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4High Meadows Environmental Institute, Princeton University, Princeton NJ 08544, USA

(Received xx; revised xx; accepted xx)

The Supplementary Materials presents detailed convergence data and discussion re-
garding the energy dissipation (in 2D and 3D), as well as the bubble and droplet size
distributions.

1. Grid structure and mesh refinement scheme

We use the adaptive mesh refinement (AMR) method implemented in the
Basilisk library to solve the two-phase incompressible Navier-Stokes equations
with surface tension, in 2D and 3D. The structure of the code is described in
Popinet (2003, 2009, 2018); Fuster & Popinet (2018); van Hooft et al. (2018).

The numerical mesh is adaptively refined in order to reduce computational cost.
To facilitate such a scheme within a Cartesian grid structure, a tree-based grid
is used, which allows non-uniform resolution across the computational domain.
In a given region of the grid, the numerical grid comprises multiple coexisting,
hierarchical resolution levels, ranging from zero to a local maximum resolution,
and where the grid size between any two levels varies by a factor of two. The
global maximum resolution level L is specified by the user. The grid cells at a
given location and resolution level are termed the children of those at the next
lower level, and the parents of those at the next higher level. Cells that do not
have children are termed leaf cells. Spatially neighbouring leaf cells may differ
by up to one level.

Cartesian stencils are easily defined across the entire spatial domain by the
employment of ghost cells. If a stencil is required at a resolution boundary, i.e.
where neighbouring leaf cells are at different levels, the coarse-side leaf cells are
called halo cells and given children cells (the ghosts) which are therefore at the
same resolution level as the leaf cells on the fine side of the boundary. The regular
Cartesian stencil then applies naturally at the boundary. The flow variables of
interest in the ghost cells are defined by using information in the halo cells, e.g.
by interpolation.
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Figure 1. (a) Schematic illustration of the adaptive mesh refinement (AMR) grid structure.
Leaf cell centres are indicated by dots; halo (leaf) cell centres are indicated by red dots. Ghost
cell centres are indicated by crosses. At resolution boundaries, regular cells and ghost cells of the
same colour together define regular Cartesian stencils for numerical operations. For example,
at the boundary to the finest resolution zone, black points and crosses define a fine Cartesian
stencil, while the red points and crosses define a coarse Cartesian stencil; both such stencils are
regularly spaced. See text for complete description. (b) Tree structure of the grid corresponding
to that of (a). (a) and (b) are adapted from Figure 2 of van Hooft et al. (2018). (c) Cross section
of a breaking wave simulation from this study, Bo = 1000,Re = 104, L = 11 at t/T = 1.8,
showing vorticity (coloured contour) with the mesh overlaid.

The refinement and coarsening scheme itself is based on a wavelet-estimation
algorithm. Whether a grid is locally refined or coarsened depends on a choice
of the flow variables, on the maximum tolerated errors for these variables, and
on the maximum refinement level L of the numerical mesh. Errors in a given
flow variable within a given region are estimated as follows. The finest mesh
representation of the variable is locally downsampled into a coarser resolution.
This new coarse representation is then re-interpolated onto the same grid points
as the original fine representation. The absolute difference between the original
and re-interpolated samples at the sampling points is an estimate for the local
discretization error of the fine representation. The grid will then refine or coarsen
based on whether this estimate is greater or smaller than the tolerance criterion.
The error associated with this refinement-coarsening scheme is essentially an
interpolation error, in that it does not reflect the error of the underlying numerical
scheme, and is typically proportional to the norm of the second derivative of the
relevant flow variables, and thus second-order. In the simulations in this study,
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Figure 2. Time evolution of budgets of the mechanical energy E = EP + EK for 2D (dashed)
and 3D (solid), at resolution levels L = 10 (red), L = 11 (blue), and where applicable L = 12
(green) for cases (a) Bo = 200,Re = 4× 104, (b) Bo = 500,Re = 105, (c) Bo = 1000,Re = 105.

the flow variables of interest are the VOF and velocity fields. For an extended
description of the AMR scheme, see van Hooft et al. (2018).

