
1.  Introduction
A wide range of hydrological, meteorological, and biogeochemical processes in the Earth system influence and 
are influenced by soil moisture dynamics (Falloon et  al.,  2011; Sanchez-Mejia & Papuga, 2014; Seneviratne 
et al., 2010). Indeed the monitoring and managing of soil moisture has significant applications in many fields, 
such as precision agriculture, weather forecasting, crop yield, runoff control, soil erosion, and geotechnical 
construction (Adamchuk et al., 2004; Dirmeyer & Halder, 2016; Keesstra et al., 2016; Vergopolan et al., 2021). 
Not surprisingly then, there remains a continued interest to accurately track and predict its spatiotemporal dynam-
ics (Beck et al., 2021; Vergopolan et al., 2020). The three primary approaches that are currently used to monitor 
soil moisture include in situ observations (W. A. Dorigo et al., 2011; W. Dorigo et al., 2021), satellite remote 
sensing (Wagner et al., 1999; Wigneron et al., 2007), and land surface models (LSMs; Maurer et al., 2002).

The LSM approach is especially appealing given that it does not require observations of soil moisture and instead 
it is modeled using more readily available topographic, meteorological, soils, and vegetation data (Chaney 
et  al.,  2015); however, its reliability is strongly tied to the uncertainties of these data (Baroni et  al.,  2017; 
Chaney et  al.,  2015; Koster et  al.,  2009; Loosvelt et  al.,  2011; Teuling et  al.,  2009). The behavior of soil 
moisture modeling is especially sensitive to soil hydraulic properties (e.g., porosity) (Arsenault et al., 2018; 
Cai et al., 2014); this is complicated further by the large difficulty in prescribing soil hydraulic parameters 
since they are difficult to obtain from in situ measurements and even more difficult to directly retrieve from 
remote sensing (Hogue et al., 2006). Instead, a suite of methods is used to assemble soil properties maps for 
land surface models including leveraging spatial data sets of more readily available soil information (e.g., soil 
texture) and to then use pedotransfer functions (PTFs) to estimate soil hydraulic properties. To this day, the 
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soil properties maps (POLARIS and SoilGrids250m V2.0) improve the accuracy of simulated surface soil 
moisture when compared to the STATSGO-derived CONUS-SOIL map. Contemporary pedotransfer functions 
(multi-linear regression and Artificial Neural Networks-based) also improve model performance in comparison 
to the lookup table-derived soil parameterization schemes. The addition of vertical heterogeneity to the soil 
properties further improves the mean Kling-Gupta efficiency by 0.04 and lowers the mean Root mean square 
error by 0.003 over the CONUS. This study demonstrates that land surface modeling can be improved by using 
state-of-the-art maps of soil properties, accounting for the vertical heterogeneity of soils, and advancing the use 
of contemporary pedotransfer functions.

Plain Language Summary  This work studied if advanced soil properties maps can improve soil 
moisture modeling using a Land Surface Model. The model was run over 7 years and was compared to site 
measurements. The results showed that using contemporary soil properties maps and pedotransfer functions 
to estimate soil properties improved model performance, especially for soils with different layers. This study 
demonstrated that improving hydraulic modeling is possible by using soil properties maps and contemporary 
pedotransfer functions in the setting of different vertical layers.
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most common approach in LSMs is to derive soil hydraulic properties via lookup tables; spatial maps of soil 
classes are prescribed to the model and the look-up tables are used to assign soil hydraulic properties through 
soil classes (e.g., USDA soil order). However, these lookup tables are known to be deficient and are not able 
to fully leverage the plethora of environmental data and observations of soil hydraulic properties (Kishné 
et al., 2017).

With the increasing availability of environmental information and soil observations, the emergence of digi-
tal soil mapping products (DSM—georeferenced rasterized maps of soil classes and properties; (McBratney 
et al., 2003)) enables the creation of improved soil hydraulic properties in LSMs with the following advantages: 
(a) improved accuracy and spatial resolution of continental to global maps of soil texture, organic matter, and bulk 
density, among others (e.g., 250-m SoilGrids, 30-m POLARIS; (Chaney, Wood, et al., 2016; Chaney et al., 2019; 
Hengl et al., 2017; Poggio et al., 2021)), (b) contemporary PTFs that are able to fully leverage state-of-the-art 
DSM information to improve estimates of soil hydraulic properties, and (c) enhanced accuracy of vertical soil 
properties in LSMs. More detail on each of these advantages is provided below.

The emergence of hyper-resolution LSMs enables the framework to address land heterogeneity and hydrau-
lic processes at finer spatial resolutions (Chaney, Metcalfe, Wood,  2016; Vergopolan et  al.,  2022; Wood 
et al., 2011, p. 20), however, these efforts necessitate higher fidelity and spatial resolution of the model inputs; 
especially soil hydraulic parameters when accurate soil moisture modeling is required (Pinheiro & van Lier, 2021). 
In comparison to baseline soil data in LSMs (e.g., 1 km; Miller & White, 1998), state-of-the-art soil properties 
maps provide an increasingly detailed and accurate representation of soil properties (e.g., 30-m, 250-m; (Chaney 
et al., 2019; Poggio et al., 2021, p. 2)). These new DSM products have been developed through a series of efforts, 
such as expanding the use of soil profile data (e.g., 240000 standardized soil profile data globally); choosing 
model features from 400 global environmental covariates; and aggregating and harmonizing legacy soil surveys 
(Chaney et al., 2019; Poggio et al., 2021). All these products are made with the goal of improving the spatial 
estimates of soil properties (Chaney et al., 2019; Poggio et al., 2021).

