least, since nearby beach seine surveys found sand lance 
condition to be poor relative to pre-MHW baseline data (Baker et al. 2019). However, as fish 
size declined, the number of fish per auklet bill load doubled in 2016 and then nearly tripled in 
2017 compared to 2015. At the same time, the average bill load energy content relative to 2015 
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was 35% lower in 2016 and 25% lower in 2017—a sign that increased foraging effort was not 
yielding an energetic payoff. All of this coincided with the colony’s lowest fledging success 
rates. 

4.3. Resilience in the Face of Unfavorable Marine Conditions 
Alcids were among several seabird families to be hard-hit during the NE Pacific MHW 

(e.g., Jones et al. 2019, Tate et al. 2021, Van Hemert et al. 2021). Previous research has 
suggested a correlation between physical forcing in general and reproductive success and 
periodic die-offs in seabirds. The foraging ranges of black-legged kittiwakes (Rissa tridactyla) 
increased in years of poor food availability, for example, and led to declines in breeding success 
(Hatch 2013). An abnormally late spring transition to upwelling conditions in 2005 led to 
severely reduced NPP (Barth et al. 2007), which resulted in breeding failures in marbled 
murrelets (Brachyramphus marmoratus) in British Columbia (Ronconi & Burger 2008) and nest 
abandonment in Cassin’s auklets (Ptychoramphus aleuticus) throughout the California Current 
(Sydeman et al. 2006). Similarly, from California, U.S.A. to British Columbia, Canada, Cassin’s 
auklets experienced an unusual mortality event as a result of warm-water intrusions from the NE 
Pacific MHW into the nearshore environment. This led to a shift in the zooplankton community 
composition away from a northern copepod assemblage to smaller southern copepods, as well as 
reducing the mean size of adult euphausiids and overall abundance (Jones et al. 2018, Phillips et 
al. 2022). 

While the NE Pacific MHW clearly affected both breeding and diet metrics at the two 
auklet colonies, it did not do so consistently, synchronously, or even that strongly. We thus did 
not find a pronounced relationship between these metrics and a PCA of marine conditions. 
Where breeding metrics are concerned, this was likely because the MHW’s effects were evident 
for only two of its three years at each island, and then with different stages: burrow occupancy 
rates at Destruction Island in 2014 and 2015, and fledging success rates at Protection Island in 
2015 and 2016. Subsequent declines in burrow occupancy at Protection Island took place after 
the MHW was supposed to have ended; furthermore, occupancy rates were higher during parts 
of the NE Pacific MHW, making it appear MHW-like conditions increased burrow occupancy. 
However, the decline in breeding success at Protection Island was enough for there to be a 
negative relationship between ocean warming and breeding performance, consistent with many 
other studies. 

Rhinoceros auklets have shown a sometimes idiosyncratic relationship with marine 
conditions (e.g., Morrison et al. 2011). Bertram et al. (1991), for example, found that while there 
could be substantial interannual variation in provisioning and chick growth rates at breeding 
colonies in British Columbia, those variations did not necessarily reflect fluctuations in the 
marine environment. Hedd et al. (2006), on the other hand, found a clear association between 
spring SSTs and auklet reproduction at Triangle Island, British Columbia, as chick growth rates 
decreased with increasing SSTs. They hypothesized this was due to temperature-dependent 
recruitment of sand lance, since years with high auklet breeding success were linked to sand 
lance-dominated chick diets. In another study of the same colony, Borstad et al. (2011) found 
that the relationship between breeding success and SST may have been correlative rather than 
causal and that an early spring transition date was more predictive. Breeding colonies in the 
southern portion of the California Current have also exhibited a relationship between bill load 
mass and SSTs (Thayer & Sydeman 2007). Finally, auklets have shown behavioral flexibility in 
the past when confronted with poor marine conditions. Their chick-rearing period of ~50 d is 
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long compared to other alcids (e.g., ~48 d for tufted puffins, a larger species; Piatt & Kitaysky 
2002). During the 1997/98 El Niño, for example, auklets at the Protection Island colony were 
able to maintain average rates of fledging success by extending that rearing period still more, 
even as chick average growth rates were significantly lower (Wilson 2005). 

