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Introduction  

In this file and in related Supporting Information, we include results of the 
hydrocode simulation and the shallow water ocean model simulations run with 
parameters different from those of the ‘fiducial’ runs.  For instance, we display 
results from MOM6 simulations with coarser grid spacing (1/5°) than the 1/10° grid 
spacing in the fiducial run, and discuss sensitivities to handoff times and other 
parameters of our coupled hydrocode/shallow-water code simulations.  We also 
include descriptions of the construction of paleo-bathymetries, the paleobathymetry 
near the impact site, the importance of vaporization in hydrocode modeling, the 
procedure for blending hydrocode results with the paleo-bathymetry to produce 
initial conditions for the shallow-water model, the sensitivities of the shallow-water 
model to different aspects of the handoff from the hydrocode (e.g., the presence or 
absence of a rim wave, amongst other aspects), and the comparison of energies in 
the impact tsunami with energies in recent historical tsunamis.  Finally, we include 
four movies: two of the iSALE hydrocode simulation over the first ten minutes of the 
impact, and one animation each of the MOM6 and MOST shallow-water simulation 
showing the tsunami propagation throughout the global ocean.  

Text S1.  

Development of paleobathymetry and initial conditions  
 
The paleobathymetry was created by merging two datasets.  Müller et al. (2008) uses 
a basin-age depth relation to create a deep-ocean bathymetric product.  Basin age-
depth relationship (Schroeder, 1984; Smith & Sandwell, 1997) refers to the 
relationship of the depth of the oceanic crust to the age of the oceanic crust.  As the 
oceanic plate moves away from the divergent boundary, it cools and sinks.  This 
relationship can then be used to construct bathymetries.  The second dataset, from 
Scotese (PALEOMAP), is reconstructed through “backtracking” the formation of 
existing seafloor and lithospheric plate movement.  When there is no modern sea 
floor that can be used to reconstruct the paleobathymetry, the PALEOMAP dataset 
sets a static water level.  Because of this incomplete PALEOMAP bathymetry, in 
particular the lack of mid-ocean ridge positions in pre-modern static seafloor areas 
provided by PALEOMAP, we needed a supplemental dataset.  We used mid-ocean 
ridge information from Müller et al. (2008) to supplement the PALEOMAP data, and 
used the shelf bathymetry from Scotese.  A Blackman filter was used to smooth the 
combined bathymetries, thus preventing large bathymetric discontinuities. The 
paleobathymetry near the impact site is displayed in Figure S1.  
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Our iSALE setup is described in Table S1.  The model setup is the same as in Collins 
et al. (2008), but with higher resolution and larger model extent.  The grid spacing of 
100 m is the same grid spacing used by Bahlburg et al. (2010) to simulate the 
formation of the Chixculub crater in a 1 km deep ocean.  The simulations of 
Bahlburg et al. (2010) were focused on whether the crater rim would inhibit flow 
back into the recently formed Chicxulub crater.  Thus, the high-resolution zone of 
Bahlburg et al. (2010) had a horizontal extent of less than 100 km.  Because our 
simulations are focused on formation and evolution of the rim wave, the high-
resolution zone in our baseline simulation has a horizontal extent of 250 km.    
 
 

 
 
Figure S1. Pre-impact K/Pg bathymetry of Gulf of Mexico in meters.  The impact 
occurred in shallow water of 100-200 m depth, at the location indicated by a star. At 
>50 km from the impact, the Gulf of Mexico seafloor depth is > 1 km, the depth used 
in the hydrocode simulation shown in Figure 1. The black line shown above has a 
length of 250 km, the length of the domain used in the hydrocode simulation.  
   
