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1. Baroclinic Structure Function 33 

The linear equations of motion including the wind forcing terms are: 34 

𝑢𝑡 − 𝑓0𝑣 +
1

𝜌̅

𝜕𝑃

𝜕𝑥
= 𝜏𝑥𝕫(𝑧) + (𝜈𝑢𝑧)𝑧 + 𝜈2∇2𝑢   (1) 35 

𝑣𝑡 + 𝑓0𝑢 +
1

𝜌̅

𝜕𝑃

𝜕𝑦
= 𝜏𝑦𝕫(𝑧) + (𝜈𝑣𝑧)𝑧 + 𝜈2∇2𝑣   (2) 36 

𝜕𝑃

𝜕𝑧
= −𝜌𝑔           (3) 37 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0         (4) 38 

𝜕𝜌

𝜕𝑡
+ 𝑤

𝜕𝜌̅

𝜕𝑧
= 0          (5) 39 

where u, v, and w are the zonal, meridional and vertical velocity anomalies; P and 𝜌 40 

are the pressure and density anomalies, g is the acceleration due to gravity, f = 𝛽y is 41 

the Coriolis parameter. The parameter 𝜈 is the coefficient of vertical eddy viscosity 42 

and 𝜈2 is the coefficient of Laplacian mixing. 𝜏𝑥 and 𝜏𝑦 are zonal and meridional 43 

wind-stress that forcing the ocean system, and wind-stress enters the ocean as body 44 

force with the vertical structure 𝕫(z). 45 

Firstly, we consider the vertical mode decomposition and reduce the Eqs. (3) and 46 

(5) to: 47 

1

𝜌̅

𝜕2𝑃

𝜕𝑡𝜕𝑧
= −𝑁2𝑤          (6) 48 

𝑁2 = −
𝑔

𝜌̅

𝜕𝜌̅

𝜕𝑧
          (7) 49 

where N is the Brunt-Väisälä frequency, which is calculated from the vertical profile of 50 

potential density of the ORAS-5 and WOA18 data near the equator. Considering the 51 

shallow water approximation and vertically continuous stratification, horizontal 52 

velocity and pressure are then written as following: 53 

(𝑢, 𝑣, 𝑃) = ∑ (𝑢𝑛(𝑥, 𝑦, 𝑡), 𝑣𝑛(𝑥, 𝑦, 𝑡), 𝑝𝑛(𝑥, 𝑦, 𝑡))∞
𝑛=0 𝜓𝑛(z)  (8) 54 

Using the continuity equation, we have 55 

𝜕𝑤

𝜕𝑧
= −

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
= − ∑ (

𝜕𝑢𝑛(𝑥,𝑦,𝑡)

𝜕𝑥
+

𝜕𝑣𝑛(𝑥,𝑦,𝑡)

𝜕𝑦
) 𝜓𝑛(z) = ∑ (𝑤𝑛(𝑥, 𝑦, 𝑡))∞

𝑛=0 𝜓𝑛(z) (9) 56 

Here, we assume 𝑤𝑛(𝑥, 𝑦, 𝑡) = −
𝜕𝑢𝑛(𝑥,𝑦,𝑡)

𝜕𝑥
−

𝜕𝑣𝑛(𝑥,𝑦,𝑡)

𝜕𝑦
.  57 

Vertically integrated the Eq. (9), we have 58 
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𝑤 = ∑ (𝑤𝑛(𝑥, 𝑦, 𝑡))∞
𝑛=0 𝑆𝑛(z),  [

𝜕𝑆𝑛(z)

𝜕𝑧
= 𝜓𝑛(z)]     (10) 59 

where 𝑆𝑛(z) is the vertical structure functions of vertical velocity. Substitution of the 60 

Eqs. (8) and (10) into Eq. (6) gives: 61 

∑ (
1

𝜌̅

𝜕2𝑝𝑛(𝑥,𝑦,𝑡)𝜓𝑛(z)