4.4 Conclusions 
Rhinoceros auklets in Washington withstood the NE Pacific MHW’s major 

environmental shifts without experiencing significant or durable declines in breeding 
performance. Their capacity to do this—whether by skipping breeding, relying on an expanded 
prey portfolio, increasing foraging effort, and / or extending their chicks’ rearing period—varied 
between the two colonies we studied. As indicated by the higher diversity of prey items at 
Destruction Island, the California Current is a prey-rich system, and auklets there could change 
their diet without a substantial effect on breeding success. In the wasp-waisted Salish Sea, 
however, the energy available to chicks was constrained by the abundance and condition of 
Pacific sand lance and herring (Bertram & Kaiser 1993, Therriault et al 2009, Selleck et al. 
2015). 

Although auklets at Protection Island have weathered poor marine conditions in the past 
(e.g., the 1997/98 El Niño, Wilson 2005), and suffered no apparent ill effects in the first year of 
the NE Pacific MHW, by its final year, the combination of decreased food availability/quality 
and the rise of a lethal bacterial pathogen (Knowles et al. 2019, Pearson et al. in prep) proved too 
much to endure without some consequence to breeding metrics. The subsequent decrease in 
burrow occupancy rates after the MHW and unusual mortality event suggests a possible 
population-level decline, i.e., a lack of available breeders, as opposed to adult birds simply 
choosing not to breed. Still, auklets at both colonies showed the ability to adapt to the NE Pacific 
MHW. Whether they can endure the more frequent, intense, or longer-lasting MHWs predicted 
to occur under future climate scenarios remains an open question. 
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Parameter  Burrow occupancy  Hatching success  Fledging success  

 Intercept (α)  0.39 (0.12, 0.66)  2.3 (1.75, 2.91)   1.91 (1.44, 2.43)  
 Island (β)  0.31 (-0.04, 0.66)  -0.29 (-0.91, 0.30)    -0.45 (-1.02, 0.08) 

  PC1 (γ1) -0.02 (-0.18, 0.14)   0.14 (-0.39, 0.64)  -0.07 (-0.52, 0.38)  
  PC2 (γ2) -0.05 (-0.29, 0.19)   0.11 (-0.63, 0.89)   0.36 (-0.24, 1.03)  
   Island x PC1 (𝜑𝜑1) 0.26 (0.04, 0.49)  -0.32 (-0.83, 0.17)   -0.38 (-0.81, 0.08) 
  Island x PC2 (𝜑𝜑2)  -0.35 (-0.67, -0.03)  0.20 (-0.55, 0.94)  0.21 (-0.47, 0.88)  

       σsite  0.27 (0.12, 0.48)   0.31 (0.02, 0.67)   0.26 (0.02, 0.58)  
       σαyear  0.09 (0.01, 0.30)   0.55 (0.16, 1.15)   0.47 (0.11, 1.04)  

       σβyear  0.09 (0.01, 0.32)  0.33 (0.05, 0.88)   0.38 (0.05, 0.96)  
       ρyear  -0.2 (-0.98, 0.92)   -0.12 (-0.95, 0.92)   -0.19 (-0.94, 0.89)  

  
   

592 TABLES  
 
Table 1. Parameter estimates (mean  and 95% credible interval [CI] in parentheses) from  
binomial GLMMs for  rhinoceros auklet breeding m etrics at Protection Island and Destruction 
Island. Positive main effect values: increased effect at Protection  Island.  Hierarchical variance 
components  —  𝜎𝜎 α

site: among-site intercept SD; σyear: interannual SD of the intercept; σβyear: 
island effect;  ρyear: interannual correlation between σα 

year  and  σβyear. Bold: 95% Cis of main  
effects that  did not overlap with zero, indicating strong support. Italics: 95% CIs of main effects  
that only  slightly overlapped with zero, indicating w eak support.  
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Parameter  Weight  Prey Item Count   Energy Content 

 Intercept (α)  13.29 (-0.55, 27.03)   1.25 (0.70, 1.78)   1.69 (-9.50, 12.97)  
 Island (β)  -0.12 (-3.78, 3.03)   0.62 (0.19, 1.09)   0.35 (-8.30, 8.95)  