PTFs in turn can leverage the soil properties from DSM products (e.g., sand, silt, clay, organic matter, and bulk 
density) to predict soil hydraulic properties, which are often not measured nor retrievable from remote sens-
ing data (Schaap et al., 1998, 2001; Wösten et al., 1999). Lookup tables can be seen as the simplest form of 
class-based PTFs (Van Looy et al., 2017) that ignore inner-class variability (Schaap et al., 2001); contemporary 
PTFs that could be used as continuous PTFs and replace look-up tables including multi-linear regression (e.g., 
Saxton & Rawls, 2006) and Artificial Neural Networks (ANNs; Minasny & McBratney, 2002), which have been 
used in cutting-edge maps of soil hydraulic properties (Chaney et al., 2019; Simons et al., 2020; Tóth et al., 2017). 
Despite many studies evaluating the performance of PTFs across scales and study areas (Nemes et al., 2003; 
Schaap & Leij, 1998; Weihermüller et al., 2021), the assessment of implementing state-of-the-art soil properties 
maps with hydraulic properties in soil moisture modeling remains unclear, particularly for large-scale soil proper-
ties maps (e.g., continental-scale). Consequently, quantifying the benefits of such soil hydraulic parameterization 
schemes is important. Besides, future PTFs and DSM products can be revised and improved accordingly.

Another benefit of using DSM products in LSMs is the improved representation of vertical heterogeneity. Modern 
DSM products often map soil properties over multiple depth intervals. Such heterogeneity of soil properties 
affects soil moisture estimates by influencing soil infiltration (Beven & Germann, 1982) and redistribution of 
soil-water content (i.e., evaporation, root water uptake; Liu et al., 2020). Contemporary LSMs are able to include 
vertically layered soil profiles (Clark & Gedney, 2008; Collins et al., 2011; Essery et al., 2003; Niu et al., 2011); 
however, until now, data has generally lacked adequate parameterizations of these profiles. Hence, there is a need 
to investigate the added value of vertical soil properties available in state-of-the-art DSM products.

This study provides insights into advancing surface soil moisture estimates through the use of contempo-
rary soil properties maps by evaluating the added value of soil parameters derived from three soil properties 
maps (POLARIS, SoilGrids 250m V2.0, and CONUS-SOIL) (Chaney et  al.,  2019; Miller & White,  1998; 
Poggio et al., 2021, p. 202). To this end, a set of experiments were conducted to quantify the dependence of 
LSM-simulated surface soil moisture on soil parameters via either directly providing soil hydraulic parameters 
as model inputs, or determining preliminary soil texture classes and later estimating soil hydraulic parameters 
using a lookup table or contemporary PTFs, with the aim of examining the impact of contemporary PTFs on the 
modeling of soil moisture.
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2.  Data and Methods
2.1.  Soil Parameterization

This study employed 10 separate soil parameterization schemes in the HydroBlocks LSM. The model was used 
to simulate the top 5 cm of soil water content to assess the influence of soil properties on the modeling of soil 
moisture. An overview of the different soil data sets is provided below as well as in Table 1.

2.1.1.  POLARIS

Probabilistic remapping of Soil Survey Geographic Database (POLARIS) is a 30-m probabilistic map of soil 
classification and properties database over the CONUS with data at six GlobalSoilMap standard depth incre-
ments (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm) (Chaney, Wood, et al., 2016; 
Chaney et al., 2019). POLARIS developed built-in soil properties using the Soil Survey Geographic Database 
(SSURGO) and the National Cooperative Soil Survey Soil Characterization Database (SCD). POLARIS soil 

Table 1 
An Overview of the Soil Parameterization Schemes Used in This Study

Soil mineral and organic components Vertical characteristic Acronym Soil depths (cm) Soil hydraulic parameterization

1 POLARIS Vertically homogeneous HPT i.	� 30–60 Lookup table

2 SoilGrids250m V2.0 Vertically homogeneous HST i.	� 30–60 Lookup table

3 CONUS-SOIL Vertically homogeneous HCT i.	� 30–60 Lookup table

4 POLARIS Vertically heterogeneous VPT i.	� 0–5 Lookup table

ii.	� 5–15

iii.	� 15–30

iv.	� 30–60

v.	� 60–100

vi.	� 100–200

5 SoilGrids250m V2.0 Vertically homogeneous HSS i.	� 30–60 Saxton and Rawls PTFs

6 POLARIS Vertically homogeneous HPS i.	� 30–60 Saxton and Rawls PTFs

7 POLARIS Vertically homogeneous HP i.	� 30–60 SSURGO and NeuroTheta PTFs

8 SoilGrids250m V2.0 Vertically heterogeneous VSS i.	� 0–5 Saxton and Rawls PTFs

ii.	� 5–15

iii.	� 15–30

iv.	� 30–60

v.	� 60–100

vi.	� 100–200

9 POLARIS Vertically heterogeneous VPS i.	� 0–5 Saxton and Rawls PTFs

ii.	� 5–15

iii.	� 15–30

iv.	� 30–60

v.	� 60–100

vi.	� 100–200

10 POLARIS Vertically heterogeneous VP i.	� 0–5 SSURGO and NeuroTheta PTFs

ii.	� 5–15

iii.	� 15–30

iv.	� 30–60

v.	� 60–100

vi.	� 100–200

Note. CONUS-SOIL did not include information on organic components.



Water Resources Research

XU ET AL.

10.1029/2022WR032336

4 of 21

hydraulic properties are a combination of hydraulic properties reported in these data and derived hydraulic 
parameters using the NeuroTheta PTFs, which were assembled using the approach described in Minasny and 
McBratney (2002). The resulting POLARIS soil properties maps include soil texture fractions (percentage of 
sand, silt, and clay), organic matter, pH, saturated hydraulic conductivity, Brooks-Corey, and Van Genuchten 
water retention curve parameters, bulk density, and saturated water content with associated uncertainties (Chaney 
et al., 2019). POLARIS offers soil hydrological properties for direct use in hydrologic simulation.

2.1.2.  SoilGrids250m V2.0

SoilGrids250m V2.0 is a global digital soil class and properties mapping system with a 250 m spatial resolution 
(Hengl et al., 2017; Poggio et al., 2021, p. 2). The newly developed product (SoilGrids version 2.0) maps and 
assesses soil properties with associated uncertainties for soil organic carbon content, total nitrogen, coarse frag-
ments, pH (water), cation exchange capacity, bulk density, and texture fractions over six GlobalSoilMap standard 
depth intervals (Poggio et al., 2021). Since soil hydraulic properties are not included in the SoilGrids system, 
recent studies have created maps of soil hydraulic parameters generated from SoilGrids, enabling soil moisture 
estimates in LSMs (Kearney & Maino, 2018; Montzka et al., 2017).