2. Numerical convergence

2.1. Energetics

In this section we discuss the numerical convergence of the results with respect
to energetics. First, we consider the time evolution of the budget of the wave
mechanical energy E = EP + EK , where EP , EK are the gravitational potential
and kinetic energies integrated over the liquid phase. Figure 2 shows the budgets
of four cases with various Bond and Reynolds numbers, including comparisons
of both 2D and 3D simulations, for maximum resolution levels L = 10, 11,
corresponding to effective cell counts of (2L)d, where d is the dimension of
simulation. For the cases Re = 105, we also plot L = 12 results. In each case, all
results are well-converged at early times after breaking, up to t ∼ 1.1T . The 3D
results are very close to each other between the two numerical resolution.

Next, figure 3 shows convergence data for the instantaneous dissipation rate,
ε. In each graph is plotted the 2D and 3D dissipation rates, ε2D, ε3D at the same
resolution levels as in figure 2. For Bo = 200,Re = 4 × 104 (3a), dissipation
rates are similar in both shape and magnitude for both 2D and 3D cases, with
slight differences in precise timing of the peak shortly after t = T . For the cases
Re = 105 (3b,c), for L = 10, 11, the data agree in general shape. A L = 12
case is prohibitively expensive to produce in 3D at the moment. Comparing L =
10, 11, 12 in the 2D results of figure 3b, we see that the agreement between L =
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Figure 3. Time evolution of budgets of the dissipation rate ε for 2D (dashed) and 3D (solid),
at resolution levels L = 10 (red), L = 11 (blue), and where applicable L = 12 (green) for cases
(a) Bo = 200,Re = 4× 104, (b) Bo = 500,Re = 105, (c) Bo = 1000,Re = 105.

11, 12 is better than between L = 10, 11. In figure 3c, the L = 11, 12 results
almost coincide.

As well as using direct comparisons of numerical data, we may also estimate
the relevant length scales in the flow relative to the smallest mesh size in the
simulations. First, the Batchelor’s estimate for the viscous sublayer underneath
the prebroken wave has been used in other investigations (see for example Deike
et al. (2015); De Vita et al. (2018)), where δ ∼ λ0/

√
Re. In these investigations,

a resolution of at least four cells within the boundary layer, i.e. δ/∆x ' 4, was
found to be sufficient for numerical convergence. Table 1 shows estimates of δ/λ0
(second column) and number of grid points per boundary layer thickness (seventh
column) for various Re, L. This suggests that L = 10 is sufficient for the cases
Re = 4 × 104, and likewise L = 11 is sufficient for Re = 105, consistent with
the comparisons above. L = 11 also appears sufficiently large for Re = 2 × 105,
although direct numerical comparisons are not available for these cases.

Another estimate is provided by the Kolmogorov scale, as is often done in tra-
ditional DNS of turbulence (Pope 2000; Dodd et al. 2021). Here, the Kolmogorov
length scale η = (ν3w/ε)

1/4 is compared with a maximum resolvable wavenumber
kmax = π2L/λ0 = π/∆x. In order to make this estimate for a given case, we take
the maximum value of ε, to provide a conservatively small estimate for η. The
resulting estimates for η and kmaxη are shown in the third and eighth columns
of table 1. This estimate suggests that L = 10 is sufficient for Re = 4× 104 and
L = 11 is sufficient for Re = 105, consistent with the above comparisons.

All estimates of numerical convergence therefore suggest that L = 11 provides
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Re δ/λ0 η/λ0 L ∆x/λ0 kmaxλ0 δ/∆x kmaxη

4× 104 5× 10−3 5.28× 10−4 10 9.77× 10−4 3217 5.12 1.70
11 4.88× 10−4 6434 10.2 3.39

105 3.16× 10−3 2.74× 10−4 10 9.77× 10−4 3217 3.24 0.88
11 4.88× 10−4 6434 6.5 1.76

2× 105 2.24× 10−3 1.63× 10−4 10 9.77× 10−4 3217 2.29 0.52
11 4.88× 10−4 6434 4.58 1.05

Table 1. Numerical parameters and criteria for resolving energetics in the evolving flow. The
column labels are as follows: Re - Reynolds number; δ/λ0 - ratio of viscous boundary layer

thickness, defined here as δ = λ0/
√

Re, to wavelength; η/λ0 - ratio of estimated Kolmogorov
length scale to wavelength; L - maximum level of grid refinement; ∆x/λ0 - ratio of grid size to
wavelength; kmax/λ0 - wavelength-normalized maximum resolvable wavenumber; δ/∆x - ratio
of viscous boundary layer thickness to grid size; kmaxη - criterion for sufficient resolution of
Kolmogorov scales.

sufficient resolution for Re = 4×104, 105. The status of Re = 2×105 is uncertain
because direct comparison data is not available for this Reynolds number.