  PC1 (γ1)  0.23 (-2.70, 3.99)   -0.01 (-0.52. 0.48)    0.37 (-7.74, 8.50)  
  PC2 (γ2) -1.32 (-4.19, 2.38)    -0.17 (-0.75 -0.39)   -3.76 (-12.25, 5.36)  

   Island x PC1 (𝜑𝜑1) 0.68 (-2.88, 4.06)  -0.11 (-0.61, 0.31)  -0.11 (-8.66, 8.39)  
   Island x PC2 (𝜑𝜑2) 0.48 (-4.19, 2.38)  0.23 (-0.29, 0.71)  -0.73 (-9.36, 8.06)  

      σweek  15.45 (2.86, 33.86)   0.13 (0.01, 0.39)   146.07 (91.33, 236.86)  
      σαyear 2.04 (0.04, 12.90)   0.44 (0.17, 1.02)   12.74 (0.60, 34.61)  
      σβyear  1.64 (0.04, 6.50)   0.37 (0.10, 0.92)   11.36 (0.52, 34.42)  
      ρyear  -0.10 (-0.97, 0.94)   -0.06 (-0.85, 0.81)   -0.04 (-0.20, 0.08)  

R2      0.07 (0.05, 0.09)   - 0.1 (0.08, 0.12)  
 
  

 
 

604 Table 2. As in Table 1, but for GLMMs of rhinoceros auklet bill load metrics. R2  values are 
given for the Weight and Energy Content models, which are  linear, but not  for Prey  Item Count, 
which was a Poisson observation model.  
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Parameter   Size 

 Intercept (α) 
  Island (𝛃𝛃𝟏𝟏) 

 Log(Week) (𝛃𝛃𝟐𝟐)  
  PC1 (γ1) 
  PC2 (γ2) 

      σαyear 

      σβyear 

      ρyear 

R2      
 

 6.65 (1.04, 11.89)  
-4.14 (-7.32, -0.73)  

 2.87 (0.52, 5.18)  
 0.86 (-2.39, 4.67)  
 0.44 (-4.01, 5.29)  

5.11 (1.74, 11.66)  
5.33 (2.6, 9.91)  

 -0.59 (-0.98, -0.34)  
 0.23 (0.03, 0.5)  

 
   

614 

610 Table 3. As in Table 1, but for a linear mixed model of average prey item size  per bill load by 
island as the breeding season  progressed. Hierarchical variance components  —  σαyear: 
interannual SD of the intercept;  σβ 

year: island effect;  ρyear: interannual correlation between  σαyear  
and σβyear. Bold: 95% Cis of fixed effects that  did not overlap with zero.  
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 Island Species   Variable  Df  Sum Sq Mean Sq   F  P 

Northern Year   5  0.16  0.03  1.62  0.16 
 Anchovy  Residuals  251  4.87  0.02 

Pacific Year   3  0.03  0.01  0.03  0.99 

Destruction 
Island  

 Herring  Residuals  50  15.44  0.31 

Pacific 
Sand 

 Lance 

Year   3  0.02  0.008  2.63  0.04 

 Residuals  75  0.35  0.005 

Smelt spp.  
Year   4  0.17  0.05  3.27  0.01 

 Residuals  166  2.21  0.01 

Protection 
Island  

Pacific 
Sand 

 Lance 

Year   6  0.55  0.09  25.3  <0.00001 

 Residuals  976  3.55  0.004 

Pacific 
 Herring 

Year   6  1.73  0.29  8.73  <0.00001 
 Residuals  262  8.63  0.03 

  
 

617 Table 4. Results from  linear mixed-effects models  on annual average  Fulton’s  K factor scores for 
major prey species at Destruction and Protection Island. Species in  bold ha d significant  results, 
and the pairwise least-square means for  each  year were then compared  (see Table S3).   
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623 FIGURES  