2.1.3.  CONUS-SOIL

The multilayer soil characteristic data set over the conterminous United States (CONUS-SOIL) is a grid-based 
multilayer soil data set derived from the first version of the Natural Resources Conservation Service (NRCS) State 
Soil Geographic (STATSGO) database (Miller & White, 1998). CONUS-SOIL rasterized STATSGO at a 1-km 
spatial resolution and standardized vertical soil properties to 11 layers (from 0 to 250 cm). CONUS-SOIL soil prop-
erties include soil texture fractions, depth-to-bedrock, bulk density, porosity, rock fragment volume, particle-size 
fractions, available water capacity, and hydrologic soil group over the CONUS (Miller & White, 1998). This study 
uses CONUS-SOIL as the baseline data set, as it is the default setting of soil properties (i.e., STATSGO-FAO) in 
many implementations of LSMs over CONUS (e.g., NLDAS-2, VIC model; (Liang et al., 1994; Xia et al., 2012)).

2.1.4.  Lookup Table Derived Soil Hydraulic Parameters (Textured Soils)

A lookup table is the default method used in LSMs to estimate soil hydraulic parameters. This study uses 
the default soil parameters lookup table utilized by the Noah-MP land surface model (Niu et  al., 2011). The 
given lookup table is applied to each soil properties data set to derive the soil hydraulic properties. The lookup 
table-derived soil parameters in this study consist of POLARIS texture (PT), SoilGrids250m V2.0 texture (ST), 
and CONUS-SOIL texture (CT) in both vertically heterogeneous (V) and homogeneous (H) configurations. 
When necessary, we first determine soil texture classes from soil properties maps and then use the default lookup 
table approach to connect soil texture class with soil hydraulic parameters for each grid cell. In this work, the 
lookup table assigns LSM required soil hydraulic parameters based on nineteen CONUS-SOIL categories (12 
USDA soil texture orders plus organic material, water, bedrock, other, playa, lava, and white sand).

2.1.5.  PTFs Derived Soil Hydraulic Parameters From Textured Parameterization

Two sets of PTFs are used in this study to investigate the impact of PTF selection on soil moisture modeling. 
The first one is the NeuroTheta PTFs; this approach uses an ensemble of Artificial Neural Networks to estimate 
Brooks-Corey water retention curve parameters from sand, clay, bulk density, θs, θ33, and θ1500 at each soil series 
in POLARIS. The estimates are then mapped in space as weighted averages of each pixel's predicted soil series. 
NeuroTheta was designed for POLARIS and thus cannot be readily applied to the other data in this study. Note 
that in POLARIS, saturated soil hydraulic conductivity was calculated using SSURGO's reported values for 
soil series (after aggregating their corresponding components). NeuroTheta was developed from soil properties 
provided by the National Cooperative Soil Survey soil characterization database (SCD 2016), UNSODA (Nemes 
et al., 2001), and GRIZZLY (Haverkamp et al., 1997) data sets. The second PTF used in this study is Saxton and 
Rawls PTFs (2006); this approach uses a set of multi-linear regressions that estimate soil hydraulic properties 
from measured soil properties (e.g., soil texture, organic matter content). These statistical relationships were 
developed from soil properties retrieved from the USDA soil database (Saxton & Rawls, 2006).

2.2.  In Situ Surface Soil Moisture Measurements

The U.S. Climate Reference Network (USCRN) is a network of climate monitoring stations over the CONUS, 
Alaska, and Hawaii. Since 2009, soil moisture and temperature networks have been added to the USCRN at 
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114 sites across the CONUS (Figure 1). USCRN provides hourly, daily, and 
monthly data on soil temperature and moisture per site using three distinct 
devices (Bell et al., 2013; Diamond et al., 2013). To enhance data quality, 
USCRN employs triple sensor redundancy for soil moisture measurements. 
Most soil probes were positioned at five standard World Meteorological 
Organization depths over permeable areas. To evaluate the HydroBlocks 
simulations, the daily mean of triplicate sets of surface 5 cm soil moisture 
measurements were employed to evaluate model performance in this study. 
It is important to ensure that the results of the study are robust and not influ-
enced by any correlation among the soil properties maps and USCRN meas-
urements. To this aim, the study examined their correlation and found that 
the co-located point measurements and soil parameters did not show exces-
sively high correlations. The study also included a quality check of USCRN 
site measurements, which can be found in the Supporting Information  S1 
(Figure  S1).

2.3.  HydroBlocks Land Surface Model

HydroBlocks is a field-scale resolving LSM that quantifies water, energy, 
and carbon exchanges at the land-atmosphere interface (Chaney, Metcalfe, 

Wood, 2016; Chaney et al., 2021). As a semi-distributed LSM, HydroBlocks clusters areas with similar hydro-
logical behavior into Hydrologic Response Units (HRUs) and updates the hydrological states at each HRU 
(Chaney et al., 2021; Vergopolan et al., 2021). The community Noah LSM with multi-parameterization options 
(Noah-MP) LSM (Niu et al., 2011) is run as a single column in an HRU framework in HydroBlocks. This way, 
HydroBlocks uses the same core-physics of Noah-MP LSM; and consequently, it can be parameterized with the 
same lookup table approach and calculate soil water contents using the Richards equation for each soil layer as 
implemented in Noah-MP LSM (Niu et al., 2011; Richards, 1931).

For this study, HydroBlocks was driven by a stack of high-resolution environmental data sets to give a more 
detailed picture of sub-grid land heterogeneity. These products include the one arcsec (∼30 m) USGS National 
elevation data set (NED), the one arcsec (∼30 m) National Land Cover Database (NLCD), and the 1/32° (∼3 km) 
Princeton CONUS Forcing (PCF) data set that provides meteorological forcing at 1-hr temporal resolution (Gesch 
et al., 2002; Homer et al., 2015; Pan et al., 2016).