𝜕𝑡𝜕𝑧
)∞

𝑛=0 = −𝑁2 ∑ (𝑤𝑛(𝑥, 𝑦, 𝑡))𝑆𝑛(z)∞
𝑛=0   (11) 62 

𝑑𝜓𝑛(z)/dz

𝑁2𝑆𝑛(z)
=

𝜌̅𝑤𝑛

𝜕𝑝𝑛/𝜕𝑡
= −

1

𝑐𝑛
2         (12) 63 

As the first term in the Eq. (12) is a function of z alone and the second term is a 64 

function of (x, y, t) alone, for consistency both terms must be equal to a constant. Here 65 

we take the “separation constant” to be −1/𝑐𝑛
2 as in (12), and the eigenvalue 𝑐𝑛 is 66 

also known as the characteristic speed for the mode n. Then, the vertical structure is 67 

given as: 68 

1

𝑁2

𝑑𝜓𝑛(z)

dz
= −

1

𝑐𝑛
2 𝑆𝑛(z)           (13) 69 

Taking the z-derivative, we have 70 

𝑑

dz
(

1

𝑁2

𝑑𝜓𝑛(z)

dz
) +

1

𝑐𝑛
2 𝜓𝑛(z) = 0        (14) 71 

This eigenvalue equation is solved under the condition ∫ 𝜓𝑛𝑑𝑧
0

−𝐻𝑏𝑜𝑡
= 0, where 72 

𝐻𝑏𝑜𝑡  is the bottom depth. The 𝜓𝑛(z) form a set of orthogonal functions and are 73 

normalized by 𝜓𝑛(0) = 1 for all n. We solved this eigenvalue problem numerically 74 

obtaining N2 from the vertical density profile of the ORAS-5. The 𝜓𝑛(z) can be 75 

calculated by the MATLAB m-file obtained from https://github.com/sea-76 

mat/dynmodes. The solutions of baroclinic structure functions for 1st–6th modes and 77 

their characteristic speeds are illustrated in Fig. S3 and Table S1. 78 

2. Continuously Stratified Model and Damper Experiment 79 

A continuously stratified LOM was used to assess the importance of the equatorial 80 

baroclinic waves for the intensification of westward EUC in the Indian Ocean. This 81 

model is described in detail in McCreary (1981), and has been applied to explain the 82 

dynamics of the East Indian Coastal Current, EUC, western boundary reflection, and 83 

basin resonances (Chen et al., 2015; Han et al., 2011; McCreary et al., 1996; Shankar 84 

et al., 1996; Yuan and Han, 2006). It has been demonstrated that the LOM is able to 85 

reasonably simulate the observed zonal current variability at the intraseasonal, seasonal, 86 

https://github.com/sea-mat/dynmodes
https://github.com/sea-mat/dynmodes
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and interannual timescales in the TIO (e.g., Han, 2005; Han et al., 2011; Chen et al., 87 

2015). 88 

In the LOM, the equations of motion are linearized about a background state of rest 89 

with a realistic stratification represented by Brünt-Väisälä frequency, and the ocean 90 

bottom is assumed flat at 4000 m. With these restrictions, the solutions can be 91 

represented as expansions in the vertical normal modes (n) of the system. The zonal 92 

velocity u, meridional velocity v and pressure p in the solutions can be represented as 93 

expansions in the vertical normal modes of the system with eigenfunctions ψn(z): 94 

0

,
N

n n

n

u u


                          (15) 95 

0

,
N

n n

n

v v


                              (16) 96 

0

,
N

n n

n

p p


                          (17) 97 

where the expansion coefficients, un, vn and pn are functions only of x, y, and t. 98 

Strictly speaking, the total mode number should extend to infinity, but the solutions 99 

converge rapidly enough with n (McCreary et al., 1996; Shankar et al., 1996). Herein n 100 

= 25 is selected to represent the total baroclinic mode number (same as in Han et al., 101 

2011; Chen et al., 2015). The total solution is the sum of all the selected modes. The 102 

terms un, vn and pn are governed by the follow equations: 103 

  2

2

1
/x

t n n nx n n h n n

n

A
u fv p Z H v u u

c
  



 
        