Figure 1. The two rhinoceros auklet (Cerorhinca monocerata) colonies included in this study. 
Protection Island (48°08’N, 122°55’W), in the Salish Sea, hosts ~36,000 breeding pairs per year, 
while on the outer coast, Destruction Island (47°40’N, 124°24’W), in the California Current, 
hosts ~6,500 breeding pairs. 
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Figure 2. Environmental predictors included in principal components analysis (PCA). Graph 
shows all years used to build the PCA, starting in 2002; the study years were 2010 – 2019. The 
red bar in each graph brackets the years affected by the NE Pacific marine heatwave (2014 – 
2016). Predictor and data source: A) Pacific Decadal Oscillation (PDO), from NOAA Extended 
Reconstructed Sea Surface Temperature v. 3b. B) Multivariate El Niño Index (MEI), from XX. 
C) Biologically Effective Upwelling Transport Index (BEUTI), from Michael Jacox. D) The 
onset of the Spring Transition (S.T. Onset), from the Northwest Fisheries Science Center Ocean 
Ecosystem Indicators. E – H) Island-specific sea surface temperature from February through 
April (DI / PI Spr) and May through August (DI / PI Sum) from the MODIS-Aqua satellite from 
NASA. I – L) Island-specific values from Carbon-based Productivity Model of Net Primary 
Production (NPP) with the same seasonal ranges as SST, from the Oregon State University 
Ocean Productivity Group. See Methods for fuller description of how predictors were tabulated. 
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Figure 3. Principal Component Scores and Loadings of environmental predictors. See Methods 
for more detailed descriptions of the environmental predictors. A) Proportion of variance 
explained by each principal component. B) Mean eigenvalues. C) Loadings for the first two 
principal components. Abbreviations are the same as in Figure 2. The first principal component, 
PC1, accounts for 45% of the variance and depicts the conditions found during the NE Pacific 
marine heatwave: positive PDO and MEI, higher sea surface temperatures, a delayed spring 
transition onset (or not transition at all), etc. The second principal component, PC2, accounts for 
16% of the variance and captures more generally moderate marine conditions.  
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Figure 4. Times series plots for rhinoceros auklet breeding metrics at Protection Island (Salish 
Sea) and Destruction Island (California Current). A) Burrow occupancy; B) Hatching success; C) 
Fledging success. Points are the annual observed proportions of burrow occupancy, hatching 
success, and fledging success rates, with error bars showing sample binomial 95% confidence 
intervals. The solid line is the posterior median of the fitted values and the shaded ribbon is the 
95% credible interval. In each panel, a shaded red column shows the three seasons (2014 – 2016) 
of the NE Pacific marine heat wave. 
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Figure 5. A hull plot showing nonmetric multidimensional scaling (NMDS) ordinations for 
annual differences in prey species composition for rhinoceros auklets at Destruction Island 
(California Current) and Protection Island (Salish Sea). Convex hulls show items in a class (here, 
the islands’ distinct compositions). For the purposes of clarity, letters denote species’ names to 
lowest identifiable taxonomic level: A) Northern Anchovy (Engraulis mordax); B); Slender 
Barricuda (Lestidium ringens) C) Eulachon (Thaleichthys pacificus); D) Fiery Armhook Squid 
(Gonatus pyrus); E) Unknown Flatflish (Pleuronectidae); F) Unknown Greenling Spp 
(Hexagrammos spp.); G) Pacific Lamprey (Lampetra tridentatus); H) Northern Lampfish 
(Stenobrachius leucopsarus); I) Market Squid (Doryteuthis opalescens); J) Pacific Herring 
(Clupea pallasii); K) Snake Prickleback (Lumpenus sagitta); L) Unknown Rockfish Juveniles 
(Family: Sebastinae); M) Search (Bathymaster signatus); N) Unknown Salmonid (Family: 
Salmonidae) ; O) Pacific Sand Lance (Ammodytes hexapterus); P) Shiner Perch (Cymatogaster 
24ggregate); Q) Unknown Squid (Order: Teuthida); R) Three-spine Stickleback (Gasterosteus 
aculeatus); S) Surf Smelt (Hypomesus pretiosus); T) Unknown Hexagrammid (Family: 
Hexagrammidae); U) Whitebait Smelt (Allosmerus elongatus); V) Other. Letters separated by a 
slash (/) would otherwise occupy the same space. 
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680 
681 