2.4.  Hydrological Modeling Experiments

In this study, the HydroBlocks LSM was used to simulate the temporal and spatial distribution of surface soil 
moisture (top 5 cm) using different parameterizations produced from soil properties maps. Soil moisture deeper 
than 5 cm was also simulated but not included in the evaluation. Table 1 provides an overview of how the experi-
mental soil information was parameterized. The study used 10 distinct soil parameterization schemes that can be 
classified into three major categories: (a) different soil properties data sets, (b) vertically homogeneous or heter-
ogeneous parameterization schemes, and (c) parameterizations produced from the lookup table PTF (categorical 
PTF) and non-lookup table PTFs (multi-linear regression and Artificial Neural Network-based regression).

The vertically homogenous soil profiles replicated Noah-MP LSM's default setup (Niu et al., 2011). In this setup, 
only the mean values of soil parameters (30–60 cm) were used to represent the entire soil column (0–200 cm), 
indicating that the soil properties were assumed to be the same throughout the entire soil column. Since hydro-
logical modeling is influenced by organic matter and clay contents, the chosen depth interval is within the root 
zone where organic matter and clay contents are within reasonable ranges. In addition, this setup was chosen to 
provide a point of comparison with the other parameterization schemes that consider vertical soil heterogeneity. 
As with the vertically heterogeneous experiments, the HydroBlocks LSM incorporated vertically discretized 
soil parameters according to the GlobalSoilMap depth intervals (Arrouays et al., 2014), to be consistent with the 
studied soil maps.

The HydroBlocks LSM was configured to operate at 114 study stations that were co-located with USCRN sites 
across the CONUS to enable a direct comparison between the simulated soil moisture and measurements at 

Figure 1.  Spatial distribution of 114 USCRN measurement sites over the 
CONUS. Each triangle represents a USCRN site. Orange sites are chosen to 
display the time series performance of models; these six sites display a range 
of environmental conditions and are geographically dispersed over CONUS.
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each individual station. Each study domain had between 200 and 300 HRUs representing the land heterogeneity 
patterns. HydroBlocks was run at a 30 m spatial resolution with an hourly time step from 2012 to 2019. Given that 
the vertically heterogeneous soil parameterization required a longer time to reach convergence, a 3-year spin-up 
period was chosen. Each study domain consisted of a 0.25° cell with an additional 0.1° buffer from each USCRN 
site location. To provide the most objective evaluation, no model calibration was performed in this work. This 
approach aims to examine the impacts of different soil parameterization schemes on soil moisture modeling at 
various locations and environmental conditions and the influence of vertical soil heterogeneity on soil moisture 
modeling without any bias from model calibration.

2.5.  Evaluation Analysis

The 5 cm HydroBlocks simulated soil moisture was evaluated using the Kling-Gupta efficiency (KGE), Root 
mean square error (RMSE), and unbiased Root mean square error (ubRMSE) in comparison to daily soil mois-
ture measurements from the USCRN. To prevent misinterpretation caused by frozen soils, we masked out data 
when  modeled soil temperature was below 2°C. The quality assessment at the USCRN sites was used to remove 
time steps that met the following criteria: (a) dielectric value outside the range from 0.1 to 70; (b) temperature 
range outside −30°C–65°C; (c) probe temperatures below 0.5°C.

RMSE (Equation 1) and ubRMSE (Equation 2) are prevalent metrics to evaluate model performance for soil 
moisture simulations or retrievals (Chew & Small, 2020; Gruber et al., 2020; Vergopolan et al., 2020). ubRMSE 
removes the mean bias (Equation 3) from RMSE. Seasonal mean bias is averaged in four seasons: December to 
February (winter), March to May (spring), June to August (summer), and September to November (autumn). 
Lower RMSE and ubRMSE values indicate a more precise model fit to soil moisture measurements.

RMSE =

√

𝐸𝐸
(

(𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑚𝑚)
2
)

� (1)

ubRMSE =

√

𝐸𝐸(((𝜃𝜃𝑠𝑠 − 𝐸𝐸(𝜃𝜃𝑠𝑠)) − (𝜃𝜃𝑚𝑚 − 𝐸𝐸(𝜃𝜃𝑚𝑚)))
2
)� (2)

𝑏𝑏 = 𝐸𝐸(𝜃𝜃𝑠𝑠) − 𝐸𝐸(𝜃𝜃𝑚𝑚)� (3)

RMSE
2
= ubRMSE

2
+ 𝑏𝑏

2� (4)

�E: Expectation operator
�s: Simulations
�m: Measurements

KGE is a goodness-of-fit metric primarily designed for hydrological modeling (Gupta et  al.,  2009; Kling 
et al., 2012). KGE combines the linear Pearson correlation coefficient (𝜌), the bias ratio (β) defined by the ratio 
of estimated and measured means, and the variability ratio (α) as the ratio of the estimated and measured coeffi-
cients of variation:

KGE = 1 −

√

(𝜌𝜌 − 1)
2
+ (𝛽𝛽 − 1)

2
+ (𝛼𝛼 − 1)

2� (5)

𝛼𝛼 =
𝜎𝜎
𝑠𝑠∕𝜇𝜇

𝑠𝑠

𝜎𝜎
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𝑚𝑚

� (6)
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𝜇𝜇𝑠𝑠

𝜇𝜇𝑚𝑚

� (7)

𝜌𝜌 =

∑

(𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠)(𝑚𝑚𝑖𝑖 − 𝜇𝜇𝑚𝑚)
√

∑

(𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠)
2∑

(𝑚𝑚𝑖𝑖 − 𝜇𝜇𝑚𝑚)
2

� (8)

�𝐴𝐴 𝐴𝐴𝑠𝑠, 𝜇𝜇𝑚𝑚 ∶ Simulation,measurement distributionmean

�𝐴𝐴 𝐴𝐴𝑠𝑠, 𝜎𝜎𝑚𝑚 ∶ Simulation,measurement standard deviation

�𝐴𝐴 𝐴𝐴𝑖𝑖, 𝑚𝑚𝑖𝑖 ∶ Simulated,measured soil moisture
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KGE ranges from negative infinity (very poor fit) to 1 (perfect fit). A KGE value of one indicates ideal simu-
lations with respect to the measurements. However, given the requirements of optimal values for α, β, and ⍴ all 
equal to one, a KGE value of one is very difficult to obtain. α below one means that the model tends to under-
estimate the normalized simulated temporal variability (e.g., coefficient of variation) of surface soil moisture in 
the time series. β over one shows that the model overestimates surface soil moisture. A strong positive (or strong 
negative) ⍴ implies that simulations and measurements are (strongly) related. KGE and its constituent parts (α, β, 
and ⍴) allowed us to assess the temporal variation in model performance and errors, hence facilitating the detec-
tion of model weakness. In this work, metrics between simulated and measured soil moisture were computed only 
when simulations and measurements were simultaneously available.