  ,    (18) 104 

  2

2

1
/y

t n n ny n n h n

n

A
v fu p Z H v v

c
 



 
       
 

,

      (19) 105 
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2 2
0n

t nx ny

n n

pA
u v

c c

 
     
 

,

           (20) 106 

where cn is the characteristic speed of equatorial Kelvin wave for vertical mode 107 

number n. The cn values for the first six baroclinic modes (n = 1,2, …, 6), estimated 108 

from a mean background stratification based on density observations in the Indian 109 

Ocean (see Moore and McCreary, 1990), are 264, 167, 105, 75, 60 and 49 cm s–1. The 110 

Coriolis parameter is f = βy under equatorial β–plane approximation and vh is the 111 

coefficient of the horizontal eddy viscosity. The coupling intensity of each mode to the 112 

wind field is determined by Zn = ∫ 𝑍(𝑧)
0

−𝐷
𝜓𝑛𝑑𝑧/𝐻𝑛, Hn = ∫ 𝜓𝑛

2𝑑𝑧
0

−𝐷
, and Z(z) is the 113 

vertical profiles of wind that is introduced as a body force, where Z(z) is constant in the 114 

upper 50 m and linearly decreases to zero from 50 to 100 m depth. The terms associated 115 

with A/𝑐𝑛
2  represent vertical friction with A = 0.00013 cm2 s–3, and they provide 116 

damping for the equatorial Kelvin and Rossby waves. Since the damping is inversely 117 

proportional to 𝑐𝑛
2 , the low order baroclinic modes Kelvin and Rossby waves 118 

experience weak damping effects because of their faster speeds (e.g., 𝑐1 = 264 cm s–1 119 

and 𝑐2 = 167 cm s–1), and thus they can propagate far away from the forcing region. 120 

By contrast, the higher order modes experience strong damping effects due to their 121 

slower speeds, and thus their response is local and manly restricted to the forcing region 122 

(see Han, 2005 for detailed discussions). All solutions of the control run have a damper 123 

with coefficient δ(x, y) near the eastern boundary of the basin (in the last term of the 124 

Eq. 2a), as discussed next, to absorb the energy of forced equatorial Kelvin wave in this 125 

region. 126 

The LOM with a realistic Indian Ocean basin without the Maldives Islands was first 127 

spun up for 20 years forced with monthly mean climatology of cross-calibrated, multi-128 

platform version 2 (CCMP v2), for the 1988–2016 period. Restarting from the spin up 129 

run, the LOM was integrated forward in time using monthly CCMP winds from 1988 130 

to 2016. This solution is referred to as the LOM main run (LOM-MR) and the total 131 

solution of LOM-MR is the sum of the first 25 modes. Then, a second run was 132 
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performed with a damper in the eastern equatorial ocean to isolate the effects of eastern 133 

boundary reflected Rossby waves. This damper with coefficient δ(x,y) (Eq. 18) is 134 

nonzero only in the eastern equatorial ocean within the region x > 97.5°E, –7.5°S < y < 135 

7.5°N. In this region, δ has a maximum value of 0.6𝑐𝑛/∆𝑥, where ∆𝑥 is the zonal grid 136 

step, and δ decreases linearly to zero within 5° of its western edge and within 2° of its 137 

northern and southern edges. This damper causes equatorial Kelvin waves to decay 138 

rapidly in an e-folding scale of ~1.5 ∆𝑥.Therefore, the damper efficiently absorbs the 139 

energy of incoming equatorial Kelvin waves, and thus no Rossby waves are reflected 140 

back into the ocean interior from the eastern boundary (e.g., McCreary et al., 1981, 141 

1996; Han et al., 2005, 2011). We refer to this run as LOM-DAMP. The difference 142 

between the two experiments (LOM-MR minus LOM-DAMP, defined as LOM-Reflect) 143 

linearly isolates the reflected Rossby wave effects. 144 

3. Forced and Reflected Intermediate-order Baroclinic Mode Waves 145 

Here, we elucidate the contributions of different baroclinic modes to subsurface 146 

zonal velocity anomalies. For the LOM, the velocity anomalies for each baroclinic 147 

mode were obtained from the model results. For the comparison between the LOM and 148 