682 

683 
684 
685 Figure 6. Stacked bar plots of major prey species in rhinoceros auklet bill loads from Destruction 
686 Island (California Current, top) and Protection Island (Salish Sea, bottom). Major prey species 
687 were defined as those present in >5% of bill loads for at least one year of the sample period. 
688 Osmeridae are smelt species, Sebastes are rockfish species, and Pleuronectidae are flatfish 
689 species. Error bars are standard error. See Table S1 for full list of species found in auklet bill 
690 loads. 
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Figure 7. Time series plots of diet metrics for rhinoceros auklet colonies on Protection Island 
(Salish Sea) and Destruction Island (California Current). A) Average bill load mass (g); B) 
average number of prey items per bill load; C) average bill load energy content (kJ). Points are 
annual means and error bars show sample 95% confidence intervals. The solid line is the 
posterior median of the fitted values, and the shaded ribbon is the 95% credible interval. In each 
panel, the shaded red column shows the three seasons (2014 – 2016) affected by the NE Pacific 
marine heat wave. 
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703 
704 Figure 9. The same s cheme as   Figure 8, but for Protection Island. A) Pacific sand lance.  B)  

Pacific herring.    705 
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See Attached Excel Workbook 

List of prey to the lowest taxon identifiable and their energy contents as determined by 
bomb calorimetry in 2009. With northern lampfish (Stenobrachius leucopsarus) and Pacific 
lamprey (Lampetra tridentatus), the dried fishmeal was too oily for pellet formation and reliable 
energy densities were not obtained, so we used the value of 8050 J/g wet-mass from Van Pelt et 
al. (1997). For species for which we did not have whole samples collected by the end of the 2009 
season, we used an average of all energy densities from all fish. For partial fish that were only 
identifiable to higher taxonomic categories (i.e. genus or family), we estimated energy density by 
averaging the values for all species in that category represented in the auklet diet. 

If a significant linear regression between length and energy density (defined by R2 > 0.5 
and P < 0.05) existed for any of the prey identifiable to species, we used the regression 
parameters to calculate length-specific energy densities for each individual of that species. In all 
other cases, we averaged the energy densities to obtain a representative value for each species. 
Both Pacific herring (Clupea pallasii) and northern anchovy (Engraulis mordax) showed step-
wise length vs. energy density patterns, with the step at lengths corresponding to the age-0 to 
age-1 transition described in the literature (herring: 120 mm SL, Foy & Paul 1999; anchovy: 95 
mm SL, Hart 1973, Litz et al. 2008). Above the transition, both species had a higher and more 
variable energy density that was not related to length (herring: R2 < 0.0001, P = 0.907; anchovy: 
R2 < 0.0001, P = 0.988). Below the transition, the relationship between length and energy density 
was linear and significant for herring (R2 = 0.88, P < 0.001), but noisier for anchovy (R2 = 0.30, P 
= 0.158), probably due to low sample size (N = 8). Tirelli et al. (2006) found a similar 
relationship between length and energy density for European anchovy (E. encrasicolus), with a 
similar step-wise increase in variability. We therefore used the age-class transitions from the 
literature to separate herring and anchovy into age-0 and age-1+ categories to estimate energy 
density and applied the same decision rules (R2 > 0.5; P < 0.05) to determine whether to use 
regression parameters or energy density averages. 
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Foy RJ, Paul AJ (1999) Winter feeding and changes in somatic energy content of age-0 Pacific 
herring in Prince William Sound, Alaska. Trans Am Fish Soc 128: 1193-1200. 
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1100 Supplemental Information 

Table S1. 
Species (Common) Species (Scientific) Length 

(mm) 
[mean] 

W-
Weight 

(g) 
[mean] 

W-
Weight 

[SE] 

W-
Weight 

n 

L-W 
R2 

L-W a L-W 
b 

L-W 
n 

Energy 
(J/g 
ww) 

[mean] 

Energy 
[SE] 