2.2. Bubble statistics

Figure 4 shows different contours showing bubble size distribution(vertical axis)
over time (horizontal axis), for the three main cases presented in the study. The
horizontal axis is shifted so that the instant of jet impact is at zero. By comparing
the first column of figures with the second, the following features become evident:
(i) All cases predict a large “bubble” (i.e. the main cavity) which is produced on
impact and which persists for approximately the same amount of time; (ii) The
breakup of this large cavity is associated with the production of a limited number
of large bubbles, and that the particular set of large bubbles produced in this way
varies by resolution for all cases; (iii) All cases show an initially comparatively
small amount of small bubbles produced on impact, followed by a much broader
and populous range of bubbles produced by not later than (t− tim)/T ' 0.2, but
the evolution is not identical across different resolutions or cases. Thus the various
bubble populations share the same qualitative features, but are not pointwise-
converged. This is expected because as a turbulent multiphase flow, we do not
expect two realizations of the same nominal initial condition to be identical. To
establish such convergence an ensemble-average would be needed, which is not
feasible at the present resolutions, given the computation cost.

Figure 5 shows the same cases as figure 4 for time windows of width ∆ = 0.4
centred at (t− tim)/T = 0.2, 0.6, 1. In this comparison, data is well-converged at
small (abundant) bubble sizes, and less so at large (scarce) bubble sizes. As the
Bond number increases, the number of total bubbles supported by the breaker
increases and convergence is better established. Finally, figure 6 shows numerical
convergence for bubble size distributions in the cases Bo = 200, Re = 4 × 104,
Bo = 500, Re = 4 × 104, Bo = 500, Re = 105, Bo = 1000, Re = 105, averaged
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Figure 4. Bubble contour plots for different Bo,Re, and resolution. (a,b)
Bo = 200, Re = 4× 104; (c,d) Bo = 500, Re = 105, (e,f) Bo = 1000, Re = 105. Resolutions are:
(a,c,e) L = 10; (b,d,f) L = 11.

over the times (t − tim)/T ∈ [0.4, 1.2], for the resolution parameters L = 10, 11,
corresponding with minimum grid sizes of ∆x = 1/(2L). All cases appear well
converged.

2.3. Droplet statistics

As for the bubble data, figure 7 shows different contours showing droplet size
distribution (vertical axis) over time (horizontal axis), for the three main cases
presented in the study. The data for Bo = 200,Re = 4 × 104 (7a,b) is not
comparable at levels L = 10, 11 and are not grid converged. The data for Bo =
500, 1000 (7c-f) do show more qualitative similarities, but, like the bubble data,
are not pointwise-converged.

Figure 8 shows the same cases as figure 7 for the same time windows shown
in figure 5. Again, the Bo = 200 (8a) data is not converged at any time, nor is
Bo = 500,Re = 4× 104 (8b), but the latest time window of Bo = 500,Re = 105
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Figure 5. Numerical convergence of different time-averaging windows of bubble size
distributions. Time-averaging windows are of width ∆t/T = 0.4, and centered at
t/T = 0.2, 0.6, 1, for cases (a) Bo = 200,Re = 4 × 104, (b) Bo = 500,Re = 4 × 104, (c)
Bo = 500,Re = 105, (d) Bo = 1000,Re = 105.
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Figure 6. Bubble size distributions for the cases (a) Bo = 200,Re = 4 × 104; (b)
Bo = 500,Re = 4 × 104, (c) Bo = 500,Re = 105 (d) Bo = 1000,Re = 105. Resolutions of
comparison are L = 10, 11 where ∆x = 1/(2L) is the minimum grid size. Data is time-averaged
over (t− tim)/T ∈ [0.4, 1.2]. Vertical dotted lines (orange, blue) show the grid size (normalized

by rH ; dashed line (black) shows (r/rH)−10/3; sloped dotted line (black) shows (r/rH)−3/2,
based on fit by Deane & Stokes (2002).
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Figure 7. Droplet contour plots for different Bo,Re, and resolution. (a,b)
Bo = 200, Re = 4× 104; (c,d) Bo = 500, Re = 105, (e,f) Bo = 1000, Re = 105. Resolutions are:
(a,c,e) L = 10; (b,d,f) L = 11.