We also ran an iSALE simulation, out to 1100 s, with the horizontal mesh extending to 
300 km, to test sensitivity to handoff time.  In particular, the longer run allows us to 
ensure that the wave is done with active plunging breaking, the process that cannot 
be modeled with the shallow water wave models, once the handoff occurs. However, 
the wave has clearly reached a virtually steady-state phase of propagation as a bore-
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like wave.  Bore-like waves are processes that can be modeled with the nonlinear 
shallow water wave approximation well, as the hydrocode simulation that runs out to 
1100 s shows.  In this longer hydrocode run we also limited the vertical extent of the 
domain to 50 km above the impact point.  Ejecta leaving the mesh is therefore 
removed from the simulation.  This choice removes the discontinuous clumps of 
ejecta seen in Figure 1b.  The clumps landing ahead of the rim wave producing 
transient waves in the water make it unclear if the wave is experiencing strong 
plunging breaking or simply interacting with these lower amplitude waves.  Movie S2 
shows the results of this simulation.  Out to about 200 s the simulation is nearly 
identical to the simulation shown in Figure 1. Without the added ‘clumps’ of ejecta 
landing ahead of the rim wave it is clear the wave is done with plunging breaking by 
~600 s.  At 600 s, the wave is more energetic in the case that includes the 
discontinuous ejecta, but this wave dissipates more quickly than the case that ignores 
the discontinuous ejecta (Figure S4).  Figure S4 also shows that handoffs to MOM6 at 
600 s vs. 850 s yield nearly identical results, as quantified by globally integrated 
energies.  The simulation with vertical extent of the mesh limited to 50 km produces 
a wave that is 1.2 km high at 600 s, whereas the wave shown in Figure 1 has an 
amplitude of 1.4 km at 600 s.  Therefore, the height of the rim wave is not overly 
sensitive to the presence of late-arriving ejecta.   
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Figure S2.  iSALE resolution test. Material is colored according to horizontal velocity 
as indicated by the color scale. Both frames are plotted 600 s after an impact into a 
target with a 2 km thick ocean layer. The top frame has a resolution of 100 meters 
while the bottom frame has a resolution of 200 meters.  Resting sea level is 
represented by a y-axis value of “0”. 
 
Figure S2 shows that the waveform produced in a 200 m grid spacing iSALE simulation 
is very similar to that produced in a 100 m simulation.  This similarity provides 
confidence that resolving the ocean depth by at least 10 cells is sufficient to capture 
the initial generation of the impact tsunami. 
 
The importance of vaporization in hydrocode modeling 
 
Gisler et al. (2011) pointed out the importance of accounting for vaporization of water 
when considering impact-generated tsunamis.  We expect in simulations where the 
crater is much deeper than the ocean the effect of ocean vaporization will have a 
modest effect compared to impacts where the transient crater size is much smaller 
than the ocean depth.  To accurately track the response of material to an impact, 
shock physics codes must include equations of state and accurately track the thermal 
state of materials including the effect of vaporization.  To limit computational 
expense, vaporized material is removed from the mesh when densities drop below 
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10 kg/m3. This is why no vapor plume appears in Figure 1.  In addition to producing 
an airblast, expansion of the vapor plume may also produce Lamb waves as observed 
in the recent Tonga event.  The Lamb waves would likely enhance the impact-
generated tsunami. 
 
Importing hydrocode outputs to the tsunami model 
 
The hydrocode outputs two quantities that will be used in the initial conditions for 
elevation in our shallow-water models; sea surface elevation perturbations, and 
perturbations to the seafloor depth.  Because our impact simulations are 
axisymmetric, we write the output of the hydrocode in terms of a radial distance 
from the impact point to a target point of interest.  Let the distance from our target 
point to the impact origin be r.  Then ηhydrocode(r) is the perturbation (positive 
upwards) to resting sea level given by the hydrocode, in columns where water 
exists.  Of course, in columns near the impact, there is no water at the end of the 
hydrocode simulation (600-1100 seconds post-impact).  Let Hhydrocode(r) be the vertical 
distance between the seafloor prior to impact and the seafloor at the hand-off from 
the hydrocode simulation.  Again, we take positive values of Hhydrocode(r) to denote a 
deepening of the seafloor.  We note that the seafloor can be either sediment or 
crystalline basement. 
 