ORAS-5, the decomposition from each baroclinic mode was further obtained from 149 

ORAS-5. The decomposition of ORAS-5 is performed with the climatological density 150 

profile averaged over the near-equatorial region (2.5°S to 2.5°N) and then by projecting 151 

zonal velocities onto the vertical profiles of the first 8 baroclinic modes. 152 

In our model, three parameters affect the relative amplitudes of the baroclinic modes. 153 

The first is the propagation speed of waves (𝑐𝑛), the second is the coupling efficiency 154 

(𝑃𝑛) with which the wind forcing projects onto the baroclinic mode structures and the 155 

third is the vertical positions of the modal zero crossings, as well as the modal peaks 156 

and troughs (Fig. S3). The coupling efficiency is defined as 𝑃𝑛 =

1

ℎ𝑚𝑖𝑥
∫ 𝜓𝑛(𝑧)𝑑𝑧

0
−ℎ𝑚𝑖𝑥

∫ 𝜓𝑛
20

−𝐻𝑏𝑜𝑡
(𝑧)𝑑𝑧

, 157 

where ℎ𝑚𝑖𝑥 = 60 m is the mean mixed layer depth and 𝐻𝑏𝑜𝑡 = 4000 m is the ocean 158 

floor depth. A baroclinic mode is excited efficiently by winds if this parameter is large. 159 

According to this parameter, the first and second baroclinic modes are most favorably 160 

excited (see Table S1). However, waves of these modes propagate so fast (𝑐1 = 264 cm 161 
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s–1, 𝑐2 = 167 cm s–1, Table S1) that zonal velocity anomalies due to reflected waves 162 

are opposite in direction to those of directly forced waves during 1997–1998 and 2015–163 

2016, which results in the destructive interference at the central basin. In contrast, 164 

intermediate-order (mainly 3rd to 6th) baroclinic mode waves propagate much slower, 165 

and zonal velocity anomalies due to forced waves reverse their sign when reflected 166 

waves reach the central basin (Figs. S4 E–H). The large amplitudes of the 3rd to 6th 167 

baroclinic modes in Fig. 4G are due to this constructive relationship between forced 168 

and reflected waves, which builds unique and strong flow in the depth range of 100–169 

200 m. The amplitude of the 4th baroclinic mode is largest, which is because Pn for this 170 

mode is larger than those for other intermediate modes and that the vertical structure of 171 

this mode has a sharp trough at about 100 to 200 m depths (Table S1 and Fig. S3). The 172 

vertical profile of the nth baroclinic mode has n zero crossings, and other intermediate 173 

modes suffer from the relatively small amplitude of vertical structure function and 174 

visible phase jump with their first zero crossing near 100–200 m depths (Table S1 and 175 

Fig. S3). 176 

4. Equatorial moored observation and model validation 177 

The equatorial in-situ observations derived from the ADCPs (velocity, Fig. S2) and 178 

SBE 37-SM (temperature, Fig. S2) are also used to validate the ORAS-5 results. The 179 

ADCPs mounted on subsurface moorings as part of the Research Moored Array for 180 

African–Asian–Australian Monsoon Analysis and Prediction (RAMA) (McPhaden et 181 

al., 2009) and SCSIO TIOON Q5 (Zeng et al., 2021). The observed subsurface zonal 182 

velocity are well captured by the ORAS-5, with similar spatial patterns and magnitudes 183 

(Fig. S1A). Note that the wEUC during JJ 2016 observed by the TIOON Q5 is missed 184 

due to the lack of buoyancy with the sinking mooring (Fig. S1B). Consistent with 185 

published information, the observed temperature in the depth range of 300–500 m are 186 

well simulated in the ORAS-5 reanalysis data (correlation coefficient with in-situ 187 

observations is about 0.95, 99% confidence level) (Fig. S2), showing the skill of the 188 