(8c) compares well between both resolutions, while the intermediate and late
times are in good agreement for Bo = 1000,Re = 105 (8d), for droplet sizes
sufficiently larger than the mesh size.

Finally, figure 9 shows droplet size distributions for the cases Bo = 200, Re =
4 × 104, Bo = 500, Re = 4 × 104, Bo = 500, Re = 105, Bo = 1000, Re = 105,
averaged over the times (t− tim)/T ∈ [0.2, 1], for the resolution parameters L =
10, 11, corresponding with minimum grid sizes of ∆x = 1/(2L). As before, the
Bo = 200 case does not produce sufficient droplet populations to be considered
statistically meaningful; the Bo = 500 and Bo = 1000 cases are approximately
grid-converged for droplet radii greater than ∼ 2∆x.

These observations suggest that: (i) Small Bond numbers less than 200 are not
sufficient to produce numerically and statistically converged droplet statistics. (ii)
Grid convergence is best obtained over time periods which extend to late in the
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Figure 8. Numerical convergence of different time-averaging windows of droplet size
distributions. Time-averaging windows are of width ∆t/T = 0.4, and centered at
t/T = 0.2, 0.6, 1, for cases (a) Bo = 200,Re = 4 × 104, (b) Bo = 500,Re = 4 × 104, (c)
Bo = 500,Re = 105, (d) Bo = 1000,Re = 105.
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Figure 9. Droplet size distributions for the cases (a) Bo = 200,Re = 4 × 104; (b)
Bo = 500,Re = 4 × 104; (c) Bo = 500,Re = 105; (d) Bo = 1000,Re = 105. Resolutions of
comparison are L = 10, 11 where ∆x = 1/(2L) is the minimum grid size. Data is time-averaged
over (t− tim)/T ∈ [0.2, 1]. Vertical dotted lines (orange, blue) show the grid size (normalized by
lc); dashed line (black) shows (r/rH)−2, based on the fit by Erinin et al. (2019).
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Figure 10. Wave shape near the moment of breaking, for (a) Bo = 200,Re = 4 × 104, (b)
Bo = 500,Re = 105, (c) Bo = 1000,Re = 105, at resolutions L = 9 (red), 10 (green), 11 (blue),
12 (black).

breaking process. This is attributed to the largest and most abundant droplets
being produced during the later sustained splashing processes. (iii) In particular,
the first spike at early times, corresponding with the secondary splash, comprises
droplet populations that may not be fully grid-converged. This is consistent
with this first spike not being fully distinct for lower-resolution cases in figure
7. (iv) Droplet size distributions are not numerically converged close to the mesh
size at any resolution or Bond or Reynolds number, suggesting that at least 4-8
points are required per droplet diameter for numerical convergence. We note that
ensemble averages would be useful to achieve statistical convergence and assess
the resolution of the physical processes and their numerical convergence.

2.4. Shape at impact

Finally we consider the dependence of the wave shape close to breaker impact
on maximum resolution level L. Figure 10 shows wave shapes for 2D breakers near
the moment of impact. At low Bond and Reynolds numbers (Bo = 200,Re = 4×
104, figure 10a), the wave shape shows some variation with respect to resolution.
But at higher Reynolds number and increasing Bond number (figures 10b,c), the
breaker shape does not vary significantly with increasing resolution, and in figure
10c the agreement between shape between L = 11, 12 (blue, black) is excellent.

3. Mass conservation

Mass is well-conserved by the numerical method and the VOF reconstruction.
Figure 11 shows the relative time variation in volume of the liquid and air phases
in the case Bo = 500,Re = 4× 104, L = 10, which never exceeds 0.0001% (10−6).
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