3.  Results
3.1.  Comparison of Soil Properties Maps in Soil Moisture Simulations

HydroBlocks simulations were conducted using 10 alternative soil parameterization schemes (as shown in 
Table 1) at 114 locations over the CONUS. These simulations were compared to the in situ observations using 
the model performance indicators described previously (KGE and its components α, β, and ⍴; RMSE; ubRMSE). 
Figure 2e shows that the best-performing parameterization schemes were those that utilized vertically heterogene-
ous soil properties derived from the POLARIS soil textural components with the Saxton and Rawls PTFs (2006) 
(VPS) and with soil properties maps (VP), as indicated by the lowest RMSE (0.065 and 0.067, respectively). 
Vertically homogeneous PTFs-determined parameterization schemes (e.g., HSS, HPS) and POLARIS soil prop-
erties maps (HP) demonstrated moderate performance. Experiments driven by vertically homogenous lookup 
table-derived soil parameterization schemes (HPT, HST, and HCT) showed the worst RMSE ranging from 0.080 
to 0.090. Differences in ubRMSE were not substantial (ranging from 0.045 to 0.052) (Figure 2f). The RMSE 
ranking (Figure 2e) indicated that state-of-the-art soil properties maps (including prediction of both soil physical 
properties and hydraulic properties), contemporary PTFs, and vertically heterogeneous soil profiles are useful 
alternatives for lookup tables in soil moisture modeling across the CONUS.

The KGE ranking (Figure  2a) of model performance is consistent with the RMSE ranking. When using the 
median KGE as the metric for evaluation, the vertically heterogeneous soil properties map (VP) and the contem-
porary PTF-derived soil parameterization scheme (VPS) performed the best, with a KGE of 0.56. They were 
followed by the vertically homogeneous soil properties map (HP; 0.52 KGE). VP outperformed others primarily 
due to a better temporal variability ratio α, demonstrating that models driven by vertical soil properties map can 
more accurately capture the temporal variation of surface soil moisture (Figure 2b). All parameterization schemes 
obtained from the contemporary PTFs, that is HPS, HSS, VSS, and VPS, outperformed others in terms of median 
bias ratio β. Both α and β of vertically homogenous lookup table-derived soil parameterization schemes (HPT, 
HST, and HCT) were less satisfactory. The replacement of contemporary PTFs (VSS, HSS, VPS, and HPS) 
with the lookup table (VPT, HPT, HST, and HCT) improved the averaged β by 0.31; and the mean α difference 
between the vertically homogenous lookup table-derived soils and soil properties maps (HP and VP) was 0.28. 

Figure 2.  Box plots of (a) Kling-Gupta efficiency scores, (b) variability ratios (α), (c) bias ratios (β), (d) Pearson correlation coefficients (⍴), (e) Root mean square error 
(𝐴𝐴 m3∕m3 ), and (f) ubRMSE (𝐴𝐴 m3∕m3 ) for (i) HPT (steel blue), (ii) HST (sky blue), (iii) HCT (light sky blue), (iv) VPT (light cyan), (v) HSS (saddle brown), (vi) HPS 
(sandy brown), (vii) HP (peach puff), (viii) VSS (linen), (ix) VPS (forest green), (x) VP (lime green) soil parameterization schemes over the CONUS from 2014 to 2019.
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This implies that lookup table parameterizations tend to have a wetter bias and underestimate temporal range of 
water content change, especially for the vertically homogenous setting.

The analysis of the spatial distribution of each metric offers an understanding of site-specific performance. The 
site-specific maps of KGE and its components (α, β, and ⍴) from each soil parameterization scheme are presented 
in Figures 3–5. These results also describe the CONUS-wide median metrics and their distribution (insets in 
the left corner). Figure 3 shows that the experiments exhibited similar β spatial patterns: (a) most sites were wet 
biased, resulting in a CONUS-wide median of β higher than 1, especially for lookup table-derived soil param-
eterization schemes (Figures 3a–3d); (b) wet biased sites were primarily located in the western US and along 
the coasts (blue sites); (c) most parameterizations showed better performance over the central US (white or 
light-colored sites). The Saxton and Rawls PTFs (2006) derived soil parameterization schemes (HPS, HSS, VSS, 
and VPS) aided the simulated soil moisture to fluctuate closer to measurements, resulting in a median β that was 
better than the soil properties maps (VP and HP) and the lookup table-derived soils (VPT, HPT, HCT, and HST).

The temporal variability ratio α of simulated soil moisture with respect to site-level measurements is depicted 
in Figure 4. The vertical soil properties map (VP) had the best CONUS-wide median α at 0.85. All soil param-
eterization schemes mostly underestimated the temporal amplitude of surface soil moisture variations (α < 1), 
particularly for the lookup table-derived soil parameterization schemes (HPT, HST, HCT, and VPT), where 
there was a high prevalence of sites with worse α and positive skewness (Figures  4a–4d). Figure  5 shows 
maps of Pearson correlation coefficients ⍴ to quantify the strength and direction of the correlated relationship 
between simulations and measurements. The POLARIS vertical soil properties map (VP) had the best CONUS-
wide median ⍴ (0.83). Vertical soil texture with contemporary PTFs derived parameterization (VPS) minimized 
the occurrence of poorly correlated sites (⍴ < 0.4). All soil parameterization schemes exhibited strong and 
good linear correlations (⍴ > 0.75), indicating that most simulations can often capture the wet and dry trend of 
surface soils.