For the fiducial “Half Crater” case, we impose the simulated crater on the pre-impact 
bathymetry only at cells that were initially water (in other words, the crater was not 
imposed on points that were land in the pre-impact bathymetry).  More precisely, if 
Hbefore(x,y) + Hhydrocode(r) > 0, then we declare the point (x,y) as being water, with resting 
depth Hbefore(x,y) + Hhydrocode(r), where Hbefore is the pre-impact bathymetry, discussed in 
more detail below.  Negative values of this sum imply that the target point is land.   

For the rim wave, the water was only added onto cells that had water, such that the 
rim wave is not emplaced on land.  

For the post-impact points that are water, including those in the crater region, the 
new water column thickness is Hbefore(x,y) + Hhydrocode(r) + ηhydrocode(r).  In water points in 
the crater region, the initial water column thickness just after impact may be zero. 
This water is given the depth averaged velocity according to iSALE. 

In all regions where there was water, the water column velocity was vertically 
averaged and also placed in each grid cell.  The velocities (as well as sea surface 
heights and crater depths) are then interpolated to a 1/10th degree resolution and 
smoothed.  For the ‘Crater Only’ simulation water was vacated from the crater, but no 
rim wave was initialized.  Initial water velocities were zero.  For the ‘Full Crater’ 
simulation the crater was imposed on the bathymetry including cells that were 
previously land. 



 
 

7 

 
Table S1. Model setup for fiducial iSALE simulation 

Description Value  

Size of high-resolution cell 100 m 

Number of high-resolution cells, 
horizontal direction 

2500 

Number of high-resolution cells, 
vertical direction 

600 

Physical dimension of entire mesh, 
horizontal direction 

0 to 344.3 km 

Physical dimension of entire mesh, 
vertical direction 

-505.1 to 142.9 km 

Adaptive time step 0.78 to 2.7 ms 

 
 
Table S2. Setup for MOM6 1/10th degree simulations 

Description Value  

Spatial resolution 1/10 degree 

North wall boundary 82.05° N 

South wall boundary 86.05° S 

Temporal resolution 10 seconds 

 
Table S3.  MOST model setup 
Description Value  

Spatial resolution 1/10 degree 

North wall boundary 82.05° N 

South wall boundary 86.05° S 

Temporal resolution 6 seconds 
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Initial Seafloor Topography 
 
Because the fiducial hydrocode simulation covers points within 250 km of the 
impact origin, all such points will be part of the initial condition, set by the outputs 
of the hydrocode, for the shallow-water model.  Let the coordinates of a target 
point, within 250 km of the impact origin, be (x,y).  Let Hbefore(x,y) be the topography 
(resting water depth) of the target point before impact (defined by the merging of 
the Scotese and Müller datasets, described earlier).   The sign of Hbefore informs us 
about whether the target point was land (negative Hbefore value) or ocean (positive 
Hbefore value) prior to impact. 
 
Shallow-water model results and sensitivities  
 
The sea surface height perturbation field four hours after handoff from the 
hydrocode in a MOM6 simulation with 1/5° grid spacing are quite similar to the sea 
surface height perturbation field four hours after the handoff in the fiducial 1/10° 
MOM6 run (Figure S3).  This similarity indicates that the shallow water grid spacing 
of 1/10° is reasonably robust for our purposes.  
 
In the ‘Half Crater’ simulation, the crater is only on grid cells that were originally 
water before impact.  When the crater is placed over the pre-impact bathymetry, 
there are portions of the crater in water cells, and portions that are on the Yucatan 
Peninsula. When placing the crater into the model, two initial conditions were made. 
The ‘Full Crater’ replaces these land cells on the Yucatan Peninsula with water to a 
depth of the post-impact crater. The ‘Half Crater’ initial condition leaves the land 
cells as land.  In the ‘Crater Only’ simulation, a full crater is made over the land and 
water cells, but the rim wave is removed, such that the tsunami is due only to water 
rushing inwards to fill the impact crater.   

The ratios of the energies of different MOM6 simulations of the impact tsunami, 
relative to the 2004 Indian Ocean tsunami (as simulated in Smith et al., 2005) and 
plotted as a function of time into the shallow-water simulations, are given in Figure 
S4.  The total energy of the Chicxulub tsunami and of three historical tsunamis is 
provided in Table S4, which also displays the energy of the tsunami source (e.g., 
Chicxulub asteroid impact in the case of the impact tsunami, and earthquake 
energies in the case of the 2004 Indian Ocean tsunami and 2011 Tohoku tsunami). 