ORAS-5 in simulating the key dynamics of the equatorial subsurface zonal flows and 189 

thermal structures. 190 
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 191 
Figure S1. (A) Daily zonal velocity obtained from the RAMA mooring at (80.5°E, EQ) from 2015 to 192 

2017. (B) As is in (A) but for the SCSIO TIOON mooring Q5 at (80°E, EQ). (C) Monthly zonal velocity 193 

at (80°E, EQ) obtained from the ORAS-5. 194 
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   195 

Figure S2. (A) Depth of SBE 37-SM (MicroCAT Conductivity and Temperature Recorder) mounted 196 

on the mooring Q6. (B) Temperature obtained from the moored SBE 37-SM (red line) and the 197 

ORAS-5 (blue line). The temperature obtained from ORAS-5 is interpolated onto the depth of SBE 198 

37-SM. 199 



42 
 

  200 

Figure S3. (A) Normalized vertical structure function of the first, second and third baroclinic modes 201 

derived from the mean Brunt-Väisälä frequency profiles obtained from tropical Indian Ocean 202 

observations (used in LOM). (B) Normalized vertical structure function of the fourth, fifth and sixth 203 

baroclinic modes used in LOM. 204 
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 205 

Figure S4. Zonal velocity anomalies of the first baroclinic mode averaged over 100-200 m depths 206 

and 2.5°S to 2.5°N obtained from (A) LOM-DAMP and (B) LOM-Reflect during 2015 and 2016. 207 

The black line is illustrated in panel (A) in JJ 2016 and at 80°E. (C, D) Same as panel (A, B), 208 

respectively, but for the period from 1997 to 1998. (E–H) Same as panels (A–D), respectively, but 209 

for the fourth baroclinic mode. 210 



44 
 

 211 

Figure S5. Spatial structures of 2016 JJ means of (a) sea surface height (SSH, colored shading) and 212 

wind stress (arrows), (b) thermocline depth (D20), (c) subsurface current vectors (arrows) and zonal 213 

velocity (colored shading) averaged between 100 and 200 m obtained from the ORAS-5. (d) The 214 

inter-annual variability of JJ mean equatorial undercurrent (red line) compared to anomalous 215 

subsurface transport of shallow overturning cell (blue line) (transport in the Southern Hemisphere 216 

minus transport in the Northern Hemisphere). The green and pink lines are anomalous subsurface 217 

transports of southern and northern shallow overturning cells as pink boxes in (c). (e) Current 218 

vectors (arrows) and pressure (colored shading) averaged between 100 and 200 m obtained from 219 

LOM-DAMP, and (f) current vectors (arrows) and pressure (colored shading) averaged over 100 to 220 

200 m obtained from LOM-Reflect. 221 
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Table S1. Characteristics of the baroclinic modal decomposition using mean Brunt-Väisälä 222 

frequency profiles (0–4000 m) obtained from tropical Indian Ocean observations (Han et al., 2011). 223 

Results were almost the same as that of the mean Brunt-Vaisala frequency obtained from the ORAS-224 

5. +/– represent the eastward/westward phase propagation. 225 

Mode 

number 

Characterisitc 

phase speed 

cn (cm s–1) 

Kelvin wave’s 

phase speed 

 (
𝜔

𝑘
, cm s–1) 

1st meridional 

Rossby waves’ 

phase speed 

(
𝜔

𝑘
, cm s–1) 

Depth of 

first zero-

crossing 

(m) 

Depth of 

second zero-

crossing (m) 

Wind 

coupling 

efficiency 

(P𝑛, m–1) 

1 264 +264 –88 1376 – 0.0036 

2 167 +167 –56 171 1840 0.0058 

3 105 +105 –35 92 690 0.0012 

4 75 +75 –25 78.5 346 0.0011 

5 60 +60 –20 70 219 0.0005 

6 49 +49 –16 66 179 0.0005 

 226 