KGE maps (Figure 6) were computed using the temporal variability ratio α, bias ratio β, and correlation ratio ⍴. 
KGE scores were generally lower for the vertically homogeneous lookup table-derived soils (KGE < 0.32). In 
comparison, adding in the heterogeneous soils improved model performance at many sites with low KGE scores 
(KGE < −1). For example, when HPT (Figure 6a) was substituted with VPT (Figure 6d), the red sites in Oregon 
(John Day site and Riley site), Arizona (Tucson site and Eglin site), and Georgia (Watkinsville site) exhibited an 
increase in KGE. Changes from lookup table-derived soils to soil properties maps also improve site KGE scores. 
However, there are occasional exceptions. As an example, the Moose site in Wyoming (near the eastern border of 
Idaho) showed negative KGE with all soil parameterization schemes. The poor performance was a result of a wet 
bias of surface soil moisture; this could be due to persistent issues in the soil hydraulic properties or due to other 
factors such as model forcing data bias or ground-truth measurement errors.

To illustrate the differences in spatial characteristics of soil hydraulic properties, Figure  7 displays saturated 
hydraulic conductivity (Ksat) patterns for the different parameterization schemes at the Lafayette USCRN site 
in Louisiana. At this site, silty loam is the dominant soil texture class from 30 to 60 cm; however, the estimated 
saturated hydraulic conductivity varied for each soil parameterization scheme (Figures 7m–7p). The Saxton and 
Rawls PTFs  (2006) derived soils (VSS and VPS) limited the variation of saturated hydraulic conductivities, 
while vertical soil properties map and lookup table-derived soils (VP and VPT) led to the central area (blue 
areas) having higher saturated hydraulic conductivities. The Saxton and Rawls PTFs (2006) derived soil param-
eterizations estimated that the saturated hydraulic conductivity for each layer was roughly an order of magnitude 
lower than that of the VPT (lookup table-derived). Since the properties were generated from a lookup table 
using coarsely categorized soil types (soil order), soil classes-derived saturated hydraulic conductivity maps 
constrained the complexity of soil heterogeneity, oversimplying the considerable intra-variabilities within the 
same soil class.

3.2.  Seasonal Evaluation of Soil Moisture Dynamics

Soil moisture modeling may exhibit seasonal responses to different soil parameterization schemes. In this study, 
the model performance results did not show significant discrepancies between seasons. Figure 8 displays the 
seasonal distribution of simulated daily averaged and measured volumetric soil water contents at the top 5 cm 
over the CONUS. Each subplot in Figure 8 shows CONUS-wide simulations (each point is a multi-year simula-
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Figure 3.  Spatial distribution of bias ratios (β) from (a) HPT, (b) HST, (c) HCT, (d) VPT, (e) HSS, (f) HPS, (g) HP, (h) VSS, 
(i) VPS, (j) VP simulated soil moisture with HydroBlocks (2014–2019) compared to the USCRN in situ surface 5 cm soil 
moisture contents. In each subplot, the left corner displays the frequency of bias ratios (β).
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Figure 4.  Spatial distribution of variability ratios (α) from (a) HPT, (b) HST, (c) HCT, (d) VPT, (e) HSS, (f) HPS, (g) HP, 
(h) VSS, (i) VPS, (j) VP HydroBlocks simulation of soil moisture (2014–2019) compared to the USCRN in situ surface 5 cm 
soil moisture contents. In each subplot, the left corner displays the frequency of variability ratios (α).
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Figure 5.  Spatial distribution of Pearson correlation coefficients (⍴) from (a) HPT, (b) HST, (c) HCT, (d) VPT, (e) HSS, 
(f) HPS, (g) HP, (h) VSS, (i) VPS, (j) VP soil moisture HydroBlocks simulation (2014–2019) compared to the USCRN 
in situ surface 5 cm soil moisture contents. In each subplot, the left corner displays the occurrence of Pearson correlation 
coefficients (⍴).
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Figure 6.  Spatial distribution of Kling-Gupta efficiency (KGE) scores from (a) HPT, (b) HST, (c) HCT, (d) VPT, (e) HSS, 
(f) HPS, (g) HP, (h) VSS, (i) VPS, (j) VP HydroBlocks simulation of soil moisture (2014–2019) compared to the USCRN in 
situ surface 5 cm soil moisture contents. In each subplot, the left corner displays the frequency of KGE scores.
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Figure 7.  Spatial distribution of saturated hydraulic conductivity for (a–d) 0–5 cm, (e–h) 5–15 cm, (i–l) 15–30 cm, (m–p) 
30–60 cm, (q–t) 60–100 cm, (u–x) 100–200 cm from VSS, VPS, VPT, and VP soil parameterization schemes. The size of 
each map is about 540 m by 540 m. The central square covers the USCRN site (Lafayette, LA) with a size of 30 m by 30 m. 
The values of saturated hydraulic conductivity (unit: m/h) are shown in the upper center. The occurrence of soil order has 
been shown in the lower left corners.
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Figure 8.  Seasonal comparison of the HydroBlocks simulated daily soil moisture using the HPS (sandy brown), HP (peach puff), HPT (steel blue), VPT (light cyan), 
VSS (linen), and VPS (forest green) soil parameterization schemes and USCRN measurements (𝐴𝐴 m3∕m3 ) from 2014 to 2019 over the CONUS. Each point represents a 
daily averaged surface soil moisture from the corresponding soil parameterization scheme. Each plot contains CONUS-wide simulations. Each plot consists of scatter 
plots with the superimposed VP (lime green) on top of the other soil parameterization schemes.
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tion) with the top-performing soil parameterization scheme (vertical soil properties map (VP); lime green points) 
superimposed on top. The simulations using the vertical soil properties map exhibited the strongest seasonal 
correlations. However, there were some wet outliers among seasons. The use of contemporary PTFs reduced a 
few of the prevalent wet outliers (e.g., VPS).