Energy 
n 

L-E 
R2 

L-E β0 L-E 
β1 

L-E 
n 

bay pipefish Syngnathus griseolineatus 149.0 1.3 1 5706.2 1 

cabezon Scorpaenichthys marmoratus 41.0 2.1 1 4719.4 1 

pacific sandfish Trichodon trichodon 77.0 6.9 0.9 4 0.925 1.47E-04 2.471 4 3889.3 41.9 3 1.000 3084.8 16.3 3 

pacific sandlance Ammodytes hexapterus 85.4 2.9 0.0 2898 0.970 8.73E-07 3.335 2891 5231.9 233.0 32 0.667 1792.6 63.6 32 

pacifc saury Cololabis saira 122.5 7.5 0.6 17 0.967 7.71E-06 2.857 17 5813.3 138.0 11 0.124 8712.4 7.8 11 

sablefish Anoplopoma fimbria 62.0 4.1 2.1 9 0.957 2.27E-05 2.829 9 3357.5 325.1 5 0.155 2623.5 9.7 5 

slender barracudina Lestidium ringens 94.0 0.9 1 

snake prickleback Lumpenus sagitta 194.0 18.5 1 5713.4 1 

three-spine stickleback Gasterosteus aculeatus 67.0 3.1 0.4 2 3875.0 492.6 2 

tube-snout Aulorhynchus flavidus 120.5 2.6 0.3 2 4152.3 201.4 2 

northern lampfish Stenobrachius leucopsarus 59.3 2.3 0.7 4 0.990 1.49E-06 3.458 4 

all clupeoids Family: Clupeidae 94.0 10.5 0.3 977 3.69E-06 3.213 5157.6 

CLUP age-0 Family: Clupeidae 4196.1 

CLUP age-0-1 Family: Clupeidae 5077.2 

CLUP age-1 Family: Clupeidae 6199.5 

northern anchovy Engraulis mordax 100.2 11.2 0.3 472 0.955 4.04E-06 3.189 471 5714.2 294.2 26 

northern anchovy, age-0 Engraulis mordax 4494.2 115.1 8 0.302 2647.8 22.1 8 

northern anchovy, age-1 Engraulis mordax 6256.5 353.8 18 0.000 6215.7 0.3 18 

pacific herring Clupea pallasii 88.2 9.9 0.5 505 0.979 3.34E-06 3.237 499 4558.1 216.2 34 

pacific herring, age-0 Clupea pallasii 3897.9 100.6 24 0.881 2266.9 19.7 24 

pacific herring, age-1 Clupea pallasii 6142.6 354.3 10 0.002 5515.9 4.4 10 

all cod Family: Gadidae 61.7 2.4 0.5 33 1.40E-06 3.447 3561.9 

pacific cod Gadus macrocephalus 85.0 7.1 4.1 3 0.985 7.18E-07 3.573 3 3604.3 230.3 3 0.098 3166.4 5.2 3 

walleye pollock Theragra chalcogramma 60.8 2.1 0.2 26 0.970 2.08E-06 3.322 25 3519.6 164.5 7 0.008 3255.1 3.9 7 
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all hexagrammids Family: Hexagrammidae 57.4 2.2 0.1 72 4.06E-05 2.748 3991.6 

greenling Hexagrammos spp. 55.5 2.3 0.1 61 0.736 9.15E-06 3.084 61 3952.7 174.0 8 0.003 3367.6 9.8 8 

lingcod Ophiodon elongatus 68.4 2.0 0.2 11 0.548 7.21E-05 2.412 11 4030.5 344.7 8 0.054 1199.8 40.3 8 

all salmon Oncorhynchus spp. 88.0 8.6 0.4 213 1.00E-05 3.041 4023.5 

chinook (king) salmon Oncorhynchus tshawytscha 92.7 11.6 1.1 36 0.956 1.16E-05 3.022 36 3875.4 108.5 21 0.007 4032.8 -1.5 21 

chum salmon Oncorhynchus keta 90.7 9.1 0.8 83 0.953 7.75E-06 3.072 83 3886.3 76.6 14 0.403 3261.4 5.5 14 

coho salmon Oncorhynchus kisutch 0 4150.6 70.0 9 0.334 3383.8 5.7 9 

pink salmon Oncorhynchus gorbuscha 83.8 6.8 0.5 77 0.948 6.08E-06 3.120 77 3996.3 77.1 29 0.250 2934.0 9.8 29 