 



 
 

9 

 
Figure S3.  Sea surface height perturbations (m) four hours after handoff from the 
fiducial hydrocode simulation, in (top) fiducial 1/10° MOM6 simulation and (bottom) 
1/5° MOM6 simulation.  
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Figure S4. Ratio of Chicxulub impact total (kinetic plus potential) energy to 2004 
Indian Ocean earthquake-generated tsunami total energy, as a function of time into 
the respective shallow-water simulations.  In the legend, ‘smaller mesh’ refers to our 
fiducial model while the ‘larger mesh’ refers to models that use our iSALE simulation 
that was runout to later times, had a larger horizontal extent of the high-resolution 
zone, and later arriving discontinuous ejecta.  The initial energy of the fiducial model 
(blue curve) is 5.1 x 1019 J.  For comparison the 2011 Tohoku Tsunami had an initial 
energy of 3.0 x 1015 J and 1.5 x 1015 J four hours later (Tang et al., 2012).  The 2004 
Indian Ocean Tsunami had an initial energy of 1.7 x 1016 J and 9.1 x 1015 J four hours 
later.  Thus, the impact generated tsunami dissipates more quickly than earthquake 
generated tsunamis.  
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Table S4. Maximum energy values of the fiducial Chicxulub impact tsunami model 
runs compared to the modeled energy of several historical tsunamis   

 

Tsunami 
Energy 
ET (J) 

Source 
Energy 
ES (J) 

Ratio 
ET/ES (%) 

Full Crater, with Rim Wave (600 seconds) 5.1 x 1020 (max) 2.7 x 1023 0.19% 

1883 Krakatau Tsunami (Maeno and Imamura, 2011) ~1.2 x 1013 (max) ~1.0 x 1017 0.01% 

2004 Indian Ocean Tsunami (Tang et al., 2012) 1.7 x 1016 (max) 6.2 x 1018 0.27% 

2011 Tohoku Tsunami (Tang et al., 2012) 3.0 x 1015 (max) 2.8 x 1018 0.11% 
 

Run times and computing hardware 
 
The hydrocode simulations employed here take of order one month on a high-end 
desktop.  The 1/10º MOM6 simulations take of order two days to run on about 60 
processors, on the University of Michigan Great Lakes supercomputer system 
(https://arc.umich.edu/greatlakes/). 

 
Movie Captions 
 
The four movies that we made for this paper are posted with the Supporting 
Information and can also be found on our data repository 
https://doi.org/10.7910/DVN/GWOFIO where they are referred to as “SI_Video1.mp4, 
SI_Video2.mp4, S!_Video3.mp4, SI_Video4.mp4”. 
   
Movie S1.  Animation of the iSALE hydrocode fiducial simulation for the first 600 s 
post asteroid impact shown in Figure 1.  Time series with material colored according 
to material type (crustal material is brown, sediments are yellow, and the ocean is 
blue).  The origin marks the point of impact. Black curves mark material interfaces 
(e.g., sediment-crust interface). 

Movie S2.  Animation of the iSALE hydrocode model for first 1100 s post asteroid 
impact.  This simulation is the same as the simulation shown in Figure 1 but has 
vertical extent of mesh limited to 50 km and the high-resolution zone extended to a 
radial distance of 300 km.  Time series with material colored according to material 
type (crustal material is brown, sediments are yellow, and the ocean is blue).  The 
origin marks the point of impact.  Black curves mark material interfaces (e.g., 
sediment-crust interface). 
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Movie S3.  Animation of the change in sea surface height tsunami propagation over 
48 hours from the fiducial MOM6 model.  Shown in m at ten-minute increments. 

Movie S4.  Animation of the change in sea surface height tsunami propagation over 
48 hours from the fiducial MOST model.  Shown in m at five-minute increments.   
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