To visualize the HydroBlock's temporal response to different soil parameterizations, Figure 9 shows the time series of 
HydroBlocks simulated surface volumetric soil moisture content using VSS, VPS, VPT, and VP at multiple USCRN 
measurements from 2014 to 2019. These soil parameterization schemes were chosen because they represented a range 
of variations of soil parameterization schemes, including contemporary PTFs (VSS and VPS), lookup table-derived 
soils (VPT), and soil properties maps with soil hydraulic properties (VP). The USCRN measurements are shown via 
red dots. All the chosen soil parameterization schemes were skillful in replicating the temporal trends of surface soil 
moisture at each site. Seasonal dry, wet, and transitional periods can be observed. However, significant positive biases 
were present, such as at the Necedah site in Wisconsin. The overestimation at the Necedah site could be caused by 
many reasons, such as forcing data bias or measurement bias; however, the choice of PTFs and soil textural informa-
tion decreased the overestimation (Figures 9e–9h). The Supporting Information S1 also includes maps of RMSE and 
ubRMSE (Figures S2 and S3 in Supporting Information S1) and simulation results using 0–5 cm soil properties in line 
with the default setting in Noah-MP LSM (Figures S4–S14 in Supporting Information S1).

4.  Discussion
This study is unique as it evaluates the performance of cutting-edge DSM products (i.e., POLARIS and Soil-
Grids250m V2.0) in soil moisture modeling on the CONUS-scale. The results of this study provide insights for 
the land surface modeling regarding the added value of contemporary PTFs, the importance of soil texture maps, 
the role of vertical heterogeneity of soil properties, and the need to move away from using lookup tables in LSMs.

4.1.  The Impact of Vertically Heterogeneous Soil Profiles

The importance of a vertical representation of soil layers for simulating water movement in the vadose zone was 
investigated by comparing heterogeneous and the corresponding homogeneous soil parameterizations. Variations in 
soil mineral components, pore spaces, and soil hydraulic properties were observed across different depths at USCRN 
sites (Wilson et al., 2016). This supports the notion that there is a need to represent these vertical variations of soil 
properties. The results show that most soil schemes improved CONUS-wide median KGE, RMSE, and ubRMSE 
(Figure 2) by accounting for the vertical complexity of soil properties. The more significant benefit resides in the 
improved estimation of the temporal change of surface soil moisture (better α; Figure 4). Consequently, land surface 
modeling should definitely move away from vertically homogeneous settings for soil properties.

The relationships between soil properties and environmental characteristics generally weaken in the deeper layers 
of soils (Keskin & Grunwald, 2018). One issue is that deeper layers of soils are generally more difficult to sample 
than superficial ones. Consequently, the available information at these layers is not as reliable or accurate. More-
over, when evaluating ground-truth soil profiles or network monitoring soil hydrology processes, more attention 
is paid to the top layers than the deeper layers. Furthermore, state-of-the-art soil properties maps often utilize 
remote sensing information from the surface or top of the canopy as soil-forming covariates in their predictive 
models, which makes it more challenging to sense environmental characteristics in the root zone. To tackle this 
issue, researchers have suggested using depth function approaches (Kidd et al., 2015), adding vertically changing 
spatial covariates in the predictive models (Ma et al., 2021), and continuing to share open source soil profile data 
with the community (Batjes et al., 2020). Geostatistical models have been used to account for three-dimensional 
spatial correlations of soil properties (Poggio & Gimona, 2017). Going forward, research should focus on assess-
ing deeper soil moisture to understand how vertical soil heterogeneity partitions soil water storage, modifies 
water movement, and affects water redistribution in three-dimensional space.

4.2.  Moving Beyond Lookup Tables

Although lookup tables remain the prevalent technique to estimate soil hydraulic parameters in LSMs, their 
deficiency in comparison to the state-of-the-art soil hydraulic property maps and contemporary PTFs has been 
demonstrated. This is mainly due to the intra-variability of soil properties within soil classes being disregarded 
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(Kishné et al., 2017). Within the same textural classification at an individual study area, the spatial variability of 
soil hydraulic characteristics (i.e., hydraulic conductivity, bulk density, soil matric potential) can vary substan-
tially (Figure 7; Wilson et al., 2016; Kishné et al., 2017). Solutions to this issue have been suggested: (a) updating 
the existing lookup tables (Kishné et al., 2017), (b) developing new lookup tables based on finer categorized soil 
classes, (c) calibrating LSM or input parameters based on localized conditions (Yang et al., 2021).

Figure 9.  Time series of HydroBlocks simulated surface 5 cm volumetric soil moisture content (𝐴𝐴 m3∕m3 ), using POLARIS and Saxton and Rawls PTFs (2006) relevant 
parameterization schemes (VSS, VPS, VPT, and VP) against USCRN measurements from 2014 to 2019 over the (a–d) Ithaca site, New York; (e–h) Necedah site, 
Wisconsin; (i–l) Salem site, Missouri; (m–p) Lafayette site, Louisiana; (q–t) Goodwell site, Oklahoma; (u–x) Corvallis site, Oregon. Solid lines represent simulated 
surface 5 cm soil moisture content. Red dots are USCRN-measured surface 5 cm soil moisture content (𝐴𝐴 m3∕m3 ). Kling-Gupta efficiency, ubRMSE, and Root mean 
square error computed during the study period per site are shown at the top.
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Replacing class-based lookup tables with multi-linear or non-linear regression-based PTFs (e.g., Random Forests) 
can be a good substitute for predicting soil hydraulic properties. Our results demonstrated that the multi-linear 
regression PTFs—Saxton and Rawls PTFs (Saxton & Rawls,  2006) derived soil hydraulic parameters led to 
improvements in the simulation of surface soil moisture by reducing the overall bias (Figures 2 and 3). In compar-
ison, the POLARIS water retention curve parameters developed from Artificial Neural Network-based PTFs—
NeuroTheta PTFs (Minasny & McBratney, 2002) displayed larger biases. Variations in PTF behaviors are not 
only related to the statistical techniques used, but also to the soil sampling locations, the quality of soil samples, 
and the measured soil properties used to train the PTF models. The Saxton and Rawls PTFs were developed using 
only soil texture and organic matter from the USDA soil database as inputs. However, the NeuroTheta PTFs were 
trained using data from NRCS SCD (SCD 2016), UNSODA (Nemes et al., 2001), and GRIZZLY (Haverkamp 
et al., 1997) data sets, which includes soil samples from more extensive geological locations. Moreover, these 
PTFs were also trained using soil properties with higher uncertainties, such as bulk density, field capacity, and 
permanent wilting point. The selection of appropriate PTFs is essential to accurately predict soil moisture behav-
ior, as variations in PTFs can be attributed to a variety of factors.