sockeye salmon Oncorhynchus nerka 76.7 6.8 3.4 3 1.000 9.49E-06 3.055 3 4209.1 1 

all smelt Family: Osmeridae 72.9 4.0 0.3 348 1.68E-06 3.360 5672.5 

surf smelt Hypomesus pretiosus 109.0 15.2 1.6 46 0.977 1.11E-06 3.456 46 4901.6 251.7 19 0.620 1337.7 35.2 19 

whitebait smelt Allosmerus elongatus 87.1 5.1 0.2 78 0.896 2.25E-06 3.265 77 4767.0 179.2 11 0.275 1983.9 29.4 11 

eulachon Thaleichthys pacificus 92.0 6.5 1 9083.3 1 

larval smelt Family: Osmeridae 3938.1 43.3 6 0.456 3065.8 13.8 6 

all rockfish Sebastes sp. 54.8 2.7 0.1 232 0.870 2.15E-05 2.920 231 5139.2 130.1 8 0.762 1730.3 62.7 8 

all fish Class: Actinopterygii 84.4 4.7 0.1 4818 2.18E-05 3.078 4611.2 

all squid Order: Teuthida 44.7 5.0 2.2 7 
-

clawed armhook squid Gonatus onyx 38.0 3.1 0.7 5 0.738 4.43E-04 2.390 4 1984.5 232.8 4 0.877 2011.6 92.9 4 

fiery armhook squid Gonatus pyros 30.0 1.6 1 

market squid Doryteuthis opalescens 93.0 17.7 1 

lamprey Lampetra tridentatus 261.0 37.1 1 
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1102 Table S2  
Principal component scores used in PCA regression analysis  for breeding and diet metrics. PC1, 
which accounted for 46% of variation, described conditions similar to the  NE Pacific MHW, 
with elevated SSTs, decreased primary productivity and upwelling, and so on. PC2, which 
accounted for 17% of observed variation, described more moderate conditions for the NE  
Pacific. The three years of the NE Pacific MHW are bold.   

Year  PC1  PC2  
2010  -0.1  -0.9  
2011  -1.62  -1.09  
2012  -1.25  -0.73  
2013  -0.44  0.55  
2014  0.58  0.21  
2015  1.96  0.77  
2016  1.98  -0.094  
2017  0.44  1.52  
2018  0.37  0.54  
2019  

 
0.33  0.11  

 

1103 
1104 
1105 
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1107 
1108 

1109 
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1110 Table S3. Results of pairwise least-square means test on individual condition for major prey 
1111 species at Destruction Island and Protection Island whose initial linear mixed-models had 
1112 significant results. Pair-wise comparisons that differ significantly are shown in bold. 
1113 
1114 Destruction Island 
1115 Pacific Sand Lance 

Year 2013 2016 2017 
2016 0.13 - -
2017 0.1 0.24 -
2019 0.99 0.04 0.67 

1116 
1117 Smelt Spp. 

Year 2010 2013 2016 2018 
2013 0.80 - - -
2016 0.89 0.52 - -
2018 0.16 0.03 0.97 -
2019 0.32 0.04 0.99 0.83 

1118 
1119 Protection Island 
1120 Pacific Sand Lance 

Year 2010 2013 2015 2016 2017 2018 
2013 0.56 - - - - -
2015 0.00002 0.00001 - - - -
2016 0.17 0.06 0.002 - - -
2017 0.99 0.96 <0.00001 0.05 - -
2018 <0.00001 <0.00001 0.06 0.11 <0.00001 -
2019 0.02 0.00008 0.00004 0.99 0.02 0.0008 

1121 
1122 Pacific Herring 

Year 2010 2013 2015 2016 2017 2018 
2013 0.000006 - - - - -
2015 0.99 0.001 - - - -
2016 0.23 0.008 0.66 - - -
2017 0.00001 0.41 0.04 0.87 - -
2018 0.96 0.0001 0.99 0.99 0.02 -
2019 0.78 0.001 0.35 0.99 0.09 0.99 

1123 
1124 
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