Various efforts have been made to improve the performance of PTFs, such as the inclusion of novel soil 
hydrology-related predictors (Fatichi et al., 2020), topographic and land use features (Van Looy et al., 2017), 
and localized predictors (Al Majou et al., 2008). Different statistical approaches, including regression techniques 
(Cosby et  al.,  1984), Machine Learning methods (Rawls & Pachepsky, 2002), and Neural Networks (Schaap 
et al., 2001), have been used to enhance the performance of soil moisture modeling. However, the complexity 
of these approaches limits their use in large-scale studies. Linear regression methods can be implemented into 
LSM parameterization options, while Deep Learning-based PTFs or locally calibrated PTFs can better be incor-
porated into soil properties maps and used as a ready-to-use soil data set in LSMs. It remains unclear how robust 
and reliable these methodologies are when used in large-scale studies. Different PTFs exhibit evident variability 
between model outputs. For instance, Weihermüller et al. (2021) found that Rosetta, Wösten, and Tóth PTFs were 
the most reliable for the Mualem van Genuchten soil hydraulic properties and the PTFs of Cosby for the Brooks 
Corey functions when utilizing the large-scale model HYDRUS 1D Model (Weihermüller et al., 2021). Further 
studies are needed to determine how to apply PTFs efficiently. Despite this, their findings are still valuable since 
they can offer guidelines for choosing PTFs for large-scale LSMs.

4.3.  Opportunity for Improvement of Soil Properties Maps

The results of this study have shown that vertical soil properties maps and contemporary PTFs can lead to appre-
ciable improvements in the prediction of soil moisture. However, more can be done to improve these soil prop-
erties maps. It is worthwhile to explore new approaches to assemble another iteration of POLARIS. The existing 
POLARIS soil series have high uncertainties that reside in the weighted random allocation algorithm—soil series 
were determined by the normalized proportion of occurrence for the soil component within the corresponding 
SSURGO map unit (Chaney, Wood, et  al.,  2016). In the future product, we will leverage the availability of 
over 294,746 descriptions of soil pedons from the National Soil Information System (NASIS) as model inputs 
(Fortner, 2008) instead of polygon-based SSURGO to reduce predictive uncertainties. The future POLARIS soil 
classification will be performed based on the delineation of eight-digit Hydrologic Unit Code (HUC8) Water-
sheds and cluster HUC8 subbasins with neighboring subbasins to form predictive units, leveraging the exist-
ing USGS hydrological boundaries. The development of feature engineering, cutting-edge remote sensing, and 
airborne products also demonstrated their ability to improve the prediction of soil types and classification (Fink 
& Drohan, 2016; Mulder et al., 2011; Reinhardt & Herrmann, 2019; Vaudour et al., 2019). By wisely selecting 
key features, utilizing recursive feature reduction, and conducting de-correlation analysis, the potential of model 
over-fitting and redundancy between input features can be reduced, leading to more effective models. By taking 
these steps, future DSM products have the potential to become more robust and useful.

4.4.  Uncertainty Quantification

The present study uses deterministic estimates of soil hydraulic properties to perform the HydroBlocks simu-
lations. A complete evaluation would involve performing ensemble simulations at each site using a parameter 
ensemble to understand whether the remaining errors in the simulated soil moisture are still driven by the soil 
parameter uncertainty (and whether the POLARIS parameter distributions contain the “true” parameter values). 
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POLARIS also provides information on the distributions of each parameter per layer and variable per 30-m 
pixel over CONUS. However, there is no information regarding how the variables correlate with each other, nor 
their vertical correlation. As such, although approaches could be implemented, they would not be sufficiently 
robust at this time and would likely lead to randomly generated profiles of soil hydraulic properties that are not 
self-consistent with observations. To make such an analysis possible, one option for the next generation of POLA-
RIS will be to provide the distributions of the parameters per layer and pixel and a variable/layer covariance 
matrix. This covariance matrix could be calculated when assembling the data set from the soil pedons and PTFs, 
and it would provide sufficient information to assemble parameter ensembles for a comprehensive uncertainty 
quantification.

5.  Conclusions
Soil moisture varies strongly in space and time, reflecting a complex interaction between climate, landscape, and 
particularly soil properties. This work aimed to assess the impact of cutting-edge soil properties maps, contem-
porary PTFs, and vertical soil heterogeneity on hydrological representation. Based on an evaluation of surface 
soil moisture modeling over a multi-year (2014–2019) basis across the CONUS, different soil parameterization 
schemes were able to reproduce the main features of soil moisture seasonal cycle and interannual fluctuation. The 
use of POLARIS and SoilGrids250m V2.0 soil properties maps and their derived parameters with the Saxton and 
Rawls PTFs (2006) were found to improve soil moisture modeling, and their associated vertically heterogeneous 
soil parameterization schemes further improved performance in comparison to lookup table-derived schemes, 
particularly with vertically homogeneous setting for soil columns. The study highlighted the importance of accu-
rately predicting soil properties (specifically soil hydraulic properties) and the need for detailed soil heterogeneity 
at finer spatial resolution. It also emphasized the added value of robust vertically heterogeneous soil properties 
and contemporary soil properties products for LSM's soil parameterizations. In addition, the study suggests that 
moving beyond lookup tables is crucial for soil parameterization in LSMs to improve the representation of soil 
moisture variability.

Data Availability Statement
POLARIS, SoilGrids250m V2.0, and CONUS-SOIL soil data used in this work can be found at the follow-
ing site: http://hydrology.cee.duke.edu/POLARIS/ (Chaney et  al.,  2019; Chaney, Wood, et  al.,  2016); https://
soilgrids.org/ (Poggio et  al.,  2021,  p.  2); http://www.soilinfo.psu.edu/index.cgi?soil_data&conus (Miller & 
White,  1998). The HydroBlocks model (Chaney et  al.,  2021) code used in this study is preserved at https://
zenodo.org/record/4071692. The USCRN soil moisture is available online at https://www.ncei.noaa.gov/access/
crn/qcdatasets.html (Bell et al., 2013).
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